1
|
Chen Y, Green HL, Berman JI, Putt ME, Otten K, Mol K, McNamee M, Allison O, Kuschner ES, Kim M, Bloy L, Liu S, Yount T, Roberts TPL, Christopher Edgar J. Functional and structural maturation of auditory cortex from 2 months to 2 years old. Clin Neurophysiol 2024; 166:232-243. [PMID: 39213880 PMCID: PMC11494624 DOI: 10.1016/j.clinph.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND In school-age children, the myelination of the auditory radiation thalamocortical pathway is associated with the latency of auditory evoked responses, with the myelination of thalamocortical axons facilitating the rapid propagation of acoustic information. Little is known regarding this auditory system function-structure association in infants and toddlers. METHODS AND PARTICIPANTS The present study tested the hypothesis that maturation of auditory radiation white-matter microstructure (e.g., fractional anisotropy (FA); measured using diffusion-weighted MRI) is associated with the latency of the infant auditory response (the P2m response, measured using magnetoencephalography, MEG) in a cross-sectional (N = 47, 2 to 24 months, 19 females) as well as longitudinal cohort (N = 18, 2 to 29 months, 8 females) of typically developing infants and toddlers. Of 18 longitudinal infants, 2 infants had data from 3 timepoints and 16 infants had data from 2 timepoints. RESULTS In the cross-sectional sample, non-linear maturation of P2m latency and auditory radiation diffusion measures were observed. Auditory radiation diffusion accounted for significant variance in P2m latency, even after removing the variance associated with age in both P2m latency and auditory radiation diffusion measures. In the longitudinal sample, latency and FA associations could be observed at the level of a single child. CONCLUSIONS Findings provide strong support for the hypothesis that an increase in thalamocortical neural conduction velocity, due to increased axon diameter and/or myelin maturation, contributes to a decrease in the infant P2m auditory evoked response latency. SIGNIFICANCE Infant multimodal brain imaging identifies brain mechanisms contributing to the rapid changes in neural circuit activity during the first two years of life.
Collapse
Affiliation(s)
- Yuhan Chen
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA; Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Heather L Green
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Jeffrey I Berman
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA; Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Mary E Putt
- Department of Biostatistics, Epidemiology & Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Katharina Otten
- Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Faculty of Medicine, RWTH Aachen University, Aachen, 52074, Germany
| | - Kylie Mol
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Marybeth McNamee
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Olivia Allison
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Emily S Kuschner
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Mina Kim
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Luke Bloy
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Song Liu
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Tess Yount
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Timothy P L Roberts
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA; Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - J Christopher Edgar
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA; Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
2
|
Urbanec J, Chládková K, Kremláček J. Neural processing of speech sounds at premature and term birth: ERPs and MMR between 32 and 42 weeks of gestation. Dev Cogn Neurosci 2024; 70:101444. [PMID: 39332108 PMCID: PMC11470172 DOI: 10.1016/j.dcn.2024.101444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 07/03/2024] [Accepted: 09/05/2024] [Indexed: 09/29/2024] Open
Abstract
Prenatal listening experience reportedly modulates how humans process speech at birth, but little is known about how speech perception develops throughout the perinatal period. The present experiment assessed the neural event-related potentials (ERP) and mismatch responses (MMR) to native vowels in 99 neonates born between 32 and 42 weeks of gestation. The vowels elicited reliable ERPs in newborns whose gestational age at time of experiment was at least 36 weeks and 1 day (36 + 1). The ERPs reflected spectral distinctions between vowel onsets from age 36 weeks + 6 days and durational distinctions at vowel offsets from age 37 weeks + 6 days. Starting at age 40 + 4, there was evidence of neural discrimination of vowel length, indexed by a negative MMR response. The present findings extend our understanding of the earliest stages of speech perception development in that they pinpoint the ages at which the cortex reliably responds to the phonetic characteristics of individual speech sounds and discriminates a native phoneme contrast. The age at which the brain reliably differentiates vowel onsets coincides with what is considered term age in many countries (37 weeks + 0 days of gestational age). Future studies should investigate to what extent the perinatal maturation of the cortical responses to speech sounds is modulated by the ambient language.
Collapse
Affiliation(s)
- Josef Urbanec
- Department of Medical Biophysics, Faculty of Medicine in Hradec Králové, Charles University, Czechia
| | - Kateřina Chládková
- Institute of Czech Language and Theory of Communication, Faculty of Arts, Charles University, Prague, Czechia; Institute of Psychology, Czech Academy of Sciences, Prague, Czechia.
| | - Jan Kremláček
- Department of Medical Biophysics, Faculty of Medicine in Hradec Králové, Charles University, Czechia
| |
Collapse
|
3
|
Chen Y, Green HL, Putt ME, Allison O, Kuschner ES, Kim M, Blaskey L, Mol K, McNamee M, Bloy L, Liu S, Huang H, Roberts TPL, Edgar JC. Maturation of auditory cortex neural responses during infancy and toddlerhood. Neuroimage 2023; 275:120163. [PMID: 37178820 PMCID: PMC11463054 DOI: 10.1016/j.neuroimage.2023.120163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 04/28/2023] [Accepted: 05/09/2023] [Indexed: 05/15/2023] Open
Abstract
The infant auditory system rapidly matures across the first years of life, with a primary goal of obtaining ever-more-accurate real-time representations of the external world. Our understanding of how left and right auditory cortex neural processes develop during infancy, however, is meager, with few studies having the statistical power to detect potential hemisphere and sex differences in primary/secondary auditory cortex maturation. Using infant magnetoencephalography (MEG) and a cross-sectional study design, left and right auditory cortex P2m responses to pure tones were examined in 114 typically developing infants and toddlers (66 males, 2 to 24 months). Non-linear maturation of P2m latency was observed, with P2m latencies decreasing rapidly as a function of age during the first year of life, followed by slower changes between 12 and 24 months. Whereas in younger infants auditory tones were encoded more slowly in the left than right hemisphere, similar left and right P2m latencies were observed by ∼21 months of age due to faster maturation rate in the left than right hemisphere. No sex differences in the maturation of the P2m responses were observed. Finally, an earlier left than right hemisphere P2m latency predicted better language performance in older infants (12 to 24 months). Findings indicate the need to consider hemisphere when examining the maturation of auditory cortex neural activity in infants and toddlers and show that the pattern of left-right hemisphere P2m maturation is associated with language performance.
Collapse
Affiliation(s)
- Yuhan Chen
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States.
| | - Heather L Green
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States
| | - Mary E Putt
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Olivia Allison
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States
| | - Emily S Kuschner
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Mina Kim
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States
| | - Lisa Blaskey
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Kylie Mol
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States
| | - Marybeth McNamee
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States
| | - Luke Bloy
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States
| | - Song Liu
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States
| | - Hao Huang
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States; Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Timothy P L Roberts
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States; Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - J Christopher Edgar
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States; Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| |
Collapse
|
4
|
Functional and structural correlates of the preterm infant's brain: relating developmental changes of auditory evoked responses to structural maturation. Brain Struct Funct 2020; 225:2165-2176. [PMID: 32691217 DOI: 10.1007/s00429-020-02117-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 07/10/2020] [Indexed: 11/27/2022]
Abstract
Functional responses recorded during the last trimester of gestation reveal that human sensory activity begins before birth, allowing the brain to process the external environment. Along with the maturation of the brain, new cognitive skills emerge in the human infant's brain. The development of non-invasive techniques provides the opportunity to study the relationship between brain structural maturation and cognitive development in vivo. Here, we aimed to relate developmental changes of the latency of cortical auditory evoked potentials (CAEPs) to a structural maturation index, presumed to be representative of myelination. CAEPs to syllables were recorded in 17 preterm neonates with a mean recording age of 30.5 weeks gestational age (28.4-32.2 wGA). The latency of the first peak of the global field power (GFP) was considered the functional feature of interest to be examined for correlation with age and the structural maturation index extracted from brain atlases of the corresponding term age. GFP latency significantly decreased with age (R2 = 0.311, p = 0.02). Structural maturation indices, calculated as the mean values of T1w/T2w image intensities, were extracted for various brain regions. We observed significant correlations between the maturation indices of the auditory-involved areas and the latency of the GFP first-peak, as well as age. In hierarchical models, neither the structural maturation index nor age contributed to significant additional variance in the GFP first-peak latency after accounting for the variance associated with the other parameter.
