1
|
Trossmann VT, Scheibel T. Design of Recombinant Spider Silk Proteins for Cell Type Specific Binding. Adv Healthc Mater 2023; 12:e2202660. [PMID: 36565209 PMCID: PMC11468868 DOI: 10.1002/adhm.202202660] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/19/2022] [Indexed: 12/25/2022]
Abstract
Cytophilic (cell-adhesive) materials are very important for tissue engineering and regenerative medicine. However, for engineering hierarchically organized tissue structures comprising different cell types, cell-specific attachment and guidance are decisive. In this context, materials made of recombinant spider silk proteins are promising scaffolds, since they exhibit high biocompatibility, biodegradability, and the underlying proteins can be genetically functionalized. Here, previously established spider silk variants based on the engineered Araneus diadematus fibroin 4 (eADF4(C16)) are genetically modified with cell adhesive peptide sequences from extracellular matrix proteins, including IKVAV, YIGSR, QHREDGS, and KGD. Interestingly, eADF4(C16)-KGD as one of 18 tested variants is cell-selective for C2C12 mouse myoblasts, one out of 11 tested cell lines. Co-culturing with B50 rat neuronal cells confirms the cell-specificity of eADF4(C16)-KGD material surfaces for C2C12 mouse myoblast adhesion.
Collapse
Affiliation(s)
- Vanessa Tanja Trossmann
- Chair of BiomaterialsEngineering FacultyUniversity of BayreuthProf.‐Rüdiger‐Bormann‐Straße 195447BayreuthGermany
| | - Thomas Scheibel
- Chair of BiomaterialsEngineering FacultyUniversity of BayreuthProf.‐Rüdiger‐Bormann‐Straße 195447BayreuthGermany
- Bayreuth Center for Colloids and Interfaces (BZKG)Bavarian Polymer Institute (BPI)Bayreuth Center for Molecular Biosciences (BZMB)Bayreuth Center for Material Science (BayMAT)University of BayreuthUniversitätsstraße 3095447BayreuthGermany
| |
Collapse
|
2
|
Scepanovic G, Stewart BA. Analysis of Drosophila nervous system development following an early, brief exposure to ethanol. Dev Neurobiol 2019; 79:780-793. [PMID: 31472090 DOI: 10.1002/dneu.22718] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 07/22/2019] [Accepted: 08/27/2019] [Indexed: 01/09/2023]
Abstract
The effects of ethanol on neural function and development have been studied extensively, motivated in part by the addictive properties of alcohol and the neurodevelopmental deficits that arise in children with fetal alcohol spectrum disorder (FASD). Absent from this research area is a genetically tractable system to study the effects of early ethanol exposure on later neurodevelopmental and behavioral phenotypes. Here, we used embryos of the fruit fly, Drosophila melanogaster, as a model system to investigate the neuronal defects that arise after an early exposure to ethanol. We found several disruptions of neural development and morphology following a brief ethanol exposure during embryogenesis and subsequent changes in larval behavior. Altogether, this study establishes a new system to examine the effects of alcohol exposure in embryos and the potential to conduct large-scale genetics screens to uncover novel factors that sensitize or protect neurons to the effects of alcohol.
Collapse
Affiliation(s)
- Gordana Scepanovic
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Bryan A Stewart
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada.,Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| |
Collapse
|
3
|
Willerth SM, Sakiyama-Elbert SE. Combining Stem Cells and Biomaterial Scaffolds for Constructing Tissues and Cell Delivery. ACTA ACUST UNITED AC 2019. [DOI: 10.3233/stj-180001] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Combining stem cells with biomaterial scaffolds serves as a promising strategy for engineering tissues for both in vitro and in vivo applications. This updated review details commonly used biomaterial scaffolds for engineering tissues from stem cells. We first define the different types of stem cells and their relevant properties and commonly used scaffold formulations. Next, we discuss natural and synthetic scaffold materials typically used when engineering tissues, along with their associated advantages and drawbacks and gives examples of target applications. New approaches to engineering tissues, such as 3D bioprinting, are described as they provide exciting opportunities for future work along with current challenges that must be addressed. Thus, this review provides an overview of the available biomaterials for directing stem cell differentiation as a means of producing replacements for diseased or damaged tissues.
Collapse
Affiliation(s)
- Stephanie M. Willerth
- Department of Mechanical Engineering, University of Victoria, VIC, Canada
- Division of Medical Sciences, University of Victoria, VIC, Canada
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, Canada
| | | |
Collapse
|
4
|
Newman KD, McLaughlin CR, Carlsson D, Li F, Liu Y, Griffith M. Bioactive Hydrogel-Filament Scaffolds for Nerve Repair and Regeneration. Int J Artif Organs 2018; 29:1082-91. [PMID: 17160966 DOI: 10.1177/039139880602901109] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The design of novel biomaterials is crucial for the advancement of tissue engineering in nerve regeneration. In this study we developed and evaluated novel biosynthetic scaffolds comprising collagen crosslinked with a terpolymer of poly(N-isopropylacrylamide) (PNiPAAm) as conduits for nerve growth. These collagen-terpolymer (collagen-TERP) scaffolds grafted with the laminin pentapeptide YIGSR were previously used as corneal substitutes in pigs and demonstrated enhanced nerve regeneration compared to allografts. The purpose of this project was to enhance neuronal growth on the collagen-TERP scaffolds through the incorporation of supporting fibers. Neuronal growth on these matrices was assessed in vitro using isolated dorsal root ganglia as a nerve source. Statistical significance was assessed using a one-way ANOVA. The incorporation of fibers into the collagen-TERP scaffolds produced a significant increase in neurite extension (p<0.05). The growth habit of the nerves varied with the type of fiber and included directional growth of the neurites along the surface of certain fiber types. Furthermore, the presence of fibers in the collagen-TERP scaffolds appeared to influence neurite morphology and function; neurites grown on fibers-incorporated collagen-TERP scaffolds expressed higher levels of Na channels compared to the scaffolds without fiber. Overall, our results suggest that incorporation of supporting fibers enhanced neurite outgrowth and that surface properties of the scaffold play an important role in promoting and guiding nerve regeneration. More importantly, this study demonstrates the potential value of tissue engineered collagen-TERP hybrid scaffolds as conduits in peripheral nerve repair.
