1
|
Herbison AE. The Gonadotropin-Releasing Hormone Pulse Generator. Endocrinology 2018; 159:3723-3736. [PMID: 30272161 DOI: 10.1210/en.2018-00653] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 08/20/2018] [Indexed: 12/18/2022]
Abstract
The pulsatile release of GnRH and LH secretion is essential for fertility in all mammals. Pulses of LH occur approximately every hour in follicular-phase females and every 2 to 3 hours in luteal-phase females and males. Many studies over the last 50 years have sought to identify the nature and mechanism of the "GnRH pulse generator" responsible for pulsatile LH release. This review examines the characteristics of pulsatile hormone release and summarizes investigations that have led to our present understanding of the GnRH pulse generator. There is presently little compelling evidence for an intrinsic mechanism of pulse generation involving interactions between GnRH neuron cell bodies. Rather, data support the presence of an extrinsic pulse generator located within the arcuate nucleus, and attention has focused on the kisspeptin neurons and their projections to GnRH neuron dendrons concentrated around the median eminence. Sufficient evidence has been gathered in rodents to conclude that a subpopulation of arcuate kisspeptin neurons is, indeed, the GnRH pulse generator. Findings in other species are generally compatible with this view and suggest that arcuate/infundibular kisspeptin neurons represent the mammalian GnRH pulse generator. With hindsight, it is likely that past arcuate nucleus multiunit activity recordings have been from kisspeptin neurons. Despite advances in identifying the cells forming the pulse generator, almost nothing is known about their mechanisms of synchronicity and the afferent hormonal and transmitter modulation required to establish the normal patterns of LH pulsatility in mammals.
Collapse
Affiliation(s)
- Allan E Herbison
- Centre for Neuroendocrinology and Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
2
|
Weems PW, Coolen LM, Hileman SM, Hardy S, McCosh RB, Goodman RL, Lehman MN. Evidence That Dynorphin Acts Upon KNDy and GnRH Neurons During GnRH Pulse Termination in the Ewe. Endocrinology 2018; 159:3187-3199. [PMID: 30016419 PMCID: PMC6693042 DOI: 10.1210/en.2018-00435] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 07/09/2018] [Indexed: 11/19/2022]
Abstract
A subpopulation of neurons located within the arcuate nucleus, colocalizing kisspeptin, neurokinin B, and dynorphin (Dyn; termed KNDy neurons), represents key mediators of pulsatile GnRH secretion. The KNDy model of GnRH pulse generation proposes that Dyn terminates each pulse. However, it is unknown where and when during a pulse that Dyn is released to inhibit GnRH secretion. Dyn acts via the κ opioid receptor (KOR), and KOR is present in KNDy and GnRH neurons in sheep. KOR, similar to other G protein-coupled receptors, are internalized after exposure to ligand, and thus internalization can be used as a marker of endogenous Dyn release. Thus, we hypothesized that KOR will be internalized at pulse termination in both KNDy and GnRH neurons. To test this hypothesis, GnRH pulses were induced in gonad-intact anestrous ewes by injection of neurokinin B (NKB) into the third ventricle and animals were euthanized at times of either pulse onset or termination. NKB injections produced increased internalization of KOR within KNDy neurons during both pulse onset and termination. In contrast, KOR internalization into GnRH neurons was seen only during pulse termination, and only in GnRH neurons within the mediobasal hypothalamus (MBH). Overall, our results indicate that Dyn is released onto KNDy cells at the time of pulse onset, and continues to be released during the duration of the pulse. In contrast, Dyn is released onto MBH GnRH neurons only at pulse termination and thus actions of Dyn upon KNDy and GnRH cell bodies may be critical for pulse termination.
