1
|
Capshaw G, Brown AD, Peña JL, Carr CE, Christensen-Dalsgaard J, Tollin DJ, Womack MC, McCullagh EA. The continued importance of comparative auditory research to modern scientific discovery. Hear Res 2023; 433:108766. [PMID: 37084504 PMCID: PMC10321136 DOI: 10.1016/j.heares.2023.108766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/23/2023] [Accepted: 04/05/2023] [Indexed: 04/23/2023]
Abstract
A rich history of comparative research in the auditory field has afforded a synthetic view of sound information processing by ears and brains. Some organisms have proven to be powerful models for human hearing due to fundamental similarities (e.g., well-matched hearing ranges), while others feature intriguing differences (e.g., atympanic ears) that invite further study. Work across diverse "non-traditional" organisms, from small mammals to avians to amphibians and beyond, continues to propel auditory science forward, netting a variety of biomedical and technological advances along the way. In this brief review, limited primarily to tetrapod vertebrates, we discuss the continued importance of comparative studies in hearing research from the periphery to central nervous system with a focus on outstanding questions such as mechanisms for sound capture, peripheral and central processing of directional/spatial information, and non-canonical auditory processing, including efferent and hormonal effects.
Collapse
Affiliation(s)
- Grace Capshaw
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD 21218, USA.
| | - Andrew D Brown
- Department of Speech and Hearing Sciences, University of Washington, Seattle, WA 98105, USA
| | - José L Peña
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Catherine E Carr
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | | | - Daniel J Tollin
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Otolaryngology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Molly C Womack
- Department of Biology, Utah State University, Logan, UT 84322, USA.
| | - Elizabeth A McCullagh
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK 74078, USA.
| |
Collapse
|
2
|
Manley GA. Otoacoustic Emissions in Non-Mammals. Audiol Res 2022; 12:260-272. [PMID: 35645197 PMCID: PMC9149831 DOI: 10.3390/audiolres12030027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 01/27/2023] Open
Abstract
Otoacoustic emissions (OAE) that were sound-induced, current-induced, or spontaneous have been measured in non-mammalian land vertebrates, including in amphibians, reptiles, and birds. There are no forms of emissions known from mammals that have not also been observed in non-mammals. In each group and species, the emission frequencies clearly lie in the range known to be processed by the hair cells of the respective hearing organs. With some notable exceptions, the patterns underlying the measured spectra, input-output functions, suppression threshold curves, etc., show strong similarities to OAE measured in mammals. These profound similarities are presumably traceable to the fact that emissions are produced by active hair-cell mechanisms that are themselves dependent upon comparable nonlinear cellular processes. The differences observed—for example, in the width of spontaneous emission peaks and delay times in interactions between peaks—should provide insights into how hair-cell activity is coupled within the organ and thus partially routed out into the middle ear.
Collapse
Affiliation(s)
- Geoffrey A Manley
- Department of Neuroscience, Faculty of Medicine, University of Oldenburg, 26129 Oldenburg, Germany
| |
Collapse
|
3
|
Iwasa KH. Of mice and chickens: Revisiting the RC time constant problem. Hear Res 2021; 423:108422. [PMID: 34965897 DOI: 10.1016/j.heares.2021.108422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 12/09/2021] [Accepted: 12/15/2021] [Indexed: 11/30/2022]
Abstract
Avian hair cells depend on electrical resonance for frequency selectivity. The upper bound of the frequency range is limited by the RC time constant of hair cells because the sharpness of tuning requires that the resonance frequency must be lower than the RC roll-off frequency. In contrast, tuned mechanical vibration of the inner ear is the basis of frequency selectivity of the mammalian ear. This mechanical vibration is supported by outer hair cells (OHC) with their electromotility (or piezoelectricity), which is driven by the receptor potential. Thus, it is also subjected to the RC time constant problem. Association of OHCs with a system with mechanical resonance leads to piezoelectric resonance. This resonance can nullify the membrane capacitance and solves the RC time constant problem for OHCs. Therefore, avian and mammalian ears solve the same problem in the opposite way.
Collapse
Affiliation(s)
- Kuni H Iwasa
- NIDCD, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
4
|
Caus Capdevila MQ, Sienknecht UJ, Köppl C. Developmental maturation of presynaptic ribbon numbers in chicken basilar-papilla hair cells and its perturbation by long-term overexpression of Wnt9a. Dev Neurobiol 2021; 81:817-832. [PMID: 34309221 DOI: 10.1002/dneu.22845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/20/2021] [Accepted: 07/15/2021] [Indexed: 11/07/2022]
Abstract
The avian basilar papilla is a valuable model system for exploring the developmental determination and differentiation of sensory hair cells and their innervation. In the mature basilar papilla, hair cells form a well-known continuum between two extreme types-tall and short hair cells-that differ strikingly in their innervation. Previous work identified Wnt9a as a crucial factor in this differentiation. Here, we quantified the number and volume of immunolabelled presynaptic ribbons in tall and short hair cells of chickens, from developmental stages shortly after ribbons first appear to the mature posthatching condition. Two longitudinal locations were sampled, responding to best frequencies of approximately 1 kHz and approximately 5.5 kHz when mature. We found significant reductions of ribbon number during normal development in the tall-hair-cell domains, but stable, low numbers in the short-hair-cell domains. Exposing developing hair cells to continuous, excessive Wnt9a levels (through virus-mediated overexpression) led to transiently abnormal high numbers of ribbons and a delayed reduction of ribbon numbers at all sampled locations. Thus, (normally) short-hair-cell domains also showed tall-hair-cell like behaviour, confirming previous findings (Munnamalai et al., 2017). However, at 3 weeks posthatching, ribbon numbers had decreased to the location-specific typical values of control hair cells at all sampled locations. Furthermore, as shown previously, mature hair cells at the basal, high-frequency location harboured larger ribbons than more apically located hair cells. This was true for both normal and Wnt9a-overexposed basilar papillae.