Collapse
Affiliation(s)
- K D Newman
- University of Ottawa Eye Institute, Ottawa Hospital, General Campus, Ottawa, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
5
|
Fusion of polymeric material-binding peptide to cell-adhesion artificial proteins enhances their biological function. Biointerphases 2017; 12:021002. [DOI: 10.1116/1.4979577] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
6
|
Koss K, Unsworth L. Neural tissue engineering: Bioresponsive nanoscaffolds using engineered self-assembling peptides. Acta Biomater 2016; 44:2-15. [PMID: 27544809 DOI: 10.1016/j.actbio.2016.08.026] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 07/26/2016] [Accepted: 08/16/2016] [Indexed: 12/25/2022]
Abstract
UNLABELLED Rescuing or repairing neural tissues is of utmost importance to the patient's quality of life after an injury. To remedy this, many novel biomaterials are being developed that are, ideally, non-invasive and directly facilitate neural wound healing. As such, this review surveys the recent approaches and applications of self-assembling peptides and peptide amphiphiles, for building multi-faceted nanoscaffolds for direct application to neural injury. Specifically, methods enabling cellular interactions with the nanoscaffold and controlling the release of bioactive molecules from the nanoscaffold for the express purpose of directing endogenous cells in damaged or diseased neural tissues is presented. An extensive overview of recently derived self-assembling peptide-based materials and their use as neural nanoscaffolds is presented. In addition, an overview of potential bioactive peptides and ligands that could be used to direct behaviour of endogenous cells are categorized with their biological effects. Finally, a number of neurotrophic and anti-inflammatory drugs are described and discussed. Smaller therapeutic molecules are emphasized, as they are thought to be able to have less potential effect on the overall peptide self-assembly mechanism. Options for potential nanoscaffolds and drug delivery systems are suggested. STATEMENT OF SIGNIFICANCE Self-assembling nanoscaffolds have many inherent properties making them amenable to tissue engineering applications: ease of synthesis, ease of customization with bioactive moieties, and amenable for in situ nanoscaffold formation. The combination of the existing knowledge on bioactive motifs for neural engineering and the self-assembling propensity of peptides is discussed in specific reference to neural tissue engineering.
Collapse
|
7
|
Waku T, Tanaka N. Recent advances in nanofibrous assemblies based on β-sheet-forming peptides for biomedical applications. POLYM INT 2016. [DOI: 10.1002/pi.5195] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Tomonori Waku
- Faculty of Molecular Chemistry and Engineering; Kyoto Institute of Technology; Gosyokaido-cho, Matsugasaki Sakyo-ku Kyoto 606-8585 Japan
| | - Naoki Tanaka
- Faculty of Molecular Chemistry and Engineering; Kyoto Institute of Technology; Gosyokaido-cho, Matsugasaki Sakyo-ku Kyoto 606-8585 Japan
| |
Collapse
|
8
|
Bhagwat N, Murray RE, Shah SI, Kiick KL, Martin DC. Biofunctionalization of PEDOT films with laminin-derived peptides. Acta Biomater 2016; 41:235-46. [PMID: 27181880 DOI: 10.1016/j.actbio.2016.05.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 04/24/2016] [Accepted: 05/11/2016] [Indexed: 01/06/2023]
Abstract
UNLABELLED Poly(3,4-ethylenedioxythiophenes) (PEDOT) have been extensively explored as materials for biomedical implants such as biosensors, tissue engineering scaffolds and microelectronic devices. Considerable effort has been made to incorporate biologically active molecules into the conducting polymer films in order to improve their long term performance at the soft tissue interface of devices, and the development of functionalized conducting polymers that can be modified with biomolecules would offer important options for device improvement. Here we report surface modification, via straightforward protocols, of carboxylic-acid-functional PEDOT copolymer films with the nonapeptide, CDPGYIGSR, derived from the basement membrane protein laminin. Evaluation of the modified surfaces via XPS and toluidine blue O assay confirmed the presence of the peptide on the surface and electrochemical analysis demonstrated unaltered properties of the peptide-modified films. The efficacy of the peptide, along with the impact of a spacer molecule, for cell adhesion and differentiation was tested in cell culture assays employing the rat pheochromocytoma (PC12) cell line. Peptide-modified films comprising the longest poly(ethylene glycol) (PEG) spacer used in this study, a PEG with ten ethylene glycol repeats, demonstrated the best attachment and neurite outgrowth compared to films with peptides alone or those with a PEG spacer comprising three ethylene glycol units. The films with PEG10-CDPGYISGR covalently modified to the surface demonstrated 11.5% neurite expression with a mean neurite length of 90μm. This peptide immobilization technique provides an effective approach to biofunctionalize conducting polymer films. STATEMENT OF SIGNIFICANCE For enhanced diagnosis and treatment, electronic devices that interface with living tissue with minimum shortcomings are critical. Towards these ends, conducting polymers have proven to be excellent materials for electrode-tissue interface for a variety of biomedical devices ranging from deep brain stimulators, cochlear implants, and microfabricated cortical electrodes. To improve the electrode-tissue interface, one strategy utilized by many researchers is incorporating relevant biological molecules within or on the conducting polymer thin films to provide a surface for cell attachment and/or provide biological cues for cell growth. The present study provides a facile means for generating PEDOT films grafted with a laminin peptide with or without a spacer molecule for enhanced cell attachment and neurite extension.
Collapse
Affiliation(s)
- Nandita Bhagwat
- Department of Materials Science and Engineering, University of Delaware, 19716, USA
| | - Roy E Murray
- Department of Physics and Astronomy, University of Delaware, 19716, USA
| | - S Ismat Shah
- Department of Materials Science and Engineering, University of Delaware, 19716, USA; Department of Physics and Astronomy, University of Delaware, 19716, USA
| | - Kristi L Kiick
- Department of Materials Science and Engineering, University of Delaware, 19716, USA.
| | - David C Martin
- Department of Materials Science and Engineering, University of Delaware, 19716, USA.
| |
Collapse
|
9
|
Amin H, Maccione A, Marinaro F, Zordan S, Nieus T, Berdondini L. Electrical Responses and Spontaneous Activity of Human iPS-Derived Neuronal Networks Characterized for 3-month Culture with 4096-Electrode Arrays. Front Neurosci 2016; 10:121. [PMID: 27065786 PMCID: PMC4811967 DOI: 10.3389/fnins.2016.00121] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 03/11/2016] [Indexed: 12/20/2022] Open
Abstract
The recent availability of human induced pluripotent stem cells (hiPSCs) holds great promise as a novel source of human-derived neurons for cell and tissue therapies as well as for in vitro drug screenings that might replace the use of animal models. However, there is still a considerable lack of knowledge on the functional properties of hiPSC-derived neuronal networks, thus limiting their application. Here, upon optimization of cell culture protocols, we demonstrate that both spontaneous and evoked electrical spiking activities of these networks can be characterized on-chip by taking advantage of the resolution provided by CMOS multielectrode arrays (CMOS-MEAs). These devices feature a large and closely-spaced array of 4096 simultaneously recording electrodes and multi-site on-chip electrical stimulation. Our results show that networks of human-derived neurons can respond to electrical stimulation with a physiological repertoire of spike waveforms after 3 months of cell culture, a period of time during which the network undergoes the expression of developing patterns of spontaneous spiking activity. To achieve this, we have investigated the impact on the network formation and on the emerging network-wide functional properties induced by different biochemical substrates, i.e., poly-dl-ornithine (PDLO), poly-l-ornithine (PLO), and polyethylenimine (PEI), that were used as adhesion promoters for the cell culture. Interestingly, we found that neuronal networks grown on PDLO coated substrates show significantly higher spontaneous firing activity, reliable responses to low-frequency electrical stimuli, and an appropriate level of PSD-95 that may denote a physiological neuronal maturation profile and synapse stabilization. However, our results also suggest that even 3-month culture might not be sufficient for human-derived neuronal network maturation. Taken together, our results highlight the tight relationship existing between substrate coatings and emerging network properties, i.e., spontaneous activity, responsiveness, synapse formation and maturation. Additionally, our results provide a baseline on the functional properties expressed over 3 months of network development for a commercially available line of hiPSC-derived neurons. This is a first step toward the development of functional pre-clinical assays to test pharmaceutical compounds on human-derived neuronal networks with CMOS-MEAs.