Collapse
Affiliation(s)
- Peyton W Weems
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, Mississippi
| | - Lique M Coolen
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, Mississippi
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| | - Stanley M Hileman
- Department of Physiology and Pharmacology, West Virginia University Health Sciences Center, Morgantown, West Virginia
| | - Steven Hardy
- Department of Physiology and Pharmacology, West Virginia University Health Sciences Center, Morgantown, West Virginia
| | - Rick B McCosh
- Department of Physiology and Pharmacology, West Virginia University Health Sciences Center, Morgantown, West Virginia
| | - Robert L Goodman
- Department of Physiology and Pharmacology, West Virginia University Health Sciences Center, Morgantown, West Virginia
| | - Michael N Lehman
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, Mississippi
- Correspondence: Michael N. Lehman, PhD, Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, 2500 North State Street, Jackson, Mississippi 39232. E-mail:
| |
Collapse
|
3
|
Nestor CC, Bedenbaugh MN, Hileman SM, Coolen LM, Lehman MN, Goodman RL. Regulation of GnRH pulsatility in ewes. Reproduction 2018; 156:R83-R99. [PMID: 29880718 DOI: 10.1530/rep-18-0127] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 06/07/2018] [Indexed: 01/21/2023]
Abstract
Early work in ewes provided a wealth of information on the physiological regulation of pulsatile gonadotropin-releasing hormone (GnRH) secretion by internal and external inputs. Identification of the neural systems involved, however, was limited by the lack of information on neural mechanisms underlying generation of GnRH pulses. Over the last decade, considerable evidence supported the hypothesis that a group of neurons in the arcuate nucleus that contain kisspeptin, neurokinin B and dynorphin (KNDy neurons) are responsible for synchronizing secretion of GnRH during each pulse in ewes. In this review, we describe our current understanding of the neural systems mediating the actions of ovarian steroids and three external inputs on GnRH pulsatility in light of the hypothesis that KNDy neurons play a key role in GnRH pulse generation. In breeding season adults, estradiol (E2) and progesterone decrease GnRH pulse amplitude and frequency, respectively, by actions on KNDy neurons, with E2 decreasing kisspeptin and progesterone increasing dynorphin release onto GnRH neurons. In pre-pubertal lambs, E2 inhibits GnRH pulse frequency by decreasing kisspeptin and increasing dynorphin release, actions that wane as the lamb matures to allow increased pulsatile GnRH secretion at puberty. Less is known about mediators of undernutrition and stress, although some evidence implicates kisspeptin and dynorphin, respectively, in the inhibition of GnRH pulse frequency by these factors. During the anoestrus, inhibitory photoperiod acting via melatonin activates A15 dopaminergic neurons that innervate KNDy neurons; E2 increases dopamine release from these neurons to inhibit KNDy neurons and suppress the frequency of kisspeptin and GnRH release.
Collapse
Affiliation(s)
- Casey C Nestor
- Department of Animal Science, North Carolina State University, Raleigh, North Carolina, USA
| | - Michelle N Bedenbaugh
- Department of Physiology, Pharmacology and Neuroscience, West Virginia University, Morgantown, West Virginia, USA
| | - Stanley M Hileman
- Department of Physiology, Pharmacology and Neuroscience, West Virginia University, Morgantown, West Virginia, USA
| | - Lique M Coolen
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi, USA.,Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Michael N Lehman
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Robert L Goodman
- Department of Physiology, Pharmacology and Neuroscience, West Virginia University, Morgantown, West Virginia, USA
| |
Collapse
|
4
|
Weems PW, Lehman MN, Coolen LM, Goodman RL. The Roles of Neurokinins and Endogenous Opioid Peptides in Control of Pulsatile LH Secretion. VITAMINS AND HORMONES 2018; 107:89-135. [PMID: 29544644 DOI: 10.1016/bs.vh.2018.01.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
Work over the last 15 years on the control of pulsatile LH secretion has focused largely on a set of neurons in the arcuate nucleus (ARC) that contains two stimulatory neuropeptides, critical for fertility in humans (kisspeptin and neurokinin B (NKB)) and the inhibitory endogenous opioid peptide (EOP), dynorphin, and are now known as KNDy (kisspeptin-NKB-dynorphin) neurons. In this review, we consider the role of each of the KNDy peptides in the generation of GnRH pulses and the negative feedback actions of ovarian steroids, with an emphasis on NKB and dynorphin. With regard to negative feedback, there appear to be important species differences. In sheep, progesterone inhibits GnRH pulse frequency by stimulating dynorphin release, and estradiol inhibits pulse amplitude by suppressing kisspeptin. In rodents, the role of KNDy neurons in estrogen negative feedback remains controversial, progesterone may inhibit GnRH via dynorphin, but the physiological significance of this action is unclear. In primates, an EOP, probably dynorphin, mediates progesterone negative feedback, and estrogen inhibits kisspeptin expression. In contrast, there is now compelling evidence from several species that kisspeptin is the output signal from KNDy neurons that drives GnRH release during a pulse and may also act within the KNDy network to affect pulse frequency. NKB is thought to act within this network to initiate each pulse, although there is some redundancy in tachykinin signaling in rodents. In ruminants, dynorphin terminates GnRH secretion at the end of pulse, most likely acting on both KNDy and GnRH neurons, but the data on the role of this EOP in rodents are conflicting.