Collapse
Affiliation(s)
- M Queralt Caus Capdevila
- Cluster of Excellence "Hearing4all" and Research Centre Neurosensory Science, Department of Neuroscience, School of Medicine and Health Science, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Ulrike J Sienknecht
- Cluster of Excellence "Hearing4all" and Research Centre Neurosensory Science, Department of Neuroscience, School of Medicine and Health Science, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Christine Köppl
- Cluster of Excellence "Hearing4all" and Research Centre Neurosensory Science, Department of Neuroscience, School of Medicine and Health Science, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| |
Collapse
|
5
|
McGee J, Nelson PB, Ponder JB, Marr J, Redig P, Walsh EJ. Auditory performance in bald eagles and red-tailed hawks: a comparative study of hearing in diurnal raptors. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2019; 205:793-811. [PMID: 31520117 DOI: 10.1007/s00359-019-01367-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 07/26/2019] [Accepted: 08/28/2019] [Indexed: 12/19/2022]
Abstract
Collision with wind turbines is a conservation concern for eagles with population abundance implications. The development of acoustic alerting technologies to deter eagles from entering hazardous air spaces is a potentially significant mitigation strategy to diminish associated morbidity and mortality risks. As a prelude to the engineering of deterrence technologies, auditory function was assessed in bald eagles (Haliaeetus leucocephalus), as well as in red-tailed hawks (Buteo jamaicensis). Auditory brainstem responses (ABRs) to a comprehensive battery of clicks and tone bursts varying in level and frequency were acquired to evaluate response thresholds, as well as suprathreshold response characteristics of wave I of the ABR, which represents the compound potential of the VIII cranial nerve. Sensitivity curves exhibited an asymmetric convex shape similar to those of other avian species, response latencies decreased exponentially with increasing stimulus level and response amplitudes grew with level in an orderly manner. Both species were responsive to a frequency band at least four octaves wide, with a most sensitive frequency of 2 kHz, and a high-frequency limit of approximately 5.7 kHz in bald eagles and 8 kHz in red-tailed hawks. Findings reported here provide a framework within which acoustic alerting signals might be developed.
Collapse
Affiliation(s)
- JoAnn McGee
- Department of Speech-Language-Hearing Sciences and the Center for Applied and Translational Sensory Science, University of Minnesota, 164 Pillsbury Dr. SE, Minneapolis, MN, 55455, USA.
| | - Peggy B Nelson
- Department of Speech-Language-Hearing Sciences and the Center for Applied and Translational Sensory Science, University of Minnesota, 164 Pillsbury Dr. SE, Minneapolis, MN, 55455, USA
| | - Julia B Ponder
- The Raptor Center, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, 55108, USA
| | - Jeffrey Marr
- St. Anthony Falls Laboratory, University of Minnesota, Minneapolis, MN, 55414, USA
| | - Patrick Redig
- The Raptor Center, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, 55108, USA
| | - Edward J Walsh
- Department of Speech-Language-Hearing Sciences and the Center for Applied and Translational Sensory Science, University of Minnesota, 164 Pillsbury Dr. SE, Minneapolis, MN, 55455, USA
| |
Collapse
|
6
|
Krumm B, Klump G, Köppl C, Langemann U. Barn owls have ageless ears. Proc Biol Sci 2018; 284:rspb.2017.1584. [PMID: 28931742 DOI: 10.1098/rspb.2017.1584] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 08/14/2017] [Indexed: 11/12/2022] Open
Abstract
We measured the auditory sensitivity of the barn owl (Tyto alba), using a behavioural Go/NoGo paradigm in two different age groups, one younger than 2 years (n = 4) and another more than 13 years of age (n = 3). In addition, we obtained thresholds from one individual aged 23 years, three times during its lifetime. For computing audiograms, we presented test frequencies of between 0.5 and 12 kHz, covering the hearing range of the barn owl. Average thresholds in quiet were below 0 dB sound pressure level (SPL) for frequencies between 1 and 10 kHz. The lowest mean threshold was -12.6 dB SPL at 8 kHz. Thresholds were the highest at 12 kHz, with a mean of 31.7 dB SPL. Test frequency had a significant effect on auditory threshold but age group had no significant effect. There was no significant interaction between age group and test frequency. Repeated threshold estimates over 21 years from a single individual showed only a slight increase in thresholds. We discuss the auditory sensitivity of barn owls with respect to other species and suggest that birds, which generally show a remarkable capacity for regeneration of hair cells in the basilar papilla, are naturally protected from presbycusis.
Collapse
Affiliation(s)
- Bianca Krumm
- Cluster of Excellence 'Hearing4all', Animal Physiology and Behaviour Group, Department of Neuroscience, School of Medicine and Health Sciences, University of Oldenburg, 26111 Oldenburg, Germany
| | - Georg Klump
- Cluster of Excellence 'Hearing4all', Animal Physiology and Behaviour Group, Department of Neuroscience, School of Medicine and Health Sciences, University of Oldenburg, 26111 Oldenburg, Germany
| | - Christine Köppl
- Cluster of Excellence 'Hearing4all', Animal Physiology and Behaviour Group, Department of Neuroscience, School of Medicine and Health Sciences, University of Oldenburg, 26111 Oldenburg, Germany
| | - Ulrike Langemann
- Cluster of Excellence 'Hearing4all', Animal Physiology and Behaviour Group, Department of Neuroscience, School of Medicine and Health Sciences, University of Oldenburg, 26111 Oldenburg, Germany
| |
Collapse
|
7
|
Sensational placodes: neurogenesis in the otic and olfactory systems. Dev Biol 2014; 389:50-67. [PMID: 24508480 PMCID: PMC3988839 DOI: 10.1016/j.ydbio.2014.01.023] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 01/27/2014] [Accepted: 01/28/2014] [Indexed: 11/22/2022]
Abstract
For both the intricate morphogenetic layout of the sensory cells in the ear and the elegantly radial arrangement of the sensory neurons in the nose, numerous signaling molecules and genetic determinants are required in concert to generate these specialized neuronal populations that help connect us to our environment. In this review, we outline many of the proteins and pathways that play essential roles in the differentiation of otic and olfactory neurons and their integration into their non-neuronal support structures. In both cases, well-known signaling pathways together with region-specific factors transform thickened ectodermal placodes into complex sense organs containing numerous, diverse neuronal subtypes. Olfactory and otic placodes, in combination with migratory neural crest stem cells, generate highly specialized subtypes of neuronal cells that sense sound, position and movement in space, odors and pheromones throughout our lives.
