1
|
Efficacy of Treatment with the Antibiotic Novobiocin against Infection with Bacillus anthracis or Burkholderia pseudomallei. Antibiotics (Basel) 2022; 11:antibiotics11121685. [PMID: 36551342 PMCID: PMC9774170 DOI: 10.3390/antibiotics11121685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/07/2022] [Accepted: 11/10/2022] [Indexed: 11/24/2022] Open
Abstract
The microbial pathogens Burkholderia pseudomallei and Bacillus anthracis are unrelated bacteria, yet both are the etiologic agents of naturally occurring diseases in animals and humans and are classified as Tier 1 potential biothreat agents. B. pseudomallei is the gram-negative bacterial agent of melioidosis, a major cause of sepsis and mortality globally in endemic tropical and subtropical regions. B. anthracis is the gram-positive spore-forming bacterium that causes anthrax. Infections acquired by inhalation of these pathogens are challenging to detect early while the prognosis is best; and they possess innate multiple antibiotic resistance or are amenable to engineered resistance. Previous studies showed that the early generation, rarely used aminocoumarin novobiocin was very effective in vitro against a range of highly disparate biothreat agents. The objective of the current research was to begin to characterize the therapeutic efficacy of novobiocin in mouse models of anthrax and melioidosis. The antibiotic was highly efficacious against infections by both pathogens, especially B. pseudomallei. Our results supported the concept that specific older generation antimicrobials can be effective countermeasures against infection by bacterial biothreat agents. Finally, novobiocin was shown to be a potential candidate for inclusion in a combined pre-exposure vaccination and post-exposure treatment strategy designed to target bacterial pathogens refractory to a single medical countermeasure.
Collapse
|
2
|
Malmquist JA, Rogan MR, McGillivray SM. Galleria mellonella as an Infection Model for Bacillus anthracis Sterne. Front Cell Infect Microbiol 2019; 9:360. [PMID: 31681636 PMCID: PMC6813211 DOI: 10.3389/fcimb.2019.00360] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 10/04/2019] [Indexed: 01/09/2023] Open
Abstract
Understanding bacterial virulence provides insight into the molecular basis behind infection and could identify new drug targets. However, assessing potential virulence determinants relies on testing in an animal model. The mouse is a well-validated model but it is constrained by the ethical and logistical challenges of using vertebrate animals. Recently the larva of the greater wax moth Galleria mellonella has been explored as a possible infection model for a number of pathogens. In this study, we developed G. mellonella as an infection model for Bacillus anthracis Sterne. We first validated two different infection assays, a survival assay and a competition assay, using mutants containing disruptions in known B. anthracis virulence genes. We next tested the utility of G. mellonella to assess the virulence of transposon mutants with unknown mutations that had increased susceptibility to hydrogen peroxide in in vitro assays. One of these transposon mutants also displayed significantly decreased virulence in G. mellonella. Further investigation revealed that this mutant had a disruption in the petrobactin biosynthesis operon (asbABCDEF), which has been previously implicated in both virulence and defense against oxidative stress. We conclude that G. mellonella can detect attenuated virulence of B. anthracis Sterne in a manner consistent with that of mammalian infection models. Therefore, G. mellonella could serve as a useful alternative to vertebrate testing, especially for early assessments of potential virulence genes when use of a mammalian model may not be ethical or practical.
Collapse
Affiliation(s)
- Jacob A Malmquist
- Department of Biology, Texas Christian University, Fort Worth, TX, United States
| | - Madison R Rogan
- Department of Biology, Texas Christian University, Fort Worth, TX, United States
| | - Shauna M McGillivray
- Department of Biology, Texas Christian University, Fort Worth, TX, United States
| |
Collapse
|
3
|
Ndumnego OC, Koehler SM, Crafford JE, Beyer W, van Heerden H. Immunogenicity of anthrax recombinant peptides and killed spores in goats and protective efficacy of immune sera in A/J mouse model. Sci Rep 2018; 8:16937. [PMID: 30446695 PMCID: PMC6240085 DOI: 10.1038/s41598-018-35382-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 11/02/2018] [Indexed: 11/09/2022] Open
Abstract
Anthrax is primarily recognized as an affliction of herbivores with incubation period ranging from three to five days post-infection. Currently, the Sterne live-spore vaccine is the only vaccine approved for control of the disease in susceptible animals. While largely effective, the Sterne vaccine has several problems including adverse reactions in sensitive species, ineffectiveness in active outbreaks and incompatibility with antibiotics. These can be surmounted with the advent of recombinant peptides (non-living) next generation vaccines. The candidate vaccine antigens comprised of recombinant protective antigen (PA), spore-specific antigen (bacillus collagen-like protein of anthracis, BclA) and formaldehyde inactivated spores (FIS). Presently, little information exists on the protectivity of these novel vaccine candidates in susceptible ruminants. Thus, this study sought to assess the immunogenicity of these vaccine candidates in goats and evaluate their protectivity using an in vivo mouse model. Goats receiving a combination of PA, BclA and FIS yielded the highest antibody and toxin neutralizing titres compared to recombinant peptides alone. This was also reflected in the passive immunization experiment whereby mice receiving immune sera from goats vaccinated with the antigen combination had higher survival post-challenge. In conclusion, the current data indicate promising potential for further development of non-living anthrax vaccines in ruminants.
