1
|
Hu Q, Guo L, Li J, Song C, Yu L, He DZZ, Xiong W. Deletion of Kncn Does Not Affect Kinocilium and Stereocilia Bundle Morphogenesis and Mechanotransduction in Cochlear Hair Cells. Front Mol Neurosci 2018; 11:326. [PMID: 30254566 PMCID: PMC6141681 DOI: 10.3389/fnmol.2018.00326] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 08/23/2018] [Indexed: 11/13/2022] Open
Abstract
Auditory hair cells possess stunning cilia structure that composes of a bundle of stereocilia for mechano-electrical transduction and a single kinocilium for guiding the polarity of hair bundle towards maturation. However, the molecules underlying kinocilium function have not yet been fully understood. Hence, the proteins involved in hair bundle development and function are of a large interest. From a fine microarray analysis, we found that kinocilin (Kncn) was enriched in hair cell specific expression profile. Consistently, it has been reported that KNCN was a protein mainly located in the kinocilium of hair cells in the inner ear. However, the hypothesis that KNCN is a kinocilium protein has not been validated in mice with Kncn gene perturbed. In this study, we generated Kncn knockout mouse lines by CRISPR/Cas9 technique and further examined the morphology and function of cochlear hair cells. Our results showed that there was no obvious hearing loss in the knockout mice, determined by audiometry. Histological study demonstrated that the inner ear and hair cell structure were intact. Especially, there was no deficit of mechanotransduction (MET) in cochlear outer hair cells (OHCs). In summary, our work suggests that KNCN is not essential for kinocilium-oriented hair bundle function in cochlear hair cells.
Collapse
Affiliation(s)
- Qun Hu
- Tsinghua-IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing, China
| | - Li Guo
- Department of Otolaryngology, Peking University People's Hospital, Beijing, China
| | - Jie Li
- Tsinghua-IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing, China
| | - Chenmeng Song
- Tsinghua-IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing, China
| | - Lisheng Yu
- Department of Otolaryngology, Peking University People's Hospital, Beijing, China
| | - David Z Z He
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, NE, United States
| | - Wei Xiong
- Tsinghua-IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
2
|
Cheng C, Nowak RB, Biswas SK, Lo WK, FitzGerald PG, Fowler VM. Tropomodulin 1 Regulation of Actin Is Required for the Formation of Large Paddle Protrusions Between Mature Lens Fiber Cells. Invest Ophthalmol Vis Sci 2017; 57:4084-99. [PMID: 27537257 PMCID: PMC4986768 DOI: 10.1167/iovs.16-19949] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Purpose To elucidate the proteins required for specialized small interlocking protrusions and large paddle domains at lens fiber cell tricellular junctions (vertices), we developed a novel method to immunostain single lens fibers and studied changes in cell morphology due to loss of tropomodulin 1 (Tmod1), an F-actin pointed end–capping protein. Methods We investigated F-actin and F-actin–binding protein localization in interdigitations of Tmod1+/+ and Tmod1−/− single mature lens fibers. Results F-actin–rich small protrusions and large paddles were present along cell vertices of Tmod1+/+ mature fibers. In contrast, Tmod1−/− mature fiber cells lack normal paddle domains, while small protrusions were unaffected. In Tmod1+/+ mature fibers, Tmod1, β2-spectrin, and α-actinin are localized in large puncta in valleys between paddles; but in Tmod1−/− mature fibers, β2-spectrin was dispersed while α-actinin was redistributed at the base of small protrusions and rudimentary paddles. Fimbrin and Arp3 (actin-related protein 3) were located in puncta at the base of small protrusions, while N-cadherin and ezrin outlined the cell membrane in both Tmod1+/+ and Tmod1−/− mature fibers. Conclusions These results suggest that distinct F-actin organizations are present in small protrusions versus large paddles. Formation and/or maintenance of large paddle domains depends on a β2-spectrin–actin network stabilized by Tmod1. α-Actinin–crosslinked F-actin bundles are enhanced in absence of Tmod1, indicating altered cytoskeleton organization. Formation of small protrusions is likely facilitated by Arp3-branched and fimbrin-bundled F-actin networks, which do not depend on Tmod1. This is the first work to reveal the F-actin–associated proteins required for the formation of paddles between lens fibers.