Collapse
Affiliation(s)
- Hayder Amin
- NetS3 Laboratory, Neuroscience and Brain Technologies Department, Fondazione Istituto Italiano di Tecnologia (IIT) Genova, Italy
| | - Alessandro Maccione
- NetS3 Laboratory, Neuroscience and Brain Technologies Department, Fondazione Istituto Italiano di Tecnologia (IIT) Genova, Italy
| | - Federica Marinaro
- Neurobiology of miRNA Laboratory, Neuroscience and Brain Technologies Department, Fondazione Istituto Italiano di Tecnologia (IIT) Genova, Italy
| | - Stefano Zordan
- NetS3 Laboratory, Neuroscience and Brain Technologies Department, Fondazione Istituto Italiano di Tecnologia (IIT) Genova, Italy
| | - Thierry Nieus
- NetS3 Laboratory, Neuroscience and Brain Technologies Department, Fondazione Istituto Italiano di Tecnologia (IIT) Genova, Italy
| | - Luca Berdondini
- NetS3 Laboratory, Neuroscience and Brain Technologies Department, Fondazione Istituto Italiano di Tecnologia (IIT) Genova, Italy
| |
Collapse
|
10
|
Mehrban N, Abelardo E, Wasmuth A, Hudson KL, Mullen LM, Thomson AR, Birchall MA, Woolfson DN. Assessing cellular response to functionalized α-helical peptide hydrogels. Adv Healthc Mater 2014; 3:1387-91. [PMID: 24659615 PMCID: PMC4276410 DOI: 10.1002/adhm.201400065] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Indexed: 01/18/2023]
Abstract
α-Helical peptide hydrogels are decorated with a cell-binding peptide motif (RGDS), which is shown to promote adhesion, proliferation, and differentiation of PC12 cells. Gel structure and integrity are maintained after functionalization. This opens possibilities for the bottom-up design and engineering of complex functional scaffolds for 2D and 3D cell cultures.
Collapse
Affiliation(s)
- Nazia Mehrban
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Liu Q, Wu C, Cai H, Hu N, Zhou J, Wang P. Cell-based biosensors and their application in biomedicine. Chem Rev 2014; 114:6423-61. [PMID: 24905074 DOI: 10.1021/cr2003129] [Citation(s) in RCA: 189] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Qingjun Liu
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of the Ministry of Education, Department of Biomedical Engineering, Zhejiang University , Hangzhou 310027, China
| | | | | | | | | | | |
Collapse
|
12
|
Golbert DCF, Santana-van-Vliet E, Mundstein AS, Calfo V, Savino W, de Vasconcelos ATR. Laminin-database v.2.0: an update on laminins in health and neuromuscular disorders. Nucleic Acids Res 2013; 42:D426-9. [PMID: 24106090 PMCID: PMC3965114 DOI: 10.1093/nar/gkt901] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The laminin (LM)-database, hosted at http://www.lm.lncc.br, was published in the NAR database 2011 edition. It was the first database that provided comprehensive information concerning a non-collagenous family of extracellular matrix proteins, the LMs. In its first version, this database contained a large amount of information concerning LMs related to health and disease, with particular emphasis on the haemopoietic system. Users can easily access several tabs for LMs and LM-related molecules, as well as LM nomenclatures and direct links to PubMed. The LM-database version 2.0 integrates data from several publications to achieve a more comprehensive knowledge of LMs in health and disease. The novel features include the addition of two new tabs, ‘Neuromuscular Disorders’ and ‘miRNA-–LM Relationship’. More specifically, in this updated version, an expanding set of data has been displayed concerning the role of LMs in neuromuscular and neurodegenerative diseases, as well as the putative involvement of microRNAs. Given the importance of LMs in several biological processes, such as cell adhesion, proliferation, differentiation, migration and cell death, this upgraded version expands for users a panoply of information, regarding complex molecular circuitries that involve LMs in health and disease, including neuromuscular and neurodegenerative disorders.
Collapse
Affiliation(s)
- Daiane C F Golbert
- Bioinformatics Laboratory, National Laboratory of Scientific Computation, Avenue Getúlio Vargas 333, 25651-075, Petrópolis, Rio de Janeiro, Brazil and Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Avenue Brasil 4365, 21045-900, Rio de Janeiro, Brazil
| | | | | | | | | | | |
Collapse
|
13
|
Silva GA. Nanotechnology applications and approaches for neuroregeneration and drug delivery to the central nervous system. Ann N Y Acad Sci 2010; 1199:221-30. [PMID: 20633128 DOI: 10.1111/j.1749-6632.2009.05361.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Nanotechnology is the science and engineering concerned with the design, synthesis, and characterization of materials and devices that have a functional organization in at least one dimension on the nanometer (i.e., one billionth of a meter) scale. The potential impact of bottom up self-assembling nanotechnology, custom made molecules that self-assemble or self-organize into higher ordered structures in response to a defined chemical or physical cue, and top down lithographic type technologies where detail is engineered at smaller scales starting from bulk materials, stems from the fact that these nanoengineered materials and devices exhibit emergent mesocale and macroscale chemical and physical properties that are often different than their constituent nanoscale building block molecules or materials. As such, applications of nanotechnology to medicine and biology allow the interaction and integration of cells and tissues with nanoengineered substrates at a molecular (i.e., subcellular) level with a very high degree of functional specificity and control. This review considers applications of nanotechnology aimed at the neuroprotection and functional regeneration of the central nervous system (CNS) following traumatic or degenerative insults, and nanotechnology approaches for delivering drugs and other small molecules across the blood-brain barrier. It also discusses developing platform technologies that may prove to have broad applications to medicine and physiology, including some being developed for rescuing or replacing anatomical and/or functional CNS structures.