Collapse
Affiliation(s)
- Okechukwu C Ndumnego
- Department of Veterinary Tropical Diseases, University of Pretoria, Onderstepoort, South Africa. .,Africa Health Research Institute, Durban, South Africa.
| | - Susanne M Koehler
- Institute of Animal Science, Department of Livestock Infectiology and Environmental Hygiene, University of Hohenheim, Stuttgart, Germany.,Robert Koch Institute, Berlin, Germany
| | - Jannie E Crafford
- Department of Veterinary Tropical Diseases, University of Pretoria, Onderstepoort, South Africa
| | - Wolfgang Beyer
- Institute of Animal Science, Department of Livestock Infectiology and Environmental Hygiene, University of Hohenheim, Stuttgart, Germany
| | - Henriette van Heerden
- Department of Veterinary Tropical Diseases, University of Pretoria, Onderstepoort, South Africa.
| |
Collapse
|
4
|
Koehler SM, Buyuk F, Celebi O, Demiraslan H, Doganay M, Sahin M, Moehring J, Ndumnego OC, Otlu S, van Heerden H, Beyer W. Protection of farm goats by combinations of recombinant peptides and formalin inactivated spores from a lethal Bacillus anthracis challenge under field conditions. BMC Vet Res 2017; 13:220. [PMID: 28701192 PMCID: PMC5508662 DOI: 10.1186/s12917-017-1140-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 07/04/2017] [Indexed: 11/30/2022] Open
Abstract
Background Bacillus (B.) anthracis, the causal agent of anthrax, is effectively controlled by the Sterne live spore vaccine (34F2) in animals. However, live spore vaccines are not suitable for simultaneous vaccination and antibiotic treatment of animals being at risk of infection in an outbreak situation. Non-living vaccines could close this gap. Results In this study a combination of recombinant protective antigen and recombinant Bacillus collagen-like antigen (rBclA) with or without formalin inactivated spores (FIS), targeted at raising an immune response against both the toxins and the spore of B. anthracis, was tested for immunogenicity and protectiveness in goats. Two groups of goats received from local farmers of the Kars region of Turkey were immunized thrice in three weeks intervals and challenged together with non-vaccinated controls with virulent B. anthracis, four weeks after last immunization. In spite of low or none measurable toxin neutralizing antibodies and a surprisingly low immune response to the rBclA, 80% of the goats receiving the complete vaccine were protected against a lethal challenge. Moreover, the course of antibody responses indicates that a two-step vaccination schedule could be sufficient for protection. Conclusion The combination of recombinant protein antigens and FIS induces a protective immune response in goats. The non-living nature of this vaccine would allow for a concomitant antibiotic treatment and vaccination procedure. Further studies should clarify how this vaccine candidate performs in a post infection scenario controlled by antibiotics. Electronic supplementary material The online version of this article (doi:10.1186/s12917-017-1140-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Susanne M Koehler
- Department of Infectiology and Animal Hygiene, University of Hohenheim, Institute of Animal Science, 70593, Stuttgart, Germany.,Robert-Koch-Institut, 13353, Berlin, Germany
| | - Fatih Buyuk
- Faculty of Veterinary Medicine, Department of Microbiology, Kafkas University, 36300, Kars, Turkey
| | - Ozgur Celebi
- Faculty of Veterinary Medicine, Department of Microbiology, Kafkas University, 36300, Kars, Turkey
| | - Hayati Demiraslan
- Faculty of Medicine, Department of Infectious Diseases, Erciyes University, 38039, Kayseri, Turkey
| | - Mehmet Doganay
- Faculty of Medicine, Department of Infectious Diseases, Erciyes University, 38039, Kayseri, Turkey
| | - Mitat Sahin
- Faculty of Veterinary Medicine, Department of Microbiology, Kafkas University, 36300, Kars, Turkey
| | - Jens Moehring
- Institute for Crop Science, University of Hohenheim, Biostatistical Unit, 70593, Stuttgart, Germany
| | - Okechukwu C Ndumnego
- Department of Veterinary Tropical Diseases, University of Pretoria, Onderstepoort, 0110, South Africa.,Africa Health Research Institute, Durban, 4013, South Africa
| | - Salih Otlu
- Faculty of Veterinary Medicine, Department of Microbiology, Kafkas University, 36300, Kars, Turkey
| | - Henriette van Heerden
- Department of Veterinary Tropical Diseases, University of Pretoria, Onderstepoort, 0110, South Africa
| | - Wolfgang Beyer
- Department of Infectiology and Animal Hygiene, University of Hohenheim, Institute of Animal Science, 70593, Stuttgart, Germany.