Collapse
|
8
|
Corfield JR, Krilow JM, Vande Ligt MN, Iwaniuk AN. A quantitative morphological analysis of the inner ear of galliform birds. Hear Res 2013; 304:111-27. [DOI: 10.1016/j.heares.2013.07.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 06/12/2013] [Accepted: 07/06/2013] [Indexed: 11/30/2022]
|
9
|
Corfield JR, Kubke MF, Parsons S, Köppl C. Inner-ear morphology of the New Zealand kiwi (Apteryx mantelli) suggests high-frequency specialization. J Assoc Res Otolaryngol 2012; 13:629-39. [PMID: 22772440 DOI: 10.1007/s10162-012-0341-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 06/20/2012] [Indexed: 11/29/2022] Open
Abstract
The sensory systems of the New Zealand kiwi appear to be uniquely adapted to occupy a nocturnal ground-dwelling niche. In addition to well-developed tactile and olfactory systems, the auditory system shows specializations of the ear, which are maintained along the central nervous system. Here, we provide a detailed description of the auditory nerve, hair cells, and stereovillar bundle orientation of the hair cells in the North Island brown kiwi. The auditory nerve of the kiwi contained about 8,000 fibers. Using the number of hair cells and innervating nerve fibers to calculate a ratio of average innervation density showed that the afferent innervation ratio in kiwi was denser than in most other birds examined. The average diameters of cochlear afferent axons in kiwi showed the typical gradient across the tonotopic axis. The kiwi basilar papilla showed a clear differentiation of tall and short hair cells. The proportion of short hair cells was higher than in the emu and likely reflects a bias towards higher frequencies represented on the kiwi basilar papilla. The orientation of the stereovillar bundles in the kiwi basilar papilla showed a pattern similar to that in most other birds but was most similar to that of the emu. Overall, many features of the auditory nerve, hair cells, and stereovilli bundle orientation in the kiwi are typical of most birds examined. Some features of the kiwi auditory system do, however, support a high-frequency specialization, specifically the innervation density and generally small size of hair-cell somata, whereas others showed the presumed ancestral condition similar to that found in the emu.
Collapse
Affiliation(s)
- Jeremy R Corfield
- Department of Anatomy with Radiology, University of Auckland, Auckland, New Zealand.
| | | | | | | |
Collapse
|
10
|
Corfield J, Kubke MF, Parsons S, Wild JM, Köppl C. Evidence for an auditory fovea in the New Zealand kiwi (Apteryx mantelli). PLoS One 2011; 6:e23771. [PMID: 21887317 PMCID: PMC3161079 DOI: 10.1371/journal.pone.0023771] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Accepted: 07/25/2011] [Indexed: 11/18/2022] Open
Abstract
Kiwi are rare and strictly protected birds of iconic status in New Zealand. Yet, perhaps due to their unusual, nocturnal lifestyle, surprisingly little is known about their behaviour or physiology. In the present study, we exploited known correlations between morphology and physiology in the avian inner ear and brainstem to predict the frequency range of best hearing in the North Island brown kiwi. The mechanosensitive hair bundles of the sensory hair cells in the basilar papilla showed the typical change from tall bundles with few stereovilli to short bundles with many stereovilli along the apical-to-basal tonotopic axis. In contrast to most birds, however, the change was considerably less in the basal half of the epithelium. Dendritic lengths in the brainstem nucleus laminaris also showed the typical change along the tonotopic axis. However, as in the basilar papilla, the change was much less pronounced in the presumed high-frequency regions. Together, these morphological data suggest a fovea-like overrepresentation of a narrow high-frequency band in kiwi. Based on known correlations of hair-cell microanatomy and physiological responses in other birds, a specific prediction for the frequency representation along the basilar papilla of the kiwi was derived. The predicted overrepresentation of approximately 4-6 kHz matches potentially salient frequency bands of kiwi vocalisations and may thus be an adaptation to a nocturnal lifestyle in which auditory communication plays a dominant role.
Collapse
Affiliation(s)
- Jeremy Corfield
- Department of Anatomy with Radiology, University of Auckland, Auckland, New Zealand
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - M. Fabiana Kubke
- Department of Anatomy with Radiology, University of Auckland, Auckland, New Zealand
| | - Stuart Parsons
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - J. Martin Wild
- Department of Anatomy with Radiology, University of Auckland, Auckland, New Zealand
| | - Christine Köppl
- Institute for Biology and Environmental Sciences, and Research Center Neurosensory Science, Carl von Ossietzky University, Oldenburg, Germany
| |
Collapse
|
11
|
|
12
|
Somatic motility and hair bundle mechanics, are both necessary for cochlear amplification? Hear Res 2010; 273:109-22. [PMID: 20430075 DOI: 10.1016/j.heares.2010.03.094] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Revised: 03/02/2010] [Accepted: 03/08/2010] [Indexed: 11/22/2022]
Abstract
Hearing organs have evolved to detect sounds across several orders of magnitude of both intensity and frequency. Detection limits are at the atomic level despite the energy associated with sound being limited thermodynamically. Several mechanisms have evolved to account for the remarkable frequency selectivity, dynamic range, and sensitivity of these various hearing organs, together termed the active process or cochlear amplifier. Similarities between hearing organs of disparate species provides insight into the factors driving the development of the cochlear amplifier. These properties include: a tonotopic map, the emergence of a two hair cell system, the separation of efferent and afferent innervations, the role of the tectorial membrane, and the shift from intrinsic tuning and amplification to a more end organ driven process. Two major contributors to the active process are hair bundle mechanics and outer hair cell electromotility, the former present in all hair cell organs tested, the latter only present in mammalian cochlear outer hair cells. Both of these processes have advantages and disadvantages, and how these processes interact to generate the active process in the mammalian system is highly disputed. A hypothesis is put forth suggesting that hair bundle mechanics provides amplification and filtering in most hair cells, while in mammalian cochlea, outer hair cell motility provides the amplification on a cycle by cycle basis driven by the hair bundle that provides frequency selectivity (in concert with the tectorial membrane) and compressive nonlinearity. Separating components of the active process may provide additional sites for regulation of this process.
