1
|
Yamashita S, Tanaka M, Nodono H, Hamada A, Hamada T, Hasegawa M, Nishi Y, Moss J, Miwa M. Human alcohol dehydrogenase 1 is an acceptor protein for polyADP-ribosylation. Biochem Pharmacol 2019; 167:27-32. [PMID: 30936015 PMCID: PMC9872671 DOI: 10.1016/j.bcp.2019.03.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 03/19/2019] [Indexed: 01/26/2023]
Abstract
Alcohol dehydrogenase (ADH) is important for preventing alcohol toxicity and developmental disorders, and may be involved in other diseases including neurodegenerative diseases. We found that the major acceptor protein of polyADP-ribosylation in a model organism of neurodegeneration using a Drosophila melanogaster mutant lacking poly(ADP-ribose) glycohydrolase, was ADH. Thus we postulated that human ADH activity might be regulated by polyADP-ribosylation, a post-translational modification. The radioactivity of [32P]NAD+ was incorporated into human ADH1 by human poly(ADP-ribose) polymerase 1 in vitro, but was not incorporated when heat-inactivated PARP1 or a PARP inhibitor, 3-aminobenzamide, was used. The incorporated radioactivity was not released from ADH1 protein in the presence of excess amount of ADP-ribose or poly(ADP-ribose) as competitors. However, it was released by incubation with 1 M neutral NH2OH or 0.1 N NaOH, but was not with 0.1 N HCl, suggesting the bond between ADH1 and poly(ADP-ribose) is an ester linkage. When HepG2 cells, a human hepatoma cell line, were cultured in the presence of another PARP inhibitor, olaparib, ADH activity of the cell was significantly increased. These results suggest that polyADP-ribosylation could regulate ADH activity in vivo and might be involved in neurodegeneration.
Collapse
Affiliation(s)
- Sachiko Yamashita
- Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, 1266 Tamura, Nagahama, Shiga 526-0829, Japan,Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1590, USA
| | - Masakazu Tanaka
- Department of Microbiology, Kansai Medical University, Hirakata, Osaka 573-1010, Japan,Division of Molecular Pathology, Center for Chronic Viral Diseases, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Hiroto Nodono
- Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, 1266 Tamura, Nagahama, Shiga 526-0829, Japan
| | - Akiko Hamada
- Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, 1266 Tamura, Nagahama, Shiga 526-0829, Japan
| | - Takashi Hamada
- Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, 1266 Tamura, Nagahama, Shiga 526-0829, Japan
| | - Makoto Hasegawa
- Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, 1266 Tamura, Nagahama, Shiga 526-0829, Japan
| | - Yoshisuke Nishi
- Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, 1266 Tamura, Nagahama, Shiga 526-0829, Japan
| | - Joel Moss
- Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1590, USA
| | - Masanao Miwa
- Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, 1266 Tamura, Nagahama, Shiga 526-0829, Japan,Corresponding author. (M. Miwa)
| |
Collapse
|
2
|
Utkina NK, Krasokhin VB. Tetrahydroisoquinoline alkaloid N-methylnorsalsolinol from the Australian marine sponge Xestospongia SP. Chem Nat Compd 2012. [DOI: 10.1007/s10600-012-0364-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
3
|
Stefano GB, Mantione KJ, Králíčková M, Ptacek R, Kuzelova H, Esch T, Kream RM. Parkinson's disease, L-DOPA, and endogenous morphine: a revisit. Med Sci Monit 2012; 18:RA133-137. [PMID: 22847214 PMCID: PMC3560700 DOI: 10.12659/msm.883259] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 06/04/2012] [Indexed: 11/09/2022] Open
Abstract
Clinical observations stemming from widespread employment of restorative L-3,4-dihydroxyphenylalanine (L-DOPA) therapy for management of dyskinesia in Parkinson's Disease (PD) patients implicate a regulatory role for endogenous morphine in central nervous system dopamine neurotransmission. Reciprocally, it appears that restorative L-DOPA administration has provided us with a compelling in vivo pharmacological model for targeting peripheral sites involved in endogenous morphine expression in human subjects. The biological activities underlying endogenous morphine expression and its interaction with its major precursor dopamine strongly suggest that endogenous morphine systems are reciprocally dysregulated in PD. These critical issues are examined from historical and current perspectives within our short review.