Collapse
Affiliation(s)
- Catherine Cheng
- Department of Cell and Molecular Biology The Scripps Research Institute, La Jolla, California, United States
| | - Roberta B Nowak
- Department of Cell and Molecular Biology The Scripps Research Institute, La Jolla, California, United States
| | - Sondip K Biswas
- Department of Neurobiology, Morehouse School of Medicine, Atlanta, Georgia, United States
| | - Woo-Kuen Lo
- Department of Neurobiology, Morehouse School of Medicine, Atlanta, Georgia, United States
| | - Paul G FitzGerald
- Department of Cell Biology and Human Anatomy, University of California, Davis, California, United States
| | - Velia M Fowler
- Department of Cell and Molecular Biology The Scripps Research Institute, La Jolla, California, United States
| |
Collapse
|
3
|
Taylor R, Bullen A, Johnson SL, Grimm-Günter EM, Rivero F, Marcotti W, Forge A, Daudet N. Absence of plastin 1 causes abnormal maintenance of hair cell stereocilia and a moderate form of hearing loss in mice. Hum Mol Genet 2014; 24:37-49. [PMID: 25124451 PMCID: PMC4262491 DOI: 10.1093/hmg/ddu417] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Hearing relies on the mechanosensory inner and outer hair cells (OHCs) of the organ of Corti, which convert mechanical deflections of their actin-rich stereociliary bundles into electrochemical signals. Several actin-associated proteins are essential for stereocilia formation and maintenance, and their absence leads to deafness. One of the most abundant actin-bundling proteins of stereocilia is plastin 1, but its function has never been directly assessed. Here, we found that plastin 1 knock-out (Pls1 KO) mice have a moderate and progressive form of hearing loss across all frequencies. Auditory hair cells developed normally in Pls1 KO, but in young adult animals, the stereocilia of inner hair cells were reduced in width and length. The stereocilia of OHCs were comparatively less affected; however, they also showed signs of degeneration in ageing mice. The hair bundle stiffness and the acquisition of the electrophysiological properties of hair cells were unaffected by the absence of plastin 1, except for a significant change in the adaptation properties, but not the size of the mechanoelectrical transducer currents. These results show that in contrast to other actin-bundling proteins such as espin, harmonin or Eps8, plastin 1 is dispensable for the initial formation of stereocilia. However, the progressive hearing loss and morphological defects of hair cells in adult Pls1 KO mice point at a specific role for plastin 1 in the preservation of adult stereocilia and optimal hearing. Hence, mutations in the human PLS1 gene may be associated with relatively mild and progressive forms of hearing loss.
Collapse
Affiliation(s)
- Ruth Taylor
- Centre for Auditory Research, UCL Ear Institute, University College London, London, UK
| | - Anwen Bullen
- Centre for Auditory Research, UCL Ear Institute, University College London, London, UK
| | - Stuart L Johnson
- Department of Biomedical Science, University of Sheffield, Sheffield, UK and
| | - Eva-Maria Grimm-Günter
- Centre for Cardiovascular and Metabolic Research, The Hull York Medical School, University of Hull, Hull, UK
| | - Francisco Rivero
- Centre for Cardiovascular and Metabolic Research, The Hull York Medical School, University of Hull, Hull, UK
| | - Walter Marcotti
- Department of Biomedical Science, University of Sheffield, Sheffield, UK and
| | - Andrew Forge
- Centre for Auditory Research, UCL Ear Institute, University College London, London, UK
| | - Nicolas Daudet
- Centre for Auditory Research, UCL Ear Institute, University College London, London, UK
| |
Collapse
|
4
|
Bao J, Bielski E, Bachhawat A, Taha D, Gunther LK, Thirumurugan K, Kitajiri SI, Sakamoto T. R1 motif is the major actin-binding domain of TRIOBP-4. Biochemistry 2013; 52:5256-64. [PMID: 23789641 DOI: 10.1021/bi400585h] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
TRIOBP is an actin-bundling protein. Mutations of TRIOBP are associated with human deafness DFNB28. In vitro, TRIOBP isoform 4 (TRIOBP-4) forms dense F-actin bundles resembling the inner ear hair cell rootlet structure. Deletion of TRIOBP isoforms 4 and 5 leads to hearing loss in mice due to the absence of stereocilia rootlets. The mechanism of actin bundle formation by TRIOBP is not fully understood. The amino acid sequences of TRIOBP isoforms 4 and 5 contain two repeated motifs, referred to here as R1 and R2. To examine the potential role of R1 and R2 motifs in F-actin binding, we generated TRIOBP-4 mutant proteins deleted for R1 and/or R2, and then assessed their actin-binding activity and bundle formation in vitro using actin cosedimentation assays, and fluorescence and electron microscopy. Cellular distributions of the TRIOBP-4 mutants were examined by confocal microscopy. We showed that deletion of both R1 and R2 motifs completely disrupted the actin binding/bundling activities of TRIOBP-4 and impaired its localization to cellular actin cytoskeleton structures. By contrast, TRIOBP-4, lacking only R2 motif, retained its F-actin bundling ability and remained localized to actin filaments in cells, similar to full length TRIOBP-4. On the contrary, the R1 motif-deleted TRIOBP-4 mutant, which mainly consists of the R2 motif, formed thin F-actin bundles in vitro but failed to colocalize to actin filaments in cells. These results indicate that R1 motif is the major actin-binding domain of TRIOBP-4, and the binding of R2 motif with actin filaments is nonspecific.