Collapse
|
5
|
Cavalcanti HG, da Silva Nunes AD, da Cunha BKS, de Freitas Alvarenga K, Balen SA, Pereira A. Early exposure to environment sounds and the development of cortical auditory evoked potentials of preterm infants during the first 3 months of life. BMC Res Notes 2020; 13:303. [PMID: 32586405 PMCID: PMC7318486 DOI: 10.1186/s13104-020-05129-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 06/04/2020] [Indexed: 01/02/2023] Open
Abstract
OBJECTIVE Preterm infants are exposed earlier than their term counterparts to unattenuated sounds from the external environment during the sensitive period of the organization of the auditory cortical circuitry. In the current study, we investigate the effect of preterm birth on the course of development of auditory cortical areas by evaluating how gestational age (GA) correlates with the latency of the P1 component of the cortical auditory evoked potential (CAEP) of two experimental groups measured at 1 or 3 months of age. RESULTS Our sample consisted of 23 infants delivered at GA ranging from 31.28 to 41.42 weeks and separated into two groups evaluated transversally at 1 or 3 months of corrected age (CA). In the group evaluated at 1-month CA, the latency of the component P1 was similar in both terms and infants classified as late-preterm (GA > 32 weeks). However, in the group evaluated at 3 months CA, P1 latency was significantly smaller in preterms. These preliminary results suggest an acceleration of the development of auditory cortical pathways in preterms, probably due to their early exposure to socially relevant auditory stimuli from the external environment.
Collapse
Affiliation(s)
- Hannalice Gottschalck Cavalcanti
- Department of Speech and Language Pathology, Federal University of Paraíba, Cidade Universitária, S/N - Conj. Pres. Castelo Branco III, João Pessoa, PB, 58051-900, Brazil
| | - Aryelly Dayane da Silva Nunes
- Speech and Language Pathology Graduate Program, Federal University of Rio Grande do Norte, Rua Gen. Gustavo Cordeiro de Farias, S/N, Natal, RN, 59012-570, Brazil
| | - Brenda Karla Silva da Cunha
- Speech and Language Pathology Graduate Program, Federal University of Rio Grande do Norte, Rua Gen. Gustavo Cordeiro de Farias, S/N, Natal, RN, 59012-570, Brazil
| | - Kátia de Freitas Alvarenga
- Department of Speech and Language Pathology, University of São Paulo, Alameda Dr. Octávio Pinheiro Brisolla, 9-75, Bauru, SP, 17012-901, Brazil
| | - Sheila Andreoli Balen
- Department of Speech and Language Pathology, Federal University of Rio Grande do Norte, Rua Gen. Gustavo Cordeiro de Farias, S/N, Natal, RN, 59012-570, Brazil
| | - Antonio Pereira
- Department of Electrical and Biomedical Engineering, Institute of Technology, Federal University of Pará, Rua Augusto Correa, S/N, Belém, PA, 66075-110, Brazil.
| |
Collapse
|
6
|
Wallois F, Routier L, Bourel-Ponchel E. Impact of prematurity on neurodevelopment. HANDBOOK OF CLINICAL NEUROLOGY 2020; 173:341-375. [PMID: 32958184 DOI: 10.1016/b978-0-444-64150-2.00026-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The consequences of prematurity on brain functional development are numerous and diverse, and impact all brain functions at different levels. Prematurity occurs between 22 and 36 weeks of gestation. This period is marked by extreme dynamics in the physiologic maturation, structural, and functional processes. These different processes appear sequentially or simultaneously. They are dependent on genetic and/or environmental factors. Disturbance of these processes or of the fine-tuning between them, when caring for premature children, is likely to induce disturbances in the structural and functional development of the immature neural networks. These will appear as impairments in learning skills progress and are likely to have a lasting impact on the development of children born prematurely. The level of severity depends on the initial alteration, whether structural or functional. In this chapter, after having briefly reviewed the neurodevelopmental, structural, and functional processes, we describe, in a nonexhaustive manner, the impact of prematurity on the different brain, motor, sensory, and cognitive functions.
Collapse
Affiliation(s)
- Fabrice Wallois
- Research Group on Multimodal Analysis of Brain Function, Jules Verne Picardie University, Amiens, France; Department of Pediatric Functional Exploration of the Nervous System, University Hospital, Picardie, Amiens, France.
| | - Laura Routier
- Research Group on Multimodal Analysis of Brain Function, Jules Verne Picardie University, Amiens, France; Department of Pediatric Functional Exploration of the Nervous System, University Hospital, Picardie, Amiens, France
| | - Emilie Bourel-Ponchel
- Research Group on Multimodal Analysis of Brain Function, Jules Verne Picardie University, Amiens, France; Department of Pediatric Functional Exploration of the Nervous System, University Hospital, Picardie, Amiens, France
| |
Collapse
|
7
|
Daneshvarfard F, Abrishami Moghaddam H, Dehaene-Lambertz G, Kongolo G, Wallois F, Mahmoudzadeh M. Neurodevelopment and asymmetry of auditory-related responses to repetitive syllabic stimuli in preterm neonates based on frequency-domain analysis. Sci Rep 2019; 9:10654. [PMID: 31337810 PMCID: PMC6650479 DOI: 10.1038/s41598-019-47064-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 07/01/2019] [Indexed: 11/20/2022] Open
Abstract
Sensory development of the human brain begins prenatally, allowing cortical auditory responses to be recorded at an early age in preterm infants. Despite several studies focusing on the temporal characteristics of preterm infants' cortical responses, few have been conducted on frequency analysis of these responses. In this study, we performed frequency and coherence analysis of preterm infants' auditory responses to series of syllables and also investigated the functional brain asymmetry of preterm infants for the detection of the regularity of auditory stimuli. Cortical auditory evoked potentials (CAEPs) were recorded in 16 preterm infants with a mean recording age of 31.48 weeks gestational age (29.57-34.14 wGA) in response to a repetitive syllabic stimulus. Peak amplitudes of the frequency response at the target frequency and the first harmonic, as well as the phase coherence (PC) at the target frequency were extracted as age-dependent variables. A functional asymmetry coefficient was defined as a lateralization index for the amplitude of the target frequency at each electrode site. While the findings revealed a significant positive correlation between the mean amplitude at the target frequency vs. age (R2 = 0.263, p = 0.042), no significant correlation was observed for age-related changes of the mean amplitude at the first harmonic. A significant correlation was also observed between the mean PC and age (R2 = 0.318, p = 0.023). A right hemisphere lateralization over many channels was also generally observed. The results demonstrate that rightward lateralization for slow rate modulation, previously observed in adults, children and newborns, appears to be in place at a very young age, even in preterm infants.