Collapse
Affiliation(s)
- George B. Stefano
- Neuroscience Research Institute, State University of New York – College at Old Westbury, Old Westbury, NY, U.S.A
- Clinic of Psychiatry, 1 Faculty of Medicine, Charles University in Prague, Czech Republic
| | - Kirk J. Mantione
- Neuroscience Research Institute, State University of New York – College at Old Westbury, Old Westbury, NY, U.S.A
| | - Milena Králíčková
- Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University in Prague, Czech Republic
| | - Radek Ptacek
- Neuroscience Research Institute, State University of New York – College at Old Westbury, Old Westbury, NY, U.S.A
- Clinic of Psychiatry, 1 Faculty of Medicine, Charles University in Prague, Czech Republic
| | - Hana Kuzelova
- Clinic of Psychiatry, 1 Faculty of Medicine, Charles University in Prague, Czech Republic
- Department of Biology and Medical Genetics, 2 Faculty of Medicine, Charles University in Prague, Czech Republic
| | - Tobias Esch
- Neuroscience Research Institute, State University of New York – College at Old Westbury, Old Westbury, NY, U.S.A
- Division of Integrative Health Promotion, Coburg University of Applied Sciences, Germany
| | - Richard M. Kream
- Neuroscience Research Institute, State University of New York – College at Old Westbury, Old Westbury, NY, U.S.A
- Clinic of Psychiatry, 1 Faculty of Medicine, Charles University in Prague, Czech Republic
| |
Collapse
|
4
|
Adh1 and Adh1/4 knockout mice as possible rodent models for presymptomatic Parkinson's disease. Behav Brain Res 2012; 227:252-7. [DOI: 10.1016/j.bbr.2011.10.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 10/21/2011] [Accepted: 10/25/2011] [Indexed: 11/18/2022]
|
5
|
Ugrumov MV, Khaindrava VG, Kozina EA, Kucheryanu VG, Bocharov EV, Kryzhanovsky GN, Kudrin VS, Narkevich VB, Klodt PM, Rayevsky KS, Pronina TS. Modeling of presymptomatic and symptomatic stages of parkinsonism in mice. Neuroscience 2011; 181:175-88. [PMID: 21382448 DOI: 10.1016/j.neuroscience.2011.03.007] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Revised: 02/28/2011] [Accepted: 03/01/2011] [Indexed: 12/11/2022]
Abstract
A degradation of the nigrostriatal dopaminergic (DA-ergic) system is the key component of pathogenesis of Parkinson's disease (PD). Initial clinical symptoms appear 20-30 years after the onset of neurodegeneration, at a 70% DA depletion in the striatum and a 50% loss of nigral DA-ergic neurons. Low efficacy of the therapy might be improved if preclinical diagnostics and preventive therapy are developed. The development of appropriate experimental models should precede clinical trials. This multidisciplinary study first managed to model in mice with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) all together the following stages of parkinsonism: (a) the early presymptomatic stage manifested by a subthreshold degeneration of axons and DA depletion in the striatum without loss of nigral cell bodies; (b) the advanced presymptomatic stage manifested by a subthreshold degeneration of striatal axons and DA depletion and by a subthreshold loss of nigral cell bodies; (c) the advanced presymptomatic stage characterized by threshold depletion of striatal DA and a loss of DA-ergic axons and nigral cell bodies resulting in motor dysfunction. The degeneration of axons proceeds and prevails that of cell bodies suggesting higher sensitivity to MPTP of the former. Compensatory processes were developed in parallel to neurodegeneration that was manifested by the increase of the DA content in individual nigral cell bodies and DA turnover in the striatum. The developed models might be exploited for: (a) an examination of pathogenetic mechanisms not only in the nigrostriatal system but also in other brain regions and in the periphery; (b) a study of the compensatory mechanisms under DA deficiency; (c) a search of precursors of motor disorders and peripheral biomarkers in presymptomatic parkinsonism; (d) the development of preventive therapy aiming to slow down the neurodegeneration and strengthen compensatory processes. Thus, the models of the early and advanced presymptomaic stages and of the early symptomatic stage of parkinsonism were developed in mice with MPTP.