Collapse
|
13
|
Target-approaching behavior of barn owls (Tyto alba): influence of sound frequency. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2010; 196:227-40. [DOI: 10.1007/s00359-010-0508-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Revised: 12/17/2009] [Accepted: 01/27/2010] [Indexed: 11/26/2022]
|
14
|
Neubauer H, Köppl C, Heil P. Spontaneous activity of auditory nerve fibers in the barn owl (Tyto alba): analyses of interspike interval distributions. J Neurophysiol 2009; 101:3169-91. [PMID: 19357334 DOI: 10.1152/jn.90779.2008] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In vertebrate auditory systems, the conversion from graded receptor potentials across the hair-cell membrane into stochastic spike trains of the auditory nerve (AN) fibers is performed by ribbon synapses. The statistics underlying this process constrain auditory coding but are not precisely known. Here, we examine the distributions of interspike intervals (ISIs) from spontaneous activity of AN fibers of the barn owl (Tyto alba), a nocturnal avian predator whose auditory system is specialized for precise temporal coding. The spontaneous activity of AN fibers, with the exception of those showing preferred intervals, is commonly thought to result from excitatory events generated by a homogeneous Poisson point process, which lead to spikes unless the fiber is refractory. We show that the ISI distributions in the owl are better explained as resulting from the action of a brief refractory period ( approximately 0.5 ms) on excitatory events generated by a homogeneous stochastic process where the distribution of interevent intervals is a mixture of an exponential and a gamma distribution with shape factor 2, both with the same scaling parameter. The same model was previously shown to apply to AN fibers in the cat. However, the mean proportions of exponentially versus gamma-distributed intervals in the mixture were different for cat and owl. Furthermore, those proportions were constant across fibers in the cat, whereas they covaried with mean spontaneous rate and with characteristic frequency in the owl. We hypothesize that in birds, unlike in mammals, more than one ribbon may provide excitation to most fibers, accounting for the different proportions, and that variation in the number of ribbons may underlie the variation in the proportions.
Collapse
|
15
|
Wittig JH, Parsons TD. Synaptic ribbon enables temporal precision of hair cell afferent synapse by increasing the number of readily releasable vesicles: a modeling study. J Neurophysiol 2008; 100:1724-39. [PMID: 18667546 DOI: 10.1152/jn.90322.2008] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Synaptic ribbons are classically associated with mediating indefatigable neurotransmitter release by sensory neurons that encode persistent stimuli. Yet when hair cells lack anchored ribbons, the temporal precision of vesicle fusion and auditory nerve discharges are degraded. A rarified statistical model predicted increasing precision of first-exocytosis latency with the number of readily releasable vesicles. We developed an experimentally constrained biophysical model to test the hypothesis that ribbons enable temporally precise exocytosis by increasing the readily releasable pool size. Simulations of calcium influx, buffered calcium diffusion, and synaptic vesicle exocytosis were stochastic (Monte Carlo) and yielded spatiotemporal distributions of vesicle fusion consistent with experimental measurements of exocytosis magnitude and first-spike latency of nerve fibers. No single vesicle could drive the auditory nerve with requisite precision, indicating a requirement for multiple readily releasable vesicles. However, plasmalemma-docked vesicles alone did not account for the nerve's precision--the synaptic ribbon was required to retain a pool of readily releasable vesicles sufficiently large to statistically ensure first-exocytosis latency was both short and reproducible. The model predicted that at least 16 readily releasable vesicles were necessary to match the nerve's precision and provided insight into interspecies differences in synaptic anatomy and physiology. We confirmed that ribbon-associated vesicles were required in disparate calcium buffer conditions, irrespective of the number of vesicles required to trigger an action potential. We conclude that one of the simplest functions ascribable to the ribbon--the ability to hold docked vesicles at an active zone--accounts for the synapse's temporal precision.
Collapse
Affiliation(s)
- John H Wittig
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, 382 West Street Road, Kennett Square, PA 19348, USA
| | | |
Collapse
|
16
|
Köppl C, Nickel R. Prolonged maturation of cochlear function in the barn owl after hatching. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2007; 193:613-24. [PMID: 17323066 DOI: 10.1007/s00359-007-0216-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2006] [Revised: 01/22/2007] [Accepted: 02/03/2007] [Indexed: 11/29/2022]
Abstract
Cochlear microphonics (CMs), which represent the electrical activity of hair cells, and compound action potentials (CAPs), which represent the activity of the auditory nerve, were recorded from the round window of the inner ear, in owlets aged between 5 and 97 days posthatching, i.e., from soon after hatching to beyond fledgling. At the earliest ages examined, animals showed very insensitive CM and virtually no CAP responses. Thus, hearing in barn owls develops entirely posthatching and the birds appear to be profoundly deaf well into the second week. Thresholds improved gradually after that and CMs reached their adult sensitivity at 5 weeks posthatching at all frequencies. Compound action potential responses appeared progressively later with increasing frequency. Adult neural sensitivity was achieved about 1 week later than for the CM responses at most frequencies, but took until 9-10 weeks posthatching at the highest frequencies (8-10 kHz). This indicates an apex-to-base maturation sequence of neural sensitivity within the cochlea, with a disproportionately long period to maturity for the most basal regions. Compound action potential amplitudes matured even later, at about 3 months posthatching, at all frequencies. This suggests a prolonged immaturity in the temporal synchrony of spiking in the auditory nerve.
Collapse
Affiliation(s)
- Christine Köppl
- Lehrstuhl für Zoologie, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany.
| | | |
Collapse
|
17
|
Savost'yanov GA, Grefner NM, Golubeva TB, Savost'yanova EG. Three-Dimensional Organization of Epithelia of the AB2 Composition by the Example of the Cochlea Sensory Epithelium of Birds. J EVOL BIOCHEM PHYS+ 2005. [DOI: 10.1007/s10893-005-0098-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Caputi AA. Contributions of electric fish to the understanding of sensory processing by reafferent systems. ACTA ACUST UNITED AC 2005; 98:81-97. [PMID: 15477024 DOI: 10.1016/j.jphysparis.2004.03.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Sensory systems must solve the inverse problem of determining environmental events based on patterns of neural activity in the central nervous system that are affected by those environmental events. Different environmental events can give rise to indistinguishable patterns of neural activity, so that there will often, perhaps even always, be multiple solutions to a sensory inverse problem. Imaging strategies and brain organization confine these multiple solutions within a bounded set. Three different active strategies may be employed by animals to constrain the number of solutions to the sensory inverse problem: active generation of the energy (carrier) that stimulates receptors; reorientation of the point of view; and control of signal conditioning before transduction (pre-receptor mechanisms). This paper describes how these strategies are used in sensory-motor systems, using electric fish as a paradigmatic example. Carrier generation and receptor tuning to the carrier improve signal to noise ratio. Receptor tuning to different frequency bands of the carrier spectrum allows a sensory system to evaluate different kinds of carrier modulations and to extract the different features of objects in the environment. Pre-receptor mechanisms condition the signals, optimizing their detection at a foveal region where the sensory resolution is maximum. Active orientation of the sensory surface redirects the fovea to explore in detail the source of interesting signals. Sensory input generated by these active exploration mechanisms ('reafference') has two components: one, necessary, derived from the self-generated actions and another, contingent, consisting of the information obtained from the external world. Extracting environmental information ('exafference') requires that the self generated afference be subtracted from the sensory inflow. Such subtraction is often associated with the generation and storage of expectations about sensory inputs. It can be concluded that an animal's perceptual world and its ability to transform the world are inextricably linked. Understanding sensory systems must, therefore, always require understanding the organization of motor behavior.
