1
|
Andrade-Collantes E, Landeros-Rivera B, Sixto-López Y, Bello-Rios C, Contreras-García J, Tiznado JAG, Pedroza-Torres A, Camacho-Pérez B, Montaño S. Molecular insight into endosulfan degradation by Ese protein from Arthrobacter: Evidence-based structural bioinformatics and quantum mechanical calculations. Proteins 2024; 92:302-313. [PMID: 37864384 DOI: 10.1002/prot.26610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/22/2023] [Accepted: 09/25/2023] [Indexed: 10/22/2023]
Abstract
Endosulfan is an organochlorine insecticide widely used for agricultural pest control. Many nations worldwide have restricted or completely banned it due to its extreme toxicity to fish and aquatic invertebrates. Arthrobacter sp. strain KW has the ability to degrade α, β endosulfan and its intermediate metabolite endosulfate; this degradation is associated with Ese protein, a two-component flavin-dependent monooxygenase (TC-FDM). Employing in silico tools, we obtained the 3D model of Ese protein, and our results suggest that it belongs to the Luciferase Like Monooxygenase family (LLM). Docking studies showed that the residues V59, V315, D316, and T335 interact with α-endosulfan. The residues: V59, T60, V315, D316, and T335 are implicated in the interacting site with β-endosulfan, and the residues: H17, V315, D316, T335, N364, and Q363 participate in the interaction with endosulfate. Topological analysis of the electron density by means of the Quantum Theory of Atoms in Molecules (QTAIM) and the Non-Covalent Interaction (NCI) index reveals that the Ese-ligands complexes are formed mainly by dispersive forces, where Cl atoms have a predominant role. As Ese is a monooxygenase member, we predict the homodimer formation. However, enzymatic studies must be developed to investigate the Ese protein's enzymatic and catalytic activity.
Collapse
Affiliation(s)
- Ernesto Andrade-Collantes
- Laboratorio de Modelado Molecular y Bioinformática, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Sinaloa, Ciudad Universitaria s/n, Culiacán, Sinaloa, Mexico
| | - Bruno Landeros-Rivera
- CNRS, Laboratoire de Chimie Théorique, LCT, Sorbonne Université, Paris, France
- Facultad de Química, Departamento de Química Inorgánica y Nuclear, Universidad Nacional Autónoma de México, Circuito exterior S/N, Ciudad Universitaria, Ciudad de México, Mexico
| | - Yudibeth Sixto-López
- Departamento de Química Farmacéutica y Orgánica, Facultad de Farmacia, Universidad de Granada, Granada, Spain
| | - Ciresthel Bello-Rios
- Molecular Biomedicine Laboratory, Faculty of Chemical-Biological Sciences, Autonomous University of Guerrero, Guerrero, Mexico
| | | | - José Antonio Garzón Tiznado
- Laboratorio de Modelado Molecular y Bioinformática, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Sinaloa, Ciudad Universitaria s/n, Culiacán, Sinaloa, Mexico
| | - Abraham Pedroza-Torres
- Cátedra CONACyT-Clínica de Cáncer Hereditario, Instituto Nacional de Cancerología, Mexico City, Mexico
| | - Beni Camacho-Pérez
- Instituto Tecnológico y de Estudios Superiores de Occidente, Periférico Sur Manuel Gómez Morín, Tlaquepaque, Jalisco, Mexico
| | - Sarita Montaño
- Laboratorio de Modelado Molecular y Bioinformática, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Sinaloa, Ciudad Universitaria s/n, Culiacán, Sinaloa, Mexico
| |
Collapse
|
2
|
Shah M, Kolhe P, Gandhi S. Nano-assembly of multiwalled carbon nanotubes for sensitive voltammetric responses for the determination of residual levels of endosulfan. CHEMOSPHERE 2023; 321:138148. [PMID: 36804249 DOI: 10.1016/j.chemosphere.2023.138148] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 01/25/2023] [Accepted: 02/12/2023] [Indexed: 06/18/2023]
Abstract
Endosulfan (ES) is an extensively utilized agricultural pesticide in developing countries, despite its life-threatening toxic effects. In this study, we propose a sensitive detection method against endosulfan using multiwalled carbon nanotubes (MWCNT). Herein, we have conjugated endosulfan with bovine serum albumin (BSA) via zero-length conjugation method and successfully confirmed with various biophysical techniques. Endosulfan antibodies (ES-Ab) were raised in-house, fabricated on electrodes coupled with MWCNT, and optimized to achieve maximum peak current by varying the parameters such as MWCNT and antibody concentration, scan rate, temperature, pH, and response time using voltammetry. Cyclic voltammetry (CV), differential pulse voltammetry (DPV), and impedance spectroscopies (IS) were performed for electrochemical analysis. The fabricated immunosensor was also evaluated for its cross reactivity with isodrin, chlorpyrifos, and monocrotophos. The limit of detection for ES was found to be 0.184 ppt in standard buffer (range 0.001 ppt-100 ppb). Additionally, spiked ES in water, animal feed, root, and leaf extract samples were also analyzed and validated by HPLC. To summarize, the fabricated electrode can be used for successful detection of endosulfan in the agricultural sector to elude the lethal effect at large.
Collapse
Affiliation(s)
- Maitri Shah
- DBT- National Institute of Animal Biotechnology (NIAB), Hyderabad, 500032, Telangana, India
| | - Pratik Kolhe
- DBT- National Institute of Animal Biotechnology (NIAB), Hyderabad, 500032, Telangana, India
| | - Sonu Gandhi
- DBT- National Institute of Animal Biotechnology (NIAB), Hyderabad, 500032, Telangana, India.
| |
Collapse
|
3
|
Marcu D, Keyser S, Petrik L, Fuhrimann S, Maree L. Contaminants of Emerging Concern (CECs) and Male Reproductive Health: Challenging the Future with a Double-Edged Sword. TOXICS 2023; 11:330. [PMID: 37112557 PMCID: PMC10141735 DOI: 10.3390/toxics11040330] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/10/2023] [Accepted: 03/15/2023] [Indexed: 06/19/2023]
Abstract
Approximately 9% of couples are infertile, with half of these cases relating to male factors. While many cases of male infertility are associated with genetic and lifestyle factors, approximately 30% of cases are still idiopathic. Contaminants of emerging concern (CECs) denote substances identified in the environment for the first time or detected at low concentrations during water quality analysis. Since CEC production and use have increased in recent decades, CECs are now ubiquitous in surface and groundwater. CECs are increasingly observed in human tissues, and parallel reports indicate that semen quality is continuously declining, supporting the notion that CECs may play a role in infertility. This narrative review focuses on several CECs (including pesticides and pharmaceuticals) detected in the nearshore marine environment of False Bay, Cape Town, South Africa, and deliberates their potential effects on male fertility and the offspring of exposed parents, as well as the use of spermatozoa in toxicological studies. Collective findings report that chronic in vivo exposure to pesticides, including atrazine, simazine, and chlorpyrifos, is likely to be detrimental to the reproduction of many organisms, as well as to sperm performance in vitro. Similarly, exposure to pharmaceuticals such as diclofenac and naproxen impairs sperm motility both in vivo and in vitro. These contaminants are also likely to play a key role in health and disease in offspring sired by parents exposed to CECs. On the other side of the double-edged sword, we propose that due to its sensitivity to environmental conditions, spermatozoa could be used as a bioindicator in eco- and repro-toxicology studies.
Collapse
Affiliation(s)
- Daniel Marcu
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
- Comparative Spermatology Laboratory, Department of Medical Bioscience, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa;
| | - Shannen Keyser
- Comparative Spermatology Laboratory, Department of Medical Bioscience, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa;
| | - Leslie Petrik
- Environmental and Nano Sciences Group, Department of Chemistry, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
| | - Samuel Fuhrimann
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute (Swiss TPH), 4123 Allschwil, Switzerland
| | - Liana Maree
- Comparative Spermatology Laboratory, Department of Medical Bioscience, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa;
| |
Collapse
|
4
|
Wang Z, Nie Y, Yu S, Chen L, Zhang L, Zhu W, Zhou Z, Diao J. Consolidation of temperature-dependent toxicity and thermoregulatory behavior into risk assessments of insecticides under thermal scenarios: A prospective study on Eremias argus. ENVIRONMENT INTERNATIONAL 2023; 172:107742. [PMID: 36669286 DOI: 10.1016/j.envint.2023.107742] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/10/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
In this study, the temperature-dependent chemical toxicity of three insecticides and the resulting thermoregulatory (TR) behavior of the lizard Eremias argus have been consolidated into the current risk assessment framework. According to acute dermal toxicity assays, an increase of ambient temperature from 15 °C to 35 °C decreased the acute dermal toxicity of beta-cyfluthrin (BC) but increased the toxicity of chlorpyrifos (CPF). The toxicity of avermectin (AVM) did not show significant temperature-dependent responses. Based on thermal preference trials, lizards changed their body temperature via TR behavior to adaptively reduce toxicity under sub-lethal doses, which can be understood as a "self-rescue" behavior attenuating lethal effects. However, the risk quotient indicated that the effectiveness of this "self-rescue" behavior is limited. Metabolomics analysis showed that six different metabolites (i.e., creatine, glutamate, succinate, N-acetylaspartate, acetylcholine, and lactate) contributed to TR behavior changes. Biochemical assays and insecticide residue results demonstrated that the temperature-dependent toxicity of BC, CPF, and AVM affected lizards in the three aspects of biotransformation, oxidative stress, and neurometabolic interference. This work clarifies the ecotoxicological impacts of representative insecticides on reptiles from toxicological understanding to risk relevance. This knowledge may improve ecological predictions of agrochemical applications in the context of global climate change.
Collapse
Affiliation(s)
- Zikang Wang
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China
| | - Yufan Nie
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China
| | - Simin Yu
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China
| | - Li Chen
- Human Nutrition Program, Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Luyao Zhang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Wentao Zhu
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China
| | - Zhiqiang Zhou
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China
| | - Jinling Diao
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China.
| |
Collapse
|
5
|
Fingerprinting Organochlorine Groundwater Plumes Based on Non-Invasive ERT Technology at a Chemical Plant. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12062816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The refined characterization of groundwater pollution is an important prerequisite for efficient and effective remediation. A high-resolution survey of a contaminated site in a chemical pesticide factory was carried out using non-invasive geophysical sensing technology. Modern electrical resistivity tomography (ERT) technology can rapidly identify and characterize the groundwater pollution plumes of organochlorine pesticides, which was demonstrated in this study by the significantly abnormal resistivity sensing in stratums and aquifers under the raw material tanks, production, and loading areas. The results were found to be highly consistent with the ERT sensing results achieved via incorporating borehole sampling and hydrochemical analysis. With high abnormal resistivity, the range of contamination within the profile was characterized on the meter level. We also unexpectedly found new pollution and explained its source. This study confirmed that the modern refined ERT method has a high feasibility and accuracy in characterizing the spatial distribution of organochlorine pesticide plumes in groundwater.
Collapse
|
6
|
Shah ZU, Parveen S. Pesticides pollution and risk assessment of river Ganga: A review. Heliyon 2021; 7:e07726. [PMID: 34430731 PMCID: PMC8367800 DOI: 10.1016/j.heliyon.2021.e07726] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/09/2021] [Accepted: 08/03/2021] [Indexed: 11/16/2022] Open
Abstract
Pesticides consumption along with its impact on different matrices of the environment has increased over past. Monitoring and risk assessment is important to know the exact scenario of pesticide toxicity of aquatic environment. The article compiles the number of studies on different stretches of river Ganga over past years. Risk quotient (RQ) method was used for the determination of potential risk of reported pesticides. Based on general (RQm) and worst-case (RQex) DDT and aldrin in the middle stretch of river Ganga show high risk. Regular monitoring along with compartmental studies is important to assess the pesticide pollution load and persistence in the river. Because hundreds of formulations are being used in the basin for agricultural purposes, detailed analysis and bio-magnification of all the pesticides should be appreciated.