Collapse
Affiliation(s)
- Farveh Daneshvarfard
- INSERM U1105, Université de Picardie, CURS, Amiens, France
- Faculty of Electrical and Computer Engineering, K.N. Toosi University of Technology, Tehran, Iran
| | - Hamid Abrishami Moghaddam
- INSERM U1105, Université de Picardie, CURS, Amiens, France.
- Faculty of Electrical and Computer Engineering, K.N. Toosi University of Technology, Tehran, Iran.
| | - Ghislaine Dehaene-Lambertz
- Cognitive Neuroimaging Unit, CEA DSV/I2BM, INSERM, CNRS, Université Paris-Sud, Université Paris-Saclay, NeuroSpin Center, 91191 Gif/Yvette, France
| | - Guy Kongolo
- INSERM U1105, Université de Picardie, CURS, Amiens, France
- INSERM U1105, Neonatal ICU, South University Hospital, Amiens, France
| | - Fabrice Wallois
- INSERM U1105, Université de Picardie, CURS, Amiens, France.
- INSERM U1105, Unit Exploration Fonctionnelles du Système Nerveux Pédiatrique, South University Hospital, Amiens, France.
| | - Mahdi Mahmoudzadeh
- INSERM U1105, Université de Picardie, CURS, Amiens, France
- INSERM U1105, Unit Exploration Fonctionnelles du Système Nerveux Pédiatrique, South University Hospital, Amiens, France
| |
Collapse
|
8
|
Oliveira LS, Didoné DD, Durante AS. Automated cortical auditory evoked potentials threshold estimation in neonates. Braz J Otorhinolaryngol 2019; 85:206-212. [PMID: 29409720 PMCID: PMC9452238 DOI: 10.1016/j.bjorl.2018.01.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 11/14/2017] [Accepted: 01/02/2018] [Indexed: 11/15/2022] Open
Abstract
Introduction The evaluation of cortical auditory evoked potential has been the focus of scientific studies in infants. Some authors have reported that automated response detection is effective in exploring these potentials in infants, but few have reported their efficacy in the search for thresholds. Objective To analyze the latency, amplitude and thresholds of cortical auditory evoked potential using an automatic response detection device in a neonatal population. Methods This is a cross-sectional, observational study. Cortical auditory evoked potentials were recorded in response to pure-tone stimuli of the frequencies 500, 1000, 2000 and 4000 Hz presented in an intensity range between 0 and 80 dB HL using a single channel recording. P1 was performed in an exclusively automated fashion, using Hotelling's T2 statistical test. The latency and amplitude were obtained manually by three examiners. The study comprised 39 neonates up to 28 days old of both sexes with presence of otoacoustic emissions and no risk factors for hearing loss. Results With the protocol used, cortical auditory evoked potential responses were detected in all subjects at high intensity and thresholds. The mean thresholds were 24.8 ± 10.4 dB NA, 25 ± 9.0 dB NA, 28 ± 7.8 dB NA and 29.4 ± 6.6 dB HL for 500, 1000, 2000 and 4000 Hz, respectively. Conclusion Reliable responses were obtained in the assessment of cortical auditory potentials in the neonates assessed with a device for automatic response detection.
Collapse
|
9
|
Monson BB, Eaton-Rosen Z, Kapur K, Liebenthal E, Brownell A, Smyser CD, Rogers CE, Inder TE, Warfield SK, Neil JJ. Differential Rates of Perinatal Maturation of Human Primary and Nonprimary Auditory Cortex. eNeuro 2018; 5:ENEURO.0380-17.2017. [PMID: 29354680 PMCID: PMC5773280 DOI: 10.1523/eneuro.0380-17.2017] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 12/11/2017] [Indexed: 12/22/2022] Open
Abstract
Primary and nonprimary cerebral cortex mature along different timescales; however, the differences between the rates of maturation of primary and nonprimary cortex are unclear. Cortical maturation can be measured through changes in tissue microstructure detectable by diffusion magnetic resonance imaging (MRI). In this study, diffusion tensor imaging (DTI) was used to characterize the maturation of Heschl's gyrus (HG), which contains both primary auditory cortex (pAC) and nonprimary auditory cortex (nAC), in 90 preterm infants between 26 and 42 weeks postmenstrual age (PMA). The preterm infants were in different acoustical environments during their hospitalization: 46 in open ward beds and 44 in single rooms. A control group consisted of 15 term-born infants. Diffusion parameters revealed that (1) changes in cortical microstructure that accompany cortical maturation had largely already occurred in pAC by 28 weeks PMA, and (2) rapid changes were taking place in nAC between 26 and 42 weeks PMA. At term equivalent PMA, diffusion parameters for auditory cortex were different between preterm infants and term control infants, reflecting either delayed maturation or injury. No effect of room type was observed. For the preterm group, disturbed maturation of nonprimary (but not primary) auditory cortex was associated with poorer language performance at age two years.
Collapse
Affiliation(s)
- Brian B. Monson
- Department of Pediatric Newborn Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
- Department of Radiology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115
| | - Zach Eaton-Rosen
- Translational Imaging Group, University College London, London, WC1E 7JE United Kingdom
| | - Kush Kapur
- Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115
| | - Einat Liebenthal
- Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
| | - Abraham Brownell
- Department of Pediatric Newborn Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
| | - Christopher D. Smyser
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63130
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63130
| | - Cynthia E. Rogers
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63130
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63130
| | - Terrie E. Inder
- Department of Pediatric Newborn Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
| | - Simon K. Warfield
- Department of Radiology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115
| | - Jeffrey J. Neil
- Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
10
|
Kaminska A, Delattre V, Laschet J, Dubois J, Labidurie M, Duval A, Manresa A, Magny JF, Hovhannisyan S, Mokhtari M, Ouss L, Boissel A, Hertz-Pannier L, Sintsov M, Minlebaev M, Khazipov R, Chiron C. Cortical Auditory-Evoked Responses in Preterm Neonates: Revisited by Spectral and Temporal Analyses. Cereb Cortex 2017; 28:3429-3444. [DOI: 10.1093/cercor/bhx206] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Indexed: 11/12/2022] Open
Affiliation(s)
- A Kaminska
- INSERM U1129, Paris, France
- Paris Descartes University, Sorbonne Paris Cité, Paris, France
- CEA, 91191 Gif sur Yvette, France
- Department of Clinical Neurophysiology, AP-HP, Necker-Enfants Malades Hospital, Paris, France
| | - V Delattre
- INSERM U1129, Paris, France
- Paris Descartes University, Sorbonne Paris Cité, Paris, France
- CEA, 91191 Gif sur Yvette, France
- Neurospin, UNIACT, CEA, Gif sur Yvette, France
| | - J Laschet
- INSERM U1129, Paris, France
- Paris Descartes University, Sorbonne Paris Cité, Paris, France
- CEA, 91191 Gif sur Yvette, France
| | - J Dubois
- INSERM U992, CEA/DRF/I2BM/Neurospin/UNICOG, Gif-sur-Yvette, France
- Paris Saclay University, Paris-Sud University, Gif-sur-Yvette, France
| | - M Labidurie
- INSERM U1129, Paris, France
- Paris Descartes University, Sorbonne Paris Cité, Paris, France
- CEA, 91191 Gif sur Yvette, France
| | - A Duval
- INSERM U1129, Paris, France
- Paris Descartes University, Sorbonne Paris Cité, Paris, France
- CEA, 91191 Gif sur Yvette, France
- Neurospin, UNIACT, CEA, Gif sur Yvette, France
| | - A Manresa
- Laboratory of Psychology and Neurosciences (LPN) (EA 47000), Rouen University, Rouen, France
| | - J -F Magny
- Neonatal Intensive Care Unit, AP-HP, Necker-Enfants Malades Hospital, Paris, France
| | - S Hovhannisyan
- Neonatal Intensive Care Unit, AP-HP, Necker-Enfants Malades Hospital, Paris, France
| | - M Mokhtari
- Neonatal Intensive Care Unit, AP-HP, Bicetre Hospital, Kremlin-Bicetre, France
| | - L Ouss
- Department of Pediatric Neurology, AP-HP, Necker-Enfants Malades Hospital, Paris, France
| | - A Boissel
- Laboratory of Psychology and Neurosciences (LPN) (EA 47000), Rouen University, Rouen, France
| | - L Hertz-Pannier