Collapse
Affiliation(s)
- M V Ugrumov
- Laboratory of Hormonal Regulations, Institute of Developmental Biology RAS, 26 Vavilov Street, Moscow 119334, Russia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Belin AC, Westerlund M, Anvret A, Lindqvist E, Pernold K, Ogren SO, Duester G, Galter D. Modeling Parkinson's disease genetics: altered function of the dopamine system in Adh4 knockout mice. Behav Brain Res 2010; 217:439-45. [PMID: 21075145 DOI: 10.1016/j.bbr.2010.11.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Revised: 11/03/2010] [Accepted: 11/07/2010] [Indexed: 10/18/2022]
Abstract
Class IV alcohol dehydrogenase (ADH4) efficiently reduces aldehydes produced during lipid peroxidation, and may thus serve to protect from toxic effects of aldehydes e.g. on neurons. We hypothesized that ADH4 dysfunction may increase risk for Parkinson's disease (PD) and previously reported association of an ADH4 allele with PD. We found that a promoter polymorphism in this allele induced a 25-30% reduction of transcriptional activity. Based on these findings, we have now investigated whether Adh4 homo- (Adh4-/-) or heterozygous (Adh4+/-) knockout mice display any dopamine system-related changes in behavior, biochemical parameters or olfaction compared to wild-type mice. The spontaneous locomotor activity was found to be similar in the three groups, whereas administration of d-amphetamine or apomorphine induced a significant increase in horizontal activity in the Adh4-/- mice compared to wild-type mice. We measured levels of monoamines and their metabolites in striatum, frontal cortex and substantia nigra and found increased levels of dopamine and DOPAC in substantia nigra of Adh4-/- mice. Investigation of olfactory function revealed a reduced sense of smell in Adh4-/- mice accompanied by alterations in dopamine metabolite levels in the olfactory bulb. Taken together, our results suggest that lack of Adh4 gene activity induces changes in the function of the dopamine system, findings which are compatible with a role of loss-of-function mutations in ADH4 as possible risk factors for PD.
Collapse
|
7
|
Abstract
Morphine biosynthesis in relatively simple and complex integrated animal systems has been demonstrated. Key enzymes in the biosynthetic pathway have also been identified, that is, CYP2D6 and COMT. Endogenous morphine appears to exert highly selective actions via novel mu opiate receptor subtypes, that is, mu3,-4, which are coupled to constitutive nitric oxide release, exerting general yet specific down regulatory actions in various animal tissues. The pivotal role of dopamine as a chemical intermediate in the morphine biosynthetic pathway in plants establishes a functional basis for its expansion into an essential role as the progenitor catecholamine signaling molecule underlying neural and neuroendocrine transmission across diverse animal phyla. In invertebrate neural systems, dopamine serves as the preeminent catecholamine signaling molecule, with the emergence and limited utilization of norepinephrine in newly defined adaptational chemical circuits required by a rapidly expanding set of physiological demands, that is, motor and motivational networks. In vertebrates epinephrine, emerges as the major end of the catecholamine synthetic pathway consistent with a newly incorporated regulatory modification. Given the striking similarities between the enzymatic steps in the morphine biosynthetic pathway and those driving the evolutionary adaptation of catecholamine chemical species to accommodate an expansion of interactive but distinct signaling systems, it is our overall contention that the evolutionary emergence of catecholamine systems required conservation and selective "retrofit" of specific enzyme activities, that is, COMT, drawn from cellular morphine expression. Our compelling hypothesis promises to initiate the reexamination of clinical studies, adding new information and treatment modalities in biomedicine.
Collapse
|
8
|
Huang MJ, Quan Z, Liu YM. Computational Modeling of Inclusion Complexes of β-Cyclodextrin with enantiomers of Salsolinol, N-Methyl-Salsolinol, and 1-Benzyl-Tetrahydroisoquinoline. INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY 2009; 109:81-90. [PMID: 20046208 PMCID: PMC2613309 DOI: 10.1002/qua.21852] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Capillary electrophoresis with β-CD as a chiral selector has successfully separated the two enantiomers of salsolinol, N-methyl-salsolinol, and 1-benzyl-tetrahydroisoquinoline. The migration times of each enantiomer in capillary electrophoresis reflect the stability of their β-CD inclusion complexes. This paper reports a computational modeling study of the inclusion complexes of β-cyclodextrin (β-CD) with salsolinol, N-methyl-salsolinol, and 1-benzyl-tetrahydroisoquinoline by using PM3 (Parametric Method 3) semi-empirical molecular orbital calculations and the ONIOM hybrid method. Two types of the inclusion complexes, cis- and trans-orientations, are considered for each enantiomer of the guest molecules, salsolinol, N-methyl-salsolinol, and 1-benzyl-tetrahydroisoquinoline. In the cis-orientation, the nitrogen in the salsolinol, N-methyl-salsolinol, and 1-benzyl-tetrahydroisoquinoline points toward the secondary hydroxyls of the β-CD, while in the trans-orientation, the nitrogen in salsolinol, N-methyl-salsolinol, and 1-benzyl-tetrahydroisoquinoline points toward the primary hydroxyls of the β-CD. We found that the stabilization energies of these inclusion complexes from these PM3 and ONIOM different methods correlate very well with the migration order deduced from the study of capillary electrophoretic separation.