Collapse
Affiliation(s)
- Zeshan Umar Shah
- Limnology Research Laboratory, Department of Zoology, Aligarh Muslim University, Aligarh, 202002, India
| | - Saltant Parveen
- Limnology Research Laboratory, Department of Zoology, Aligarh Muslim University, Aligarh, 202002, India
| |
Collapse
|
7
|
Bakhsh H, Buledi JA, Khand NH, Junejo B, Solangi AR, Mallah A, Sherazi STH. NiO nanostructures based functional none-enzymatic electrochemical sensor for ultrasensitive determination of endosulfan in vegetables. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-00860-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
8
|
Sharma A, John P, Bhatnagar P. Fluoride and endosulfan together potentiate cytogenetic effects in Swiss albino mice bone marrow cells. Toxicol Ind Health 2020; 37:68-76. [PMID: 33325330 DOI: 10.1177/0748233720979423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this study, the cytotoxic potential of fluoride and endosulfan in combination was investigated in Swiss albino mice bone marrow cells using the chromosomal aberration (CA) and micronucleus (MN) test systems. Fluoride (25.1 mg kg-1 body weight [bw] in water) and endosulfan (1.8 mg kg-1 bw by oral intubation) were administered orally alone and in combination (fluoride 25.1 mg kg-1 bw + endosulfan 1.8 mg kg-1 bw) to male Swiss albino mice daily for 30 days. A significant (p < 0.01) increase in micronuclei (MNs) induction and decreased ratio (p < 0.01) of polychromatic to normonochromatic erythrocytes (indicators of cytotoxicity) were observed compared with saline controls when animals were given the combination of fluoride and endosulfan. A significant (p < 0.01) increase in MNs induction and no change in the polychromatic erythrocytes to erythrocyte ratio were also observed when endosulfan was given alone. CAs such as gaps, breaks, fragments, rings, exchanges, and polyploidy were recorded in the bone marrow cells. The mean percent frequency of CAs was increased (p < 0.01) in all the treated groups compared with the control saline group. In the combination group (F + E), the percent frequencies of CAs were significantly higher (13.875%) compared with those in the individual treatment groups of fluoride (4.375%) and endosulfan (6.25%). The mitotic index was calculated as percentage of dividing cells. A significant (p < 0.01) decrease in mitotic index was observed in all treated groups compared with controls. In the combination group (F + E), mitotic index was significantly less than (p < 0.01; 4.1 ± 0.49) the saline control (10.8 ± 0.98). These results indicated that repeated intake of endosulfan through various sources in fluoride affected areas resulted in increased cytotoxic effects. The greater effect in the combination group indicated additive interaction of fluoride and endosulfan in inducing cytotoxicity in Swiss albino mice.
Collapse
Affiliation(s)
- Anju Sharma
- Department of Zoology, 195703IIS University, Jaipur, Rajasthan, India
| | - Placheril John
- Environmental Toxicology Laboratory, Centre for Advanced Studies, Department of Zoology, 29780University of Rajasthan, Jaipur, Rajasthan, India
| | - Pradeep Bhatnagar
- Department of Zoology, 195703IIS University, Jaipur, Rajasthan, India
| |
Collapse
|
9
|
Milesi MM, Durando M, Lorenz V, Gastiazoro MP, Varayoud J. Postnatal exposure to endosulfan affects uterine development and fertility. Mol Cell Endocrinol 2020; 511:110855. [PMID: 32437785 DOI: 10.1016/j.mce.2020.110855] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 03/30/2020] [Accepted: 04/29/2020] [Indexed: 12/16/2022]
Abstract
Endosulfan is an organochlorine pesticide (OCP) used in large-scale agriculture for controlling a variety of insects and mites that attack food and non-food crops. Although endosulfan has been listed in the Stockholm Convention as a persistent organic pollutant to be worldwide banned, it is still in use in some countries. Like other OCPs, endosulfan is bioaccumulative, toxic and persistent in the environment. Human unintentional exposure may occur through air inhalation, dietary, skin contact, as well as, via transplacental route and breast feeding. Due to its lipophilic nature, endosulfan is rapidly absorbed into the gastrointestinal tract and bioaccumulates in the fatty tissues. Similar to other OCPs, endosulfan has been classified as an endocrine disrupting chemical (EDC). Endocrine action of endosulfan on development and reproductive function of males has been extensively discussed; however, endosulfan effects on the female reproductive tract have received less attention. This review provides an overview of: i) the fate and levels of endosulfan in the environment and human population, ii) the potential estrogenic properties of endosulfan in vitro and in vivo, iii) its effects on uterine development, and iv) the long-term effects on female fertility and uterine functional differentiation during early gestation.
Collapse
Affiliation(s)
- M M Milesi
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Casilla de Correo 242, 3000, Santa Fe, Argentina; Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL), Santa Fe, Argentina.
| | - M Durando
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Casilla de Correo 242, 3000, Santa Fe, Argentina; Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL), Santa Fe, Argentina
| | - V Lorenz
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Casilla de Correo 242, 3000, Santa Fe, Argentina
| | - M P Gastiazoro
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Casilla de Correo 242, 3000, Santa Fe, Argentina; Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL), Santa Fe, Argentina
| | - J Varayoud
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Casilla de Correo 242, 3000, Santa Fe, Argentina; Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL), Santa Fe, Argentina
| |
Collapse
|
10
|
Song C, Charli A, Luo J, Riaz Z, Jin H, Anantharam V, Kanthasamy A, Kanthasamy AG. Mechanistic Interplay Between Autophagy and Apoptotic Signaling in Endosulfan-Induced Dopaminergic Neurotoxicity: Relevance to the Adverse Outcome Pathway in Pesticide Neurotoxicity. Toxicol Sci 2020; 169:333-352. [PMID: 30796443 DOI: 10.1093/toxsci/kfz049] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Chronic exposure to pesticides is implicated in the etiopathogenesis of Parkinson's disease (PD). Previously, we showed that dieldrin induces dopaminergic neurotoxicity by activating a cascade of apoptotic signaling pathways in experimental models of PD. Here, we systematically investigated endosulfan's effect on the interplay between apoptosis and autophagy in dopaminergic neuronal cell models of PD. Exposing N27 dopaminergic neuronal cells to endosulfan rapidly induced autophagy, indicated by an increased number of autophagosomes and LC3-II accumulation. Prolonged endosulfan exposure (>9 h) triggered apoptotic signaling, including caspase-2 and -3 activation and protein kinase C delta (PKCδ) proteolytic activation, ultimately leading to cell death, thus demonstrating that autophagy precedes apoptosis during endosulfan neurotoxicity. Furthermore, inhibiting autophagy with wortmannin, a phosphoinositide 3-kinase inhibitor, potentiated endosulfan-induced apoptosis, suggesting that autophagy is an early protective response against endosulfan. Additionally, Beclin-1, a major regulator of autophagy, was cleaved during the initiation of apoptotic cell death, and the cleavage was predominantly mediated by caspase-2. Also, caspase-2 and caspase-3 inhibitors effectively blocked endosulfan-induced apoptotic cell death. CRISPR/Cas9-based stable knockdown of PKCδ significantly attenuated endosulfan-induced caspase-3 activation, indicating that the kinase serves as a regulatory switch for apoptosis. Additional studies in primary mesencephalic neuronal cultures confirmed endosulfan's effect on autophagy and neuronal degeneration. Collectively, our results demonstrate that a functional interplay between autophagy and apoptosis dictate pesticide-induced neurodegenerative processes in dopaminergic neuronal cells. Our study provides insight into cell death mechanisms in environmentally linked neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Adhithiya Charli
- Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, Iowa 50011
| | - Jie Luo
- Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, Iowa 50011
| | - Zainab Riaz
- Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, Iowa 50011
| | - Huajun Jin
- Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, Iowa 50011
| | - Vellareddy Anantharam
- Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, Iowa 50011
| | - Arthi Kanthasamy
- Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, Iowa 50011
| | - Anumantha G Kanthasamy
- Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, Iowa 50011
| |
Collapse
|
11
|
Murali M, Carvalho MS, Shivanandappa T. Oxidative stress-mediated cytotoxicity of Endosulfan is causally linked to the inhibition of NADH dehydrogenase and Na+, K+-ATPase in Ehrlich ascites tumor cells. Mol Cell Biochem 2020; 468:59-68. [DOI: 10.1007/s11010-020-03711-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/06/2020] [Indexed: 02/06/2023]
|
12
|
Sharma RK, Singh P, Setia A, Sharma AK. Insecticides and ovarian functions. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2020; 61:369-392. [PMID: 31916619 DOI: 10.1002/em.22355] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 12/10/2019] [Accepted: 01/03/2020] [Indexed: 06/10/2023]
Abstract
Insecticides, a heterogeneous group of chemicals, are widely used in agriculture and household practices to avoid insect-inflicted damage. Extensive use of insecticides has contributed substantially to agricultural production and the prevention of deadly diseases by destroying their vectors. On the contrary, many of the insecticides are associated with several adverse health effects like neurological and psychological diseases, metabolic disorders, hormonal imbalance, and even cancer in non-target species, including humans. Reproduction, a very selective process that ensures the continuity of species, is affected to a greater extent by the rampant use of insecticides. In females, exposure to insecticides leads to reproductive incapacitation primarily through disturbances in ovarian physiology. Disturbed ovarian activities encompass the alterations in hormone synthesis, follicular maturation, ovulation process, and ovarian cycle, which eventually lead to decline in fertility, prolonged time-to-conceive, spontaneous abortion, stillbirths, and developmental defects. Insecticide-induced ovarian toxicity is effectuated by endocrine disruption and oxidative stress. Oxidative stress, which occurs due to suppression of antioxidant defense system, and upsurge of reactive oxygen and nitrogen species, potentiates DNA damage and expression of apoptotic and inflammatory markers. Insecticide exposure, in part, is responsible for ovarian malfunctioning through disruption of hypothalamic-pituitary-gonadal axis. The current article is focused on the adverse effects of insecticides on ovarian functioning, and consequently, on the reproductive efficacy of females. The possible strategies to combat insecticide-induced toxicity are also discussed in the latter part of this review. Environ. Mol. Mutagen. 61:369-392, 2020. © 2020 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Rajnesh Kumar Sharma
- Reproductive Physiology Laboratory, Department of Zoology, Kurukshetra University, Kurukshetra, India
| | - Priyanka Singh
- Reproductive Physiology Laboratory, Department of Zoology, Kurukshetra University, Kurukshetra, India
| | - Aarzoo Setia
- Reproductive Physiology Laboratory, Department of Zoology, Kurukshetra University, Kurukshetra, India
| | - Aman Kumar Sharma
- Reproductive Physiology Laboratory, Department of Zoology, Kurukshetra University, Kurukshetra, India
| |
Collapse
|
13
|
Potential Health Risks Linked to Emerging Contaminants in Major Rivers and Treated Waters. WATER 2019. [DOI: 10.3390/w11122615] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The presence of endocrine-disrupting chemicals (EDCs) in our local waterways is becoming an increasing threat to the surrounding population. These compounds and their degradation products (found in pesticides, herbicides, and plastic waste) are known to interfere with a range of biological functions from reproduction to differentiation. To better understand these effects, we used an in silico ontological pathway analysis to identify the genes affected by the most commonly detected EDCs in large river water supplies, which we grouped together based on four common functions: Organismal injuries, cell death, cancer, and behavior. In addition to EDCs, we included the opioid buprenorphine in our study, as this similar ecological threat has become increasingly detected in river water supplies. Through the identification of the pleiotropic biological effects associated with both the acute and chronic exposure to EDCs and opioids in local water supplies, our results highlight a serious health threat worthy of additional investigations with a potential emphasis on the effects linked to increased DNA damage.
Collapse
|
14
|
Schweizer M, Miksch L, Köhler HR, Triebskorn R. Does Bti (Bacillus thuringiensis var. israelensis) affect Rana temporaria tadpoles? ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 181:121-129. [PMID: 31176246 DOI: 10.1016/j.ecoenv.2019.05.080] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/21/2019] [Accepted: 05/30/2019] [Indexed: 06/09/2023]
Abstract
Biocides based on toxins of Bacillus thuringiensis var. israelensis (Bti) are established as alternatives to conventional chemical insecticides for mosquito control all across the globe since they are regarded ecologically compatible and harmless to non-target species. Since recent studies on amphibian larvae have called this opinion into question, we exposed Rana temporaria tadpoles to single (1 mg/L), tenfold (10 mg/L) and hundredfold (100 mg/L) field concentrations of VectoBac® WG (a water dispersible granule Bti formulation) in the laboratory for eleven days to investigate whether larvae were adversely affected by Bti and its endotoxin proteins. In addition to a negative (water) control, a positive control based on organic rice protein (50 mg/L) was run to check for the nutritional relevance of Bti proteins. There was no Bti-related mortality and a histopathological analysis of tadpole intestines revealed no adverse effects. Analyses of biomarkers for proteotoxicity (stress protein family, Hsp70) and neurotoxicity or metabolic action (b-esterases acetylcholine esterase (AChE) and carboxylesterases) revealed no significant differences between Bti treatments and the negative control. The responses of tadpoles in the protein-supplemented positive control differed from those of the negative control and the Bti treatments. Tadpoles in the positive control had reduced body mass and elevated AChE activity.