Collapse
Affiliation(s)
- Peyton W Weems
- Graduate Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS, United States
| | - Michael N Lehman
- University of Mississippi Medical Center, Jackson, MS, United States
| | - Lique M Coolen
- University of Mississippi Medical Center, Jackson, MS, United States
| | | |
Collapse
|
5
|
Moore AM, Campbell RE. The neuroendocrine genesis of polycystic ovary syndrome: A role for arcuate nucleus GABA neurons. J Steroid Biochem Mol Biol 2016; 160:106-17. [PMID: 26455490 DOI: 10.1016/j.jsbmb.2015.10.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 08/25/2015] [Accepted: 10/02/2015] [Indexed: 12/12/2022]
Abstract
Polycystic ovary syndrome (PCOS) is a prevalent and distressing endocrine disorder lacking a clearly identified aetiology. Despite its name, PCOS may result from impaired neuronal circuits in the brain that regulate steroid hormone feedback to the hypothalamo-pituitary-gonadal axis. Ovarian function in all mammals is controlled by the gonadotropin-releasing hormone (GnRH) neurons, a small group of neurons that reside in the pre-optic area of the hypothalamus. GnRH neurons drive the secretion of the gonadotropins from the pituitary gland that subsequently control ovarian function, including the production of gonadal steroid hormones. These hormones, in turn, provide important feedback signals to GnRH neurons via a hormone sensitive neuronal network in the brain. In many women with PCOS this feedback pathway is impaired, resulting in the downstream consequences of the syndrome. This review will explore what is currently known from clinical and animal studies about the identity, relative contribution and significance of the individual neuronal components within the GnRH neuronal network that contribute to the pathophysiology of PCOS. We review evidence for the specific neuronal pathways hypothesised to mediate progesterone negative feedback to GnRH neurons, and discuss the potential mechanisms by which androgens may evoke disruptions in these circuits at different developmental time points. Finally, this review discusses data providing compelling support for disordered progesterone-sensitive GABAergic input to GnRH neurons, originating specifically within the arcuate nucleus in prenatal androgen induced forms of PCOS.
Collapse
Affiliation(s)
- Aleisha M Moore
- Centre for Neuroendocrinology and Department of Physiology, School of Medical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Rebecca E Campbell
- Centre for Neuroendocrinology and Department of Physiology, School of Medical Sciences, University of Otago, Dunedin 9054, New Zealand.
| |
Collapse
|
6
|
Okamura H, Tsukamura H, Ohkura S, Uenoyama Y, Wakabayashi Y, Maeda KI. Kisspeptin and GnRH pulse generation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 784:297-323. [PMID: 23550012 DOI: 10.1007/978-1-4614-6199-9_14] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The reproductive neuropeptide gonadotropin-releasing hormone (GnRH) has two modes of secretion. Besides the surge mode, which induces ovulation in females, the pulse mode of GnRH release is essential to cause various reproductive events in both sexes, such as spermatogenesis, follicular development, and sex steroid synthesis. Some environmental cues control gonadal activities through modulating GnRH pulse frequency. Researchers have looked for the anatomical location of the mechanism generating GnRH pulses, the GnRH pulse generator, in the brain, because an artificial manipulation of GnRH pulse frequency is of therapeutic importance to stimulate or suppress gonadal activity. Discoveries of kisspeptin and, consequently, KNDy (kisspeptin/neurokinin B/dynorphin) neurons in the hypothalamus have provided a clue to the possible location of the GnRH pulse generator. Our analyses of hypothalamic multiple-unit activity revealed that KNDy neurons located in the hypothalamic arcuate nucleus might play a central role in the generation of GnRH pulses in goats, and perhaps other mammalian species. This chapter further discusses the possible mechanisms for GnRH pulse generation.