Collapse
Affiliation(s)
- Jianjun Bao
- Department of Physics and Astronomy, Wayne State University , Detroit, Michigan 48201, United States
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Sekerková G, Richter CP, Bartles JR. Roles of the espin actin-bundling proteins in the morphogenesis and stabilization of hair cell stereocilia revealed in CBA/CaJ congenic jerker mice. PLoS Genet 2011; 7:e1002032. [PMID: 21455486 PMCID: PMC3063760 DOI: 10.1371/journal.pgen.1002032] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Accepted: 02/02/2011] [Indexed: 01/19/2023] Open
Abstract
Hearing and vestibular function depend on mechanosensory staircase collections of hair cell stereocilia, which are produced from microvillus-like precursors as their parallel actin bundle scaffolds increase in diameter and elongate or shorten. Hair cell stereocilia contain multiple classes of actin-bundling protein, but little is known about what each class contributes. To investigate the roles of the espin class of actin-bundling protein, we used a genetic approach that benefited from a judicious selection of mouse background strain and an examination of the effects of heterozygosity. A congenic jerker mouse line was prepared by repeated backcrossing into the inbred CBA/CaJ strain, which is known for excellent hearing and minimal age-related hearing loss. We compared stereocilia in wild-type CBA/CaJ mice, jerker homozygotes that lack espin proteins owing to a frameshift mutation in the espin gene, and jerker heterozygotes that contain reduced espin levels. The lack of espins radically impaired stereociliary morphogenesis, resulting in stereocilia that were abnormally thin and short, with reduced differential elongation to form a staircase. Mean stereociliary diameter did not increase beyond ∼0.10–0.14 µm, making stereocilia ∼30%–60% thinner than wild type and suggesting that they contained ∼50%–85% fewer actin filaments. These characteristics indicate a requirement for espins in the appositional growth and differential elongation of the stereociliary parallel actin bundle and fit the known biological activities of espins in vitro and in transfected cells. The stereocilia of jerker heterozygotes showed a transient proximal-distal tapering suggestive of haploinsufficiency and a slowing of morphogenesis that revealed previously unrecognized assembly steps and intermediates. The lack of espins also led to a region-dependent degeneration of stereocilia involving shortening and collapse. We conclude that the espin actin-bundling proteins are required for the assembly and stabilization of the stereociliary parallel actin bundle. Stereocilia are the fingerlike projections of inner ear hair cells that detect sound and motion. Stereocilia grow to specific lengths and diameters and form staircase-like arrays. The changes in size appear to be driven by matching alterations in the dimensions of an underlying molecular scaffold consisting of a bundle of actin filaments cross-linked by actin-bundling proteins. To elucidate the roles of the espin actin-bundling proteins in hair cell stereocilia, we carry out an in-depth accounting of stereociliary size and shape in the jerker mutant mouse, which lacks the espin proteins because of a mutation in the espin gene. We examine a new and improved jerker mouse with a genetic background known for high-quality lifelong hearing. We find that, in the absence of espins, stereocilia do not increase in diameter or complete their elongation, but instead bend, shorten, and disappear. Although the specifics vary according to inner ear region, the stereociliary defects are profound and can readily account for the deafness and balance problems of jerker mice and humans with certain espin gene mutations. Even reducing espin levels by one-half leads to temporary defects in stereociliary diameter. Thus, espins play crucial roles in the formation and maintenance of hair cell stereocilia.