Collapse
Affiliation(s)
- Ming-Ju Huang
- The Computational Center for Molecular Structure and Interactions, Department of Chemistry, Jackson State University, P. O. Box 17910, 1400 J. R. Lynch Street, Jackson, MS 39217
| | | | | |
Collapse
|
9
|
Theodoridis GA, Zacharis CK, Voulgaropoulos AN. Automated sample treatment by flow techniques prior to liquid-phase separations. ACTA ACUST UNITED AC 2007; 70:243-52. [DOI: 10.1016/j.jbbm.2006.08.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2006] [Accepted: 08/24/2006] [Indexed: 10/24/2022]
|
10
|
Song Y, Xu J, Hamme A, Liu YM. Capillary liquid chromatography–tandem mass spectrometry of tetrahydroisoquinoline derived neurotoxins: A study on the blood–brain barrier of rat brain. J Chromatogr A 2006; 1103:229-34. [PMID: 16310796 DOI: 10.1016/j.chroma.2005.11.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2005] [Revised: 11/02/2005] [Accepted: 11/07/2005] [Indexed: 11/21/2022]
Abstract
Certain tetrahydroisoquinoline derivatives such as 1-benzyl-1,2,3,4-tetrahydroisoquinoline (1-BnTIQ) and N-methylsalsolinol are parkinsonian neurotoxins. This paper describes a sensitive and reliable analytical method based on liquid chromatography-tandem mass spectrometry (LC-MS/MS) for the determination of tetrahydroisoquinoline derivatives (TIQs) in brain dialysate. Samples (20 microL injected) were effectively stacked and cleaned up in-line on a capillary column (5 cm x 0.25 mm I.D.) packed with 5 microm phenyl reversed-phase silica particles. Under the optimized conditions, electrospray ionisation-MS/MS detection of TIQs was highly sensitive. The capillary LC-MS/MS method had a detection limit of 2 ng/ml for TIQ. The method was used in combination with in vivo microdialysis to study the blood-brain barrier (BBB) for TIQs. The microdialysis probe was implanted in the frontal cortex of rat brain. Test compounds were administered intraperitoneally (i.p.). Four TIQs including 1,2,3,4-tetrahydroisoquinoline (TIQ), 5,6,7,8-tetrahydroisoquinoline (5-TIQ), 1-BnTIQ, and salsolinol (SAL) were studied. A concentration maximum was detected in brain dialysate for TIQ, 5-TIQ, and 1-BnTIQ about 40 min after drug administration. However, SAL, the precursor of N-methylsalsolinol was found unable to cross the BBB of rat brain.
Collapse
Affiliation(s)
- Yaru Song
- Department of Chemistry, Jackson State University, 1400 Lynch Street, Jackson, MS 39217, USA
| | | | | | | |
Collapse
|
11
|
Westerlund M, Galter D, Carmine A, Olson L. Tissue- and species-specific expression patterns of class I, III, and IV Adh and Aldh1 mRNAs in rodent embryos. Cell Tissue Res 2005; 322:227-36. [PMID: 16047160 DOI: 10.1007/s00441-005-0038-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2005] [Accepted: 06/14/2005] [Indexed: 11/24/2022]
Abstract
Alcohol and aldehyde dehydrogenases (ADHs and ALDHs) may be of interest in the pathology of Parkinson's disease (PD) because of their role in protection against toxins and in retinoid metabolism, which is required for growth and development of the mesencephalic dopamine system. In the present study, the spatial and temporal expression patterns of Adh 1, Adh 3, Adh 4, and Aldh 1 mRNAs in embryonic C57BL/6 mice (E 9.5-E19.5) and Sprague-Dawley rats (E12.5-P0) have been investigated by using radioactive oligonucleotide in situ hybridization. High expression of Aldh 1 mRNA was found in the developing mesencephalic dopamine neurons of both mice and rats. Expression of Adh 1 and Adh 4 mRNAs was observed in adrenal cortex and olfactory epithelium in mice. Additionally, Adh 1 was expressed in epidermis, liver, conjunctival, and intestinal epithelium. In rat embryos, expression was less extensive, with Adh 1 mRNA being found in liver and intestines. Adh 3 expression was ubiquitous in both mouse and rat embryos, suggesting a housekeeping function of the gene. Consistent with previous studies in adult rats and mice, our data suggest that Adh 3 is the only ADH class present in rodent brain. Adh and Aldh gene activity in mouse and rat embryos indicate the possible involvement of the respective enzymes in retinoid metabolism and participation in defense against toxic insults, including those that may be involved in the pathogenesis of PD.