- INSERM U1129, Paris, France
- Paris Descartes University, Sorbonne Paris Cité, Paris, France
- CEA, 91191 Gif sur Yvette, France
- Neurospin, UNIACT, CEA, Gif sur Yvette, France
| | - M Sintsov
- Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia
| | - M Minlebaev
- Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia
- INSERM U901/ INMED, Aix-Marseille University, Marseille, France
| | - R Khazipov
- Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia
- INSERM U901/ INMED, Aix-Marseille University, Marseille, France
| | - C Chiron
- INSERM U1129, Paris, France
- Paris Descartes University, Sorbonne Paris Cité, Paris, France
- CEA, 91191 Gif sur Yvette, France
| |
Collapse
|
11
|
Mahmoudzadeh M, Wallois F, Kongolo G, Goudjil S, Dehaene-Lambertz G. Functional Maps at the Onset of Auditory Inputs in Very Early Preterm Human Neonates. Cereb Cortex 2017; 27:2500-2512. [PMID: 27102655 DOI: 10.1093/cercor/bhw103] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
During the last trimester of human gestation, neurons reach their final destination and establish long- and short-distance connections. Due to the difficulties obtaining functional data at this age, the characteristics of the functional architecture at the onset of sensory thalamocortical connectivity in humans remain largely unknown. In particular, it is unknown to what extent responses evoked by an external stimulus are general or already sensitive to certain stimuli. In the present study, we recorded high-density event-related potentials (ERPs) in 19 neonates, tested ten weeks before term (28-32 weeks gestational age (wGA), that is, at an average age of 30 wGA) by means of a syllable discrimination task (i.e., a phonetic change: ba vs. ga; and a voice change: male vs. female voice). We first observed that the syllables elicited 4 peaks with distinct topographies implying a progression of the sensory input along a processing hierarchy; second, repetition induced a decrease in the amplitude (repetition suppression) of these peaks, but their latencies and topographies remained stable; and third, a change of stimulus generated mismatch responses, which were more precisely time-locked to event onset in the case of a phonetic change than in the case of a voice change. A hierarchical and parallel functional architecture is therefore able to process environmental sounds in a timely precise fashion, well before term birth. This elaborate functional architecture at the onset of extrinsic neural activity suggests that specialized areas weakly dependent on the environment are present in the perisylvian region as part of the genetic endowment of the human species.
Collapse
Affiliation(s)
- Mahdi Mahmoudzadeh
- INSERM, U1105, GRAMFC, Université de Picardie, CHU Nord, Amiens F80000, France
| | - Fabrice Wallois
- INSERM, U1105, GRAMFC, Université de Picardie, CHU Nord, Amiens F80000, France
| | - Guy Kongolo
- INSERM, U1105, GRAMFC, Université de Picardie, CHU Nord, Amiens F80000, France
| | - Sabrina Goudjil
- INSERM, U1105, GRAMFC, Université de Picardie, CHU Nord, Amiens F80000, France
| | - Ghislaine Dehaene-Lambertz
- Cognitive Neuroimaging Unit, CEA DSV/I2BM, INSERM, CNRS, Université Paris-Sud, Université Paris-Saclay, NeuroSpin Center, Gif/Yvette 91191, France
| |
Collapse
|
12
|
Cusack R, Ball G, Smyser CD, Dehaene-Lambertz G. A neural window on the emergence of cognition. Ann N Y Acad Sci 2016; 1369:7-23. [PMID: 27164193 PMCID: PMC4874873 DOI: 10.1111/nyas.13036] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Revised: 01/23/2016] [Accepted: 02/11/2016] [Indexed: 11/30/2022]
Abstract
Can babies think? A fundamental challenge for cognitive neuroscience is to answer when brain functions begin and in what form they first emerge. This is challenging with behavioral tasks, as it is difficult to communicate to an infant what a task requires, and motor function is impoverished, making execution of the appropriate response difficult. To circumvent these requirements, neuroimaging provides a complementary route for assessing the emergence of cognition. Starting from the prerequisites of cognitive function and building stepwise, we review when the cortex forms and when it becomes gyrated and regionally differentiated. We then discuss when white matter tracts mature and when functional brain networks arise. Finally, we assess the responsiveness of these brain systems to external events. We find that many cognitive systems are observed surprisingly early. Some emerge before birth, with activations in the frontal lobe even in the first months of gestation. These discoveries are changing our understanding of the nature of cognitive networks and their early function, transforming cognitive neuroscience, and opening new windows for education and investigation. Infant neuroimaging also has tremendous clinical potential, for both detecting atypical development and facilitating earlier intervention. Finally, we discuss the key technical developments that are enabling this nascent field.
Collapse
Affiliation(s)
- Rhodri Cusack
- Brain and Mind Institute, Western University, London, Ontario, Canada
| | - Gareth Ball
- Centre for the Developing Brain, King’s College London, London, United Kingdom
| | - Christopher D. Smyser
- Departments of Neurology, Pediatrics and Radiology, Washington University, St Louis, Missouri
| | - Ghislaine Dehaene-Lambertz
- Cognitive Neuroimaging Unit, CEA DSV/I2BM, INSERM, CNRS, Université Paris-Sud, Université Paris-Saclay, NeuroSpin Center, Gif/Yvette, France
| |
Collapse
|
13
|
Edgar JC, Murray R, Kuschner ES, Pratt K, Paulson DN, Dell J, Golembski R, Lam P, Bloy L, Gaetz W, Roberts TPL. The maturation of auditory responses in infants and young children: a cross-sectional study from 6 to 59 months. Front Neuroanat 2015; 9:131. [PMID: 26528144 PMCID: PMC4607780 DOI: 10.3389/fnana.2015.00131] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 09/22/2015] [Indexed: 11/13/2022] Open
Abstract
Background: An understanding of the maturation of auditory cortex responses in typically developing infants and toddlers is needed to later identify auditory processing abnormalities in infants at risk for neurodevelopmental disorders. The availability of infant and young child magnetoencephalography (MEG) systems may now provide near optimal assessment of left and right hemisphere auditory neuromagnetic responses in young populations. To assess the performance of a novel whole-head infant MEG system, a cross-sectional study examined the maturation of left and right auditory cortex responses in children 6- to 59-months of age. Methods: Blocks of 1000 Hz (1st and 3rd blocks) and 500 Hz tones (2nd block) were presented while MEG data were recorded using an infant/young child biomagnetometer (Artemis 123). Data were obtained from 29 children (11 males; 6- to 59-months). Latency measures were obtained for the first positive-to-negative evoked response waveform complex in each hemisphere. Latency and age associations as well as frequency and hemisphere latency differences were examined. For the 1000 Hz tone, measures of reliability were computed. Results: For the first response—a response with a “P2m” topography—latencies decreased as a function of age. For the second response—a response with a “N2m” topography—no N2m latency and age relationships were observed. A main effect of tone frequency showed earlier P2m responses for 1st 1000 Hz (150 ms) and 2nd 1000 Hz (148 ms) vs. 500 Hz tones (162 ms). A significant main effect of hemisphere showed earlier N2m responses for 2nd 1000 Hz (226 ms) vs. 1st 1000 Hz (241 ms) vs. 500 Hz tones (265 ms). P2m and N2m interclass correlation coefficient latency findings were as follows: left P2m (0.72, p < 0.001), right P2m (0.84, p < 0.001), left N2m (0.77, p < 0.001), and right N2m (0.77,p < 0.01). Conclusions: Findings of strong age and latency associations, sensitivity to tone frequency, and good test-retest reliability support the viability of longitudinal infant MEG studies that include younger as well as older participants as well as studies examining auditory processing abnormalities in infants at risk for neurodevelopmental disorders.