Collapse
Affiliation(s)
- Gabriella Sekerková
- Department of Cell and Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Claus-Peter Richter
- Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
- Hugh Knowles Center for Clinical and Basic Science in Hearing and Its Disorders, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - James R. Bartles
- Department of Cell and Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
- Hugh Knowles Center for Clinical and Basic Science in Hearing and Its Disorders, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
6
|
Abstract
Mammals have an astonishing ability to sense and discriminate sounds of different frequencies and intensities. Fundamental for this process are mechanosensory hair cells in the inner ear that convert sound-induced vibrations into electrical signals. The study of genes that are linked to deafness has provided insights into the cell biological mechanisms that control hair cell development and their function as mechanosensors.
Collapse
Affiliation(s)
- Martin Schwander
- Department of Cell Biology, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
7
|
Cochlear stem/progenitor cells from a postnatal cochlea respond to Jagged1 and demonstrate that notch signaling promotes sphere formation and sensory potential. Mech Dev 2008; 125:674-86. [PMID: 18571907 DOI: 10.1016/j.mod.2008.05.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2007] [Revised: 04/23/2008] [Accepted: 05/09/2008] [Indexed: 01/07/2023]
Abstract
Hair cells and supporting cells of the mammalian cochlea terminally differentiate during development. Recent in vitro evidence suggests the presence of hair cell progenitors in the postnatal cochlea. Phenotypic properties of these cells and factors that promote their ability to generate spheres in aggregate cultures have not been reported. We define an in vitro system that allows stem/progenitor cells harvested from the early postnatal cochlea to develop into spheres. These spheres contain Abcg2, Jagged1 and Notch1 positive progenitor cells that can divide and generate new hair cell-like cells, i.e. immunopositive for specific hair cell markers, including Myosin VI, Myosin VIIa, Math1 and ability to uptake FM1-43. We demonstrate that reducing Notch signaling with a gamma secretase inhibitor decreases the number of spheres generated following treatment of the stem/progenitor cell cultures. Additionally, activation of Notch by an exogenous soluble form of a Notch ligand, i.e. Jagged1 protein, promotes sphere formation and the sensory potential of cochlear stem/progenitor cells. Our findings suggest that Notch1/Jagged1 signaling plays a role in maintaining a population of Abcg2 sensory stem/progenitor cells in the postnatal cochlea.
Collapse
|
8
|
Ricci AJ, Kachar B. Hair cell mechanotransduction: the dynamic interplay between structure and function. CURRENT TOPICS IN MEMBRANES 2007; 59:339-74. [PMID: 25168142 DOI: 10.1016/s1063-5823(06)59012-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
Hair cells are capable of detecting mechanical vibrations of molecular dimensions at frequencies in the 10s to 100s of kHz. This remarkable feat is accomplished by the interplay of mechanically gated ion channels located near the top of a complex and dynamic sensory hair bundle. The hair bundle is composed of a series of actin-filled stereocilia that has both active and passive mechanical components as well as a highly active turnover process, whereby the components of the hair bundle are rapidly and continually recycled. Hair bundle mechanical properties have significant impact on the gating of the mechanically activated channels, and delineating between attributes intrinsic to the ion channel and those imposed by the channel's microenvironment is often difficult. This chapter describes what is known and accepted regarding hair-cell mechanotransduction and what remains to be explored, particularly, in relation to the interplay between hair bundle properties and mechanotransducer channel response. The interplay between hair bundle dynamics and mechanotransduction are discussed.
Collapse
Affiliation(s)
- Anthony J Ricci
- Department of Otolaryngology, Stanford University, Stanford, California 94305
| | - Bechara Kachar
- Section of Structural Biology, National Institutes of Deafness and Communicative Disorders, Bethesda, Maryland 20892
| |
Collapse
|
9
|
Delanote V, Vandekerckhove J, Gettemans J. Plastins: versatile modulators of actin organization in (patho)physiological cellular processes. Acta Pharmacol Sin 2005; 26:769-79. [PMID: 15960882 DOI: 10.1111/j.1745-7254.2005.00145.x] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Many actin-binding proteins are expressed in eukaryotic cells. These polypeptides assist in stabilizing and rearranging the organization of the actin cytoskeleton in response to external stimuli, or during cell migration and adhesion. Here we review a particular set of actin-binding proteins called plastins. Plastins (also called fimbrins) belong to a subclass of actin-binding proteins known as actin bundling proteins. Three isoforms have been characterized in mammals: T-plastin is expressed in cells from solid tissue, whereas L-plastin occurs predominantly in hematopoietic cells. The third isoform, I-plastin, is specifically expressed in the small intestine, colon and kidney. These proteins share the unique property of cross-linking actin filaments into tight bundles. Although plastins are primarily involved in regulation of the actin cytoskeleton, they possess some unique features. For instance, they are implicated in invasion by pathogenic bacteria such as Shigella flexneri and Salmonella typhimurium. Also, L-plastin plays an important role in leukocyte function. T-plastin, on the other hand, is possibly involved in DNA repair. Finally, both T- and L-plastin are implicated in several diseases, and L-plastin is considered to be a valuable marker for cancer.