| |
Collapse
|
5
|
Scarff JM, Raynor MJ, Seldina YI, Ventura CL, Koehler TM, O'Brien AD. The roles of AtxA orthologs in virulence of anthrax-like Bacillus cereus G9241. Mol Microbiol 2016; 102:545-561. [PMID: 27490458 DOI: 10.1111/mmi.13478] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2016] [Indexed: 12/16/2022]
Abstract
AtxA is a critical transcriptional regulator of plasmid-encoded virulence genes in Bacillus anthracis. Bacillus cereus G9241, which caused an anthrax-like infection, has two virulence plasmids, pBCXO1 and pBC210, that each harbor toxin genes and a capsule locus. G9241 also produces two orthologs of AtxA: AtxA1, encoded on pBCXO1, and AtxA2, encoded on pBC210. The amino acid sequence of AtxA1 is identical to that of AtxA from B. anthracis, while the sequences of AtxA1 and AtxA2 are 79% identical and 91% similar to one another. We found by qRT-PCR that AtxA1 and AtxA2 function as positive regulators of toxin (AtxA1) and capsule operon (both) transcription in G9241 and that a ΔatxA1 mutant produced lower levels of the anthrax toxins and no hyaluronic acid capsule. Deletion of atxA1 or atxA2 decreased the virulence of spores administered intranasally or subcutaneously to C57BL/6 mice but not to A/J mice, and deletion of both genes rendered spores avirulent in A/J mice. In addition, unlike AtxA1, AtxA2 did not form stable homomultimers in vitro, although AtxA1 and AtxA2 formed heterodimers. Our data show that AtxA1 is the primary regulator of G9241 virulence factor expression and that AtxA1 and AtxA2 are both required for full virulence.
Collapse
Affiliation(s)
- Jennifer M Scarff
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Malik J Raynor
- Department of Microbiology and Molecular Genetics, The University of Texas Health Sciences Center at Houston, Houston, TX, USA
| | - Yuliya I Seldina
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Christy L Ventura
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Theresa M Koehler
- Department of Microbiology and Molecular Genetics, The University of Texas Health Sciences Center at Houston, Houston, TX, USA
| | - Alison D O'Brien
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| |
Collapse
|
6
|
Xu S, Harvey A, Barbieri R, Reuter T, Stanford K, Amoako KK, Selinger LB, McAllister TA. Inactivation of Bacillus anthracis Spores during Laboratory-Scale Composting of Feedlot Cattle Manure. Front Microbiol 2016; 7:806. [PMID: 27303388 PMCID: PMC4882334 DOI: 10.3389/fmicb.2016.00806] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 05/12/2016] [Indexed: 12/22/2022] Open
Abstract
Anthrax outbreaks in livestock have social, economic and health implications, altering farmer’s livelihoods, impacting trade and posing a zoonotic risk. Our study investigated the survival of Bacillus thuringiensis and B. anthracis spores sporulated at 15, 20, or 37°C, over 33 days of composting. Spores (∼7.5 log10 CFU g-1) were mixed with manure and composted in laboratory scale composters. After 15 days, the compost was mixed and returned to the composter for a second cycle. Temperatures peaked at 71°C on day 2 and remained ≥55°C for an average of 7 days in the first cycle, but did not exceed 55°C in the second. For B. thuringiensis, spores generated at 15 and 21°C exhibited reduced (P < 0.05) viability of 2.7 and 2.6 log10 CFU g-1 respectively, as compared to a 0.6 log10 CFU g-1 reduction for those generated at 37°C. For B. anthracis, sporulation temperature did not impact spore survival as there was a 2.5, 2.2, and 2.8 log10 CFU g-1 reduction after composting for spores generated at 15, 21, and 37°C, respectively. For both species, spore viability declined more rapidly (P < 0.05) in the first as compared to the second composting cycle. Our findings suggest that the duration of thermophilic exposure (≥55°C) is the main factor influencing survival of B. anthracis spores in compost. As sporulation temperature did not influence survival of B. anthracis, composting may lower the viability of spores associated with carcasses infected with B. anthracis over a range of sporulation temperatures.