Collapse
Affiliation(s)
- Mona Schweizer
- Animal Physiological Ecology, Eberhard Karls University of Tübingen, Auf der Morgenstelle 5, 72076, Tübingen, Germany.
| | - Lukas Miksch
- Animal Physiological Ecology, Eberhard Karls University of Tübingen, Auf der Morgenstelle 5, 72076, Tübingen, Germany
| | - Heinz-R Köhler
- Animal Physiological Ecology, Eberhard Karls University of Tübingen, Auf der Morgenstelle 5, 72076, Tübingen, Germany
| | - Rita Triebskorn
- Animal Physiological Ecology, Eberhard Karls University of Tübingen, Auf der Morgenstelle 5, 72076, Tübingen, Germany; Steinbeis Transfer-Center for Ecotoxicology and Ecophysiology, Blumenstr. 13, 72108, Rottenburg am Neckar, Germany
| |
Collapse
|
15
|
Hussein MMA, Elsadaawy HA, El-Murr A, Ahmed MM, Bedawy AM, Tukur HA, Swelum AAA, Saadeldin IM. Endosulfan toxicity in Nile tilapia (Oreochromis niloticus) and the use of lycopene as an ameliorative agent. Comp Biochem Physiol C Toxicol Pharmacol 2019; 224:108573. [PMID: 31306802 DOI: 10.1016/j.cbpc.2019.108573] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/08/2019] [Accepted: 07/09/2019] [Indexed: 12/14/2022]
Abstract
OBJECTIVES Endosulfan is a broad-spectrum organochlorine insecticide that has been commercially in use for decades to control insect pests and has been found to pollute the aquatic environment. The current study was carried out to investigate the toxic effects of endosulfan, an organochlorine pesticide, on Nile tilapia (Oreochromis niloticus), a freshwater fish, and the alleviating effects of lycopene on the induced toxicity. METHODS Four treatment groups of fish were investigated (3 replicates of 15 fish for each group): (1) a control group, (2) a group exposed to endosulfan, (3) a group that was fed on a basal diet supplemented with lycopene, and (4) a group that was fed on a basal diet supplemented with lycopene and exposed to endosulfan. The experiment was carried out over a 4-week period. RESULTS Endosulfan negatively affected liver function, including liver enzymes and plasma proteins. Endosulfan affected blood parameters of fish and reduced the counts of red blood cells (RBCs) and white blood cells (WBCs), as well as affected immunological parameters. Endosulfan caused oxidative stress, as it decreased the values of antioxidants catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPX), and glutathione (GSH), and increased the level of lipid peroxide malondialdehyde (MDA). Additionally, endosulfan increased cytochrome P450 (CYP450) levels, while it decreased glutathione S-transferase (GST) mRNA transcript levels and distorted the normal histological structure of the liver, gills, and spleen of affected fish. Conversely, lycopene partially restored the aforementioned parameters when administered concomitantly with endosulfan. CONCLUSION The results showed the beneficial effects of supplementing fish diets with lycopene as a natural antioxidant for ameliorating the toxicity caused by endosulfan.
Collapse
Affiliation(s)
- Mohamed M A Hussein
- Department of Biochemistry, Faculty of Veterinary Medicine, Zagazig University, 44519 Zagazig, Egypt.
| | - Hamad A Elsadaawy
- Department of Biochemistry, Faculty of Veterinary Medicine, Zagazig University, 44519 Zagazig, Egypt
| | - Abdelhakeem El-Murr
- Department of Fish Diseases and Management, Faculty of Veterinary Medicine, Zagazig University, 44519 Zagazig, Egypt
| | - Mona M Ahmed
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, 44519 Zagazig, Egypt
| | - Aya M Bedawy
- Department of Biochemistry, Faculty of Veterinary Medicine, Zagazig University, 44519 Zagazig, Egypt
| | - Hammed A Tukur
- Department of Animal Production, College of Food and Agricultural Sciences, King Saud University, 11451 Riyadh, Saudi Arabia
| | - Ayman Abdel-Aziz Swelum
- Department of Animal Production, College of Food and Agricultural Sciences, King Saud University, 11451 Riyadh, Saudi Arabia; Department of Theriogenology, Faculty of Veterinary Medicine, Zagazig University, 44519 Zagazig, Egypt
| | - Islam M Saadeldin
- Department of Animal Production, College of Food and Agricultural Sciences, King Saud University, 11451 Riyadh, Saudi Arabia; Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, 44519 Zagazig, Egypt.
| |
Collapse
|
16
|
Alarcón R, Varayoud J, Luque EH, Milesi MM. Effect of neonatal exposure to endosulfan on myometrial adaptation during early pregnancy and labor in rats. Mol Cell Endocrinol 2019; 491:110435. [PMID: 31029737 DOI: 10.1016/j.mce.2019.04.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/13/2019] [Accepted: 04/22/2019] [Indexed: 12/28/2022]
Abstract
Proper myometrial adaptation during gestation is crucial for embryo implantation, pregnancy maintenance and parturition. Previously, we reported that neonatal exposure to endosulfan alters uterine development and induces implantation failures. The present work investigates the effects of endosulfan exposure on myometrial differentiation at the pre-implantation period, and myometrial activation during labor. Newborn female rats were s.c. injected with corn oil (vehicle) or 600 μg/kg/day of endosulfan (Endo600) on postnatal days (PND) 1, 3, 5 and 7. On PND90, the rats were mated to evaluate: i) the myometrial differentiation on gestational day 5 (GD5, pre-implantation period), by assessment myometrial histomorphology, smooth muscle cells (SMCs) proliferation, and expression of proteins involved in myometrial adaptation for embryo implantation (steroid receptors, Wnt7a and Hoxa10); ii) the timing of parturition and myometrial activation during labor by determining the uterine expression of contraction-associated genes (oxytocin receptor, OTXR; prostaglandin F2α receptor, PTGFR and connexin-43, Cx-43). Endosulfan decreased the thickness of both myometrial layers, with a concomitant decrease in the collagen remodeling. Blood vessels relative area in the interstitial connective tissue between muscle layers was also decreased. Endo600 group showed lower myometrial proliferation in association with a downregulation of Wnt7a and Hoxa10. Although in all females labor occurred on GD23, the exposure to endosulfan altered the timing of parturition, by inducing advancement in the initiation of labor. This alteration was associated with an increased uterine expression of OTXR, PTGFR and Cx-43. In conclusion, neonatal exposure to endosulfan produced long-term effects affecting myometrial adaptation during early pregnancy and labor. These alterations could be associated with the aberrant effects of endosulfan on the implantation process and the timing of parturition.
Collapse
Affiliation(s)
- Ramiro Alarcón
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Jorgelina Varayoud
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Enrique H Luque
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - María M Milesi
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina.
| |
Collapse
|
17
|
Le Goff G, Damiens D, Ruttee AH, Payet L, Lebon C, Dehecq JS, Gouagna LC. Field evaluation of seasonal trends in relative population sizes and dispersal pattern of Aedes albopictus males in support of the design of a sterile male release strategy. Parasit Vectors 2019; 12:81. [PMID: 30755268 PMCID: PMC6371565 DOI: 10.1186/s13071-019-3329-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 01/29/2019] [Indexed: 01/25/2023] Open
Abstract
Background To develop an efficient sterile insect technique (SIT) programme, the number of sterile males to release, along with the spatial and temporal pattern of their release, has to be determined. Such parameters could be estimated from a reliable estimation of the wild population density (and its temporal variation) in the area to treat. Here, a series of mark-release-recapture experiments using laboratory-reared and field-derived Aedes albopictus males were carried out in Duparc, a selected pilot site for the future application of SIT in the north of La Reunion Island. Methods The dispersal, longevity of marked males and seasonal fluctuations in the population size of native mosquitoes were determined from the ratio of marked to unmarked males caught in mice-baited BG-Sentinel traps. The study was conducted during periods of declining population abundance (April), lowest abundance (September) and highest abundance (December). Results According to data collected in the first 4 days post-release, the Lincoln index estimated population size as quite variable, ranging from 5817 in April, to 639 in September and 5915 in December. Calculations of daily survival probability to 4 days after release for field and laboratory males were 0.91 and 0.98 in April, respectively, and 0.88 and 0.84 in September, respectively. The mean distance travelled (MDT) of released field males were 46 m, 67 m and 37 m for December, April and September experiments, respectively. For released laboratory males, the MDT was 65 m and 42 m in April and September, respectively. Conclusions Theoretically, the most efficient release programme should be started in July/August when the mosquito population size is the lowest (c.600 wild males/ha relative to 5000 wild males estimated for December and April), with a weekly release of 6000 males/ha. The limited dispersal of Ae. albopictus males highlights the nessecity for the widespread release of sterile males over multiple sites and in a field setting to avoid topographical barriers and anthropogenic features that may block the migration of the released sterile male mosquitoes. Electronic supplementary material The online version of this article (10.1186/s13071-019-3329-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gilbert Le Goff
- Institut de Recherche pour le Développement (IRD), UMR MIVEGEC (CNRS/IRD/UM): Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle, Montpellier, France.,IRD Réunion/GIP CYROI (Recherche Santé Bio-innovation), Sainte Clotilde, Reunion Island, France
| | - David Damiens
- Institut de Recherche pour le Développement (IRD), UMR MIVEGEC (CNRS/IRD/UM): Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle, Montpellier, France. .,IRD Réunion/GIP CYROI (Recherche Santé Bio-innovation), Sainte Clotilde, Reunion Island, France.
| | - Abdoul-Hamid Ruttee
- Service de lutte anti vectorielle, Agence Régionale de Santé-Océan Indien (ARS-OI), Saint-Denis, Reunion Island, France
| | - Laurent Payet
- Service de lutte anti vectorielle, Agence Régionale de Santé-Océan Indien (ARS-OI), Saint-Denis, Reunion Island, France
| | - Cyrille Lebon
- IRD Réunion/GIP CYROI (Recherche Santé Bio-innovation), Sainte Clotilde, Reunion Island, France
| | - Jean-Sébastien Dehecq
- Service de lutte anti vectorielle, Agence Régionale de Santé-Océan Indien (ARS-OI), Saint-Denis, Reunion Island, France
| | - Louis-Clément Gouagna
- Institut de Recherche pour le Développement (IRD), UMR MIVEGEC (CNRS/IRD/UM): Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle, Montpellier, France.,IRD Réunion/GIP CYROI (Recherche Santé Bio-innovation), Sainte Clotilde, Reunion Island, France
| |
Collapse
|
18
|
Narayana Kurup JK, Mohanty SP. Congenital scoliosis: an anomalous association with endosulfan. BMJ Case Rep 2017; 2017:bcr-2017-220803. [PMID: 29246930 DOI: 10.1136/bcr-2017-220803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Endosulfan is an organochlorine pesticide that is used extensively across the world to kill insects. Incidence of acute and chronic toxicity with endosulfan poisoning has been reported, and nearly 80 countries have banned its use. However, it is still being used in many low-income/middle-income countries. One of the most severe tragedies because of endosulfan poisoning has taken place in the Indian state of Kerala due to persistent aerial spraying of endosulfan. Even though there are reports of skeletal and other congenital abnormalities in humans and experimental animals following exposure to endosulfan, very few have been documented. We report two cases of congenital scoliosis in siblings living in a community affected by high levels of endosulfan in the environment. High index of suspicion is essential during the screening of school children exposed to endosulfan. Congenital scoliosis is a progressive deformity that leads to severe disability, unless detected and corrected at an early stage.
Collapse
Affiliation(s)
| | - Simanchal P Mohanty
- Department of Orthopaedics, Kasturba Medical College, Manipal University, Manipal, India
| |
Collapse
|
19
|
Kumari U, Singh R, Mazumder S. Chronic endosulfan exposure impairs immune response rendering Clarias gariepinus susceptible to microbial infection. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 191:42-49. [PMID: 28783490 DOI: 10.1016/j.aquatox.2017.07.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 07/23/2017] [Accepted: 07/30/2017] [Indexed: 06/07/2023]
Abstract
Endosulfan, a persistent organochlorine insecticide affects several off-target organisms including fish though the underlying mechanisms remain obscure. In the present study, we monitored the effect of chronic endosulfan exposure on headkidney (HK), an important immune organ in fish and on fish immune system thereof. Clarias gariepinus were exposed to a non-lethal concentration of endosulfan 2.884ppb (1/10th LC50) for 30 d which resulted in suppressed phagocytosis and bactericidal potential of headkidney macrophages (HKM). The same non-lethal concentration of endosulfan also interfered with T-cell proliferation and serum antibody titer in fish. Endosulfan-exposed fish were challenged with non-lethal dose of fish pathogenic bacteria Aeromonas hydrophila and the 'exposure-challenge' study revealed endosulfan-exposed C. gariepinus severely immunocompromised and prone to bacterial infections. Depuration for 30 d suggested that except for phagocytosis and serum agglutination titer other endosulfan-induced immune aberrations could not be restored significantly. Nonetheless, compared to exposed-challenged fish the depurated fish showed significant improvement in viability on challenge with A. hydrophila. Collectively, these findings suggest chronic endosulfan exposure has prolonged effect on fish making them prone to microbial infections.