Collapse
Affiliation(s)
- Hiroaki Okamura
- National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan.
| | | | | | | | | | | |
Collapse
|
7
|
Goodman RL, Holaskova I, Nestor CC, Connors JM, Billings HJ, Valent M, Lehman MN, Hileman SM. Evidence that the arcuate nucleus is an important site of progesterone negative feedback in the ewe. Endocrinology 2011; 152:3451-60. [PMID: 21693677 PMCID: PMC3159787 DOI: 10.1210/en.2011-0195] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
There is now considerable evidence that dynorphin neurons mediate the negative feedback actions of progesterone to inhibit GnRH and LH pulse frequency, but the specific neurons have yet to be identified. In ewes, dynorphin neurons in the arcuate nucleus (ARC) and preoptic area (POA) are likely candidates based on colocalization with progesterone receptors. These studies tested the hypothesis that progesterone negative feedback occurs in either the ARC or POA by determining whether microimplants of progesterone into either site would inhibit LH pulse frequency (study 1) and whether microimplants of the progesterone receptor antagonist, RU486, would disrupt the inhibitory effects of peripheral progesterone (study 2). Both studies were done in ovariectomized (OVX) and estradiol-treated OVX ewes. In study 1, no inhibitory effects of progesterone were observed during treatment in either area. In study 2, microimplants of RU486 into the ARC disrupted the negative-feedback actions of peripheral progesterone treatments on LH pulse frequency in both OVX and OVX+estradiol ewes. In contrast, microimplants of RU486 into the POA had no effect on the ability of systemic progesterone to inhibit LH pulse frequency. We thus conclude that the ARC is one important site of progesterone-negative feedback in the ewe. These data, which are the first evidence on the neural sites in which progesterone inhibits GnRH pulse frequency in any species, are consistent with the hypothesis that ARC dynorphin neurons mediate this action of progesterone.
Collapse
Affiliation(s)
- Robert L Goodman
- Department of Physiology and Pharmacology, Robert C. Byrd Health Sciences Center, Morgantown, West Virginia 26506, USA.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Sergeeva A, Jansen HT. Neuroanatomical plasticity in the gonadotropin-releasing hormone system of the ewe: seasonal variation in glutamatergic and gamma-aminobutyric acidergic afferents. J Comp Neurol 2009; 515:615-28. [PMID: 19496167 DOI: 10.1002/cne.22087] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Temperate zone animals time the onset of reproductive events to coincide with specific portions of the sidereal year. Although the neural mechanisms involved remain poorly understood, a marked annual variation in the brain's sensitivity to estradiol negative feedback is thought to mediate many of the changes in neuroendocrine hormone secretion, especially that of the gonadotropin-releasing hormone (GnRH) neurons, via neural afferents. The aim of the present study was to determine whether glutamatergic inputs to GnRH neurons in sheep vary seasonally and to expand our previous observations of seasonal changes in gamma-aminobutyric acid (GABA)-ergic inputs. Brains from adult sheep were collected during the breeding season (N = 8) or the nonbreeding season (anestrus; N = 7). Confocal microscopy and optical sectioning were used to quantify the density of labeled VGLUT2 and VGAT immunoreactivity onto GnRH neurons. The results reveal a significantly greater number of VGLUT2-ir inputs to GnRH dendrites during the breeding season vs. the nonbreeding season but no seasonal changes on GnRH cell somas. The number of VGAT-ir terminals onto GnRH dendrites was reduced in the breeding season compared with the nonbreeding season. GnRH neurons were also found to receive dual-phenotype (VGLUT + VGAT) inputs; these varied with season in a manner similar to VGAT inputs. Morphologically, the numbers of branches of proximal dendrites increased significantly in a subset of GnRH neurons located near the midline. Together these results reveal a dynamic seasonal reorganization of identified inputs onto GnRH neurons and lend additional support to the overall hypothesis that seasonal modulation of GnRH neurons involves glutamatergic and GABAergic neural plasticity.