Collapse
Affiliation(s)
- Veerle Delanote
- Department of Medical Protein Research, Flanders Interuniversity Institute for Biotechnology (VIB), Ghent University, Faculty of Medicine and Health Sciences, Albert Baertsoenkaai 3, B-9000 Ghent, Belgium
| | | | | |
Collapse
|
10
|
Frolenkov GI, Belyantseva IA, Friedman TB, Griffith AJ. Genetic insights into the morphogenesis of inner ear hair cells. Nat Rev Genet 2004; 5:489-98. [PMID: 15211351 DOI: 10.1038/nrg1377] [Citation(s) in RCA: 162] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
MESH Headings
- Animals
- Chickens
- Cloning, Molecular
- Cricetinae
- Disease Models, Animal
- Ear, Inner/anatomy & histology
- Ear, Inner/physiology
- Gene Expression Regulation, Developmental
- Hair Cells, Auditory/anatomy & histology
- Hair Cells, Auditory/physiology
- Hearing/genetics
- Hearing Loss/genetics
- Humans
- Mechanotransduction, Cellular
- Mice
- Microscopy, Electron, Scanning
- Microvilli
- Models, Anatomic
- Tissue Adhesions
Collapse
Affiliation(s)
- Gregory I Frolenkov
- Section on Gene Structure and Function, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Rockville, Maryland 20850, USA
| | | | | | | |
Collapse
|
11
|
Daudet N, Lebart MC. Transient expression of the t-isoform of plastins/fimbrin in the stereocilia of developing auditory hair cells. CELL MOTILITY AND THE CYTOSKELETON 2002; 53:326-36. [PMID: 12378542 DOI: 10.1002/cm.10092] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The transduction of auditory signals by cochlear hair cells depends upon the integrity of hair cell stereociliary bundles. Stereocilia contain a central core of actin filaments, cross-linked by actin bundling proteins. In the cochlea, the two proteins described to date as responsible for the spatial arrangement of actin filaments in sterocilia are fimbrin and the recently discovered espin. Fimbrin (the chick homolog of human I-plastin) belongs to the plastins/fimbrin family that includes two additional isoforms of plastins, T- and L-plastin. In the present study, we used isoform specific antibodies to investigate the presence of the T- and L-isoforms of plastin/fimbrin in the adult and developing rat cochlea. We found that T-plastin, but not L-plastin, is expressed in the rat cochlea. During postnatal development of the rat organ of Corti, T-plastin can be detected in the core of stereocilia from early stages of hair cell differentiation, and its expression gradually increases in stereocilia as hair cells mature. However, as opposed to other actin-binding proteins expressed in stereocilia, T-plastin is absent from the stereocilia of mature hair cells. Such temporally restricted expression strengthens the idea of functional differences between plastins isoforms, and suggests that T-plastin could have a specific role in stereocilia formation.
Collapse
Affiliation(s)
- Nicolas Daudet
- INSERM UR 254, Laboratoire de Neurobiologie de l'Audition-Plasticité Synaptique, Montpellier, France.