Collapse
Affiliation(s)
- Gabriel A Silva
- Departments of Bioengineering, Ophthalmology and Neurosciences Program, University of California, San Diego, California, USA.
| |
Collapse
|
14
|
Bechara SL, Judson A, Popat KC. Template synthesized poly(ɛ-caprolactone) nanowire surfaces for neural tissue engineering. Biomaterials 2010; 31:3492-501. [DOI: 10.1016/j.biomaterials.2010.01.084] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2009] [Accepted: 01/12/2010] [Indexed: 10/19/2022]
|
15
|
|
16
|
Miyazaki K, Nagai M, Morimoto N, Kurata T, Takehisa Y, Ikeda Y, Abe K. Spinal anterior horn has the capacity to self-regenerate in amyotrophic lateral sclerosis model mice. J Neurosci Res 2009; 87:3639-48. [DOI: 10.1002/jnr.22156] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
17
|
Abstract
Successful treatment of neurodegenerative diseases and CNS trauma are the most intractable problems in modern medicine. Numerous reports have shown the strong role that laminins have on the survival, regeneration and development of various types of cells, including neural cells. It would be desirable to take advantage of laminin activities for therapeutic purposes. However, there are at least ten laminin variants and the trimeric molecules are of the order of 800,000 molecular weight. Furthermore, human laminins are not available in quantity. Therefore, we and others have taken the approach of determining which domains of the laminin molecules are functional in the CNS, and whether short peptides from these regions exhibit biological activities with the intent of testing their potential for therapeutic use. Understanding the role of laminins and their small biologically active peptide domains, such as the KDI (lysine–aspartic acid–isoleucine) peptide from γ1 laminin, in neuronal development, CNS trauma (spinal cord injury and stroke) and neurodegenerative disorders (amyotrophic lateral sclerosis, Alzheimer’s disease and Parkinson’s disease) may help to develop clinically applicable methods to treat the presently untreatable CNS diseases and trauma even in the near future.
Collapse
Affiliation(s)
- Päivi Liesi
- The Brain Laboratory, Department of Biological & Environmental Sciences, University of Helsinki, PO Box 65 (Viikinkaari 1), 00014 University of Helsinki, Finland
| |
Collapse
|
18
|
Wiksten M, Väänänen A, Liesi P. Selective overexpression of gamma1 laminin in astrocytes in amyotrophic lateral sclerosis indicates an involvement in ALS pathology. J Neurosci Res 2007; 85:2045-58. [PMID: 17554784 DOI: 10.1002/jnr.21314] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Our earlier studies indicate that the KDI tripeptide of gamma1 laminin reverts paralysis and protects adult rat CNS from excitotoxicity of glutamate and from oxidative stress. Here we show that gamma1 laminin is selectively overexpressed in reactive astrocytes of the amyotrophic lateral sclerosis (ALS) spinal cord, with both gray and white matter astrocytes overexpressing gamma1 laminin. Intensely gamma1 laminin-positive, aggressive-looking reactive astrocytes of the lateral columns of both cervical and thoracic spinal cord surround the lateral ventral horns and roots and extend into the area of the lateral corticospinal tract. In the cervical ALS spinal cord, large numbers of strongly gamma1 laminin-immunoreactive astrocytes are also present in the dorsal columns of the ascending sensory pathways. No other laminin or any other ALS-associated protein localizes in this manner. This unique distribution of gamma1 laminin-immunoreactive astrocytes in the ALS white matter together with our recent results on the efficacy of the KDI domain as a neuronal protector strongly suggest that gamma1 laminin may be expressed by astrocytes of the ALS spinal cord as a protective measure intended to aid neuronal survival. Further comparative studies on ALS spinal cord tissues and those of the animal models of ALS are needed to clarify the specific role of gamma1 laminin and its KDI domain in ALS and its putative interactions with the additional ALS-associated factors, such as excitotoxicity, oxidative stress, and neurofilament accumulation. Most importantly, further studies are urgently needed to test the potential of the KDI tripeptide as a therapeutic treatment for ALS.
Collapse
Affiliation(s)
- Markus Wiksten
- The Brain Laboratory, Department of Biological and Environmental Sciences (Physiology), University of Helsinki, Helsinki, Finland
| | | | | |
Collapse
|
19
|
Soussou WV, Yoon GJ, Brinton RD, Berger TW. Neuronal Network Morphology and Electrophysiologyof Hippocampal Neurons Cultured on Surface-Treated Multielectrode Arrays. IEEE Trans Biomed Eng 2007; 54:1309-20. [PMID: 17605362 DOI: 10.1109/tbme.2006.889195] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Toward the development of biocompatible surfaces for implantable electrode arrays and the creation of patterned neuronal networks, the impact of select biochemical substrates [poly-D-lysine (PDL), polyornithine (PO), polyethylenimine (PEI), and a basement membrane extract (BM)] on network morphology and spontaneous electrophysiological activity of dissociated hippocampal neurons was investigated. Cultured in serum-free Neurobasal medium at 100 000 cells/cm(2), neurons attached to each substrate. PDL, PO, and PEI induced little or no neuronal clustering and process fasciculation, whereas the addition of BM promoted these features. The ratios of somas to processes, and axons to dendrites, as determined by immunohistochemical staining and image analysis were comparable across all substrates. Spontaneous firing was recorded using planar multielectrode arrays (MEAs) at the third week in vitro for the two most divergent morphologies according to Euclidian cluster analysis, namely those induced by PO + BM and PEI. Mean spike amplitude, mean firing rate, median interspike interval (ISI), mean burst rate, and correlation index were analyzed and compared to morphological features. Synchronized bursting was highly correlated with neuronal clustering and process fasciculation. Spike amplitude was negatively correlated with thin branching which was most evident in neurons grown on PEI. These data indicate that factors, which influence adherence of neurons to surfaces, can profoundly impact both neuronal network morphology and electrophysiological activity in vitro.
Collapse
Affiliation(s)
- Walid V Soussou
- Neuroscience Program, University of Southern California, Los Angeles, CA 90089-2520, USA.
| | | | | | | |
Collapse
|
20
|
Väänänen AJ, Rauhala P, Tuominen RK, Liesi P. KDI tripeptide of gamma1 laminin protects rat dopaminergic neurons from 6-OHDA induced toxicity. J Neurosci Res 2006; 84:655-65. [PMID: 16810683 DOI: 10.1002/jnr.20961] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Our previous studies indicate that the KDI (Lys-Asp-Ile) tripeptide of gamma1 laminin protects central neurons from mechanical trauma and excitotoxicity. At least part of the neuroprotective effect of the KDI tripeptide may be mediated by its inhibitory function on ionotropic glutamate receptors. We studied the protective effect of the KDI tripeptide against 6-hydroxy-dopamine (6-OHDA) induced neurotoxicity in a rat experimental model of Parkinson's disease (PD). We found that a single unilateral injection of the KDI tripeptide into the substantia nigra before an injection of 6-OHDA protected the dopaminergic neurons from the neurotoxicity of 6-OHDA. Compared to rats treated with 6-OHDA alone, the KDI + 6-OHDA-treated substantia nigra was relatively intact with large numbers of dopaminergic neurons present at the injection side. In the rats treated with 6-OHDA alone, no dopaminergic neurons were detected, and the substantia nigra-area at the injection side was filled with blood-containing cavities. Quantification of the rescue effect of the KDI tripeptide indicated that, in animals receiving KDI before 6-OHDA, 33% of tyrosine hydroxylase-positive dopaminergic neurons of the substantia nigra were present as compared to the contralateral non-injected side. In animals receiving 6-OHDA alone, only 1.4% of the tyrosine hydroxylase expressing dopaminergic neurons could be verified. If this much protection were achieved in humans, it would be sufficient to diminish or greatly alleviate the clinical symptoms of PD. We propose that the KDI tripeptide or its derivatives might offer a neuroprotective biological alternative for treatment of PD.