Collapse
Affiliation(s)
- Usha Kumari
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi 110 007, India
| | - Rashmi Singh
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi 110 007, India
| | - Shibnath Mazumder
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi 110 007, India.
| |
Collapse
|
20
|
Kumari U, Srivastava N, Shelly A, Khatri P, N S, Singh DK, Mazumder S. Inducible headkidney cytochrome P450 contributes to endosulfan immunotoxicity in walking catfish Clarias gariepinus. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 179:44-54. [PMID: 27567944 DOI: 10.1016/j.aquatox.2016.08.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Revised: 07/06/2016] [Accepted: 08/13/2016] [Indexed: 06/06/2023]
Abstract
The effect of endosulfan metabolites on fish immune system is not well known. It is also not clear whether endosulfan accumulates in fish immune organs and undergoes metabolic biotransformation in situ. In the present study we investigated the role of headkidney (HK), an important fish immune organ on endosulfan metabolism and the long term effects of endosulfan metabolites on the fish immune system. C. gariepinus (walking catfish) were exposed to 2.884ppb of endosulfan (1/10th LC50) for 30d followed by their maintenance in endosulfan-free water for 30d for recovery. Endosulfan induced time-dependent reduction in the HK somatic index and histo-pathological changes in renal and hemopoietic components of the organ. At cellular level, exposure to endosulfan led to death of HK leucocytes. Gas-liquid-chromatography documented the presence of both α- and β-isomers of endosulfan along with the toxic metabolite endosulfan sulfate (ESS) in the HK of exposed fishes. We report that β-endosulfan accumulates more readily in the HK. Depuration studies suggested the persistence of ESS in the HK. Enzyme-immunoassay and qPCR results demonstrated direct relationship between cytochrome P450 1A (CYP1A) expression and ESS levels in the HK. Pre-treatment of HKL with CYP1A specific inhibitor α-Naphthoflavone (ANF) led to reduction in CYP1A mRNA, protein levels, and inhibited ESS formation together implicating the role of CYP1A on endosulfan metabolism. When the exposed fish were transferred to endosulfan-free water ('recovered fish') it was observed that after 30d of recovery period the concentration of endosulfan and its metabolite in the HK were significantly reduced, compared to 30-d exposed fish. We also observed improvement in HK histo-architecture but no significant recovery in HKL number and viability. Collectively, our findings suggest that HK plays an important role in endosulfan metabolism. We propose that endosulfan induces the activation of CYP1A in HK which led to the generation of persistent metabolite, ESS, resulting in immunotoxicity.
Collapse
Affiliation(s)
- Usha Kumari
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi 110 007, India
| | - Nidhi Srivastava
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi 110 007, India
| | - Asha Shelly
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi 110 007, India
| | - Preeti Khatri
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi 110 007, India
| | - Sarat N
- Pesticide Toxicology and Soil Microbial Ecology Laboratory, Department of Zoology, University of Delhi, Delhi 110 007, India
| | - Dileep Kumar Singh
- Pesticide Toxicology and Soil Microbial Ecology Laboratory, Department of Zoology, University of Delhi, Delhi 110 007, India
| | - Shibnath Mazumder
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi 110 007, India.
| |
Collapse
|
21
|
Liu J, Lincoln T, An J, Gao Z, Dang Z, Pan W, Li Y. The Joint Toxicity of Different Temperature Coefficient Insecticides on Apolygus lucorum (Hemiptera: Miridae). JOURNAL OF ECONOMIC ENTOMOLOGY 2016; 109:1846-1852. [PMID: 27190041 DOI: 10.1093/jee/tow082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 03/27/2016] [Indexed: 06/05/2023]
Abstract
The effect of temperature on the cotoxicity coefficient (CTC) value was used to evaluate mixture efficacy of different temperature coefficient chemicals from 15 to 35°C by exposing third-instar Apolygus lucorum (Meyer-Dür) to dip-treated asparagus bean pods. The results indicated the joint toxicity of same temperature coefficient insecticide (TCI) types were unaffected by temperature. This means that even when temperatures change, the mixture ratios of the highest CTC values remained the same, and the effect of temperature on the joint toxicity of same TCI types was only on the CTC values. However, the effect of temperature was variable when considering the joint toxicity of different TCI types. The effect of temperature on the joint toxicity of both strong positive and strong negative TCI types was clear, and the highest CTC values of mixture ratios changed with temperature regularly. When comparing the influence of temperature between strong/slight positive/negative insecticides, the results indicated a greater influence of the strong TCI. Paradoxically, the highest CTC value of the imidacloprid and methomyl mixture did not change with temperature changes consistently, even with the variance of imidacloprid ratios, a strong TCI. These results will guide pest managers in choosing the most effective insecticide mixtures for A. lucorum control under given environmental conditions.
Collapse
Affiliation(s)
- Jia Liu
- Plant Protection Institute, Hebei Academy of Agricultural and Forestry Sciences/ IPM Center of Hebei Province/ Key Laboratory of Integrated Pest Management on Crops in Northern Region of North China, Ministry of Agriculture, Baoding 07100, China (; ; ; ; ; )
| | - Tamra Lincoln
- USDA ARS BCIRL, 1503 S. Providence, Research Pk., Columbia, MO , and
| | - Jingjie An
- Plant Protection Institute, Hebei Academy of Agricultural and Forestry Sciences/ IPM Center of Hebei Province/ Key Laboratory of Integrated Pest Management on Crops in Northern Region of North China, Ministry of Agriculture, Baoding 07100, China (; ; ; ; ; )
| | - Zhanlin Gao
- Plant Protection Institute, Hebei Academy of Agricultural and Forestry Sciences/ IPM Center of Hebei Province/ Key Laboratory of Integrated Pest Management on Crops in Northern Region of North China, Ministry of Agriculture, Baoding 07100, China (; ; ; ; ; )
| | - Zhihong Dang
- Plant Protection Institute, Hebei Academy of Agricultural and Forestry Sciences/ IPM Center of Hebei Province/ Key Laboratory of Integrated Pest Management on Crops in Northern Region of North China, Ministry of Agriculture, Baoding 07100, China (; ; ; ; ; )
| | - Wenliang Pan
- Plant Protection Institute, Hebei Academy of Agricultural and Forestry Sciences/ IPM Center of Hebei Province/ Key Laboratory of Integrated Pest Management on Crops in Northern Region of North China, Ministry of Agriculture, Baoding 07100, China (; ; ; ; ; )
| | - Yaofa Li
- Plant Protection Institute, Hebei Academy of Agricultural and Forestry Sciences/ IPM Center of Hebei Province/ Key Laboratory of Integrated Pest Management on Crops in Northern Region of North China, Ministry of Agriculture, Baoding 07100, China (; ; ; ; ; ),
| |
Collapse
|
22
|
Asghari MH, Moloudizargari M, Bahadar H, Abdollahi M. A review of the protective effect of melatonin in pesticide-induced toxicity. Expert Opin Drug Metab Toxicol 2016; 13:545-554. [DOI: 10.1080/17425255.2016.1214712] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
Affiliation(s)
- Mohammad Hossein Asghari
- Department of Pharmacology, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Milad Moloudizargari
- Young Researchers and Elite Club, Urmia Branch, Islamic Azad University, Urmia, Iran
| | - Haji Bahadar
- Department of Pharmacy, Kohat University of Science and Technology, Kohat, Pakistan
| | - Mohammad Abdollahi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
23
|
Ketyam B, Imsilp K, Poapolathep A, Poapolathep S, Jermnak U, Phaochoosak N, Tanhan P. Health risk associated with the consumption of duck egg containing endosulfan residues. ENVIRONMENTAL MONITORING AND ASSESSMENT 2016; 188:270. [PMID: 27052347 DOI: 10.1007/s10661-016-5268-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 03/29/2016] [Indexed: 05/16/2023]
Abstract
Eight duck farms and a local market in Suphanburi province, Thailand adjacent to paddy fields were selected for this study. The concentrations of endosulfan isomers (α- and β-endosulfan) and endosulfan sulfate in environmental matrices (water, soil, feed) and duck eggs were determined. Human health risk via the contaminated egg consumption was also evaluated. Analysis of environmental matrices found both endosulfan isomers (α- and β-endosulfan) and endosulfan sulfate in most samples. Endosulfan sulfate was predominantly found in all matrices followed by β- and α-endosulfan, respectively. The total endosulfan concentrations were in the following order: feed > soil > water. However, the levels of endosulfan detected were lower than the regulatory maximum residue limit of endosulfan, except in water (>0.200 ng mL(-1)). Endosulfan sulfate in duck egg samples was also predominantly detected in both yolk and albumin. The average total endosulfan residues (∑endosulfan) in yolk (6.73 ng g(-1)) were higher than in albumin (4.78 ng g(-1)). According to principle component analysis, we found that paddy soil surrounding the duck farms is the suspected source of endosulfan contamination in husbandry water which subsequently contaminates duck eggs. The estimated daily intakes (EDIs) of these endosulfan-contaminated eggs were well below the acceptable daily intake (ADI) for endosulfan (6 μg kg(-1) day(-1)). However, the consumption of this contaminated duck eggs should be of concerns in regard to chronic exposure. Therefore, the better environmental managements to reduce endosulfan residues can play a crucial role for decreasing human health risk.
Collapse
Affiliation(s)
- Butsayanan Ketyam
- Department of Pharmacology, Faculty of Veterinary Medicine, Kasetsart University, 50 Ngamwongwan Road, Chatuchak, Bangkok, 10900, Thailand
| | - Kanjana Imsilp
- Department of Pharmacology, Faculty of Veterinary Medicine, Kasetsart University, 50 Ngamwongwan Road, Chatuchak, Bangkok, 10900, Thailand
| | - Amnart Poapolathep
- Department of Pharmacology, Faculty of Veterinary Medicine, Kasetsart University, 50 Ngamwongwan Road, Chatuchak, Bangkok, 10900, Thailand
| | - Saranya Poapolathep
- Department of Pharmacology, Faculty of Veterinary Medicine, Kasetsart University, 50 Ngamwongwan Road, Chatuchak, Bangkok, 10900, Thailand
| | - Usuma Jermnak
- Department of Pharmacology, Faculty of Veterinary Medicine, Kasetsart University, 50 Ngamwongwan Road, Chatuchak, Bangkok, 10900, Thailand
| | - Napasorn Phaochoosak
- Department of Pharmacology, Faculty of Veterinary Medicine, Kasetsart University, 50 Ngamwongwan Road, Chatuchak, Bangkok, 10900, Thailand
| | - Phanwimol Tanhan
- Department of Pharmacology, Faculty of Veterinary Medicine, Kasetsart University, 50 Ngamwongwan Road, Chatuchak, Bangkok, 10900, Thailand.
| |
Collapse
|
24
|
Ingaramo PI, Milesi MM, Schimpf MG, Ramos JG, Vigezzi L, Muñoz-de-Toro M, Luque EH, Varayoud J. Endosulfan affects uterine development and functional differentiation by disrupting Wnt7a and β-catenin expression in rats. Mol Cell Endocrinol 2016; 425:37-47. [PMID: 26911934 DOI: 10.1016/j.mce.2016.02.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 02/12/2016] [Accepted: 02/12/2016] [Indexed: 12/23/2022]
Abstract
Neonatal exposure to a low dose of endosulfan may disrupt the expression of Wnt7a and β-catenin during uterine development leading to the failure of uterine functional differentiation during implantation. New-born female Wistar rats were treated with vehicle, endosulfan (600 μg/kg/d, E600) or diethylstilbestrol (0.2 μg/kg/d, DES) on postnatal days (PNDs) 1, 3, 5 and 7. Subsequently, uterine histomorphology and the protein expression of Wnt7a and β-catenin were evaluated on PND8, PND21 and gestational day (GD) 5 (pre-implantation period). In the E600 rats, Wnt7a and β-catenin protein expression was increased in the epithelium on PND8, and Wnt7a expression was decreased in the endometrial glands on PND21. On GD5, the number of uterine glands was decreased in the E600-and DES-treated rats. In addition, Wnt7a expression was decreased in all uterine compartments, and β-catenin expression was increased in the luminal and glandular epithelia of the E600-and DES-treated rats. Disruption of Wnt7a and β-catenin uterine expression in the prepubertal and adult females altered the uterine preparation for embryo implantation, which could be associated with the subfertility triggered by endosulfan.