| | | |
Collapse
|
12
|
Stacey DJ, McLean WG. Cytoskeletal protein mRNA expression in the chick utricle after treatment in vitro with aminoglycoside antibiotics: effects of insulin, iron chelators and cyclic nucleotides. Brain Res 2000; 871:319-32. [PMID: 10899298 DOI: 10.1016/s0006-8993(00)02488-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In birds, spontaneous recovery of the hair cells of the inner ear can occur after damage induced by aminoglycoside antibiotics. The factors that influence this recovery and the process of hair cell regeneration itself have until recently been investigated largely by morphological and histological methods. The aim of this work was to use a molecular biological approach to the analysis of hair cell regeneration by measuring the changes that occur in expression of mRNA for hair cell-specific cytoskeletal proteins fimbrin and class III beta-tubulin, along with that for beta-actin, in the utricle of chicks after hair cell damage both in vitro and in vivo. Utricles were removed from 1-day-old chicks and incubated with the aminoglycoside antibiotics gentamicin or neomycin (both 1 mM), or chicks were injected intraperitoneally with 100 mg/kg gentamicin or neomycin for 4 consecutive days. At the end of the treatment periods, total RNA was extracted from single utricles, reverse transcribed to cDNA and the cDNA amplified by PCR with primers for beta-actin, fimbrin and class III beta-tubulin. Co-amplification allowed quantitative comparison of mRNA between fimbrin, or class III beta-tubulin and beta-actin from the same utricle. Both aminoglycosides, either after 48 h in vitro or immediately after treatment in vivo, caused a significant decrease in the expression of fimbrin mRNA and class III beta-tubulin mRNA, relative to beta-actin mRNA, which itself increased. Light and electron microscopy confirmed that this corresponded to loss of, and damage to, hair cells. The relative expression of fimbrin and class III beta-tubulin mRNAs was partly restored almost to control levels 4 days after cessation of treatment in vivo and fully normalised by 4 weeks, by which time hair cells appeared normal. However, their relative expression remained depressed 4 days after removal of antibiotic in vitro. The iron chelator desferrioxamine (100 microM) in vitro prevented the aminoglycoside-induced reduction in relative expression of mRNA for both fimbrin and class III beta-tubulin. Neither insulin (5 microM) nor a combination of dibutyryl cyclic AMP (5 mM) and the phosphodiesterase inhibitor IBMX (0.5 mM) prevented the decrease in relative expression of the mRNAs for the hair cell-specific proteins, but both treatments allowed their partial recovery in vitro during the 4-day-period after removal of aminoglycoside. It is concluded that the cells of the sensory epithelium of the chick utricle subjected to aminoglycoside-induced damage undergo a process in which mRNA expression is switched away from the production of functional proteins and towards proteins necessary for structural re-organisation. The restoration of mRNA expression to a normal pattern is promoted by the growth factor insulin and by cyclic AMP.
Collapse
MESH Headings
- Actins/metabolism
- Aminoglycosides
- Animals
- Animals, Newborn
- Anti-Bacterial Agents/adverse effects
- Cell Death/drug effects
- Cell Death/physiology
- Cell Survival/drug effects
- Cell Survival/physiology
- Chelating Agents/pharmacology
- Chickens/anatomy & histology
- Chickens/metabolism
- Cytoskeletal Proteins/drug effects
- Cytoskeletal Proteins/genetics
- Cytoskeletal Proteins/metabolism
- Hair Cells, Auditory/drug effects
- Hair Cells, Auditory/pathology
- Hair Cells, Auditory/physiopathology
- Hair Cells, Auditory/ultrastructure
- Insulin/metabolism
- Insulin/pharmacology
- Iron/metabolism
- Membrane Glycoproteins/drug effects
- Membrane Glycoproteins/metabolism
- Microfilament Proteins
- Microscopy, Electron
- Nucleotides, Cyclic/metabolism
- Nucleotides, Cyclic/pharmacology
- Polymerase Chain Reaction
- RNA, Messenger/drug effects
- RNA, Messenger/isolation & purification
- RNA, Messenger/metabolism
- Regeneration/drug effects
- Regeneration/physiology
- Saccule and Utricle/drug effects
- Saccule and Utricle/pathology
- Saccule and Utricle/physiopathology
- Saccule and Utricle/ultrastructure
- Tubulin/drug effects
- Tubulin/metabolism
Collapse
Affiliation(s)
- D J Stacey
- Department of Pharmacology and Therapeutics, University of Liverpool, L69 3BX, Liverpool, UK
| | | |
Collapse
|
13
|
Staecker H, Van De Water TR. Factors controlling hair-cell regeneration/repair in the inner ear. Curr Opin Neurobiol 1998; 8:480-7. [PMID: 9751665 DOI: 10.1016/s0959-4388(98)80035-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Damaged hair cells in the avian basilar papilla are replaced by regenerative proliferation of supporting cells and transdifferentiation of supporting cells into hair cells. In the mammalian vestibular system, transdifferentiation and, possibly, the repair of damaged hair cells appear to play significant roles. Several growth factors have been found to be associated with the regeneration/repair process: insulin, insulin-like growth factor 1 (IGF-1), and fibroblast growth factors are important for avian inner ear regeneration/repair, whereas epidermal growth factor, transforming growth factor alpha, insulin, IGF-1, and IGF-2 are important for regeneration/repair in the mammalian labyrinth. Increasing evidence suggests that regeneration/repair of mammalian auditory hair cells is possible during the early neonatal period and may exist to a very limited degree at later times.