Collapse
Affiliation(s)
- Antti J Väänänen
- The Brain Laboratory, Department of Biological and Environmental Sciences (Physiology), University of Helsinki, Finland
| | | | | | | |
Collapse
|
21
|
Easley CA, Faison MO, Kirsch TL, Lee JA, Seward ME, Tombes RM. Laminin activates CaMK-II to stabilize nascent embryonic axons. Brain Res 2006; 1092:59-68. [PMID: 16690036 DOI: 10.1016/j.brainres.2006.03.099] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2005] [Revised: 03/21/2006] [Accepted: 03/23/2006] [Indexed: 11/25/2022]
Abstract
In neurons, the interaction of laminin with its receptor, beta1 integrin, is accompanied by an increase in cytosolic Ca2+. Neuronal behavior is influenced by CaMK-II, the type II Ca2+/calmodulin-dependent protein kinase, which is enriched in axons of mouse embryonic neurons. In this study, we sought to determine whether CaMK-II is activated by laminin, and if so, how CaMK-II influences axonal growth and stability. Axons grew up to 200 microm within 1 day of plating P19 embryoid bodies on laminin-1 (EHS laminin). Activated CaMK-II was found enriched along the axon and in the growth cone as detected using a phospho-Thr(287) specific CaMK-II antibody. beta1 integrin was found in a similar pattern along the axon and in the growth cone. Direct inhibition of CaMK-II in 1-day-old neurons immediately froze growth cone dynamics, disorganized F-actin and ultimately led to axon retraction. Collapsed axonal remnants exhibited diminished phospho-CaMK-II levels. Treatment of 1-day neurons with a beta1 integrin-blocking antibody (CD29) also reduced axon length and phospho-CaMK-II levels and, like CaMK-II inhibitors, decreased CaMK-II activation. Among several CaMK-II variants detected in these cultures, the 52-kDa delta variant preferentially associated with actin and beta 3 tubulin as determined by reciprocal immunoprecipitation. Our findings indicate that persistent activation of delta CaMK-II by laminin stabilizes nascent embryonic axons through its influence on the actin cytoskeleton.
Collapse
Affiliation(s)
- Charles A Easley
- Department of Biology and Biochemistry, Virginia Commonwealth University, Richmond, VA 23284-2012, USA
| | | | | | | | | | | |
Collapse
|
22
|
Silva GA. Nanotechnology approaches for the regeneration and neuroprotection of the central nervous system. ACTA ACUST UNITED AC 2005; 63:301-6. [PMID: 15808703 DOI: 10.1016/j.surneu.2004.06.008] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2004] [Accepted: 06/28/2004] [Indexed: 11/25/2022]
Abstract
Nanotechnology is the science and engineering concerned with the design, synthesis, and characterization of materials and devices that have a functional organization in at least 1 dimension on the nanometer (ie, one-billionth of a meter) scale. The ability to manipulate and control engineered self-assembling (ie, self-organizing) substrates at these scales produces macroscopic physical and/or chemical properties in the bulk material not possessed by the constituent building block molecules alone. This in turn results in a degree of functional integration between the engineered substrates and cellular or physiological systems not previously attainable. Applied nanotechnology aimed at the regeneration and neuroprotection of the central nervous system (CNS) will significantly benefit from basic nanotechnology research conducted in parallel with advances in cell biology, neurophysiology, and neuropathology. Ultimately the goal is to develop novel technologies that directly or indirectly aid in providing neuroprotection and/or a permissive environment and active signaling cues for guided axon growth. In some cases, it is expected that the neurosurgeon will be required to administer these substrates to the patient. As such, in order for nanotechnology applications directed toward neurological disorders to develop to their fullest potential, it will be important for neuroscientists, neurosurgeons, and neurologists to participate and contribute to the scientific process alongside physical science and engineering colleagues. This review will focus on emerging clinical applications aimed at the regeneration and neuroprotection of the injured CNS, and discuss other platform technologies that have a significant potential for being adapted for clinical neuroscience applications.
Collapse
Affiliation(s)
- Gabriel A Silva
- Department of Bioengineering, Whitaker Institute for Biomedical Engineering, University of California, San Diego, CA 92037-0946, USA.
| |
Collapse
|
23
|
Suuronen EJ, Sheardown H, Newman KD, McLaughlin CR, Griffith M. Building In Vitro Models of Organs. INTERNATIONAL REVIEW OF CYTOLOGY 2005; 244:137-73. [PMID: 16157180 DOI: 10.1016/s0074-7696(05)44004-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Tissue-engineering techniques are being used to build in vitro models of organs as substitutes for human donor organs for transplantation as well as in vitro toxicology testing (as alternatives to use of animals). Tissue engineering involves the fabrication of scaffolds from materials that are biologically compatible to serve as cellular supports and microhabitats in order to reconstitute a desired tissue or organ. Three organ systems that are currently the foci of tissue engineering efforts for both transplantation and in vitro toxicology testing purposes are discussed. These are models of the cornea, nerves (peripheral nerves specifically), and cardiovascular components. In each of these organ systems, a variety of techniques and materials are being used to achieve the same end results. In general, models that are designed with consideration of the developmental and cellular biology of the target tissues or organs have tended to result in morphologically and physiologically accurate models. Many of the models, with further development and refinement, have the potential to be useful as functional substitute tissues and organs for transplantation or for in vitro toxicology testing.