Collapse
Affiliation(s)
- Shanwei Xu
- Lethbridge Research and Develeopment Centre, Agriculture and Agri-Food Canada, Lethbridge AB, Canada
| | - Amanda Harvey
- Lethbridge Research and Develeopment Centre, Agriculture and Agri-Food Canada, LethbridgeAB, Canada; Department of Biological Sciences, University of Lethbridge, LethbridgeAB, Canada
| | - Ruth Barbieri
- Lethbridge Research and Develeopment Centre, Agriculture and Agri-Food Canada, Lethbridge AB, Canada
| | - Tim Reuter
- Alberta Agriculture and Forestry, Lethbridge AB, Canada
| | - Kim Stanford
- Alberta Agriculture and Forestry, Lethbridge AB, Canada
| | - Kingsley K Amoako
- Lethbridge Laboratory, Canadian Food Inspection Agency, National Centres for Animal Disease, Lethbridge AB, Canada
| | - Leonard B Selinger
- Department of Biological Sciences, University of Lethbridge, Lethbridge AB, Canada
| | - Tim A McAllister
- Lethbridge Research and Develeopment Centre, Agriculture and Agri-Food Canada, Lethbridge AB, Canada
| |
Collapse
|
7
|
Animal Models for the Pathogenesis, Treatment, and Prevention of Infection by Bacillus anthracis. Microbiol Spectr 2016; 3:TBS-0001-2012. [PMID: 26104551 DOI: 10.1128/microbiolspec.tbs-0001-2012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
This article reviews the characteristics of the major animal models utilized for studies on Bacillus anthracis and highlights their contributions to understanding the pathogenesis and host responses to anthrax and its treatment and prevention. Advantages and drawbacks associated with each model, to include the major models (murine, guinea pig, rabbit, nonhuman primate, and rat), and other less frequently utilized models, are discussed. Although the three principal forms of anthrax are addressed, the main focus of this review is on models for inhalational anthrax. The selection of an animal model for study is often not straightforward and is dependent on the specific aims of the research or test. No single animal species provides complete equivalence to humans; however, each species, when used appropriately, can contribute to a more complete understanding of anthrax and its etiologic agent.
Collapse
|
8
|
Elisha IL, Dzoyem JP, Botha FS, Eloff JN. The efficacy and safety of nine South African medicinal plants in controlling Bacillus anthracis Sterne vaccine strain. Altern Ther Health Med 2016; 16:5. [PMID: 26742484 PMCID: PMC4705697 DOI: 10.1186/s12906-015-0980-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Accepted: 12/23/2015] [Indexed: 11/10/2022]
Abstract
BACKGROUND Anthrax is a zoonotic disease caused by Bacillus anthracis, a Gram-positive spore-forming bacterium. The presence of the bacteria and the toxins in the blood of infected hosts trigger a cascade of pathological events leading to death. Nine medicinal plants with good activities against other bacteria were selected to determine their in vitro antibacterial activity against Bacillus anthracis Sterne strain. The cytotoxicity of the extracts on Vero kidney cells was also determined. RESULTS The minimum inhibitory concentration (MIC) values of the extracts against Bacillus anthracis Sterne strain ranged from 0.02 to 0.31 mg/ml. Excellent MIC values were observed for the following plant species: Maesa lanceolata (0.02 mg/ml), Bolusanthus speciosus, Hypericum roeperianum, Morus mesozygia (0.04 mg/ml) and Pittosporum viridiflorum (0.08 mg/ml). The total antibacterial activity of the extracts ranged from 92 to 5562 ml/g. Total activity presents the volume to which the extract from 1 g of plant material can be diluted and still inhibit microbial growth. Maesa lanceolata and Hypericum roeperianum had the highest total activity with values of 5562 and 2999 ml/g respectively. The extracts of Calpurnia aurea had the lowest total activity (92 ml/g). The cytotoxicity determined on Vero cells indicated that most of the extracts were relatively non-toxic compared to doxorubicin (LC50 8.3 ± 1.76 μg/ml), except for the extracts of Maesa lanceolata, Elaeodendron croceum and Calpurnia aurea with LC50 values at 2.38 ± 0.25, 5.20 ± 0.24 and 13 ± 2.26 μg/ml respectively. The selectivity index (SI) ranged from 0.02 to 1.66. Hypericum roeperianum had the best selectivity index, (SI = 1.66) and Elaeodendron croceum had lowest value (SI = 0.02). CONCLUSIONS The crude acetone extracts of the selected plant species had promising antibacterial activity against Bacillus anthracis. Maesa lanceolata extracts could be useful as a disinfectant and Hypericum roeperianum could be useful to protect animals based on its high total activity and selectivity index. Further investigation of these plant extracts may lead to the development of new therapeutic agents to protect humans or animals against anthrax.