Collapse
Affiliation(s)
- H Staecker
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston 02114, USA
| | | |
Collapse
|
14
|
Nishida Y, Rivolta MN, Holley MC. Timed markers for the differentiation of the cuticular plate and stereocilia in hair cells from the mouse inner ear. J Comp Neurol 1998. [DOI: 10.1002/(sici)1096-9861(19980525)395:1<18::aid-cne2>3.0.co;2-k] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
15
|
Zine A, Schweitzer L. Localization of proteins associated with the outer hair cell plasma membrane in the gerbil cochlea. Neuroscience 1997; 80:1247-54. [PMID: 9284074 DOI: 10.1016/s0306-4522(97)00163-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
There is substantial evidence that the motility of mammalian outer hair cells is generated close to or within the plasma membrane. Several analogies between the outer hair cell cortical lattice and the membrane-related cytoskeleton of erythrocytes have been noted. In erythrocytes a member of the anion exchanger protein family, AE1, also known as Band 3, is involved in membrane-cytoskeleton linkage via Protein 4.1. In the following paper, the presence of these two proteins in gerbilline outer hair cells is confirmed by western blot. Furthermore, co-localization of these two proteins was detected in the lateral wall of outer hair cells by immunofluorescence and postembedding electron immunohistochemistry. Band 3 is restricted to this region, whereas Protein 4.1 has a somewhat more dispersed distribution. Thus, the structure of these sensory receptor cells may result from an adaptation of a strategy used by other motile cells. The proteins investigated likely have a support function and may comprise "pillars" seen between the lateral plasma membrane and the cytoskeleton in micrographs of outer hair cells. The possibility that Band 3 comprises "protein particles" seen in the lateral plasma membrane, or maybe directly involved in the voltage-dependent force generation in outer hair cells, is also discussed.
Collapse
Affiliation(s)
- A Zine
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Kentucky, U.S.A
| | | |
Collapse
|
16
|
Steyger PS, Burton M, Hawkins JR, Schuff NR, Baird RA. Calbindin and parvalbumin are early markers of non-mitotically regenerating hair cells in the bullfrog vestibular otolith organs. Int J Dev Neurosci 1997; 15:417-32. [PMID: 9263023 DOI: 10.1016/s0736-5748(96)00101-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Earlier studies have demonstrated hair cell regeneration in the absence of cell proliferation, and suggested that supporting cells could phenotypically convert into hair cells following hair cell loss. Because calcium-binding proteins are involved in gene up-regulation, cell growth, and cell differentiation, we wished to determine if these proteins were up-regulated in scar formations and regenerating hair cells following gentamicin treatment. Calbindin and parvalbumin immunolabeling was examined in control or gentamicin-treated (GT) bullfrog saccular and utricular explants cultured for 3 days in amphibian culture medium or amphibian culture medium supplemented with aphidicolin, a blocker of nuclear DNA replication in eukaryotic cells. In control cultures, calbindin and parvalbumin immunolabeled the hair bundles and, less intensely, the cell bodies of mature hair cells. In GT or mitotically-blocked GT (MBGT) cultures, calbindin and parvalbumin immunolabeling was also seen in the hair bundles, cuticular plates, and cell bodies of hair cells with immature hair bundles. Thus, these antigens were useful markers for both normal and regenerating hair cells. Supporting cell immunolabeling was not seen in control cultures nor in the majority of supporting cells in GT cultures. In MBGT cultures, calbindin and parvalbumin immunolabeling was up-regulated in the cytosol of single supporting cells participating in scar formations and in supporting cells with hair cell-like characteristics. These data provide further evidence that non-mitotic hair cell regeneration in cultures can be accomplished by the conversion of supporting cells into hair cells.