Collapse
Affiliation(s)
- Anna Sergeeva
- Department of Veterinary and Comparative Anatomy, Pharmacology, and Physiology, Washington State University, Pullman, WA 99164-6520, USA
| | | |
Collapse
|
9
|
Richter TA, Robinson JE, Lozano JM, Evans NP. Progesterone can block the preovulatory gonadotropin-releasing hormone/luteinising hormone surge in the ewe by a direct inhibitory action on oestradiol-responsive cells within the hypothalamus. J Neuroendocrinol 2005; 17:161-9. [PMID: 15796768 DOI: 10.1111/j.1365-2826.2005.01287.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Elevated oestradiol concentrations during the follicular phase stimulate a surge in gonadotropin-releasing hormone (GnRH) and luteinising hormone (LH) concentrations, which leads to ovulation. Progesterone can block the oestradiol-induced GnRH/LH surge, but the mechanism that is involved is unclear. We examined the effect of progesterone on oestradiol-induced activation of cells within the ovine hypothalamus/preoptic area (POA) to determine: (i) in which regions progesterone acts to block the GnRH/LH surge and (ii) whether progesterone directly or indirectly prevents activation of oestradiol-responsive cells. Cellular activation was assessed by measuring the number of cells that expressed Fos (an immediate early gene). Exposure to increased oestradiol concentrations in the absence of progesterone (which normally stimulates a LH surge) did not cause any region-specific changes in hypothalamic Fos expression during the activation stage of the LH surge-induction process (Experiment 1). The same treatment significantly increased cellular activation within the POA, lateral septum (LS), and arcuate nucleus at the time of surge onset (Experiment 2). Concurrent exposure to increased oestradiol and progesterone concentrations during the activation stage of the surge-induction process (which normally blocks the LH surge) was associated with significantly reduced cellular activation within the ventromedial hypothalamus and anterior hypothalamic area, relative to the positive controls (oestradiol increment alone) and arcuate nucleus relative to the negative controls (no increment in oestradiol) during the activation stage (Experiment 1). At the time of surge onset (Experiment 2), exposure to progesterone during the activation period prevented the oestradiol-induced increase in cellular activation that occurred in the POA, LS and arcuate nucleus of the positive controls. These results demonstrated that oestradiol and progesterone induced differential region- and time-specific effects on cellular activation within the regions of the ovine brain that generate the preovulatory GnRH/LH surge. Moreover, the lack of cellular activation within the POA, LS and arcuate nucleus at the time of surge onset in animals exposed to progesterone during the activation stage is consistent with the hypothesis that progesterone can block the preovulatory surge by direct inhibition of oestradiol-induced cellular activation in these areas.
Collapse
Affiliation(s)
- T A Richter
- Laboratory of Neuroendocrinology, The Babraham Institute, Cambridge, UK
| | | | | | | |
Collapse
|
10
|
Anderson GM, Connors JM, Hardy SL, Valent M, Goodman RL. Oestradiol microimplants in the ventromedial preoptic area inhibit secretion of luteinizing hormone via dopamine neurones in anoestrous ewes. J Neuroendocrinol 2001; 13:1051-8. [PMID: 11722701 DOI: 10.1046/j.1365-2826.2001.00726.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Oestradiol exerts a season-specific negative feedback effect on the GnRH/LH neurosecretory system of the Suffolk ewe. This neuroendocrine suppression is mediated in part by dopamine A15 neurones, but these neurones do not possess the oestrogen receptor. Based on indirect evidence, we hypothesized that oestrogen receptor-containing neurones in the ventromedial preoptic area (vmPOA) may be the initial step in a neuronal system whereby oestradiol suppresses GnRH secretion during the non-breeding season. To test this, three experiments were conducted using ovariectomized ewes receiving either empty or oestradiol-containing bilateral microimplants directed at the vmPOA or s.c. subcutaneous oestradiol-containing implants. In the first experiment, LH pulse frequency was measured on days 0, 1, 7 and 14 of treatment during seasonal anoestrus. In vmPOA oestradiol and s.c. oestradiol groups only, LH pulse frequency was suppressed on days 7 and 14, with maximal suppression evident by day 7. In the second experiment, this protocol was repeated during the breeding season, with LH pulses examined on days 0 and 7; LH pulse frequency did not change in any group. The third experiment tested if the effect of vmPOA oestradiol during anoestrus could be overcome by an injection of the dopamine-D2 receptor antagonist (-)-sulpiride. The vmPOA microimplants and s.c. oestradiol implants again suppressed LH pulse frequency and this was reversed by sulpiride in vmPOA oestradiol ewes. We conclude that oestradiol acts on cells in the vmPOA to stimulate a system involving dopamine neurones that inhibits GnRH/LH pulsatility in the anoestrous ewe.