Collapse
Affiliation(s)
- Paola I Ingaramo
- Instituto de Salud y Ambiente Del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional Del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas, Santa Fe, Argentina
| | - María M Milesi
- Instituto de Salud y Ambiente Del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional Del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas, Santa Fe, Argentina
| | - Marlise Guerrero Schimpf
- Instituto de Salud y Ambiente Del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional Del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas, Santa Fe, Argentina
| | - Jorge G Ramos
- Instituto de Salud y Ambiente Del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional Del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas, Santa Fe, Argentina
| | - Lucía Vigezzi
- Instituto de Salud y Ambiente Del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional Del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas, Santa Fe, Argentina
| | - Mónica Muñoz-de-Toro
- Instituto de Salud y Ambiente Del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional Del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas, Santa Fe, Argentina
| | - Enrique H Luque
- Instituto de Salud y Ambiente Del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional Del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas, Santa Fe, Argentina
| | - Jorgelina Varayoud
- Instituto de Salud y Ambiente Del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional Del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas, Santa Fe, Argentina.
| |
Collapse
|
25
|
Dewer Y, Pottier MA, Lalouette L, Maria A, Dacher M, Belzunces LP, Kairo G, Renault D, Maibeche M, Siaussat D. Behavioral and metabolic effects of sublethal doses of two insecticides, chlorpyrifos and methomyl, in the Egyptian cotton leafworm, Spodoptera littoralis (Boisduval) (Lepidoptera: Noctuidae). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:3086-3096. [PMID: 26566611 DOI: 10.1007/s11356-015-5710-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 10/27/2015] [Indexed: 06/05/2023]
Abstract
Insecticides have long been used as the main method in limiting agricultural pests, but their widespread use has resulted in environmental pollution, development of resistances, and biodiversity reduction. The effects of insecticides at low residual doses on both the targeted crop pest species and beneficial insects have become a major concern. In particular, these low doses can induce unexpected positive (hormetic) effects on pest insects, such as surges in population growth exceeding what would have been observed without pesticide application. Methomyl and chlorpyrifos are two insecticides commonly used to control the population levels of the cotton leafworm Spodoptera littoralis, a major pest moth. The aim of the present study was to examine the effects of sublethal doses of these two pesticides, known to present a residual activity and persistence in the environment, on the moth physiology. Using a metabolomic approach, we showed that sublethal doses of methomyl and chlorpyrifos have a systemic effect on the treated insects. We also demonstrated a behavioral disruption of S. littoralis larvae exposed to sublethal doses of methomyl, whereas no effects were observed for the same doses of chlorpyrifos. Interestingly, we highlighted that sublethal doses of both pesticides did not induce a change in acetylcholinesterase activity in head of exposed larvae.
Collapse
Affiliation(s)
- Youssef Dewer
- Bioassay Research Department, Central Agricultural Pesticides Laboratory (CAPL), Sabahia Research Station, Agricultural Research Center (ARC), Sabahia, Baccous, P.O. Box 21616, Alexandria, Egypt
| | - Marie-Anne Pottier
- Institute of Ecology and Environmental Sciences of Paris (iEES Paris) - Sensory Ecology Department - UMR UPMC 113, CNRS, IRD, INRA, PARIS 7, Sorbonne Universités, UPMC Univ Paris 06, UPEC - 7 Quai Saint Bernard, F-75005, Paris, France
| | - Lisa Lalouette
- Institute of Ecology and Environmental Sciences of Paris (iEES Paris) - Sensory Ecology Department - UMR UPMC 113, CNRS, IRD, INRA, PARIS 7, Sorbonne Universités, UPMC Univ Paris 06, UPEC - 7 Quai Saint Bernard, F-75005, Paris, France
| | - Annick Maria
- Institute of Ecology and Environmental Sciences of Paris (iEES Paris) - Sensory Ecology Department - UMR UPMC 113, CNRS, IRD, INRA, PARIS 7, Sorbonne Universités, UPMC Univ Paris 06, UPEC - 7 Quai Saint Bernard, F-75005, Paris, France
| | - Matthieu Dacher
- Institute of Ecology and Environmental Sciences of Paris (iEES Paris) - Sensory Ecology Department - UMR UPMC 113, CNRS, IRD, INRA, PARIS 7, Sorbonne Universités, UPMC Univ Paris 06, UPEC - 7 Quai Saint Bernard, F-75005, Paris, France
| | - Luc P Belzunces
- INRA, Laboratoire de Toxicologie Environnementale, UR 406 A&E, 228 Route de l'Aérodrome, CS 40509, 84914, Avignon Cedex 9, France
| | - Guillaume Kairo
- INRA, Laboratoire de Toxicologie Environnementale, UR 406 A&E, 228 Route de l'Aérodrome, CS 40509, 84914, Avignon Cedex 9, France
| | - David Renault
- Université de Rennes 1, UMR CNRS 6553 Ecobio 263 Avenue du Gal Leclerc, CS 74205, 35042, Rennes, France
| | - Martine Maibeche
- Institute of Ecology and Environmental Sciences of Paris (iEES Paris) - Sensory Ecology Department - UMR UPMC 113, CNRS, IRD, INRA, PARIS 7, Sorbonne Universités, UPMC Univ Paris 06, UPEC - 7 Quai Saint Bernard, F-75005, Paris, France
| | - David Siaussat
- Institute of Ecology and Environmental Sciences of Paris (iEES Paris) - Sensory Ecology Department - UMR UPMC 113, CNRS, IRD, INRA, PARIS 7, Sorbonne Universités, UPMC Univ Paris 06, UPEC - 7 Quai Saint Bernard, F-75005, Paris, France.
| |
Collapse
|
26
|
Gupta M, Mathur S, Sharma TK, Rana M, Gairola A, Navani NK, Pathania R. A study on metabolic prowess of Pseudomonas sp. RPT 52 to degrade imidacloprid, endosulfan and coragen. JOURNAL OF HAZARDOUS MATERIALS 2016; 301:250-8. [PMID: 26368799 DOI: 10.1016/j.jhazmat.2015.08.055] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Revised: 08/26/2015] [Accepted: 08/27/2015] [Indexed: 05/20/2023]
Abstract
A bacterial strain identified as Pseudomonas sp. RPT 52, was isolated from an agricultural field by soil enrichment technique. The bacterial strain was able to metabolize three different chlorinated pesticides; imidacloprid, endosulfan and coragen (belonging to neonicotinoid, organochlorine and anthranillic diamide categories, respectively). RPT 52 was able to degrade 46.5%, 96.6%, 92.7% and 80.16% of 0.5 mM of imidacloprid, endosulfan α, endosulfan β and coragen, respectively, in minimal medium over a period of 40 h, when provided as sole source of carbon and energy. Degradation kinetics showed that imidacloprid, endosulfan α and endosulfan β followed first order kinetics whereas coragen followed zero order kinetics. Toxicity studies show reduction in toxicity of the parent compound when degraded by RPT 52. Laboratory scale, soil microcosm studies showed that strain RPT 52 is a suitable candidate for bioremediation of endosulfan and coragen contaminated sites. Thus, RPT 52 holds potential for toxicity reduction in the affected environment.
Collapse
Affiliation(s)
- Manasi Gupta
- Centre of Excellence in Disaster Mitigation and Management, IIT Roorkee, Roorkee, Uttarakhand 247 667, India; Uttarakhand Technical University, Dehradun, Uttarakhand 248 007, India.
| | - Samarth Mathur
- Department of Biotechnology, Indian Institute of Technology (IIT) Roorkee, Roorkee, Uttarakhand 247 667, India.
| | - Tarun K Sharma
- Department of Biotechnology, Indian Institute of Technology (IIT) Roorkee, Roorkee, Uttarakhand 247 667, India.
| | - Manish Rana
- Department of Biotechnology, Indian Institute of Technology (IIT) Roorkee, Roorkee, Uttarakhand 247 667, India.
| | - Ajay Gairola
- Centre of Excellence in Disaster Mitigation and Management, IIT Roorkee, Roorkee, Uttarakhand 247 667, India.
| | - Naveen K Navani
- Department of Biotechnology, Indian Institute of Technology (IIT) Roorkee, Roorkee, Uttarakhand 247 667, India; Centre of Excellence in Disaster Mitigation and Management, IIT Roorkee, Roorkee, Uttarakhand 247 667, India.
| | - Ranjana Pathania
- Department of Biotechnology, Indian Institute of Technology (IIT) Roorkee, Roorkee, Uttarakhand 247 667, India; Centre of Excellence in Disaster Mitigation and Management, IIT Roorkee, Roorkee, Uttarakhand 247 667, India.
| |
Collapse
|
27
|
Kumar N, Sharma R, Tripathi G, Kumar K, Dalvi RS, Krishna G. Cellular metabolic, stress, and histological response on exposure to acute toxicity of endosulfan in tilapia (Oreochromis mossambicus). ENVIRONMENTAL TOXICOLOGY 2016; 31:106-115. [PMID: 25060992 DOI: 10.1002/tox.22026] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Revised: 07/08/2014] [Accepted: 07/13/2014] [Indexed: 06/03/2023]
Abstract
Endosulfan is one of the most hazardous organochlorines pesticides responsible for environmental pollution, as it is very persistent and shows bio-magnification. This study evaluated the impact of acute endosulfan toxicity on metabolic enzymes, lysozyme activities, heat shock protein (Hsp) 70 expression, and histopathology in Tilapia (Oreochromis mossambicus). Among the indicators that were induced in dose dependent manner were the enzymes of amino acid metabolism (serum alanine aminotransferase and aspartate aminotransferase), carbohydrate metabolism (serum lactate dehydrogenase), pentose phosphate pathway (Glucose-6-phosphate dehydrogenase) as well as lysozyme and Hsp70 in liver and gill, while liver and gill Isocitrate dehydrogenase (TCA cycle enzyme) and marker of general energetics (Total adenosine triphosphatase) were inhibited. Histopathological alterations in gill were clubbing of secondary gill lamellae, marked hyperplasia, complete loss of secondary lamellae and atrophy of primary gill filaments. Whereas in liver, swollen hepatocyte, and degeneration with loss of cellular boundaries were distinctly noticed. Overall results clearly demonstrated the unbalanced metabolism and damage of the vital organs like liver and gill in Tilapia due to acute endosulfan exposure.