Collapse
Affiliation(s)
- J Christopher Edgar
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia Philadelphia, PA, USA
| | - Rebecca Murray
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia Philadelphia, PA, USA
| | - Emily S Kuschner
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia Philadelphia, PA, USA
| | - Kevin Pratt
- Tristan Technologies, Inc. San Diego, CA, USA
| | | | - John Dell
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia Philadelphia, PA, USA
| | - Rachel Golembski
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia Philadelphia, PA, USA
| | - Peter Lam
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia Philadelphia, PA, USA
| | - Luke Bloy
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia Philadelphia, PA, USA
| | - William Gaetz
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia Philadelphia, PA, USA
| | - Timothy P L Roberts
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia Philadelphia, PA, USA
| |
Collapse
|
14
|
Chipaux M, Colonnese MT, Mauguen A, Fellous L, Mokhtari M, Lezcano O, Milh M, Dulac O, Chiron C, Khazipov R, Kaminska A. Auditory stimuli mimicking ambient sounds drive temporal "delta-brushes" in premature infants. PLoS One 2013; 8:e79028. [PMID: 24244408 PMCID: PMC3823968 DOI: 10.1371/journal.pone.0079028] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 09/18/2013] [Indexed: 11/21/2022] Open
Abstract
In the premature infant, somatosensory and visual stimuli trigger an immature electroencephalographic (EEG) pattern, "delta-brushes," in the corresponding sensory cortical areas. Whether auditory stimuli evoke delta-brushes in the premature auditory cortex has not been reported. Here, responses to auditory stimuli were studied in 46 premature infants without neurologic risk aged 31 to 38 postmenstrual weeks (PMW) during routine EEG recording. Stimuli consisted of either low-volume technogenic "clicks" near the background noise level of the neonatal care unit, or a human voice at conversational sound level. Stimuli were administrated pseudo-randomly during quiet and active sleep. In another protocol, the cortical response to a composite stimulus ("click" and voice) was manually triggered during EEG hypoactive periods of quiet sleep. Cortical responses were analyzed by event detection, power frequency analysis and stimulus locked averaging. Before 34 PMW, both voice and "click" stimuli evoked cortical responses with similar frequency-power topographic characteristics, namely a temporal negative slow-wave and rapid oscillations similar to spontaneous delta-brushes. Responses to composite stimuli also showed a maximal frequency-power increase in temporal areas before 35 PMW. From 34 PMW the topography of responses in quiet sleep was different for "click" and voice stimuli: responses to "clicks" became diffuse but responses to voice remained limited to temporal areas. After the age of 35 PMW auditory evoked delta-brushes progressively disappeared and were replaced by a low amplitude response in the same location. Our data show that auditory stimuli mimicking ambient sounds efficiently evoke delta-brushes in temporal areas in the premature infant before 35 PMW. Along with findings in other sensory modalities (visual and somatosensory), these findings suggest that sensory driven delta-brushes represent a ubiquitous feature of the human sensory cortex during fetal stages and provide a potential test of functional cortical maturation during fetal development.
Collapse
Affiliation(s)
- Mathilde Chipaux
- Inserm, U663, Paris, France; University Paris-Descartes, Paris, France
- CEA, Neurospin, Gif-sur-Yvette, France
- Department of Pediatric Neurosurgery, Fondation Ophtalmologique A. de Rothschild, Paris, France
| | - Matthew T. Colonnese
- Inserm, U901/Inmed, Aix-Marseille University, Marseille, France
- Department of Pharmacology and Physiology and Institute for Neuroscience, The George Washington University, Washington, D. C., United States of America
| | - Audrey Mauguen
- Inserm, U663, Paris, France; University Paris-Descartes, Paris, France
| | - Laure Fellous
- AP-HP, Department of Neonatal Care Unit, Cochin-Saint Vincent de Paul Hospital, Paris, France
| | - Mostafa Mokhtari
- AP-HP, Department of Neonatal Care Unit, Cochin-Saint Vincent de Paul Hospital, Paris, France
- AP-HP, Department of Neonatal Intensive Care Unit, Kremlin-Bicêtre Hospital, Kremlin-Bicêtre, France
| | - Oscar Lezcano
- AP-HP, Department of Neonatal Care Unit, Cochin-Saint Vincent de Paul Hospital, Paris, France
| | - Mathieu Milh
- Inserm, U901/Inmed, Aix-Marseille University, Marseille, France
| | - Olivier Dulac
- Inserm, U663, Paris, France; University Paris-Descartes, Paris, France
| | - Catherine Chiron
- Inserm, U663, Paris, France; University Paris-Descartes, Paris, France
| | - Rustem Khazipov
- Inserm, U901/Inmed, Aix-Marseille University, Marseille, France
- Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia
| | - Anna Kaminska
- Inserm, U663, Paris, France; University Paris-Descartes, Paris, France
- AP-HP, Department of Clinical Neurophysiology, Cochin-Saint Vincent de Paul Hospital, Paris, France
- AP-HP, Department of Clinical Neurophysiology, Necker-Enfants Malades Hospital, Paris, France
| |
Collapse
|
15
|
Cone B, Whitaker R. Dynamics of infant cortical auditory evoked potentials (CAEPs) for tone and speech tokens. Int J Pediatr Otorhinolaryngol 2013; 77:1162-73. [PMID: 23722003 PMCID: PMC3700622 DOI: 10.1016/j.ijporl.2013.04.030] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 04/19/2013] [Accepted: 04/20/2013] [Indexed: 11/24/2022]
Abstract
OBJECTIVES Cortical auditory evoked potentials (CAEPs) to tones and speech sounds were obtained in infants to: (1) further knowledge of auditory development above the level of the brainstem during the first year of life; (2) establish CAEP input-output functions for tonal and speech stimuli as a function of stimulus level and (3) elaborate the data-base that establishes CAEP in infants tested while awake using clinically relevant stimuli, thus providing methodology that would have translation to pediatric audiological assessment. Hypotheses concerning CAEP development were that the latency and amplitude input-output functions would reflect immaturity in encoding stimulus level. In a second experiment, infants were tested with the same stimuli used to evoke the CAEPs. Thresholds for these stimuli were determined using observer-based psychophysical techniques. The hypothesis was that the behavioral thresholds would be correlated with CAEP input-output functions because of shared cortical response areas known to be active in sound detection. DESIGN 36 infants, between the ages of 4 and 12 months (mean=8 months, s.d.=1.8 months) and 9 young adults (mean age 21 years) with normal hearing were tested. First, CAEPs amplitude and latency input-output functions were obtained for 4 tone bursts and 7 speech tokens. The tone bursts stimuli were 50 ms tokens of pure tones at 0.5, 1.0, 2.0 and 4.0 kHz. The speech sound tokens, /a/, /i/, /o/, /u/, /m/, /s/, and /∫/, were created from natural speech samples and were also 50 ms in duration. CAEPs were obtained for tone burst and speech token stimuli at 10 dB level decrements in descending order from 70 dB SPL. All CAEP tests were completed while the infants were awake and engaged in quiet play. For the second experiment, observer-based psychophysical methods were used to establish perceptual threshold for the same speech sound and tone tokens. RESULTS Infant CAEP component latencies were prolonged by 100-150 ms in comparison to adults. CAEP latency-intensity input output functions were steeper in infants compared to adults. CAEP amplitude growth functions with respect to stimulus SPL are adult-like at this age, particularly for the earliest component, P1-N1. Infant perceptual thresholds were elevated with respect to those found in adults. Furthermore, perceptual thresholds were higher, on average, than levels at which CAEPs could be obtained. When CAEP amplitudes were plotted with respect to perceptual threshold (dB SL), the infant CAEP amplitude growth slopes were steeper than in adults. CONCLUSIONS Although CAEP latencies indicate immaturity in neural transmission at the level of the cortex, amplitude growth with respect to stimulus SPL is adult-like at this age, particularly for the earliest component, P1-N1. The latency and amplitude input-output functions may provide additional information as to how infants perceive stimulus level. The reasons for the discrepancy between electrophysiologic and perceptual threshold may be due to immaturity in perceptual temporal resolution abilities and the broad-band listening strategy employed by infants. The findings from the current study can be translated to the clinical setting. It is possible to use tonal or speech sound tokens to evoke CAEPs in an awake, passively alert infant, and thus determine whether these sounds activate the auditory cortex. This could be beneficial in the verification of hearing aid or cochlear implant benefit.