Collapse
Affiliation(s)
- Marie Westerlund
- Department of Neuroscience, Karolinska Institutet, Retzius Väg 8, B2:4, 171 77 Stockholm, Sweden.
| | | | | | | |
Collapse
|
12
|
Quan Z, Song Y, Peters G, Shenwu M, Sheng Y, Hwang HM, Liu YM. Chiral CE Separation of Dopamine-Derived Neurotoxins. ANAL SCI 2005; 21:115-9. [PMID: 15732469 DOI: 10.2116/analsci.21.115] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
An enantiomeric separation of dopamine-derived neurotoxins by capillary electrophoresis has been developed. Tetrahydroisoquinoline (TIQ), dopamine (DA), (R/S)-1-benzyl-TIQ (BTIQ), (R/S)-6,7-dihydroxy-1-methyl-TIQ (salsolinol, Sal), and (R/S)-6,7-dihydroxy-1, 2-dimethyl-TIQ (N-methyl-salsolinol, NMSal) were studied as model compounds. The CE running buffer (50 mM phosphate buffer at pH 3.0) contained 1.5 M urea and 12 mM beta-CD as a chiral selector. During separation, the (R)-enantiomers formed more stable inclusion complexes with beta-CD, and thus had a longer migration time than their optical antipodes. It was noticed that the recovery rates of these TIQ derivatives were very poor (< 15%) during protein precipitation, a procedure widely used for cleaning up biological samples. The recovery was significantly improved by pre-mixing the sample with a surfactant (e.g., sodium hexanesulfonate or Triton X-100) to reduce the co-precipitation. The present method in combination with electrospray ionization tandem mass spectrometry (ESI-MS/MS) was applied to study samples obtained from in vitro incubation of two catecholamines, dopamine and epinine, with aldehydes forming neurotoxins including (S)- and (R)-NMSal enantiomers. The later is known to induce Parkinsonism in rats.
Collapse
Affiliation(s)
- Zhe Quan
- Department of Chemistry, Jackson State University, 1400 Lynch St., Jackson, MS 39217, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Tsai TH. Assaying protein unbound drugs using microdialysis techniques. J Chromatogr B Analyt Technol Biomed Life Sci 2003; 797:161-73. [PMID: 14630148 DOI: 10.1016/j.jchromb.2003.08.036] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Compared with traditional sampling methods, microdialysis is a technique for protein unbound drug sampling without withdrawal of biological fluids and involving minimal disturbance of physiological function. Conventional total drug sample consists of unbound drugs and protein bound drugs, which are loosely bound to plasma proteins such as albumin and alpha-1 acid glycoprotein, forming an equilibrium ratio between bound and unbound drugs. However, only the unbound fraction of drug is available for absorption, distribution, metabolism and elimination, and delivery to the target sites for pharmacodynamic actions. Although several techniques have been used to determine protein unbound drugs from biological fluids, including ultrafiltration, equilibrium dialysis and microdialysis, only microdialysis allows simultaneous sampling of protein unbound chemicals from plasma, tissues and body fluids such as the bile juice and cerebral spinal fluid for pharmacokinetic and pharmacodynamic studies. This review article describes the technique of microdialysis and its application in pharmacokinetic studies. Furthermore, the advantages and limitations of microdialysis are discussed, including the detailed surgical techniques in animal experiments from rat blood, brain, liver, bile duct and in vitro cell culture for unbound drug analysis.
Collapse
Affiliation(s)
- Tung-Hu Tsai
- Laboratory of Pharmacokinetics, National Research Institute of Chinese Medicine, Taipei 112, Taiwan.
| |
Collapse
|
14
|
Abstract
The importance of sample preparation methods as the first stage in an analytical procedure is emphasised and examined. Examples are given of the extraction and concentration of analytes from solid, liquid and gas phase matrices, including solvent phase extractions, such as supercritical fluids and superheated water extraction, solid-phase extraction and solid-phase microextraction, headspace analysis and vapour trapping. The potential role of selective extraction methods, including molecular imprinted phases and affinity columns, are considered. For problem samples alternative approaches, such as derivatisation are discussed, and potential new approaches minimising sample preparation are noted.