Collapse
Affiliation(s)
- Neeraj Kumar
- Central Institute of Fisheries Education, Versova, Mumbai, 400061, Maharashtra, India
- Edaphic Stress Management, National Institute of Abiotic Stress Management, Baramati, Pune, 413115, Maharashtra, India
| | - Rupam Sharma
- Central Institute of Fisheries Education, Versova, Mumbai, 400061, Maharashtra, India
| | - Gayatri Tripathi
- Central Institute of Fisheries Education, Versova, Mumbai, 400061, Maharashtra, India
| | - Kundan Kumar
- Central Institute of Fisheries Education, Versova, Mumbai, 400061, Maharashtra, India
| | - Rishikesh S Dalvi
- Central Institute of Fisheries Education, Versova, Mumbai, 400061, Maharashtra, India
- Department of Zoology, Maharshi Dayanand College, Parel, Mumbai, 400012, Maharashtra, India
| | - Gopal Krishna
- Central Institute of Fisheries Education, Versova, Mumbai, 400061, Maharashtra, India
| |
Collapse
|
28
|
Bouhafs L, Moudilou EN, Exbrayat JM, Lahouel M, Idoui T. Protective effects of probioticLactobacillus plantarumBJ0021 on liver and kidney oxidative stress and apoptosis induced by endosulfan in pregnant rats. Ren Fail 2015; 37:1370-8. [PMID: 26287934 DOI: 10.3109/0886022x.2015.1073543] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Leila Bouhafs
- a Department of Natural and Life Science, Faculty of Science, Laboratory of Molecular Toxicology , University of Jijel , Jijel , Algeria
| | - Elara N Moudilou
- b Laboratoire de Biologie Générale , Université de Lyon , Cedex , France
- c Laboratoire de Reproduction et Développement Comparé , Université Catholique de Lyon, Ecole Pratique des Hautes Etudes , Cedex , France , and
| | | | - Mesbah Lahouel
- a Department of Natural and Life Science, Faculty of Science, Laboratory of Molecular Toxicology , University of Jijel , Jijel , Algeria
| | - Tayeb Idoui
- a Department of Natural and Life Science, Faculty of Science, Laboratory of Molecular Toxicology , University of Jijel , Jijel , Algeria
- d Laboratory of Biotechnology, Environment and Health, Faculty of Science , University of Jijel , Algeria
| |
Collapse
|
29
|
Du H, Wang M, Wang L, Dai H, Wang M, Hong W, Nie X, Wu L, Xu A. Reproductive Toxicity of Endosulfan: Implication From Germ Cell Apoptosis Modulated by Mitochondrial Dysfunction and Genotoxic Response Genes in Caenorhabditis elegans. Toxicol Sci 2015; 145:118-27. [PMID: 25666835 DOI: 10.1093/toxsci/kfv035] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Endosulfan as a new member of persistent organic pollutants has been shown to induce reproductive dysfunction in various animal models. However, the action mechanism of endosulfan-produced reproductive toxicity remains largely unknown. This study was focused on investigating the reproductive toxicity induced by α-endosulfan and clarifying the role of mitochondria and genotoxic response genes in germ cell apoptosis of Caenorhabditis elegans. Our data showed that endosulfan induced a dose-dependent decrease of life span, fecundity, and hatchability, whereas the germ cell apoptosis was dose-dependently increased. The mitochondria membrane potential was disrupted by endosulfan, leading to a significant increase of germ cell apoptosis in mev-1(kn-1) mutant. However, the apoptotic effects of endosulfan were blocked in mutants of cep-1(w40), egl-1(n487), and hus-1(op241), indicating conserved genotoxic response genes played an essential role in endosulfan-induced germ cell apoptosis. Furthermore, exposure to endosulfan induced the accumulation of HUS-1::GFP foci and the germ cell cycle arrest. These findings provided clear evidence that endosulfan caused significant adverse effects on the reproduction system of C. elegans and increased germ cell apoptosis, which was regulated by mitochondrial dysfunction and DNA damage response genes. This study may help to understand the signal transduction pathways involved in endosulfan-induced reproductive toxicity.
Collapse
Affiliation(s)
- Hua Du
- Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Anhui Province, Hefei, Anhui 230031, People's Republic of China
| | - Meimei Wang
- Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Anhui Province, Hefei, Anhui 230031, People's Republic of China
| | - Lei Wang
- Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Anhui Province, Hefei, Anhui 230031, People's Republic of China
| | - Hui Dai
- Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Anhui Province, Hefei, Anhui 230031, People's Republic of China
| | - Min Wang
- Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Anhui Province, Hefei, Anhui 230031, People's Republic of China
| | - Wei Hong
- Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Anhui Province, Hefei, Anhui 230031, People's Republic of China
| | - Xinxin Nie
- Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Anhui Province, Hefei, Anhui 230031, People's Republic of China
| | - Lijun Wu
- Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Anhui Province, Hefei, Anhui 230031, People's Republic of China
| | - An Xu
- Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Anhui Province, Hefei, Anhui 230031, People's Republic of China
| |
Collapse
|
30
|
Preud'homme V, Milla S, Gillardin V, De Pauw E, Denoël M, Kestemont P. Effects of low dose endosulfan exposure on brain neurotransmitter levels in the African clawed frog Xenopus laevis. CHEMOSPHERE 2015; 120:357-364. [PMID: 25192837 DOI: 10.1016/j.chemosphere.2014.07.096] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 07/23/2014] [Accepted: 07/29/2014] [Indexed: 06/03/2023]
Abstract
Understanding the impact of pesticides in amphibians is of growing concern to assess the causes of their decline. Among pesticides, endosulfan belongs to one of the potential sources of danger because of its wide use and known effects, particularly neurotoxic, on a variety of organisms. However, the effect of endosulfan was not yet evaluated on amphibians at levels encompassing simultaneously brain neurotransmitters and behavioural endpoints. In this context, tadpoles of the African clawed frog Xenopus laevis were submitted to four treatments during 27 d: one control, one ethanol control, and two low environmental concentrations of endosulfan (0.1 and 1 μg L(-1)). Endosulfan induced a significant increase of brain serotonin level at both concentrations and a significant increase of brain dopamine and GABA levels at the lower exposure but acetylcholinesterase activity was not modified by the treatment. The gene coding for the GABA transporter 1 was up-regulated in endosulfan contaminated tadpoles while the expression of other genes coding for the neurotransmitter receptors or for the enzymes involved in their metabolic pathways was not significantly modified by endosulfan exposure. Endosulfan also affected foraging, and locomotion in links with the results of the physiological assays, but no effects were seen on growth. These results show that low environmental concentrations of endosulfan can induce adverse responses in X. laevis tadpoles. At a broader perspective, this suggests that more research using and linking multiple markers should be used to understand the complex mode of action of pollutants.
Collapse
Affiliation(s)
- Valérie Preud'homme
- Research Unit in Environmental and Evolutionary Biology, University of Namur, Belgium; Laboratory of Fish and Amphibian Ethology, Behavioural Biology Unit, Department of Biology, Ecology and Evolution, University of Liège, Belgium
| | - Sylvain Milla
- Research Unit in Environmental and Evolutionary Biology, University of Namur, Belgium
| | - Virginie Gillardin
- Research Unit in Environmental and Evolutionary Biology, University of Namur, Belgium
| | - Edwin De Pauw
- Mass Spectrometry Laboratory, Department of Chemistry, GIGA, University of Liège, Belgium
| | - Mathieu Denoël
- Laboratory of Fish and Amphibian Ethology, Behavioural Biology Unit, Department of Biology, Ecology and Evolution, University of Liège, Belgium
| | - Patrick Kestemont
- Research Unit in Environmental and Evolutionary Biology, University of Namur, Belgium.
| |
Collapse
|
31
|
Farag MR, Alagawany MM, Dhama K. Antidotal Effect of Turmeric (Curcuma longa) against Endosulfan-Induced Cytogenotoxicity and Immunotoxicity in Broiler Chicks. INT J PHARMACOL 2014. [DOI: 10.3923/ijp.2014.429.439] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
32
|
Kim HG, Kim YR, Park JH, Khanal T, Choi JH, Do MT, Jin SW, Han EH, Chung YH, Jeong HG. Endosulfan induces COX-2 expression via NADPH oxidase and the ROS, MAPK, and Akt pathways. Arch Toxicol 2014; 89:2039-50. [PMID: 25199686 DOI: 10.1007/s00204-014-1359-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 08/28/2014] [Indexed: 01/20/2023]
Abstract
Endosulfan (1,4,5,6,7,7-hexachloro-8,9,10-trinorborn-5-en-2,3-ylenebismet-hylene) is correlated with endocrine disruption, reproductive, and immune dysfunctions. Recently, endosulfan was shown to have an effect on inflammatory pathways, but its influence on cyclooxygenase-2(COX-2) expression is unclear. This study investigated the effects of COX-2 and molecular mechanisms by endosulfan in murine macrophage RAW 264.7 cells. Endosulfan significantly induced COX-2 protein and mRNA levels, as well as COX-2 promoter-driven luciferase activity and the production of prostaglandin E2, a major COX-2 metabolite. Transfection experiments with several human COX-2 promoter constructs revealed that endosulfan activated NF-κB, C/EBP, AP-1, and CREB. Moreover, Akt and mitogen-activated protein kinases (MAPK) were significantly activated by endosulfan. Moreover, endosulfan increased production of the ROS and the ROS-producing NAPDH-oxidase (NOX) family oxidases, NOX2, and NOX3. Endosulfan-induced Akt/MAPK pathways and COX-2 expression were attenuated by DPI, a specific NOX inhibitor, and the ROS scavenger N-acetylcysteine. These results demonstrate that endosulfan induces COX-2 expression via NADPH oxidase, ROS, and Akt/MAPK pathways. These findings provide further insight into the signal transduction pathways involved in the inflammatory effects of endosulfan.
Collapse
Affiliation(s)
- Hyung Gyun Kim
- Department of Toxicology, College of Pharmacy, Chungnam National University, 220 Gung-dong, Yuseong-Gu, Daejeon, 305-764, Republic of Korea
| | - Young Ran Kim
- Department of Toxicology, College of Pharmacy, Chungnam National University, 220 Gung-dong, Yuseong-Gu, Daejeon, 305-764, Republic of Korea
| | - Jin Hee Park
- Department of Toxicology, College of Pharmacy, Chungnam National University, 220 Gung-dong, Yuseong-Gu, Daejeon, 305-764, Republic of Korea
| | - Tilak Khanal
- Department of Toxicology, College of Pharmacy, Chungnam National University, 220 Gung-dong, Yuseong-Gu, Daejeon, 305-764, Republic of Korea
| | - Jae Ho Choi
- Department of Toxicology, College of Pharmacy, Chungnam National University, 220 Gung-dong, Yuseong-Gu, Daejeon, 305-764, Republic of Korea
| | - Minh Truong Do
- Department of Toxicology, College of Pharmacy, Chungnam National University, 220 Gung-dong, Yuseong-Gu, Daejeon, 305-764, Republic of Korea
| | - Sun Woo Jin
- Department of Toxicology, College of Pharmacy, Chungnam National University, 220 Gung-dong, Yuseong-Gu, Daejeon, 305-764, Republic of Korea
| | - Eun Hee Han
- Division of Life Science, Korea Basic Science Institute, Daejeon, Republic of Korea
| | - Young Ho Chung
- Division of Life Science, Korea Basic Science Institute, Daejeon, Republic of Korea
| | - Hye Gwang Jeong
- Department of Toxicology, College of Pharmacy, Chungnam National University, 220 Gung-dong, Yuseong-Gu, Daejeon, 305-764, Republic of Korea.
| |
Collapse
|
33
|
Ozmen O, Mor F. Effects of vitamin C on pathology and caspase-3 activity of kidneys with subacute endosulfan toxicity. Biotech Histochem 2014; 90:25-30. [DOI: 10.3109/10520295.2014.936507] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
34
|
Giusto A, Ferrari L. Biochemical responses of ecological importance in males of the austral South America amphipod Hyalella curvispina Shoemaker, 1942 exposed to waterborne cadmium and copper. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2014; 100:193-200. [PMID: 24325969 DOI: 10.1016/j.ecoenv.2013.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2013] [Revised: 10/09/2013] [Accepted: 11/04/2013] [Indexed: 06/03/2023]
Abstract
The use of physiological parameters as sensitive indicators of toxic stress from exposure to different pollutants is an important issue to be studied. Hyalella curvispina is a Neotropical amphipod often used in ecotoxicological evaluations. This work aimed to quantify biochemical responses of ecological importance in H. curvispina males under stress exposure to sublethal concentrations of waterborne copper (Cu) and cadmium (Cd); in order to obtain basic physiological data as indicators of early effect on this species, on track to its standardization. In order to evaluate the physiological, biochemical and energetic status of the exposed animals, the following endpoints were selected: content of glycogen, total proteins, total lipids, triglycerides, glycerol, arginine, arginine phosphate, levels of lipid peroxidation (TBARS), and Na(+)/K(+)ATPase, catalase (CAT) and superoxide dismutase (SOD) activities. Our results show that the concentrations of Cu (135 and 175 µg/L) and Cd (6.5 and 10.5 µg/L) tested altered most of the biochemical variables measured (glycogen, total proteins, total lipids, triglycerides, arginine phosphate, TBARS, and SOD and Na(+)/K(+)ATPase activities). In addition, neither the levels of glycerol and arginine nor CAT activity were affected by exposure to either metal. Energy metabolism was similarly affected both by exposure to Cu and exposure to Cd. The results obtained show the existence of an energy imbalance associated with oxidative damage, suggesting a comprehensive response. This work represents a first contribution of the evaluation of the effect of two heavy metals in some parameters of oxidative stress and energy metabolism of H. curvispina males. The results indicate these parameters can provide a sensitive criterion for the assessment of early ecotoxicological effects of Cu and Cd in laboratory assays, on a native species representative of the zoobenthic and epiphytic communities of South America.