Collapse
Affiliation(s)
- Erik J Suuronen
- Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | | | | | | | | |
Collapse
|
24
|
Silva GA, Czeisler C, Niece KL, Beniash E, Harrington DA, Kessler JA, Stupp SI. Selective differentiation of neural progenitor cells by high-epitope density nanofibers. Science 2004; 303:1352-5. [PMID: 14739465 DOI: 10.1126/science.1093783] [Citation(s) in RCA: 1518] [Impact Index Per Article: 72.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Neural progenitor cells were encapsulated in vitro within a three-dimensional network of nanofibers formed by self-assembly of peptide amphiphile molecules. The self-assembly is triggered by mixing cell suspensions in media with dilute aqueous solutions of the molecules, and cells survive the growth of the nanofibers around them. These nanofibers were designed to present to cells the neurite-promoting laminin epitope IKVAV at nearly van der Waals density. Relative to laminin or soluble peptide, the artificial nanofiber scaffold induced very rapid differentiation of cells into neurons, while discouraging the development of astrocytes. This rapid selective differentiation is linked to the amplification of bioactive epitope presentation to cells by the nanofibers.
Collapse
Affiliation(s)
- Gabriel A Silva
- Institute for Bioengineering and Nanoscience in Advanced Medicine, Northwestern University, Chicago, IL 60611, USA.
| | | | | | | | | | | | | |
Collapse
|
25
|
Dhoot NO, Tobias CA, Fischer I, Wheatley MA. Peptide-modified alginate surfaces as a growth permissive substrate for neurite outgrowth. ACTA ACUST UNITED AC 2004; 71:191-200. [PMID: 15376189 DOI: 10.1002/jbm.a.30103] [Citation(s) in RCA: 141] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Different strategies are being investigated for treatment of spinal cord injuries, one of the most promising being application of neurotrophic factors, which have been shown to prevent neuronal death and stimulate regeneration of injured axons. Ex vivo gene therapy has emerged as the leading delivery method at the site of the injury, and we have shown previously that encapsulating genetically engineered fibroblasts in an immunoprotective alginate capsule can permit implantation of the factor-secreting cells without need for immunosuppression. This strategy could be greatly enhanced by providing the sprouting neurons with a permissive substrate upon which to attach and grow. We report here studies on the modification of an alginate gel surface by either coating it with laminin or by covalent attachment of YIGSR peptide. Using NB2a neuroblastoma cells, we found that native alginate elicited minimal cell attachment ( approximately 1.5%); however, YIGSR-alginate conjugate elicited a fivefold increase in numbers of cells attached using peptide ratios of 0.5 and 1 mg/g alginate, ranging from 9.5% of the cells at the lower ratio, to about 44% at the higher. Only a further 19% increase was obtained at an increased peptide density of 2 mg/g alginate ( approximately 63% over control). Laminin-coated gels showed approximately 60% cell attachment. However, laminin coating did not stimulate differentiation and neurite growth, whereas both numbers and lengths of outgrowths increased with increasing peptide density on peptide-modified alginate. We demonstrate here the ability of the peptide-modified alginate gels to allow adhesion of NB2a neuroblastoma cells and to promote neurite outgrowth from these cells when attached to the peptide-modified alginate surface. Also, we show that the adhesion of NB2a neuroblastoma cells and neurite outgrowth from the attached cells is a function of the peptide density on the gel surface.
Collapse
Affiliation(s)
- Nikhil O Dhoot
- School of Biomedical Engineering, Science and Health Systems, Drexel University, 32nd and Chestnut Streets, Philadelphia, PA 19104-2875, USA
| | | | | | | |
Collapse
|
26
|
Lindsley TA, Kerlin AM, Rising LJ. Time-lapse analysis of ethanol's effects on axon growth in vitro. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2003; 147:191-9. [PMID: 15068009 DOI: 10.1016/j.devbrainres.2003.10.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The cortical abnormalities found in animal models of fetal alcohol syndrome (FAS) suggest a disruption of axon growth. After emerging from the cell body, axons exhibit saltatory growth, cycling between periods of extension and periods of retraction. The timing of neuronal process outgrowth an the balance between extension and retraction together determine the net rate of axon elongation, and may be independently regulated. In this study, we used time-lapse digital microscopy and custom-designed analytic software to assess the effects of ethanol on the growth of axons from embryonic rat hippocampal pyramidal neurons in culture during 24 h of development, beginning approximately 7 h after plating. We recorded the amount of time elapsed before axons emerged, the relative amount of time spent in periods of growth and nongrowth, and the rate and direction of change in axon length during both periods of growth and nongrowth. The initiation of axonal outgrowth was significantly delayed by ethanol in a dose-dependent fashion at concentrations in the medium at or above 100 mg/dl. However, once established, axons exhibited accelerated growth in the presence of ethanol. This increase in overall growth rate was primarily due to a significant decrease in axon retraction during nongrowth periods. Ethanol did not affect the duration or frequency of growth and nongrowth periods. We propose, therefore, that mechanisms underlying ethanol-mediated changes in axon growth are linked to signaling events that differentially regulate outgrowth and retraction.
Collapse
Affiliation(s)
- Tara A Lindsley
- Center for Neuropharmacology and Neuroscience, Albany Medical College, NY 12208, USA.
| | | | | |
Collapse
|
27
|
Wiksten M, Liebkind R, Laatikainen T, Liesi P. Gamma 1 laminin and its biologically active KDI-domain may guide axons in the floor plate of human embryonic spinal cord. J Neurosci Res 2003; 71:338-52. [PMID: 12526023 DOI: 10.1002/jnr.10495] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Immunocytochemistry, in situ hybridization and Matrigel-embedded cultures were used to investigate the distribution of laminins during development of the human embryonic spinal cord (7-11 weeks). Our results indicate that alpha 1, beta 1, beta 3 and gamma 1 laminins localize as punctate deposits in the floor plate region in association with commissural fibers crossing the ventral midline. In addition, the neurite outgrowth domain of gamma 1 laminin accumulates heavily in the floor plate region, in the notochord and in GFAP-immunoreactive glial fibers of the embryonic spinal cord. In culture experiments, the biologically active KDI-domain of gamma 1 laminin selectively attracted directional outgrowth of neurites from explants of the dorsal spinal cord. The spatial and temporal colocalization of punctate deposits of laminins with nerve fibers crossing the ventral midline, and the guidance of neurites by the KDI-peptide domain, indicate that laminins, specifically the gamma 1 laminin, may be involved in guidance of axons during embryonic development of the human spinal cord.