Collapse
Affiliation(s)
- Roger M Smith
- Department of Chemistry, Loughborough University, Loughborough, Leics LE11 3TU, UK.
| |
Collapse
|
15
|
Gearhart DA, Neafsey EJ, Collins MA. Phenylethanolamine N-methyltransferase has beta-carboline 2N-methyltransferase activity: hypothetical relevance to Parkinson's disease. Neurochem Int 2002; 40:611-20. [PMID: 11900856 DOI: 10.1016/s0197-0186(01)00115-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Mammalian brain has a beta-carboline 2N-methyltransferase activity that converts beta-carbolines, such as norharman and harman, into 2N-methylated beta-carbolinium cations, which are structural and functional analogs of the Parkinsonian-inducing toxin 1-methyl-4-phenylpyridinium cation (MPP+). The identity and physiological function of this beta-carboline 2N-methylation activity was previously unknown. We report pharmacological and biochemical evidence that phenylethanolamine N-methyltransferase (EC 2.1.1.28) has beta-carboline 2N-methyltransferase activity. Specifically, purified phenylethanolamine N-methyltransferase (PNMT) catalyzes the 2N-methylation (21.1 pmol/h per unit PNMT) of 9-methylnorharman, but not the 9N-methylation of 2-methylnorharmanium cation. LY134046, a selective inhibitor of phenylethanolamine N-methyltransferase, inhibits (IC50 1.9 microM) the 2N-methylation of 9-methylnorharman, a substrate for beta-carboline 2N-methyltransferase. Substrates of phenylethanolamine N-methyltransferase also inhibit beta-carboline 2N-methyltransferase activity in a concentration-dependent manner. beta-Carboline 2N-methyltransferase activity (43.7pmol/h/mg protein) is present in human adrenal medulla, a tissue with high phenylethanolamine N-methyltransferase activity. We are investigating the potential role of N-methylated beta-carbolinium cations in the pathogenesis of idiopathic Parkinson's disease. Presuming that phenylethanolamine N-methyltransferase activity forms toxic 2N-methylated beta-carbolinium cations, we propose a novel hypothesis regarding Parkinson's disease-a hypothesis that includes a role for phenylethanolamine N-methyltransferase-catalyzed formation of MPP+ -like 2N-methylated beta-carbolinium cations.
Collapse
Affiliation(s)
- Debra A Gearhart
- Department of Cellular Biology and Anatomy, Veterans Affairs Medical Center, Medical College of Georgia, Augusta 30912-2000, USA.
| | | | | |
Collapse
|
16
|
Nomoto M, Iwata S, Kaseda S. [Pharmacological treatments of Parkinson's disease]. Nihon Yakurigaku Zasshi 2001; 117:111-22. [PMID: 11233302 DOI: 10.1254/fpj.117.111] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Antiparkinsonian agents applied or under the investigation for the treatment of patients with Parkinson's disease were reviewed. Tremor, akinesia, rigidity and postual instability are key signs of Parkinson's disease. The most important one is akinesia, which includes decreased spontaneous locomotor activity, slowness of movement, awkwardness and freezing. The main pathophysiology of Parkinson's disease is neurodegeneration of nigrostriatal dopaminergic neurons. Neurotoxins or oxidative stress to the dopaminergic neurons have been discussed as one of the etiologies of degeneration. Antioxidant or neuroprotective agents will be the future drugs for Parkinson's disease. At present, supplement of dopamine by levodopa administration, retarding the metabolism of levodopa or dopamine by a dopa decarboxylase inhibitor (DCI), MAO-B (monoamine oxidase inhibitor type B) inhibitor or catechol-O-methyltransferase (COMT) inhibitor, dopamine receptor agonists, anticholinergic agents, dopamine release enhancer/uptake inhibitor, N-methyl-D-aspartate (NMDA) receptor antagonists are applied for the treatment of Parkinson's disease. New agents such as adenosine receptor antagonists, serotonergic agents and nicotinic receptor agonists are under investigation. Agents to facilitate the growth of nerves or to inhibit degeneration of nerves are also studied and will be developed for the treatment of Parkinson's disease in the future. In the case of familial Parkinson's disease, abnormal genes were identified. Gene therapy might be another future treatment for these cases.