Collapse
Affiliation(s)
- Anabella Giusto
- Applied Ecophysiology Program, Basic Sciences Department, Institute of Ecology and Sustainable Development (INEDES), National University of Luján, mailbox 221, B6700ZBA Luján, Argentina
| | - Lucrecia Ferrari
- Applied Ecophysiology Program, Basic Sciences Department, Institute of Ecology and Sustainable Development (INEDES), National University of Luján, mailbox 221, B6700ZBA Luján, Argentina; Scientific Research Commission (CIC), La Plata, Buenos Aires, Argentina.
| |
Collapse
|
35
|
Hanlon SM, Relyea R. Sublethal Effects of Pesticides on Predator–Prey Interactions in Amphibians. COPEIA 2013. [DOI: 10.1643/ce-13-019] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
36
|
Neurotoxic effects induced by endosulfan exposure during pregnancy and lactation in female and male rat striatum. Toxicology 2013; 311:35-40. [DOI: 10.1016/j.tox.2013.05.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 04/26/2013] [Accepted: 05/07/2013] [Indexed: 01/17/2023]
|
37
|
Dong M, Zhu L, Shao B, Zhu S, Wang J, Xie H, Wang J, Wang F. The effects of endosulfan on cytochrome P450 enzymes and glutathione S-transferases in zebrafish (Danio rerio) livers. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2013; 92:1-9. [PMID: 23523001 DOI: 10.1016/j.ecoenv.2012.10.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 10/25/2012] [Accepted: 10/26/2012] [Indexed: 06/02/2023]
Abstract
Endosulfan, an organochlorine pesticide, has been used worldwide in the past decades. The present study was performed to investigate the effect of endosulfan on liver microsomal cytochrome P450 (CYP) enzymes and glutathione S-transferases (GST) in zebrafish. Male and female zebrafish were separated and exposed to a control and four concentrations of endosulfan (0.01, 0.1, 1, and 10μgL(-1)) and were sampled on days 7, 14, 21, and 28. After exposure to endosulfan, the content of CYP increased and later gradually fell back to control level in most sampling time intervals. A similar tendency was also found in the activities of NADPH-P450 reductase (NCR), aminopyrine N-demethylase (APND) and erythromycin N-demethylase (ERND). GST activities were generally higher in treatment groups than control groups. Regarding sex-based differences, the induction degree of the activity of NCR was generally higher in males than females. Similar differences were also found on the 28th day in the activities of APND and ERND, as well as GST activity on the 7th day. Overall, the present results demonstrate the toxicity at low doses of endosulfan and indicated marked induction of CYP and GST enzymes in zebrafish liver.
Collapse
Affiliation(s)
- Miao Dong
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, 61 Daizong Road, Taian 271018, China.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Kumar N, Jadhao SB, Chandan NK, Kumar K, Jha AK, Bhushan S, Kumar S, Rana RS. Dietary choline, betaine and lecithin mitigates endosulfan-induced stress in Labeo rohita fingerlings. FISH PHYSIOLOGY AND BIOCHEMISTRY 2012; 38:989-1000. [PMID: 22160664 DOI: 10.1007/s10695-011-9584-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 11/30/2011] [Indexed: 05/31/2023]
Abstract
A five-week experiment was conducted to delineate stress-mitigating effects of three different methyl donors in Labeo rohita fingerlings subjected to endosulfan toxicity. Four iso-nitrogenous and iso-caloric feed were prepared with and without supplementation of methyl donors. The feed were basal or control diet (i.e., without methyl donor supplementation), feed supplemented with choline, feed supplemented with betaine and feed supplemented with lecithin. Two hundred and twenty-five fishes were distributed randomly in five treatment groups each with three replicates. The experimental setup were normal water (without endosulfan) and fed with control diet (control group), endosulfan-treated water and fed with control diet (T₁), endosulfan-treated water and fed with choline supplemented feed (T₂), endosulfan-treated water and fed with betaine supplemented feed (T₃) and endosulfan-treated water and fed with lecithin-supplemented feed (T₄). The level of endosulfan in endosulfan treated water was maintained at the level of 1/10 of LC₅₀, that is, 0.2 ppb. During the experiment, growth performances, metabolic enzyme activity and histological examination were done to assess the effect of treatments. The growth performance (percentage weight gain, feed conversion ratio, specific growth rate and protein efficiency ratio) and nutrient digestibility were significantly different (P<0.01) in lecithin, betaine and choline fed group when compared to endosulfan-exposed group fed with basal diet. The liver LDH and MDH activity were significantly (P<0.01) improved in the groups fed with methyl donor supplemented diet. The liver AST and ALT, brain AChE and muscle ALT did not change with supplementation in the diet, but muscle ALT and G6PDH significantly (P<0.01) changed with supplementation. The gill and liver ATPase and intestinal ALP were significantly (P<0.01) noticeably changed in supplemented group. After endosulfan exposure, histopathology alter like slight large vacuolation in hepatocyte and lipoid vacuole were observed and with supplementation normal appearance of liver were observed. The chromosome aberration (karyotype) was observed in endosulfan-exposed group. The result obtained in present study concluded that inclusion of methyl donors, particularly lecithin and betaine, in feed as nutritional supplements has a potential stress-mitigating effect in L. rohita fingerlings.
Collapse
Affiliation(s)
- Neeraj Kumar
- Central Institute of Fisheries Education (CIFE), 7-Bungalows, Versova, Andheri (W), Mumbai, 400061, India.
| | - S B Jadhao
- Central Institute of Fisheries Education (CIFE), 7-Bungalows, Versova, Andheri (W), Mumbai, 400061, India
| | - N K Chandan
- Central Institute of Fisheries Education (CIFE), 7-Bungalows, Versova, Andheri (W), Mumbai, 400061, India
| | - Kundan Kumar
- Central Institute of Fisheries Education (CIFE), 7-Bungalows, Versova, Andheri (W), Mumbai, 400061, India
| | - A K Jha
- Central Institute of Fisheries Education (CIFE), 7-Bungalows, Versova, Andheri (W), Mumbai, 400061, India
| | - S Bhushan
- Central Institute of Fisheries Education (CIFE), 7-Bungalows, Versova, Andheri (W), Mumbai, 400061, India
| | - Saurav Kumar
- Central Institute of Fisheries Education (CIFE), 7-Bungalows, Versova, Andheri (W), Mumbai, 400061, India
| | - R S Rana
- Central Institute of Fisheries Education (CIFE), 7-Bungalows, Versova, Andheri (W), Mumbai, 400061, India
| |
Collapse
|
39
|
Begum A, Gautam SK. Endosulfan and lindane degradation using ozonation. ENVIRONMENTAL TECHNOLOGY 2012; 33:943-949. [PMID: 22720419 DOI: 10.1080/09593330.2011.603752] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The fact that ozone is a very powerful oxidizing agent (E0 = +2.07 V) was harnessed to degrade endosulfan and lindane in the present study. An ozone dosage of 57 mg min(-1) was found to be optimal for the degradation of both endosulfan (89%) and lindane (43%). The pH of the reaction mixtures play a profound role on the extent of degradation and it was observed that alkaline conditions favours the generation of hydroxyl radicals and thus a pH of 10 was chosen as the optimum for endosulfan degradation as the degradation efficiency was found to be 93%. A pH value of 12 was chosen as the optimum for lindane degradation as the degradation efficiency was observed to be 82%. Kinetics of degradation was performed and the set of data was fitted into first-order kinetics of the reaction for both endosulfan and lindane. The observed rate constants (k(obs')) for 5, 7.5 and 10 ppm initial endosulfan concentrations were 0.0274, 0.0273 and 0.0161 min(-1), respectively. While for initial lindane concentrations of 5, 7.5 and 10 ppm, the observed rate constants were 0.0243, 0.0333 and 0.056 min(-1), respectively. Gas chromatography mass spectroscopy analysis revealed that endosulfan was degraded into methyl cyclohexane and o-xylene which disappeared as reaction proceeded and lindane was degraded to 1-hexene indicating the ring fission mechanism.
Collapse
Affiliation(s)
- Asfiya Begum
- The Energy and Resources Institute (TERI), 4th Main, II Cross, Domlur II Stage, Bangalore 560071, Karnataka, India
| | | |
Collapse
|
40
|
Ondarza PM, Gonzalez M, Fillmann G, Miglioranza KSB. Increasing levels of persistent organic pollutants in rainbow trout (Oncorhynchus mykiss) following a mega-flooding episode in the Negro River basin, Argentinean Patagonia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2012; 419:233-239. [PMID: 22285089 DOI: 10.1016/j.scitotenv.2012.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Revised: 12/30/2011] [Accepted: 01/02/2012] [Indexed: 05/31/2023]
Abstract
In 2006, a severe flooding episode in the Negro River basin, Argentinean Patagonia, occurred and mainly affected the middle valley where lands are devoted to agriculture and soils known to be polluted with persistent organic pollutants. The aim of this study was to estimate the effects of this event on polybrominated diphenyl ethers (PBDEs), endosulfans (α-, β-, sulfate), DDTs (p,p'-DDD, p,p'-DDE, p,p'-DDT) and polychlorinated biphenyls (PCBs) levels in rainbow trout (Oncorhynchus mykiss) tissues. Post-event fish showed higher contaminants levels than pre-event at expenses of all groups. DDTs presented the highest concentrations in all tissues followed by PCBs, endosulfans and PBDEs. The metabolite p,p'-DDE represented about 80% of total DDTs, while PCBs were dominated by penta- and hexa-chlorobiphenyls congeners. BDE-47 was the predominant congener among PBDEs. Endosulfan showed the maximum differences between post- and pre-flood fish (up to 43-fold) with a α-/β- ratio >1, suggesting exposure to fresh technical mixture. Contaminant profiles observed in rainbow trout tissues from both periods (pre- and post-event) were consistent with previous results from water, suspended particle matter and soils, showing that this species is a good biomonitor of aquatic pollution of Negro River basin. The presence of the pesticides in the Negro River system resulted from past and current agricultural practices and it was modified and enhanced by the flooding. Additionally, PCBs and PBDEs occurrence in the aquatic environment deserve more attention, and monitoring programs are recommended in order to diminish their incorporation to aquatic ecosystem.
Collapse
Affiliation(s)
- Paola M Ondarza
- Laboratorio de Ecotoxicología, Universidad Nacional de Mar del Plata, Funes 3350, Mar del Plata (7600), Argentina
| | | | | | | |
Collapse
|
41
|
Milesi MM, Varayoud J, Bosquiazzo VL, Muñoz-de-Toro M, Luque EH. Neonatal exposure to low doses of endosulfan disrupts the expression of proteins regulating uterine development and differentiation. Reprod Toxicol 2012; 33:85-93. [DOI: 10.1016/j.reprotox.2011.12.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 11/23/2011] [Accepted: 12/06/2011] [Indexed: 10/14/2022]
|
42
|
Kumar SN, Telang AG, Singh KP, Jain AK, Afroz M, Patil RD. Experimentally Induced Toxicity of Ochratoxin A and Endosulfan in Male Wistar Rats: A Hormonal Disorder. ACTA ACUST UNITED AC 2011. [DOI: 10.3923/javaa.2011.1750.1755] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
43
|
Sandal S, Yilmaz B. Genotoxic effects of chlorpyrifos, cypermethrin, endosulfan and 2,4-D on human peripheral lymphocytes cultured from smokers and nonsmokers. ENVIRONMENTAL TOXICOLOGY 2011; 26:433-442. [PMID: 20196147 DOI: 10.1002/tox.20569] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Revised: 01/02/2010] [Accepted: 01/11/2010] [Indexed: 05/28/2023]
Abstract
Pesticides often cause environmental pollution and adverse effects on human health. We have chosen four structurally different pesticides (endosulfan, an organochlorine pesticide; chlorpyrifos, an organophosphate insecticide; cypermethrin, type II pyrethroid insecticide, and 2,4-dichlorophenoxyacetic acid, a chlorinated aromatic hydrocarbon acid pesticide) to examine and compare their effects on DNA damage in acutely cultured human lymphocytes by the comet assay. In addition, possible differences in response between smoking and nonsmoking subjects were also investigated. Venous blood samples were obtained from healthy male nonsmoker (n = 7) and smoker (n = 8) donors. Primary cultures of lymphocytes were prepared and test groups were treated with three different concentrations (1, 5, and 10 μM) of endosulfan, chlorpyrifos, cypermehrin, and 2,4-D. DNA damage was assessed by alkaline comet assay. We determined an increase in the ratio of DNA migration in human lymphocyte cell cultures as a result of treatment with cypermethrin, 2,4-D and chlorpyrifos at high concentration. Endosulfan had no significant genotoxic effect even at 10 μM concentration. We suggest that chlorpyrifos and cypermethrin are more potentially genotoxic than endosulfan and 2,4-D. Our findings also indicate that the only significant DNA damage between smokers and nonsmokers was observed in the 2,4-D-treated group.