Collapse
Affiliation(s)
- Angel A Caputi
- Depart. Neurofisiología Comparada, Instituto de Investigaciones Biológicas Clemente Estable, Av. Italia 3318, Montevideo 1160, Uruguay.
| |
Collapse
|
19
|
Köppl C, Forge A, Manley GA. Low density of membrane particles in auditory hair cells of lizards and birds suggests an absence of somatic motility. J Comp Neurol 2004; 479:149-55. [PMID: 15452826 DOI: 10.1002/cne.20311] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Hair cells are the mechanoreceptive cells of the vertebrate lateral line and inner ear. In addition to their sensory function, hair cells display motility and thus themselves generate mechanical energy, which is thought to enhance sensitivity. Two principal cellular mechanism are known that can mediate hair-cell motility in vitro. One of these is based on voltage-dependent changes of an intramembrane protein and has so far been demonstrated only in outer hair cells of the mammalian cochlea. Correlated with this, the cell membranes of outer hair cells carry an extreme density of embedded particles, as revealed by freeze fracturing. The present study explored the possibility of membrane-based motility in hair cells of nonmammals, by determining their density of intramembrane particles. Replicas of freeze-fractured membrane were prepared from auditory hair cells of a lizard, the Tokay gecko, and a bird, the barn owl. These species were chosen because of independent evidence for active cochlear mechanics, in the form of spontaneous otoacoustic emissions. For quantitative comparison, mammalian inner and outer hair cells, as well as vestibular hair, cells were reevaluated. Lizard and bird hair cells displayed median densities of 2,360 and 1,880 intramembrane particles/microm2, respectively. This was not significantly different from the densities in vestibular and mammalian inner hair cells; however, it was about half the density in of mammalian outer hair cells. This suggests that nonmammalian hair cells do not possess high densities of motor protein in their membranes and are thus unlikely to be capable of somatic motility.
Collapse
Affiliation(s)
- Christine Köppl
- Lehrstuhl für Zoologie, Technische Universität München, 85747 Garching, Germany.
| | | | | |
Collapse
|
20
|
Gleich O, Fischer FP, Köppl C, Manley GA. Hearing Organ Evolution and Specialization: Archosaurs. EVOLUTION OF THE VERTEBRATE AUDITORY SYSTEM 2004. [DOI: 10.1007/978-1-4419-8957-4_8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
21
|
|
22
|
Abstract
Antibodies directed against choline acetyltransferase (ChAT), the synthesizing enzyme for acetylcholine (ACh) and a specific marker of cholinergic neurons, were used to label axons and nerve terminals of efferent fibers that innervate the chick basilar papilla (BP). Two morphologically distinct populations of cholinergic fibers were labeled and classified according to the region of the BP they innervated. The inferior efferent system was composed of thick fibers that coursed radially across the basilar membrane in small fascicles, gave off small branches that innervated short hair cells with large cup-like endings, and continued past the inferior edge of the BP to ramify extensively in the hyaline cell area. The superior efferent system was made up of a group of thin fibers that remained in the superior half of the epithelium and innervated tall hair cells with bouton endings. Both inferior and superior efferent fibers richly innervated the basal two thirds of the BP. However, the apical quarter of the chick BP was virtually devoid of efferent innervation except for a few fibers that gave off bouton endings around the peripheral edges. The distribution of ChAT-positive efferent endings appeared very similar to the population of efferent endings that labeled with synapsin antisera. Double labeling with ChAT and synapsin antibodies showed that the two markers colocalized in all nerve terminals that were identified in BP whole-mounts and frozen sections. These results strongly suggest that all of the efferent fibers that innervate the chick BP are cholinergic.
Collapse
Affiliation(s)
- Michael Zidanic
- The Center for Hearing and Balance, Department of Otolaryngology- Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore Maryland 21205-2195, USA.
| |
Collapse
|
23
|
Abstract
The sensory hair cells of the inner ear receive both afferent and efferent innervation. The efferent supply to the auditory organ has evolved in birds and mammals into a separate complex system, with several types of neurons of largely unknown function. In this study, the efferent axons in four different species of birds (chicken, starling, barn owl and emu) were examined anatomically. Total numbers of efferents supplying the cochlear duct (auditory basilar papilla and the vestibular lagenar macula) were determined; separate estimates of the efferents to the lagenar macula only were also derived and subtracted. The numbers for auditory efferents thus varied between 120 (chicken) and 1068 (barn owl). Considering the much larger numbers of hair cells in the basilar papilla, each efferent is predicted to branch extensively. However, pronounced species-specific differences as well as regional differences along the tonotopic gradient of the basilar papilla were documented. Myelinated and unmyelinated axons were found, with mean diameters of about 1 microm and about 0.5 microm, respectively. This suggests two basic populations of efferents, however, they did not appear to be distinguished sharply. Evidence is presented that some efferents lose their myelination at the transition from central oligodendrocyte to peripheral Schwann cell myelin. Finally, a comparison of the four bird species evaluated suggests that the efferent population with smaller, unmyelinated axons is the phylogenetically more primitive one. A new population probably arose in parallel with the evolution and differentiation of the specialized hair-cell type it innervates, the short hair cell.
Collapse
Affiliation(s)
- C Köppl
- Zoologie, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany
| |
Collapse
|
24
|
Abstract
This paper is a comparative study of auditory-nerve morphology in birds. The chicken (Gallus gallus), the emu (Dromaius novaehollandiae) and the starling (Sturnus vulgaris) were chosen as unspecialised birds that have already been used in auditory research. The data are discussed in comparison to a similar earlier study on the barn owl, a bird with highly specialised hearing, in an attempt to separate general avian patterns from species specialisations. Average numbers of afferent fibres from 8775 (starling) to 12¿ omitted¿406 (chicken) were counted, excluding fibres to the lagenar macula. The number of fibres representing different frequency ranges showed broad maxima in the chicken and emu, corresponding to hearing ranges of best sensitivity and/or particular behavioural relevance. Mean axon diameters were around 2 microm in the chicken and starling, and around 3 microm in the emu. Virtually all auditory afferents were myelinated. The mean thickness of the myelin sheaths was between 0.33 microm (starling) and 0.4 microm (emu). There was a consistent pattern in the diameters of axons deriving from different regions. Axons from very basal, i.e. highest-frequency, parts of the basilar papilla were always the smallest. In the emu and the chicken, axons from the middle papillar regions were, in addition, larger than axons innervating apical regions.