Collapse
Affiliation(s)
- Barbara Cone
- University of Arizona, Department of Speech, Language and Hearing Sciences, PO Box 210071, Tucson, AZ 85721, United States.
| | - Richard Whitaker
- Hearing Science of Rancho Cucamonga 6283 Grove Avenue Suite 104 Rancho Cucamonga, CA 91730 909-920-9906
| |
Collapse
|
16
|
Syllabic discrimination in premature human infants prior to complete formation of cortical layers. Proc Natl Acad Sci U S A 2013; 110:4846-51. [PMID: 23440196 DOI: 10.1073/pnas.1212220110] [Citation(s) in RCA: 250] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The ontogeny of linguistic functions in the human brain remains elusive. Although some auditory capacities are described before term, whether and how such immature cortical circuits might process speech are unknown. Here we used functional optical imaging to evaluate the cerebral responses to syllables at the earliest age at which cortical responses to external stimuli can be recorded in humans (28- to 32-wk gestational age). At this age, the cortical organization in layers is not completed. Many neurons are still located in the subplate and in the process of migrating to their final location. Nevertheless, we observed several points of similarity with the adult linguistic network. First, whereas syllables elicited larger right than left responses, the posterior temporal region escaped this general pattern, showing faster and more sustained responses over the left than over the right hemisphere. Second, discrimination responses to a change of phoneme (ba vs. ga) and a change of human voice (male vs. female) were already present and involved inferior frontal areas, even in the youngest infants (29-wk gestational age). Third, whereas both types of changes elicited responses in the right frontal region, the left frontal region only reacted to a change of phoneme. These results demonstrate a sophisticated organization of perisylvian areas at the very onset of cortical circuitry, 3 mo before term. They emphasize the influence of innate factors on regions involved in linguistic processing and social communication in humans.
Collapse
|
17
|
Moraru L, Sameni R, Schneider U, Haueisen J, Schleußner E, Hoyer D. Validation of fetal auditory evoked cortical responses to enhance the assessment of early brain development using fetal MEG measurements. Physiol Meas 2011; 32:1847-68. [DOI: 10.1088/0967-3334/32/11/002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
18
|
Multiple effects of childhood deafness on cortical activity in children receiving bilateral cochlear implants simultaneously. Clin Neurophysiol 2011; 122:823-33. [DOI: 10.1016/j.clinph.2010.10.037] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Revised: 10/21/2010] [Accepted: 10/26/2010] [Indexed: 11/22/2022]
|
19
|
Granier-Deferre C, Bassereau S, Ribeiro A, Jacquet AY, Decasper AJ. A melodic contour repeatedly experienced by human near-term fetuses elicits a profound cardiac reaction one month after birth. PLoS One 2011; 6:e17304. [PMID: 21383836 PMCID: PMC3044162 DOI: 10.1371/journal.pone.0017304] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2011] [Accepted: 01/28/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Human hearing develops progressively during the last trimester of gestation. Near-term fetuses can discriminate acoustic features, such as frequencies and spectra, and process complex auditory streams. Fetal and neonatal studies show that they can remember frequently recurring sounds. However, existing data can only show retention intervals up to several days after birth. METHODOLOGY/PRINCIPAL FINDINGS Here we show that auditory memories can last at least six weeks. Experimental fetuses were given precisely controlled exposure to a descending piano melody twice daily during the 35(th), 36(th), and 37(th) weeks of gestation. Six weeks later we assessed the cardiac responses of 25 exposed infants and 25 naive control infants, while in quiet sleep, to the descending melody and to an ascending control piano melody. The melodies had precisely inverse contours, but similar spectra, identical duration, tempo and rhythm, thus, almost identical amplitude envelopes. All infants displayed a significant heart rate change. In exposed infants, the descending melody evoked a cardiac deceleration that was twice larger than the decelerations elicited by the ascending melody and by both melodies in control infants. CONCLUSIONS/SIGNIFICANCE Thus, 3-weeks of prenatal exposure to a specific melodic contour affects infants 'auditory processing' or perception, i.e., impacts the autonomic nervous system at least six weeks later, when infants are 1-month old. Our results extend the retention interval over which a prenatally acquired memory of a specific sound stream can be observed from 3-4 days to six weeks. The long-term memory for the descending melody is interpreted in terms of enduring neurophysiological tuning and its significance for the developmental psychobiology of attention and perception, including early speech perception, is discussed.
Collapse
Affiliation(s)
- Carolyn Granier-Deferre
- Laboratoire de Psychologie et Neuropsychologie Cognitives, CNRS-FRE 3292, Université Paris Descartes, Paris, France.