Collapse
Affiliation(s)
- Markus Wiksten
- The Brain Laboratory, Biomedicum Helsinki, Institute of Biomedicine (Anatomy), University of Helsinki, Helsinki, Finland
| | | | | | | |
Collapse
|
28
|
Jung DR, Kapur R, Adams T, Giuliano KA, Mrksich M, Craighead HG, Taylor DL. Topographical and physicochemical modification of material surface to enable patterning of living cells. Crit Rev Biotechnol 2002; 21:111-54. [PMID: 11451046 DOI: 10.1080/20013891081700] [Citation(s) in RCA: 146] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Precise control of the architecture of multiple cells in culture and in vivo via precise engineering of the material surface properties is described as cell patterning. Substrate patterning by control of the surface physicochemical and topographic features enables selective localization and phenotypic and genotypic control of living cells. In culture, control over spatial and temporal dynamics of cells and heterotypic interactions draws inspiration from in vivo embryogenesis and haptotaxis. Patterned arrays of single or multiple cell types in culture serve as model systems for exploration of cell-cell and cell-matrix interactions. More recently, the patterned arrays and assemblies of tissues have found practical applications in the fields of Biosensors and cell-based assays for Drug Discovery. Although the field of cell patterning has its origins early in this century, an improved understanding of cell-substrate interactions and the use of microfabrication techniques borrowed from the microelectronics industry have enabled significant recent progress. This review presents the important early discoveries and emphasizes results of recent state-of-the-art cell patterning methods. The review concludes by illustrating the growing impact of cell patterning in the areas of bioelectronic devices and cell-based assays for drug discovery.
Collapse
|
29
|
The critical role of basement membrane-independent laminin gamma 1 chain during axon regeneration in the CNS. J Neurosci 2002. [PMID: 11943817 DOI: 10.1523/jneurosci.22-08-03144.2002] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We have addressed the question of whether a family of axon growth-promoting molecules known as the laminins may play a role during axon regeneration in the CNS. A narrow sickle-shaped region containing a basal lamina-independent form of laminin exists in and around the cell bodies and proximal portion of the apical dendrites of CA3 pyramidal neurons of the postnatal hippocampus. To understand the possible function of laminin in axon regeneration within this pathway, we have manipulated laminin synthesis at the mRNA level in a slice culture model of the lesioned mossy system. In this model early postnatal mossy fibers severed near the hilus can regenerate across the lesion and elongate rapidly within strata lucidum and pyramidale. In slice cultures of the postnatal day 4 hippocampus, 2 d before lesion and then continuing for 1-5 d after lesion, translation of the gamma1 chain product of laminin was reduced by using antisense oligodeoxyribonucleotides and DNA enzymes. In the setting of the lesioned organotypic hippocampal slice, astroglial repair of the lesion and overall glial patterning were unperturbed by the antisense or DNA enzyme treatments. However, unlike controls, in the treated, lesioned slices the vast majority of regenerating mossy fibers could not cross the lesion site; those that did were very much shorter than usual, and they took a meandering course. In a recovery experiment in which the DNA enzyme or antisense oligos were washed away, laminin immunoreactivity returned and mossy fiber regeneration resumed. These results demonstrate the critical role of laminin(s) in an axon regeneration model of the CNS.
Collapse
|
30
|
Liesi P, Laatikainen T, Wright JM. Biologically active sequence (KDI) mediates the neurite outgrowth function of the gamma-1 chain of laminin-1. J Neurosci Res 2001; 66:1047-53. [PMID: 11746436 DOI: 10.1002/jnr.1250] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A neurite outgrowth domain of the gamma1-chain of laminin-1 (RDIAEIIKDI) promotes axon guidance of rat hippocampal neurons, regulates the nuclear movement phase of neuronal migration, and binds to the cellular prion protein (Liesi et al. [1995] J. Neurosci. Res. 134:447-486; Matsuzawa et al. [1998] J. Neurosci. Res. 53:114-124; Graner et al. [2000] Brain Res. Mol. Brain Res. 76:85-92). Using electrophysiology and neuronal culture experiments, we show that this 10 amino acid peptide or its smaller domains induces potassium currents in primary central neurons. Both these currents and the neurotoxicity of high concentrations of the 10 amino acid peptide antigen are prevented by pertussis toxin. The smallest peptide domain capable of inducing both potassium currents and promoting neurite outgrowth of human spinal cord neurons is a tri-peptide KDI. Our results indicate that KDI may be the biologically active domain of the gamma1 laminin, capable of modulating electrical activity and survival of central neurons via a G-protein coupled mechanism. These results expand the wide variety of functions already reported for the members of the laminin-gene family. They suggest that biologically active peptide domains of the gamma1 laminin may provide tools to promote neuronal regeneration after injuries and to enhance neuronal survival during aging and neuronal degeneration.
Collapse
Affiliation(s)
- P Liesi
- The Brain Laboratory, Biomedicum Helsinki, Institute of Biomedicine (Anatomy), University of Helsinki, PO Box 63 (Haartmaninkatu 8), 00014 Helsinki, Finland.
| | | | | |
Collapse
|
31
|
Soussand J, Jahké R, Simon-Assmann P, Stoeckel ME, Schimchowitsch S. Tenascin and laminin function in target recognition and central synaptic differentiation. Neuroreport 2001; 12:1073-6. [PMID: 11303748 DOI: 10.1097/00001756-200104170-00041] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The influence of the target cell-issued extracellular molecules tenascin-C and laminin on synaptogenesis was studied in mixed primary cultures of pituitary melanotrophs and hypothalamic neurons. We could demonstrate in this neuron-target co-culture system a new role for tenascin-C, which appeared to be expressed as an early and transitory signal of target recognition for selective afferent fibers. Tenascin-C expression disappeared from the melanotrophs soon after the establishment of neural contacts. Concomitantly, the melanotrophs became immunoreactive for laminins, and more specifically for the synaptic isoform beta2 chain-containing laminin. The laminin signal appeared to be involved in the induction of synaptic differentiation, selectively with fibers containing both dopamine and GABA, like those innervating the melanotrophs in situ.
Collapse
Affiliation(s)
- J Soussand
- CNRS/ULP UMR 7519, IPCB, Strasbourg, France
| | | | | | | | | |
Collapse
|
32
|
Matsuzawa M, Tabata T, Knoll W, Kano M. Formation of hippocampal synapses on patterned substrates of a laminin-derived synthetic peptide. Eur J Neurosci 2000; 12:903-10. [PMID: 10762320 DOI: 10.1046/j.1460-9568.2000.00977.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We created a new culture system which provides simple, stereotyped neuronal circuitries suitable for investigating synaptic events between mammalian central neurons. We used surface chemistry and laser-lithography to produce geometrical patterns of neuron-compatible substrate spaced by less neuron-compatible surfaces. The patterned substrates were composed of a laminin-derived synthetic peptide, PA22-2, and the spacing surfaces of either decyldimethylsilane (DDMS) or trimethylsilane (TMS). Dissociated rat hippocampal neurons survived on the patterned substrates for several days without the aid of glia and extended their neurites along the substrates. The TMS spacing surfaces appeared more favourable for the excitability development and axonal differentiation of the hippocampal neurons, but less favourable for the development of the resting conductance than the DDMS spacing surfaces. Furthermore, neurons grown on the patterned substrates frequently made synaptophysin-positive contacts with one another. Spontaneous post-synaptic currents recorded from such neurons suggest that these contacts were indeed functional synapses. When hippocampal neurons were plated at a very low density, they often formed circuitries consisting of only two neurons on the patterned substrate. Such a simple circuitry allowed us to analyse synaptic transmission in a single neuronal pair without the influence of the third neurons. With the clarity of analysis and the readiness of manipulation, our culture system would offer a powerful tool for studying development and functions of mammalian central synapses.