Collapse
Affiliation(s)
- Suleyman Sandal
- Department of Physiology, Faculty of Medicine, Yeditepe University, 34755 Istanbul, Turkey
| | | |
Collapse
|
44
|
Aginhotri P, Mahidrakar AB, Gautam SK. Complete dechlorination of endosulfan and lindane using Mg0/Pd(+4) bimetallic system. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2011; 83:865-873. [PMID: 22073734 DOI: 10.2175/106143011x12928814445096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
A Mg0/Pd(+4) bimetallic system was evaluated to dechlorinate endosulfan and lindane in the aqueous phase. Studies were conducted with endosulfan and lindane separately, with or without acid in a 1:1 (v/v) water:acetone phase. In the absence of any acid, higher degradation of endosulfan and lindane was observed using Mg0/Pd(+4) doses of 10/0.5 and 4/0.1 mg/mL, respectively. Acetone plays an important role in facilitating the dechlorination reaction by increasing the solubilities of pesticides. Dechlorination kinetics for endosulfan and lindane (30 and 50 mg/L [30 and 50 ppm] concentration of each pesticide) were conducted with varying Mg0/Pd(+4) doses, and the time-course profiles were well-fitted into exponential curves. The optimum observed rate constants (k(obs)) for endosulfan and lindane were obtained with Mg0/Pd(+4) doses of 5/0.5 and 4/0.1 mg/mL, respectively. Gas chromatography-mass spectrometry analyses revealed that endosulfan and lindane were dechlorinated completely into their hydrocarbon skeletons-Bicyclo [2,2,1] hepta 2-5 diene and benzene, respectively.
Collapse
Affiliation(s)
- Prakhar Aginhotri
- Centre for Environmental Science and Engineering, Indian Institute of Technology, Powai, Mumbai, India
| | | | | |
Collapse
|
45
|
Ballesteros ML, Gonzalez M, Wunderlin DA, Bistoni MA, Miglioranza KSB. Uptake, tissue distribution and metabolism of the insecticide endosulfan in Jenynsia multidentata (Anablepidae, Cyprinodontiformes). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2011; 159:1709-1714. [PMID: 21420767 DOI: 10.1016/j.envpol.2011.02.037] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 02/15/2011] [Accepted: 02/17/2011] [Indexed: 05/30/2023]
Abstract
The study reports the accumulation, distribution and metabolism of technical endosulfan in Jenynsia multidentata. Adult females were exposed to acute sublethal concentrations (0.072, 0.288 and 1.4 μg L⁻¹). After 24 h, fish were sacrificed and gills, liver, brain, intestine and muscle were removed. Results show that both isomers of technical-grade endosulfan (α- and β-) are accumulated in fish tissues and biotransformation to endosulfan sulfate occurs at all concentrations tested. Significantly differences in endosulfan accumulation were only found at 1.4 μg L⁻¹ but not between the lowest concentrations. However a similar distribution pattern was observed at all exposure levels where liver, intestine and brain had the highest levels of α-, β-endosulfan and endosulfan sulfate. Moreover, liver and brain showed the highest endosulfan sulfate:α-endosulfan ratios due to high biotransfomation capacity. J. multidentata demonstrated to be a sensitive species under exposure to technical endosulfan and, therefore, could be used to assess aquatic pollution.
Collapse
Affiliation(s)
- M L Ballesteros
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas Físicas y Naturales, Cátedra Diversidad Animal II, Av. Vélez Sársfield 299, 5000 Córdoba, Argentina.
| | | | | | | | | |
Collapse
|
46
|
Ozdem S, Nacitarhan C, Gulay MS, Hatipoglu FS, Ozdem SS. The effect of ascorbic acid supplementation on endosulfan toxicity in rabbits. Toxicol Ind Health 2011; 27:437-46. [DOI: 10.1177/0748233710388450] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We investigated the endosulfan-induced alterations and the effect of vitamin C supplementation on endosulfan-induced alterations in serum biochemical markers of oxidative stress and antioxidant capacity in rabbits. Basal, 4th and 6th week serum levels of total oxidant status (TOS), thiobarbituric acid reactive substances (TBARS), advanced oxidation protein products (AOPP), total antioxidant capacity (TAC), total protein sulfhydryl (T-SH) and glutathione-S-transferase (GST) were measured in rabbits administered endosulfan (1 mg/kg) alone or in combination with vitamin C (20 mg/kg) for 6 weeks. Control rabbits received either vehicles or vitamin C. Serum TOS, TBARS and AOPP levels at 4th and 6th week were significantly higher whereas T-SH levels were significantly lower than basal values in endosulfan-administered rabbits. GST increased significantly at 4th week but decreased below basal value at 6th week. Similarly, TAC decreased significantly at 6th week. Vitamin C supplementation increased TAC at 4th and 6th weeks in controls and increased T-SH and GST and decreased TOS, TBARS and AOPP at 4th week in endosulfan-administered rabbits. TAC increased significantly at 6th week by vitamin C supplementation in endosulfan-administered rabbits. There were significant increments in TBARS and decrements in TAC and GST levels at 6th week compared to 4th week in endosulfan-administered rabbits. Present findings indicated to an increased and progressively uncompensated oxidant stress in endosulfan-administered rabbits that was substantially ameliorated by vitamin C supplementation through an improvement in antioxidant capacity. It was suggested that vitamin C supplementation might be helpful in preventing the detrimental effects of increased oxidative stress caused by endosulfan exposure.
Collapse
Affiliation(s)
- Sebahat Ozdem
- Department of Medical Biochemistry, Medical Faculty, Akdeniz University, Antalya, Turkey,
| | - Cahit Nacitarhan
- Department of Medical Pharmacology, Medical Faculty, Akdeniz University, Antalya, Turkey
| | - Mehmet S Gulay
- Department of Physiology, Veterinary Faculty, Mehmet Akif Ersoy University, Burdur, Turkey
| | - Fatma S Hatipoglu
- Department of Physiology, Veterinary Faculty, Mehmet Akif Ersoy University, Burdur, Turkey
| | - Sadi S Ozdem
- Department of Medical Pharmacology, Medical Faculty, Akdeniz University, Antalya, Turkey
| |
Collapse
|
47
|
Dutra BK, Fernandes FA, Failace DM, Oliveira GT. Effect of Roundup® (glyphosate formulation) in the energy metabolism and reproductive traits of Hyalella castroi (Crustacea, Amphipoda, Dogielinotidae). ECOTOXICOLOGY (LONDON, ENGLAND) 2011; 20:255-63. [PMID: 21086158 DOI: 10.1007/s10646-010-0577-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/08/2010] [Indexed: 05/30/2023]
Abstract
Roundup(®) (glyphosate formulation) is a nonselective and posts emergent herbicide used for controlling aquatic weeds and different concentrations are used in cultures around the world. The objective of this investigation was to examine the effects of Roundup(®) (glyphosate formulation) on the biochemical composition, levels of lipoperoxidation, Na(+)/K(+)ATPase activity and reproductive traits in the Hyalella castroi. Amphipods were collected in summer 2009, in the southern Brazilian highlands. In the laboratory, the animals were kept in aquariums under controlled conditions for 7 days, and after this period they were exposed to 0.36, 0.52, 1.08 and 2.16 mg/l of glyphosate for 7 days. After the period of exposure, the animals were immediately frozen for determination of glycogen, proteins, lipids, triglycerides, cholesterol, levels of lipoperoxidation, and Na(+)/K(+)ATPase activity. During each day of the cultivation reproductive traits (number of reproductive pairs, ovigerous females and eggs in the marsupium) were observed. All concentrations of Roundup(®) induced significant decreases in all biochemical parameters and Na(+)/K(+)ATPase activity, and significant increase in lipoperoxidation levels. Showing this form a potentially toxic effect at very low concentrations, this pattern of results can lead to significant changes in trophic structure of limnic environments because these amphipods are important links in food chain in these habitats.
Collapse
Affiliation(s)
- Bibiana Kaiser Dutra
- Departamento de Ciências Morfofisiológicas, Laboratório de Fisiologia da Conservação, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Av. Ipiranga, 6681 Pd. 12A Sala 270, Caixa Postal 1429, Porto Alegre, RS, 90619-900, Brazil
| | | | | | | |
Collapse
|
48
|
Bedor CNG, Morais RJL, Cavalcanti LS, Ferreira JV, Pavão AC. Carcinogenic potential of endosulfan and its metabolites based on a quantum chemical model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2010; 408:6281-6284. [PMID: 20889188 DOI: 10.1016/j.scitotenv.2010.09.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Revised: 09/03/2010] [Accepted: 09/09/2010] [Indexed: 05/29/2023]
Abstract
The aim of the present study was to investigate the carcinogenic potential of endosulfan and its metabolites through electronic parameters that characterize the action of carcinogens, i.e. descriptors such as electron affinity, Δ (HOMO-LUMO), dipole moments, electrostatic attraction, formation heat (H(f)) and permeability of the cell membrane (c Log P). The results reveal that both endosulfan and its metabolites are electrophilic and have carcinogenic potential. Although there are few data on its carcinogenicity in the literature, the findings of the present study indicate that the use of this pesticide represents a risk to the health of the general population, especially rural workers.
Collapse
Affiliation(s)
- C N G Bedor
- Universidade Federal do Vale do São Francisco, Av. José de Sá Maniçoba, S/N, Centro, 56304-205, Petrolina, PE, Brazil.
| | | | | | | | | |
Collapse
|
49
|
Sarma K, Pal AK, Sahu NP, Mukherjee SC, Baruah K. Biochemical and histological changes in the brain tissue of spotted murrel, Channa punctatus (Bloch), exposed to endosulfan. FISH PHYSIOLOGY AND BIOCHEMISTRY 2010; 36:597-603. [PMID: 19526321 DOI: 10.1007/s10695-009-9333-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2008] [Accepted: 05/07/2009] [Indexed: 05/27/2023]
Abstract
The present experiment was conducted to establish the relationship between selected physiological parameters and histological responses of Channa punctatus brain tissue to endosulfan exposure. The fish (35.6 +/- 0.7 g) was exposed to sublethal endosulfan concentration (8.1 microg l(-1)) for a period of 12, 24, 36, 48, 72, and 96 h. Results showed that brain glucose level increased significantly after exposure, indicating a hyperglycemic state of the fish. Brain vitamin C level decreased with an increase in the exposure time. Acetylcholine esterase and adenosine triphosphatase enzyme activities also showed a significant reduction upon endosulfan exposure. Brain histopathology after 96 h endosulfan exposure showed that the apical lobe of the cerebrum (the only portion examined) had mild necrosis. Focal area of gliosis could be seen in the cerebrum, which were absent in the control fish. The results indicate that exposure of sublethal concentration of endosulfan to C. punctatus may have a direct effect on the histology of the fish's brain tissue, thereby affecting its metabolism.
Collapse
Affiliation(s)
- Kamal Sarma
- Division of Fisheries Science, Central Agricultural Research Institute, ICAR, Port Blair, 744101, India
| | - A K Pal
- Division of Fish Nutrition and Biochemistry, Central Institute of Fisheries Education, Mumbai, 400061, India
| | - N P Sahu
- Division of Fish Nutrition and Biochemistry, Central Institute of Fisheries Education, Mumbai, 400061, India
| | - S C Mukherjee
- Division of Fish Pathology and Microbiology, Central Institute of Fisheries Education, Mumbai, 400061, India
| | - Kartik Baruah
- Laboratory of Aquaculture and Artemia Reference Centre, Department of Animal Production, Ghent University, 9000, Ghent, Belgium.
| |
Collapse
|
50
|
Watson CS, Alyea RA, Cunningham KA, Jeng YJ. Estrogens of multiple classes and their role in mental health disease mechanisms. Int J Womens Health 2010; 2:153-66. [PMID: 21072308 PMCID: PMC2971739 DOI: 10.2147/ijwh.s6907] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2010] [Indexed: 12/21/2022] Open
Abstract
Gender and sex hormones can influence a variety of mental health states, including mood, cognitive development and function, and vulnerability to neurodegenerative diseases and brain damage. Functions of neuronal cells may be altered by estrogens depending upon the availability of different physiological estrogenic ligands; these ligands and their effects vary with life stages, the genetic or postgenetic regulation of receptor levels in specific tissues, or the intercession of competing nonphysiological ligands (either intentional or unintentional, beneficial to health or not). Here we review evidence for how different estrogens (physiological and environmental/dietary), acting via different estrogen receptor subtypes residing in alternative subcellular locations, influence brain functions and behavior. We also discuss the families of receptors and transporters for monoamine neurotransmitters and how they may interact with the estrogenic signaling pathways.
Collapse
|