| | | | | | | | | |
Collapse
|
20
|
Granier-Deferre C, Ribeiro A, Jacquet AY, Bassereau S. Near-term fetuses process temporal features of speech. Dev Sci 2011; 14:336-52. [DOI: 10.1111/j.1467-7687.2010.00978.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
Schneider U, Arnscheidt C, Schwab M, Haueisen J, Seewald HJ, Schleussner E. Steroids That Induce Lung Maturation Acutely Affect Higher Cortical Function. Reprod Sci 2010; 18:99-106. [DOI: 10.1177/1933719110381140] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Uwe Schneider
- Department of Obstetrics and Gynecology, University Hospital, Friedrich Schiller University of Jena, Germany
| | - Christian Arnscheidt
- Department of Obstetrics and Gynecology, University Hospital, Friedrich Schiller University of Jena, Germany
| | - Matthias Schwab
- Department of Neurology, University Hospital, Friedrich Schiller University of Jena, Germany
| | - Jens Haueisen
- Biomagnetic Center, Department of Neurology, Friedrich Schiller University Jena, Germany
- Institute of Biomedical Engineering and Informatics, Technical University of Ilmenau, Germany
| | - Hans Joachim Seewald
- Department of Obstetrics and Gynecology, University Hospital, Friedrich Schiller University of Jena, Germany
| | - Ekkehard Schleussner
- Department of Obstetrics and Gynecology, University Hospital, Friedrich Schiller University of Jena, Germany
| |
Collapse
|
22
|
Lippé S, Martinez-Montes E, Arcand C, Lassonde M. Electrophysiological study of auditory development. Neuroscience 2009; 164:1108-18. [PMID: 19665050 DOI: 10.1016/j.neuroscience.2009.07.066] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2007] [Revised: 05/18/2009] [Accepted: 07/18/2009] [Indexed: 10/20/2022]
|
23
|
Lippé S, Kovacevic N, McIntosh AR. Differential maturation of brain signal complexity in the human auditory and visual system. Front Hum Neurosci 2009; 3:48. [PMID: 19949455 PMCID: PMC2783025 DOI: 10.3389/neuro.09.048.2009] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Accepted: 10/30/2009] [Indexed: 12/13/2022] Open
Abstract
Brain development carries with it a large number of structural changes at the local level which impact on the functional interactions of distributed neuronal networks for perceptual processing. Such changes enhance information processing capacity, which can be indexed by estimation of neural signal complexity. Here, we show that during development, EEG signal complexity increases from one month to 5 years of age in response to auditory and visual stimulation. However, the rates of change in complexity were not equivalent for the two responses. Infants’ signal complexity for the visual condition was greater than auditory signal complexity, whereas adults showed the same level of complexity to both types of stimuli. The differential rates of complexity change may reflect a combination of innate and experiential factors on the structure and function of the two sensory systems.
Collapse
Affiliation(s)
- Sarah Lippé
- Centre de Recherche CHU Ste-Justine, University of Montreal Montreal, Quebec, Canada.
| | | | | |
Collapse
|
24
|
Abstract
This review traces the structural maturation of the human auditory system, and compares the timeline of anatomical development with cotemporaneous physiological and behavioral events. During the embryonic period, there is formation of basic structure at all levels of the system, i.e. the inner ear, the brainstem pathway, and the cortex. The second trimester is a time of rapid growth and development, and by the end of this period, the cochlea has acquired a very adult-like configuration. During the perinatal period, the brainstem reaches a mature state, and brainstem activity is reflected in behavioral responses to sound, including phonetic discrimination, and in evoked brainstem and early middle latency responses. The perinatal period is also the time of peak development of brainstem input to the cortex through the marginal layer, and of the long latency cortical potentials, the N(2) and mismatch negativity. In early childhood, from the sixth post-natal month to age five, there is progressive maturation of the thalamic projections to the cortex and of the longer latency Pa and P(1) evoked potentials. Later childhood, from six to twelve years, is the time of maturation of the superficial cortical layers and their intracortical connections, accompanied by appearance of the N(1) potential and improved linguistic discriminative abilities. Some consideration is given to the potential negative effects of deafness-induced sound deprivation during the perinatal period and childhood.
Collapse
Affiliation(s)
- Jean K Moore
- Department of Histopathology, House Ear Institute, Los Angeles, USA.
| | | |
Collapse
|
25
|
Kiefer I, Siegel E, Preissl H, Ware M, Schauf B, Lowery C, Eswaran H. Delayed maturation of auditory-evoked responses in growth-restricted fetuses revealed by magnetoencephalographic recordings. Am J Obstet Gynecol 2008; 199:503.e1-7. [PMID: 18533116 DOI: 10.1016/j.ajog.2008.04.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2007] [Revised: 12/20/2007] [Accepted: 04/07/2008] [Indexed: 10/22/2022]
Abstract
OBJECTIVE The purpose of this study was to investigate fetal brain development of growth-restricted fetuses with auditory evoked responses (AER) that were recorded by the noninvasive magnetoencephalographic technique. STUDY DESIGN Serial fetal recordings that started at 27 weeks of gestation were conducted on a fetal magnetoencephalographic device that was especially designed for obstetric assessment. Fifteen normotrophic fetuses were compared with 14 hypotrophic fetuses. After birth, 10 of the hypotrophic fetuses were diagnosed with asymmetric growth restriction; 4 fetuses were classified as symmetrically small for gestational age. RESULTS Fetal AER latencies in both groups showed an average developmental decrease of 12.74 msec/wk (P = .0035). Hypotrophic fetuses had longer age-adjusted latencies compared with normotrophic fetuses, with a difference of 73.5 msec (P = .034). The subgroup of symmetrically growth-restricted fetuses showed the longest latencies for age, with a difference from the normotrophic fetuses of 120.0 msec (P = .045). CONCLUSION The results indicate that biomagnetically recorded AER can be used to monitor functional brain development in growth-restricted fetuses.
Collapse
|
26
|
Wunderlich JL, Cone-Wesson BK. Maturation of CAEP in infants and children: A review. Hear Res 2006; 212:212-23. [PMID: 16480841 DOI: 10.1016/j.heares.2005.11.008] [Citation(s) in RCA: 156] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2005] [Revised: 11/25/2005] [Accepted: 11/28/2005] [Indexed: 10/25/2022]
Abstract
This paper reviews our current understanding of the development of the obligatory cortical auditory evoked potential (CAEP) components P1, N1, P2, and N2. Firstly, the adult CAEP is briefly reviewed with respect to its morphology, neural generators and stimulus-dependence. Secondly, age-related changes occurring from the newborn period through childhood and adolescence are reviewed. The focus is on the maturation of CAEP morphology, changes in the scalp topography of the various components, changes in their amplitude and latency and in their stimulus-dependence. This review identifies periods of development in which we have only limited understanding of cortical auditory processing, as revealed by evoked potentials.
Collapse
Affiliation(s)
- Julia Louise Wunderlich
- Department of Otolaryngology, The University of Melbourne, 384-388 Albert Street, East Melbourne, Vic. 3002, Australia.
| | | |
Collapse
|
27
|
Schleussner E, Schneider U. Developmental changes of auditory-evoked fields in fetuses. Exp Neurol 2004; 190 Suppl 1:S59-64. [PMID: 15498543 DOI: 10.1016/j.expneurol.2004.04.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2003] [Revised: 03/30/2004] [Accepted: 04/08/2004] [Indexed: 11/28/2022]
Abstract
Fetal magnetoencephalography (fMEG) could be a viable noninvasive tool to investigate the development of neuronal functioning in the unborn by means of the maturation of cortical auditory-evoked fields (CAEF). The earliest successful recording of a CAEF component was performed at the gestational age of 27 completed weeks with an observed peak latency of 294 ms. Several different components could be differentiated in the CAEF complex. They were classified in accordance with a nomenclature introduced for cortical auditory-evoked potential (AEP) components in preterm neonates. During the third trimester of pregnancy, the detection of any component was successful in 77% of the cases. The detection rates for the different components observed were P1pm 31%; N1pm 21%; P2pm 27%; N2pm 39%; and P3pm 27%. The development of fetal CAEF is described both intraindividually in longitudinal observations and interindividually by grouped comparison throughout the second half of the pregnancy in the largest series of subjects in the literature. The components P2pm and N2pm show a significant negative correlation of their peak latencies with increasing gestational age (P < 0.05). fMEG allows to observe the development of a parameter of prenatal cortical function that can be interpreted as maturation. The results are in good accordance with those obtained in newborn EEG studies in preterm neonates.