Collapse
Affiliation(s)
- M Matsuzawa
- Laboratory for Exotic Nanomaterials, Frontier Research Program, RIKEN, Wako, Saitama 351-0198 Japan
| | | | | | | |
Collapse
|
33
|
James CD, Davis R, Meyer M, Turner A, Turner S, Withers G, Kam L, Banker G, Craighead H, Isaacson M, Turner J, Shain W. Aligned microcontact printing of micrometer-scale poly-L-lysine structures for controlled growth of cultured neurons on planar microelectrode arrays. IEEE Trans Biomed Eng 2000; 47:17-21. [PMID: 10646274 DOI: 10.1109/10.817614] [Citation(s) in RCA: 164] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
We describe a method for producing high-resolution chemical patterns on surfaces to control the attachment and growth of cultured neurons. Microcontact printing has been extended to allow the printing of micron-scale protein lines aligned to an underlying pattern of planar microelectrodes. Poly-L-lysine (PL) lines have been printed on the electrode array for electrical studies on cultured neural networks. Rat hippocampal neurons showed a high degree of attachment selectivity to the PL and produced neurites that faithfully grew onto the electrode recording sites.
Collapse
Affiliation(s)
- C D James
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Bearer CF, Swick AR, O'Riordan MA, Cheng G. Ethanol inhibits L1-mediated neurite outgrowth in postnatal rat cerebellar granule cells. J Biol Chem 1999; 274:13264-70. [PMID: 10224086 PMCID: PMC4197854 DOI: 10.1074/jbc.274.19.13264] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The neuropathology of the effects of ethanol on the developing central nervous system are similar to those of patients with mutations in L1, a neural cell adhesion molecule. This observation suggests that inhibition of L1 plays a role in the pathogenesis of alcohol-related neurodevelopmental disorders. Here we examine the effects of ethanol on L1 homophilic binding and on L1-mediated neurite outgrowth. Ethanol had no effect on cell adhesion or aggregation in a myeloma cell line expressing full-length human L1. In contrast, the rate of L1-mediated neurite outgrowth of rat postnatal day 6 cerebellar granule cells grown on a substratum of NgCAM, the chick homologue of L1, was inhibited by 48.6% in the presence of ethanol with a half-maximal concentration of 4.7 mM. The same effect was found with soluble L1-Fc, thus showing that the inhibitory effect is not dependent on cell adhesion. In contrast, neither laminin nor N-cadherin-mediated neurite outgrowth was inhibited by physiologic concentrations of ethanol. We conclude that one mechanism of ethanol's toxicity to the developing central nervous system may be the inhibition of L1-mediated neurite outgrowth.
Collapse
Affiliation(s)
- C F Bearer
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA.
| | | | | | | |
Collapse
|
35
|
Pires-Neto MA, Braga-De-Souza S, Lent R. Molecular tunnels and boundaries for growing axons in the anterior commissure of hamster embryos. J Comp Neurol 1998; 399:176-88. [PMID: 9721902 DOI: 10.1002/(sici)1096-9861(19980921)399:2<176::aid-cne3>3.0.co;2-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We have analyzed the immunohistochemical expression of chondroitin sulfate proteoglycan (CSPG), fibronectin (FN), laminin (LN), tenascin (TN), and glial fibrillary acidic protein (GFAP) along the anterior commissure (AC) of hamster embryos (n=175; from embryonic day (E)12 to E16). Frozen sections were cut at different planes from embryonic brains between E12 and E16, treated for immunohistochemistry, and observed under epifluorescence microscopy. During the pre-crossing stage (E12-E13), CSPG was expressed as a sagittal stratum between the interhemispheric fissure and the prospective AC region. TN appeared rostral to the third ventricle and along the medial subventricular zone of the lateral ventricles. LN and FN both presented a faint expression, and GFAP was not detected. Although AC axons started crossing the midline region (E13.5-E14), CSPG, FN, LN, and, much less intensely, GFAP circumscribed the AC bundle, forming a tunnel through which AC fibers elongate. TN was no longer seen at the midplane but remained visible laterally. During the post-crossing stage (E14.5-E16), CSPG and TN were no longer seen at the midline, although both could be observed between the AC limbs, seeming to form boundaries for AC lateral growth. LN and FN were then absent near the AC bundle. During this late stage, GFAP expression became most intense, forming a distinct tunnel around the AC. We have shown that the expression of extracellular matrix molecules and GFAP follow a time- and space-regulated course related to AC development, plausibly representing influential factors for growth and guidance of commissural fibers.
Collapse
Affiliation(s)
- M A Pires-Neto
- Departamento de Anatomia, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil
| | | | | |
Collapse
|
36
|
Förster E, Kaltschmidt C, Deng J, Cremer H, Deller T, Frotscher M. Lamina-specific cell adhesion on living slices of hippocampus. Development 1998; 125:3399-410. [PMID: 9693143 DOI: 10.1242/dev.125.17.3399] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Laminar distribution of fiber systems is a characteristic feature of hippocampal organization. Ingrowing afferents, e.g. the fibers from the entorhinal cortex, terminate in specific layers, which implies the existence of laminar recognition cues. To identify cues that are involved in the laminar segregation of fiber systems in the hippocampus, we used an in vitro assay to study the adhesion of dissociated entorhinal cells on living hippocampal slices. Here we demonstrate that dissociated entorhinal cells adhere to living hippocampal slices with a lamina-specific distribution that reflects the innervation pattern of the entorhino-hippocampal projection. In contrast, laminae which are not invaded by entorhinal fibers are a poor substrate for cell adhesion. Lamina-specific cell adhesion does not require the neural cell adhesion molecule or the extracellular matrix glycoprotein reelin, as revealed in studies with mutants. However, the pattern of adhesive cues in the reeler mouse hippocampus mimics characteristic alterations of the entorhinal projection in this mutant, suggesting a role of layer-specific adhesive cues in the pathfinding of entorhinal fibers. Lamina-specific cell adhesion is independent of divalent cations, is abolished after cryofixation or paraformaldehyde fixation and is recognized across species. By using a novel membrane adhesion assay, we show that lamina-specific cell adhesion can be mimicked by membrane-coated fluorescent microspheres. Recognition of the adhesive properties of different hippocampal laminae by growing axons, as either a growth permissive or a non-permissive substrate, may provide a developmental mechanism underlying the segregation of lamina-specific fiber projections.
Collapse
Affiliation(s)
- E Förster
- Institute of Anatomy and Molecular Neurobiology Laboratory, University of Freiburg, P.O. Box 111, D-79001, Freiburg, Germany
| | | | | | | | | | | |
Collapse
|