Collapse
Affiliation(s)
- C Köppl
- Institut für Zoologie, Technische Universität München, Lichtenbergstrasse 4, 85747, Garching, Germany.
| | | | | | | |
Collapse
|
25
|
|
26
|
|
27
|
Manley GA, Taschenberger G, Oeckinghaus H. Influence of contralateral acoustic stimulation on distortion-product and spontaneous otoacoustic emissions in the barn owl. Hear Res 1999; 138:1-12. [PMID: 10575110 DOI: 10.1016/s0378-5955(99)00126-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The avian auditory papilla provides an interesting object on which to study efferent influences, because whereas a significant population of hair cells in birds is not afferently innervated, all hair cells are efferently innervated (Fischer, 1992, 1994a, b). Previous studies in mammals using contralateral sound to stimulate the efferent system demonstrated a general suppressive effect on spontaneous and click-evoked, as well as on distortion-product otoacoustic emissions (DPOAE). As little is known about the effects of contralateral stimulation on hearing in birds, we studied the effect of such stimuli (broadband noise, pure tones) on the amplitude of the DPOAE 2f(1)-f(2) and on spontaneous otoacoustic emissions (SOAE) in the barn owl, Tyto alba. For the DPOAE measurements, fixed primary-tone pairs [f(1)=8.875 kHz (ratio=1.2), f(1)=8.353 kHz (ratio=1.15) and f(1)=7.889 kHz (ratio=1.1)] were presented and the DPOAE measured in the presence and absence of continuous contralateral stimulation. The DPOAE often declined in amplitude but in some cases we observed DPOAE enhancement. The changes in amplitude were as large as 9 dB. The influence of the contralateral noise changed over time, however, and the effects of contralateral tones were frequency-dependent. SOAE were suppressed in amplitude and shifted in frequency by contralateral broadband noise. Control measurements in animals after middle-ear muscle resection showed that these phenomena were not attributable to the acoustic middle-ear reflex. The finding of DPOAE enhancement is interesting, because a type of efferent fiber that suppressed its discharge rate during stimulation has been described in birds (Kaiser and Manley, 1994).
Collapse
Affiliation(s)
- G A Manley
- Institut für Zoologie der Technischen Universität München, Lichtenbergstr. 4, 85747, Garching, Germany.
| | | | | |
Collapse
|
28
|
Müller M, Smolders JW. Responses of auditory nerve fibers innervating regenerated hair cells after local application of gentamicin at the round window of the cochlea in the pigeon. Hear Res 1999; 131:153-69. [PMID: 10355612 DOI: 10.1016/s0378-5955(99)00029-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Hair cells in the basilar papilla of birds have the capacity to regenerate after injury. There is also functional recovery of hearing after regeneration of the hair cells. The present study was undertaken to determine the effect of local aminoglycoside application on the physiology of auditory nerve fibers innervating regenerated hair cells. Collagen sponges loaded with gentamicin were placed at the round window of the cochlea in adult pigeons. The local application of gentamicin-loaded collagen sponges resulted in total hair cell loss over at least the basal 62% of the basilar papilla. According to the pigeon cochlear place-frequency map (Smolders, Ding-Pfennigdorff and Klinke, Hear. Res. 92 (1995) 151-169), frequencies above 0.3 kHz are represented in this area. Physiological data on single auditory nerve fibers were obtained 14 weeks after gentamicin treatment. The response properties showed the following characteristics when compared to control data: CF thresholds (CF = characteristic frequency) were elevated in units with CF above 0.15 kHz, sharpness of tuning (Q10dB) was reduced in units with CF above 0.38 kHz, low-frequency slopes of the tuning curves were reduced in units with CF above 0.25 kHz, high frequency slopes of the tuning curves were reduced in units with CF above 0.4 kHz, spontaneous firing rate was reduced in units with CF above 0.38 kHz, dynamic range of rate-intensity functions at CF was reduced in units with CF above 0.4 kHz and the slopes of these rate-intensity functions were elevated in units with CF above 0.4 kHz. Maximum discharge rate was the only parameter that remained unchanged in regenerated ears. The results show that the response properties of auditory nerve fibers which innervate areas of the papilla that were previously devoid of hair cells are poorer than the controls, but that action potential generation in the afferent fibers is unaffected. This suggests that despite structural regeneration of the basilar papilla, functional recovery of the auditory periphery is incomplete at the level of the hair cell or the hair cell-afferent synapse.
Collapse
Affiliation(s)
- M Müller
- Klinikum der J.W. Goethe-Universität, Physiologisches Institut III, Frankfurt am Main, Germany
| | | |
Collapse
|
29
|
Köppl C, Gleich O, Schwabedissen G, Siegl E, Manley GA. Fine structure of the basilar papilla of the emu: implications for the evolution of avian hair-cell types. Hear Res 1998; 126:99-112. [PMID: 9872138 DOI: 10.1016/s0378-5955(98)00156-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The morphology of the basilar papilla of the emu was investigated quantitatively with light and scanning electron microscopical techniques. The emu is a member of the Paleognathae, a group of flightless birds that represent the most primitive living avian species. The comparison of the emu papilla with that of other, more advanced birds provides insights into the evolution of the avian papilla. The morphology of the emu papilla is that of an unspecialised bird, but shows the full range of features previously shown to be typical for the avian basilar papilla. For example, the orientation of the hair cells' sensitive axes varied in characteristic fashion both along and across the papilla. Many of the quantitative details correlate well with the representation of predominantly low frequencies along the papilla. The most distinctive features were an unusually high density of hair cells and an unusual tallness of the hair-cell bodies. This suggests that the evolution of morphologically very short hair cells, which are a hallmark of avian papillae, is a recent development in evolution. The small degree of differentiation in hair-cell size contrasts with the observation that a significant number of hair cells in the emu lack afferent innervation. It is therefore suggested that the development of functionally different hair-cell types in birds preceded the differentiation into morphologically tall and short hair cells.