Collapse
Affiliation(s)
- M Nomoto
- Department of Pharmacology, Kagoshima University School of Medicine, 8-35-1 Sakuragaoka, Kagoshima 890-8520, Japan.
| | | | | |
Collapse
|
17
|
Musshoff F, Daldrup T. Determination of biological markers for alcohol abuse. JOURNAL OF CHROMATOGRAPHY. B, BIOMEDICAL SCIENCES AND APPLICATIONS 1998; 713:245-64. [PMID: 9700562 DOI: 10.1016/s0378-4347(97)00503-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Alcoholism is one of the most frequent addictions and an important subject in forensic medicine and clinical toxicology. Several laboratory abnormalities are associated with excessive alcohol consumption. They are useful in the diagnosis of alcoholism especially during the follow-up of various treatment programs. The biological markers mostly used for diagnosis of alcoholism are presented. Especially, methods for the determination of the following diagnostic tools are reviewed: congener alcohols, gamma-glutamyltransferase, aspartate and alanine aminotransferase, beta-hexosaminidase, erythrocyte aldehyde dehydrogenase, alpha-amino-n-butyric acid to leucine ratio, macrocytosis, carbohydrate-deficient transferrin, (apo)lipoproteins, fatty acid ethyl esters, blood acetate, acetaldehyde adducts, 5-hydroxytryptophol, dolichol and condensation products. No laboratory test exists that is reliable enough for the exact diagnosis of alcoholism. The combination of physician interview, questionnaire and laboratory markers is necessary for the diagnosis of alcoholism.
Collapse
Affiliation(s)
- F Musshoff
- Rheinische Friedrich-Wilhelms University, Institute of Legal Medicine, Bonn, Germany
| | | |
Collapse
|
18
|
Abstract
Parkinson's disease is thought to be caused by some unknown endogenous or exogenous factors interacting with genetic dispositions. 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is an exogenous neurotoxin producing parkinsonism in humans, monkeys and various animals as the result of monoamine oxidase type B (MAO-B)-catalyzed conversion of it to the 1-methyl-4-phenyl-pyridinium ion (MPP+), which selectively kills the nigrostriatal dopaminergic neurons. Various isoquinoline derivatives were found in the brain of patients with Parkinson's disease. Isoquinoline derivatives have neurochemical properties similar to those of MPTP and they are considered to be the endogenous neurotoxins which cause Parkinson's disease. Among them, tetrahydroisoquinoline (TIQ), 1-benzyl-TIQ, and (R)-1,2-dimethyl-5,6-dihydroxy-TIQ [(R)-N-methyl-salsolinol)] have the most potent neurotoxicity. TIQs, like MPTP, may be activated via N-methylation by N-methyltransferase and oxidation by MAO. TIQs as well as MPP+ inhibit complex I of the electron transport system in mitochondria, thereby reducing ATP formation and producing oxygen radicals. Although the properties of TIQs are similar to those of MPTP, the neurotoxicity of TIQs is weaker than that of MPTP. Since Parkinson's disease is a slowly progressing neurodegenerative disease, long term neurotoxic effects of IQs remain to be further examined in primates.
Collapse
Affiliation(s)
- T Nagatsu
- Institute for Comprehensive Medical Science, School of Medicine, Fujita Health University, Toyoake, Aichi, Japan.
| |
Collapse
|
19
|
Procedures for MS analysis of clinically relevant compounds. Clin Chim Acta 1995. [DOI: 10.1016/s0009-8981(00)89105-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
20
|
Kajita M, Niwa T, Fujisaki M, Ueki M, Niimura K, Sato M, Egami K, Naoi M, Yoshida M, Nagatsu T. Detection of 1-phenyl-N-methyl-1,2,3,4-tetrahydroisoquinoline and 1-phenyl-1,2,3,4-tetrahydroisoquinoline in human brain by gas chromatography-tandem mass spectrometry. JOURNAL OF CHROMATOGRAPHY. B, BIOMEDICAL APPLICATIONS 1995; 669:345-51. [PMID: 7581910 DOI: 10.1016/0378-4347(95)00106-s] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
1-Phenyl-N-methyl-1,2,3,4-tetrahydroisoquinoline and 1-phenyl-1,2,3,4-tetrahydroisoquinoline were detected for the first time in parkinsonian human brain using gas chromatography-tandem mass spectrometry (GC-MS-MS). Since these compounds are structural analogues of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) that produces parkinsonism in humans, they might be candidates for endogenous MPTP-like neurotoxins.