Collapse
Affiliation(s)
- G M Anderson
- Department of Physiology, West Virginia University, Morgantown, West Virginia 26506, USA
| | | | | | | | | |
Collapse
|
11
|
Gerlach T, Aurich JE. Regulation of seasonal reproductive activity in the stallion, ram and hamster. Anim Reprod Sci 2000; 58:197-213. [PMID: 10708895 DOI: 10.1016/s0378-4320(99)00093-7] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
This review considers seasonal reproduction in male animals with emphasis on the stallion, ram and hamster. The pineal hormone melatonin is the common link between photoperiod and reproduction. An increase in the daily diurnal period of melatonin secretion is associated with a decrease in GnRH release in long-day breeders, but an increase in GnRH release in short-day breeders. Melatonin influences GnRH release within or close to the mediobasal hypothalamus in rams; whereas melatonin receptors have not been found in the hypothalamus of horses. Prolactin release is positively correlated with daylength. Prolactin concentrations are consequently low during the breeding season of sheep and high during the breeding season of horses and hamsters. Prolactin stimulates testicular function in rams. Seasonal changes in GnRH release in the horse are regulated by changes in a GnRH-inhibitory opioidergic tone. Opioids are at least, in part, responsible for the decrease in testicular function during winter. An opioidergic inhibition of LH release is present during the breeding season in rams; but dopaminergic pathways inhibit LH release during long daylight hours. A dopaminergic inhibition of LH release does not exist in stallions.
Collapse
Affiliation(s)
- T Gerlach
- Institut für Tierzucht und Tierverhalten (FAL), Mariensee, 31535, Neustadt, Germany
| | | |
Collapse
|
12
|
Anderson GM, Barrell GK. Pulsatile luteinizing hormone secretion in the ovariectomized, thyroidectomized red deer hind following treatment with dopaminergic and opioidergic agonists and antagonists. Biol Reprod 1998; 59:960-8. [PMID: 9746749 DOI: 10.1095/biolreprod59.4.960] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Two experiments were conducted to determine whether dopaminergic or opioidergic pathways are modulated by thyroid gland secretions for seasonal suppression of LH secretion in red deer hinds. Ovariectomized (n = 5) or ovariectomized and thyroidectomized (n = 4) hinds, treated with estradiol implants, received the dopamine agonist bromocriptine or the antagonist sulpiride during pulse bleeds in July (breeding season) and October (nonbreeding season). Comparison of July and October mean plasma LH concentration (3.5 +/- 1.3, 0.7 +/- 0.1 ng/ml, respectively), pulse frequency (1.9 +/- 0.4, 0.7 +/- 0.2 pulses/4 h), and pulse amplitude (1.3 +/- 0.5, 0.7 +/- 0. 02 ng/ml) showed lower (p < 0.05) levels in October, and these levels were not significantly affected by thyroidectomy or drug treatment. In the absence of estradiol implants, the hinds received bromocriptine or morphine during the breeding season (July) and their antagonists, sulpiride or naloxone, respectively, in the nonbreeding season (November). In euthyroid hinds there was a seasonal decrease (p < 0.05) in mean plasma LH concentration, pulse frequency, and pulse amplitude, which did not occur in thyroidectomized hinds. There were no effects of drug treatment on LH concentration except for a small increase following sulpiride in November. Plasma prolactin concentration was significantly increased by antagonists and decreased by agonists on most occasions. We conclude that in red deer hinds, seasonal regulation of LH secretion does not involve dopamine or endogenous opioids and the thyroid gland is required specifically for LH suppression in the absence of estradiol.
Collapse
Affiliation(s)
- G M Anderson
- Animal and Food Sciences Division, Lincoln University, Canterbury, New Zealand
| | | |
Collapse
|