Collapse
Affiliation(s)
- C Köppl
- Institut für Zoologie der Technischen Universität München, Garching, Germany. Christine.
| | | | | | | | | |
Collapse
|
30
|
Taschenberger G, Manley GA. General characteristics and suppression tuning properties of the distortion-product otoacoustic emission 2f1-f2 in the barn owl. Hear Res 1998; 123:183-200. [PMID: 9745966 DOI: 10.1016/s0378-5955(98)00120-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The distortion-product otoacoustic emission (DPOAE) 2f1-f2 was measured in the ear canal of the barn owl. DPOAE were elicited by primary tones in 11 frequency regions from 1 to 9 kHz. The highest DPOAE output levels and best thresholds were found for f1 frequencies of 4 to 7 kHz and additionally at the lowest f1 frequency investigated. In some cases, the DPOAE sound pressures were only 37 dB below the primary-tone levels (PTL). The optimal primary-tone frequency ratios ranged from 1.05 to 1.45 and varied strongly among the different frequency regions investigated. The largest optimal ratios were measured in the middle frequency range for f1. At lower and higher f1, the optimal ratios decreased. DPOAE levels could be suppressed in a frequency-selective way by adding a third tone. As in other non-mammals, the best suppressive frequencies were near f1, suggesting DPOAE generation near the frequency place of this primary tone. This is in contrast to what is known for mammalian species, where the DPOAE is thought to be generated near f2. To obtain 6 dB of suppression of the DPOAE level, suppressor-tone levels ranging from 13 dB below to 4 dB above the primary-tone level were necessary. The Q10dB-values of suppression tuning curves increased as a function of frequency up to a value of 15.8. This tendency resembled the increase in frequency selectivity of auditory nerve fibers in this species.
Collapse
Affiliation(s)
- G Taschenberger
- Institut für Zoologie der Technischen Universität München, Garching, Germany
| | | |
Collapse
|
31
|
Abstract
The emu, being a member of the rather primitive bird group of the palaeognathid Ratitae, may reveal primitives features of the avian basilar papilla. There are, however, no qualitative differences with the papillae of other birds such as the chicken or the starling. There are only quantitative differences in the continuous morphological gradients (such as hair cell height, stereovillar height) from neural to abneural, and from the base to the apex of the papilla. Only few (about two in the emu) afferent terminals and on average one efferent fiber contact each hair cell. Along the abneural edge, there is a population of hair cells that lack afferent innervation (short hair cells), suggesting that their function must lie in the papilla itself. There is thus a general pattern in the structures of the avian basilar papilla. In detail, however, a number of primitive characters were observed in the emu, as compared to advanced birds such as the starling and the barn owl. The hair cells are very densely packed and comparatively tall (up to 40 microm in the apex). This anatomy correlates well with the good lower-frequency hearing (see Köppl and Manley, J. Acoust. Soc. Am. 101 (1997) 1574 1584). The afferent nerve fibers contacting the hair cells within the basilar papilla are rather thick, and there are a large number of afferent fibers that contact more than one hair cell. The zone of hair cells without afferent innervation (short hair cells) along the abneural edge of the basilar papilla is rather narrow in the emu.
Collapse
Affiliation(s)
- F P Fischer
- Institut für Zoologie, Technische Universität München, Garching, Germany.
| |
Collapse
|
32
|
Abstract
Spontaneous otoacoustic emissions (SOAE) were studied in a bird, the barn owl. They were found in 79% of the ears investigated, and each emitting ear generated on average 1.9 emissions. Their peak sound-pressure levels lay between -5.8 and 10.3 dB, and their centre frequencies between 2.3 and 10.5 kHz. The SOAE originated primarily in the upper quarter of the animal's hearing range, and derived from a specialized area previously described as being within an auditory fovea. Indeed, 93% of the emissions had centre frequencies above 7.5 kHz. The median of the frequency distances between neighbouring SOAE was 406 Hz (0.058 oct). The 3 dB bandwidth of the emissions depended on their amplitude above the noise: for SOAE whose level exceeded 10 dB above the noise floor, the 3 dB bandwidths ranged between 4.5 and 11.4 Hz. SOAE frequencies were temperature sensitive. Raising the temperature shifted the emissions to higher frequencies, and vice versa (the frequency shifted on average 0.039 oct/degrees C). External tones could suppress the level of SOAE, an effect that was highly tuned. For SOAE with frequencies between 2.5 and 10.5 kHz, the Q(10dB) values of 2 dB iso-suppression tuning curves (STC) varied from 1.07 to 10.40. The best thresholds of 2 dB STC were generally below 15 dB SPL.
Collapse
Affiliation(s)
- G Taschenberger
- Institut für Zoologie der Technischen Universität München, Garching,Germany
| | | |
Collapse
|
33
|
Köppl C. Frequency tuning and spontaneous activity in the auditory nerve and cochlear nucleus magnocellularis of the barn owl Tyto alba. J Neurophysiol 1997; 77:364-77. [PMID: 9120577 DOI: 10.1152/jn.1997.77.1.364] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Single-unit recordings were obtained from the brain stem of the barn owl at the level of entrance of the auditory nerve. Auditory nerve and nucleus magnocellularis units were distinguished by physiological criteria, with the use of the response latency to clicks, the spontaneous discharge rate, and the pattern of characteristic frequencies encountered along an electrode track. The response latency to click stimulation decreased in a logarithmic fashion with increasing characteristic frequency for both auditory nerve and nucleus magnocellularis units. The average difference between these populations was 0.4-0.55 ms. The average most sensitive thresholds were approximately 0 dB SPL and varied little between 0.5 and 9 kHz. Frequency-threshold curves showed the simple V shape that is typical for birds, with no indication of a low-frequency tail. Frequency selectivity increased in a gradual, power-law fashion with increasing characteristic frequency. There was no reflection of the unusual and greatly expanded mapping of higher frequencies on the basilar papilla of the owl. This observation is contrary to the equal-distance hypothesis that relates frequency selectivity to the spatial representation in the cochlea. On the basis of spontaneous rates and/or sensitivity there was no evidence for distinct subpopulations of auditory nerve fibers, such as the well-known type I afferent response classes in mammals. On the whole, barn owl auditory nerve physiology conformed entirely to the typical patterns seen in other bird species. The only exception was a remarkably small spread of thresholds at any one frequency, this being only 10-15 dB in individual owls. Average spontaneous rate was 72.2 spikes/s in the auditory nerve and 219.4 spikes/s for nucleus magnocellularis. This large difference, together with the known properties of endbulb-of-Held synapses, suggests a convergence of approximately 2-4 auditory nerve fibers onto one nucleus magnocellularis neuron. Some auditory nerve fibers as well as nucleus magnocellularis units showed a quasiperiodic spontaneous discharge with preferred intervals in the time-interval histogram. This phenomenon was observed at frequencies as high as 4.7 kHz.