Collapse
Affiliation(s)
- Ekkehard Schleussner
- Biomagnetic Center, Department of Gynaecology and Obstetrics, Friedrich Schiller University Jena, Germany.
| | | |
Collapse
|
28
|
Schleussner E, Schneider U, Kausch S, Kähler C, Haueisen J, Seewald HJ. Fetal magnetoencephalography: a non-invasive method for the assessment of fetal neuronal maturation. ACTA ACUST UNITED AC 2001. [DOI: 10.1016/s0306-5456(01)00292-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
29
|
Schleussner E, Schneider U, Kausch S, Kähler C, Haueisen J, Seewald HJ. Fetal magnetoencephalography: a non-invasive method for the assessment of fetal neuronal maturation. BJOG 2001; 108:1291-4. [PMID: 11843393 DOI: 10.1111/j.1471-0528.2001.00292.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVE To assess the maturation of auditory evoked cortical responses in the human fetus using fetal magnetoencephalography. DESIGN Prospective case series over a three-year period. SETTING Antenatal clinics, university hospital. POPULATION Singleton pregnancies at 29-40 weeks of gestation. METHODS We used a 31-channel-SQUID-biomagnetometer in a magnetically-shielded room to perform fetal magnetoencephalography. To record auditory evoked fields from the fetal brain we applied 500 monotonal bursts generated by a computerised sound generator directly to the maternal abdominal wall near the fetal head. The continuously recorded data sets were analysed stepwise using a specially developed heart artefact rejection software, Fourier filtering, principle component analysis and half split analysis of the averaged data. RESULTS In 36 of 64 examinations we detected signals of auditory evoked fields comparable to the P2m component in adults. The earliest recording succeeded in the 29th gestational week. The latencies of the auditory evoked responses declined during the third trimester from 300 ms to nearly 150 ms at term. The maturation of different components of the auditory evoked field could be demonstrated from the 31st gestational week onwards. CONCLUSION The maturation of a fetal auditory cortical function using fetal magnetoencephalography could be assessed directly for the first time. We believe that this method will add information to current indirect methods of assessing the normal maturation of the human fetal brain.
Collapse
Affiliation(s)
- E Schleussner
- Department of Obstetrics and Gynaecology, Friedrich Schiller University Jena, Germany
| | | | | | | | | | | |
Collapse
|
30
|
Pasman JW, Rotteveel JJ, Maassen B, de Graaf R, Visco Y. Diagnostic and predictive value of auditory evoked responses in preterm infants: II. Auditory evoked responses. Pediatr Res 1997; 42:670-7. [PMID: 9357942 DOI: 10.1203/00006450-199711000-00020] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In this study, the diagnostic and predictive value of brainstem, middle latency, and cortical auditory evoked responses (BMC-AERs) obtained in the neonatal period in 81 preterm infants was assessed in relation to neurodevelopmental outcome. The preterm infants were neonatally classified according to risk category and gestational age. The BMC-AERs were analyzed with respect to detectability, latencies, and amplitudes as well as derived latency and amplitude measures. At 5 y of age the neurodevelopmental outcome was assessed from neurologic and neuropsychologic evaluations. The results showed that BMC-AER differences mainly correlated with risk category (low risk/high risk) and to some extent with degree of prematurity. In view of these findings the degree of prematurity and the effect of risk category have to be taken into account, when BMC-AERs are applied in the preterm period to predict neurodevelopmental outcome. In this study the BMC-AERs for infants with abnormal neurodevelopmental outcome were scarcely distinguishable from the BMC-AERs for infants with normal neurodevelopmental outcome. Thus far, this and previous reports have indicated that BMC-AERs in preterm infants are useful in maturational studies and with infants showing symptoms related to lesions or dysfunction of the peripheral and/or central auditory system. For predicting neurodevelopmental outcome in preterm infants, BMC-AERs are of limited clinical value.
Collapse
Affiliation(s)
- J W Pasman
- Deparment of Clinical Neurophysiology, University Hospital, Nijmegen, The Netherlands
| | | | | | | | | |
Collapse
|
31
|
Pasman JW, Rotteveel JJ, de Graaf R, Stegeman DF, Visco YM. The effect of preterm birth on brainstem, middle latency and cortical auditory evoked responses (BMC AERs). Early Hum Dev 1992; 31:113-29. [PMID: 1292919 DOI: 10.1016/0378-3782(92)90039-j] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Recent studies on the maturation of auditory brainstem evoked responses (ABRs) present conflicting results, whereas only sparse reports exist with respect to the maturation of middle latency auditory evoked responses (MLRs) and auditory cortical evoked responses (ACRs). The present study reports the effect of preterm birth on the maturation of auditory evoked responses in low risk preterm infants (27-34 weeks conceptional age). The ABRs indicate a consistent trend towards longer latencies for all individual ABR components and towards longer interpeak latencies in preterm infants. The MLR shows longer latencies for early component P0 in preterm infants. The ACRs show a remarkable difference between preterm and term infants. At 40 weeks CA the latencies of ACR components Na and P2 are significantly longer in term infants, whereas at 52 weeks CA the latencies of the same ACR components are shorter in term infants. The results support the hypothesis that retarded myelination of the central auditory pathway is partially responsible for differences found between preterm infants and term infants with respect to late ABR components and early MLR component P0. Furthermore, mild conductive hearing loss in preterm infants may also play its role. A more complex mechanism is implicated to account for the findings noted with respect to MLR component Na and ACR components Na and P2.
Collapse
Affiliation(s)
- J W Pasman
- Department of Clinical Neurophysiology, University Hospital, Nijmegen, Netherlands
| | | | | | | | | |
Collapse
|
32
|
Affiliation(s)
- M C Busnel
- University of Paris V, URA CNRS 1294, France
| | | | | |
Collapse
|
33
|
Pasman JW, Rotteveel JJ, de Graaf R, Maassen B, Notermans SL. Detectability of auditory evoked response components in preterm infants. Early Hum Dev 1991; 26:129-41. [PMID: 1743118 DOI: 10.1016/0378-3782(91)90017-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In determining the detectability of brainstem, middle latency and cortical auditory evoked responses in preterm newborns, one has to deal with the ongoing maturation of the auditory system. In the preterm period the detectability of evoked responses is closely related to the appearance of the individual evoked response components. The detectability of the individual evoked response components in preterm infants is important, because low detectability rates make the absence of a particular evoked response component irrelevant with respect to the clinical-neurophysiological correlation. In a longitudinal study we determined the detectability and cumulative detectability, i.e. the presence of individual evoked response components in one or more recordings of evoked response components in 37 low risk preterm infants between 30 and 41 weeks conceptional age (CA). On the basis of their detectability it is concluded that evoked response components, determined between 30 and 34 weeks CA, are generally of limited use for clinical application, except for auditory brainstem response (ABR) components I, IIn, V and Vc and middle latency response (MLR) component Na. Our study made clear that improvement can be achieved by performing more than one examination within a period of approximately 4 weeks between the recording sessions. The cumulative detectability rates after two recordings showed improvement for all components involved in this study. The cumulative detectability rates of ABR components I, II, IIN, III, V, IIc, IIINc, Vc, MLR components Na and P0, and auditory cortical response (ACR) components PbP1 and N2p are sufficient to use as measures in the neurophysiological judgement of functional integrity of the central auditory pathway in preterm infants.
Collapse
Affiliation(s)
- J W Pasman
- Department of Clinical Neurophysiology, University of Nijmegen, The Netherlands
| | | | | | | | | |
Collapse
|