Collapse
Affiliation(s)
- P S Steyger
- R. S. Dow Neurological Sciences Institute, Legacy Good Samaritan Hospital, Portland, OR 97209, USA
| | | | | | | | | |
Collapse
|
17
|
Chardin S, Romand R. Factors modulating supernumerary hair cell production in the postnatal rat cochlea in vitro. Int J Dev Neurosci 1997; 15:497-507. [PMID: 9263028 DOI: 10.1016/s0736-5748(96)00106-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
It has been shown in the past that extra hair cells or supernumerary cells can be produced when neonatal cochleae are maintained in vitro. In this report, we investigated the effects of the culture methods, molecules and growth factors that are thought to be involved in cell proliferation. Quantitative studies of supernumerary hair cells were made by measuring the cell density over the entire spiral lamina at two postnatal stages: birth and 3 days after birth. With a standard feeding solution without serum, a difference in cell density was observed between the two methods of culture. Cochlear explants in a standard feeding solution supplemented with serum showed an increase of cell density only when the explantation is made at birth. Retinoic acid added to the standard feeding solution did not increase the hair cell density, while insulin induced an increase, especially at 5 micrograms/ml. Several growth factors were tested. Epidermal growth factor (EGF) presented a dose dependent effect with an increase of up to 30% of hair cell density that was observed in the basal region when the explantation was made at birth. Transforming growth factor-alpha did not induce an increase of cell density, whereas transforming growth factor-beta presented an effect on hair cell density, with a dose dependent effect reaching 37.4% for the basal inner hair cells. Interpretation of these results is limited because of the lack of data concerning the presence of specific membrane receptors. One possibility is that insulin stimulates hair cell differentiation from existing undifferentiated cells. Another hypothesis may be related to the EGF and transforming growth factor-beta, where these molecules might induce transdifferentiation of cells by acting on the transmembrane molecules and the extracellular matrix.
Collapse
Affiliation(s)
- S Chardin
- Laboratoire de Neurobiologie, Université Blaise Pascal-Clermont II, 63177 Aubicre, France
| | | |
Collapse
|
18
|
Zine A, Schweitzer L. Development of intracellular Ca-ATPase in the gerbil outer hair cell lateral wall. Brain Res 1996; 721:1-10. [PMID: 8793079 DOI: 10.1016/0006-8993(95)01496-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The development of Ca-ATPase immunoreactivity in gerbil outer hair cells (OHCs), assayed by immunofluorescence and postembedding immunocytochemistry, is reported here. In the adult, a linear array of label is seen inside the lateral plasma membrane. The ultrastructural distribution of Ca-ATPase near the OHC lateral plasma membrane was examined using immunogold cytochemistry and showed this calcium pumping enzyme to be present throughout the subsurface cisternal complex (SSC), especially near the innermost layers. During development, Ca-ATPase immunoreactivity appeared in patches near the lateral plasma membrane of some OHCs of the third row by 12 days after birth (DAB). By 15-16 DAB, punctate immunoreactivity was detected in the second and first rows. At 20 DAB, immunostaining near OHC lateral plasma membrane was increased, but was less continuous than OHC staining in the adult cochlea. The appearance of Ca-ATPase in OHCs coincides with the onset of auditory function and isolated OHC motility in the gerbil. The ultrastructural demonstration of abundant sites of calcium pumps in the SSC supports a role for this structure in the intracellular storage of calcium. These findings suggest a possible role of Ca-ATPase and the SSC in the regulation of slow motility of OHCs which has been reported to depend on intracellular calcium concentration.
Collapse
Affiliation(s)
- A Zine
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, KY 40292, USA
| | | |
Collapse
|
19
|
Abstract
Fetal and postnatal ontogenesis of the rat cochlea, from the 16th gestational day (16DG) until 3 months post partum, were studied using scanning electron microscopy with emphasis on the stereocilia during the earliest stages of development. The epithelium of the cochlear duct in 16DG rat consisted of plygonal cells topped with numerous microvilli and one central kinocilium, which form the so-called Kölliker's organ. Inner hair cells (IHCs) appeared at 18DG in the basal cochlea. They were characterized by tufts of cilia of the same height and with a kinocilium. The first outer hair cells (OHCs) can be seen at 20DG. The earliest stages of ciliary differentiation, at 18DG for IHCs and 20DG for OHCs, were similar on both types of cells and were characterized by the presence of round bundles of cilia arising from the surrounding microvilli. A three-dimensional V-shaped organization for OHCs and the linear arrangement for IHCs appeared by the end of the first postnatal week, accompanied by the disappearance of transient cilia on the modiolar side of the hair cell and the kinocilium on the external side. The apical pole of OHCs reached adult-like morphology before that of IHCs. Various links between stereocilia were detected already at birth. Morphometric analysis showed that auditory cells from the base of the cochlea reached adult size by the end of the first postnatal week while those from the apex increased their size later. A review of the literature including comparative observations across species on the ontogenesis of the stereocilia shows that hair cells of the stato-acoustic system may present the same early ontogenesis.
Collapse
Affiliation(s)
- A Zine
- Laboratoire de Neurobiologie, Université Blaise Pascal-Clermont II, Aubière, France
| | | |
Collapse
|