Collapse
Affiliation(s)
- C Köppl
- Institut für Zoologie, Technischen Universität München, Garching, Germany
| |
Collapse
|
34
|
Weisleder P, Lu Y, Park TJ. Anatomical basis of a congenital hearing impairment: basilar papilla dysplasia in the Belgian Waterslager canary. J Comp Neurol 1996; 369:292-301. [PMID: 8727001 DOI: 10.1002/(sici)1096-9861(19960527)369:2<292::aid-cne9>3.0.co;2-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Recent investigations into the anatomy of the inner ear of Belgian Waterslager canaries (BWC) have demonstrated myriad malformations associated with dysgenesis of the pars inferior of the otocyst. In those studies, the surface anatomy of BWC's basilar papilla and sacculus was examined utilizing scanning electron microscopy. In the present investigation, we utilized both light microscopy and transmission electron microscopy to describe the cross sectional anatomical pathology of the BWC's basilar papilla. Examination of the BWC's organ of Corti revealed numerous dysmorphologies: 1) hair cells from the tall hair cell region appeared broad and stunted, with deformed cuticular plates, abnormal stereocilia, and recognizable microvilli; 2) quantitative analysis of these hair cells revealed disproportionately large nuclei and abnormally short stereocilia; 3) hair cells from the short hair cell region of the papilla were absent, replaced by a population of large cells with electron-lucent cytoplasm; and 4) the tectorial membrane in the BWC papilla was narrow, covering only the area where the deformed tall hair cells were found. The malformations appeared to be more severe at the apex and midsection of the basilar papilla than at the base. These observations allow us to suggest a hypothesis to account for the distinct anatomofunctional hearing deficit observed in these birds. In addition, they further support our hypothesis that the inner ear of BWC is afflicted by a disorder similar to Scheibe's dysplasia, the most common inner ear defect associated with congenital hearing loss in humans.
Collapse
Affiliation(s)
- P Weisleder
- Department of Medical Education, St. Joseph's Hospital and Medical Center, Phoenix, Arizona 85013, USA
| | | | | |
Collapse
|
35
|
Manley GA, Meyer B, Fischer FP, Schwabedissen G, Gleich O. Surface morphology of basilar papilla of the tufted duck Aythya fuligula, and domestic chicken Gallus gallus domesticus. J Morphol 1996; 227:197-212. [PMID: 8568908 DOI: 10.1002/(sici)1097-4687(199602)227:2<197::aid-jmor6>3.0.co;2-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Quantitative details of the surface morphology of the hearing organ, the Papilla basilaris, as seen in the scanning electron microscope are described for the tufted duck Aythya fuligula and for comparison for the domestic chicken Gallus gallus domesticus, for which some published information is already available. As in the other avian species investigated to date, each papilla shows a unique constellation of features. The papilla of the tufted duck is 3.5 mm long in the unfixed state and contains 8,200 sensory hair cells. It shows systematic changes in its surface features along the length and across the width of the sensory epithelium. In general, its features and those of the chicken Papilla basilaris can be described as relatively primitive in comparison with other species. The tufted duck papilla does, however, show one feature that has so far been found to be well developed only in advanced papillae; the number of stereovilli per hair cell bundle is generally much higher on hair cells of the neural than those on the abneural side. This difference is only weakly developed in the chicken. It is clear that features considered to be evolutionarily advanced were acquired independently of one another during evolution and that each bird species can show a mosaic of primitive and advanced features.
Collapse
Affiliation(s)
- G A Manley
- Institut für Zoologie der Technischen Universität München, Germany
| | | | | | | | | |
Collapse
|
36
|
Kettembeil S, Manley GA, Siegl E. Distortion-product otoacoustic emissions and their anaesthesia sensitivity in the European starling and the chicken. Hear Res 1995; 86:47-62. [PMID: 8567421 DOI: 10.1016/0378-5955(95)00053-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The aim of the present experimental series was to provide further information on the distortion-product otoacoustic emissions (DP) of birds and contribute to a general understanding of DP generation. Basic characteristics of the DP 2f1-f2 and 2f2-f1 were measured in the ear canal of both awake and anaesthetized European Starlings and chickens. The effect of a third suppressive tone and the behaviour of the DP under anaesthesia were also studied. In general, the DP characteristics of both bird species resembled those of lizards and mammals, but first appeared at somewhat higher primary-tone levels. The best frequencies of third tones suppressing 2f1-f2 lay near the first primary tone (f1), but for 2f2-f1, the situation was more complex. Facilitation via a third tone was also seen for both DP, often at levels below those eliciting suppression. The DP 2f1-f2 disappeared completely at the onset of deep anaesthesia and recovered to its original magnitude when the anaesthesia was lightened, sometimes with a considerable delay. The compound action potential (CAP) was somewhat more sensitive to anaesthesia than the DP. Control experiments showed that the anaesthesia effect was not a result of hypoxia. Avian DP at low and intermediate sound levels are thus physiologically-sensitive manifestations of normal hair-cell function that are, in contrast to mammals, also anaesthesia-sensitive.
Collapse
Affiliation(s)
- S Kettembeil
- Institut für Zoologie, Technischen Universität München, FRG
| | | | | |
Collapse
|
37
|
Brix J, Fischer FP, Manley GA. The cuticular plate of the hair cell in relation to morphological gradients of the chicken basilar papilla. Hear Res 1994; 75:244-56. [PMID: 8071151 DOI: 10.1016/0378-5955(94)90075-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The aim of the present study was to provide details on the diversity and morphological gradients in the anatomy of the cuticular plate of hair cells in the chicken basilar papilla. The structure of the cuticular plate, which is mainly made up of a network of actin filaments, may be related to differences in the mechanical demands on the anchorage of the stereovillar bundle. We describe the morphological gradients in the cuticular plates as seen in transverse section for four positions along the basilar papilla. Three different shapes of cuticular plate could be distinguished. In general, cuticular plates in neurally-lying hair cells have their main mass on the neural side of the cells; for abneural cells, the converse is true. The shape of the plates changes gradually across the papilla; symmetrical forms exist. The hair-cell bundle orientation (and thus the preferred direction of stimulation of the bundle), as measured using scanning EM preparations, does not correlate with the shape of the plate in transverse section. The present data confirm the notion developed from other studies that (1) there are no distinct populations of hair cells, (2) there are no linear or monotonic morphological gradients, and (3) the gradients on the papilla are species- and position-specific.
Collapse
Affiliation(s)
- J Brix
- Institut für Zoologie, Technische Universität München, Garching, FRG
| | | | | |
Collapse
|