Collapse
Affiliation(s)
- M Kajita
- Nagoya University Branch Hospital, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Naoi M, Maruyama W, Dostert P. Dopamine-derived 6,7-dihydroxy-1,2,3,4-tetrahydroisoquinolines; oxidation and neurotoxicity. PROGRESS IN BRAIN RESEARCH 1995; 106:227-39. [PMID: 8584658 DOI: 10.1016/s0079-6123(08)61219-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- M Naoi
- Department of Biosciences, Nagoya Institute of Technology, Japan
| | | | | |
Collapse
|
22
|
Takahashi T, Deng Y, Maruyama W, Dostert P, Kawai M, Naoi M. Uptake of a neurotoxin-candidate, (R)-1,2-dimethyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline into human dopaminergic neuroblastoma SH-SY5Y cells by dopamine transport system. J Neural Transm (Vienna) 1994; 98:107-18. [PMID: 7734108 DOI: 10.1007/bf01277014] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Uptake of catechol isoquinolines to dopamine cells was studied using human dopaminergic neuroblastoma SH-SY5Y cells. Only (R)-1,2-methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline [(R)-1,2-DiMeDHTIQ] was transported by dopamine uptake system, while (S)-1,2-DiMeDHTIQ, (R)- and (S)-1-methyl-6,7-dihydroxy-tetrahydroisoquinoline, and 1,2-dimethyl-6,7-dihydroxyisoquinolinum ion were not. Kinetical study showed that the uptake of (R)-1,2-DiMeDHTIQ followed the Michaelis-Menten equation, and the values of the Michaelis constant and the maximal velocity were obtained to be 102.6 +/- 36.9 microM and 66.0 +/- 2.8 pmol/min/mg protein. Dopamine was found to inhibit (R)-1,2-DiMeDHTIQ uptake competitively. These results suggest that the selective uptake by dopamine transporter may account for the specific neurotoxicity of (R)-1,2-DiMeDHTIQ to dopamine neurons.
Collapse
Affiliation(s)
- T Takahashi
- Department of Food and Nutrition, Konan Women's College, Japan
| | | | | | | | | | | |
Collapse
|
23
|
Kajita M, Niwa T, Maruyama W, Nakahara D, Takeda N, Yoshizumi H, Tatematsu A, Watanabe K, Naoi M, Nagatsu T. Endogenous synthesis of N-methylnorsalsolinol in rat brain during in vivo microdialysis with epinine. JOURNAL OF CHROMATOGRAPHY. B, BIOMEDICAL APPLICATIONS 1994; 654:263-9. [PMID: 8044287 DOI: 10.1016/0378-4347(94)00019-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The in vivo metabolic pathway for the synthesis of N-methylnorsalsolinol, an analogue of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), was studied in the rat brain. N-Methyldopamine (epinine) was perfused at the striatum of the rat brain by in vivo microdialysis. N-Methylnorsalsolinol (NMNSAL) was identified in the brain dialysate after epinine perfusion using gas chromatography-selected-ion monitoring mass spectrometry (GC-SIM-MS). We demonstrated that NMNSAL could be synthesized from epinine with an aldehyde by the Piclet-Spengler condensation reaction in the rat brain.
Collapse
Affiliation(s)
- M Kajita
- Department of Pediatrics, Nagoya University School of Medicine, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Naoi M, Maruyama W, Niwa T, Nagatsu T. Novel toxins and Parkinson's disease: N-methylation and oxidation as metabolic bioactivation of neurotoxin. JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM 1994; 41:197-205. [PMID: 7931227 DOI: 10.1007/978-3-7091-9324-2_26] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In human brains, a series of monoamine-derived 1,2,3,4-tetrahydroisoquinolines and the 6,7-dihydroxy derivatives has been identified. A tetrahydroisoquinoline was found to cause parkinsonism in monkey, but its toxicity was not so potent as 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Two metabolic steps were found to increase cytotoxicity of isoquinolines. N-Methylation by a non-specific N-methyltransferase was proved by in vivo and in vitro experiments. The N-methylated compound was oxidized into N-methylisoquinolinium ion by monoamine oxidase from human brain mitochondria. The oxidation was proved by microdialysis in the rat brain. The isoquinolinium ion was more cytotoxic than the two metabolic precursors. N-Methylation of dopamine-derived 1-methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinolines was detected by in vivo microdialysis in the rat striatum, and their presence in the human brain was confirmed by GC-MS. The metabolic bioactivation may be a general pathway to produce neurotoxins as the pathogenic agents of Parkinson's disease.
Collapse
Affiliation(s)
- M Naoi
- Department of Biosciences, Nagoya Institute of Technology, Japan
| | | | | | | |
Collapse
|