Collapse
|
9
|
Thompson IJT, Mann ER, Stokes MG, English NR, Knight SC, Williamson D. Specific activation of dendritic cells enhances clearance of Bacillus anthracis following infection. PLoS One 2014; 9:e109720. [PMID: 25380285 PMCID: PMC4224377 DOI: 10.1371/journal.pone.0109720] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 09/02/2014] [Indexed: 11/22/2022] Open
Abstract
Dendritic cells are potent activators of the immune system and have a key role in linking innate and adaptive immune responses. In the current study we have used ex vivo pulsed bone marrow dendritic cells (BMDC) in a novel adoptive transfer strategy to protect against challenge with Bacillus anthracis, in a murine model. Pre-pulsing murine BMDC with either recombinant Protective Antigen (PA) or CpG significantly upregulated expression of the activation markers CD40, CD80, CD86 and MHC-II. Passive transfusion of mice with pulsed BMDC, concurrently with active immunisation with rPA in alum, significantly enhanced (p<0.001) PA-specific splenocyte responses seven days post-immunisation. Parallel studies using ex vivo DCs expanded from human peripheral blood and activated under the same conditions as the murine DC, demonstrated that human DCs had a PA dose-related significant increase in the markers CD40, CD80 and CCR7 and that the increases in CD40 and CD80 were maintained when the other activating components, CpG and HK B. anthracis were added to the rPA in culture. Mice vaccinated on a single occasion intra-muscularly with rPA and alum and concurrently transfused intra-dermally with pulsed BMDC, demonstrated 100% survival following lethal B. anthracis challenge and had significantly enhanced (p<0.05) bacterial clearance within 2 days, compared with mice vaccinated with rPA and alum alone.
Collapse
Affiliation(s)
- Iain J. T. Thompson
- Biomedical Sciences Department, Defence Science and Technology Laboratory, Porton Down, Salisbury, Wiltshire, SP4 0JQ, United Kingdom
| | - Elizabeth R. Mann
- Antigen Presentation Research Group, Imperial College London, Northwick Park and St. Mark's Campus, Watford Road, Harrow, HA1 3UJ, United Kingdom
| | - Margaret G. Stokes
- Biomedical Sciences Department, Defence Science and Technology Laboratory, Porton Down, Salisbury, Wiltshire, SP4 0JQ, United Kingdom
| | - Nicholas R. English
- Antigen Presentation Research Group, Imperial College London, Northwick Park and St. Mark's Campus, Watford Road, Harrow, HA1 3UJ, United Kingdom
| | - Stella C. Knight
- Antigen Presentation Research Group, Imperial College London, Northwick Park and St. Mark's Campus, Watford Road, Harrow, HA1 3UJ, United Kingdom
| | - Diane Williamson
- Biomedical Sciences Department, Defence Science and Technology Laboratory, Porton Down, Salisbury, Wiltshire, SP4 0JQ, United Kingdom
- * E-mail:
| |
Collapse
|
10
|
|
11
|
Anthrax lethal toxin and the induction of CD4 T cell immunity. Toxins (Basel) 2012; 4:878-99. [PMID: 23162703 PMCID: PMC3496994 DOI: 10.3390/toxins4100878] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 10/08/2012] [Accepted: 10/10/2012] [Indexed: 12/27/2022] Open
Abstract
Bacillus anthracis secretes exotoxins which act through several mechanisms including those that can subvert adaptive immunity with respect both to antigen presenting cell and T cell function. The combination of Protective Antigen (PA) and Lethal Factor (LF) forming Lethal Toxin (LT), acts within host cells to down-regulate the mitogen activated protein kinase (MAPK) signaling cascade. Until recently the MAPK kinases were the only known substrate for LT; over the past few years it has become evident that LT also cleaves Nlrp1, leading to inflammasome activation and macrophage death. The predicted downstream consequences of subverting these important cellular pathways are impaired antigen presentation and adaptive immunity. In contrast to this, recent work has indicated that robust memory T cell responses to B. anthracis antigens can be identified following natural anthrax infection. We discuss how LT affects the adaptive immune response and specifically the identification of B. anthracis epitopes that are both immunogenic and protective with the potential for inclusion in protein sub-unit based vaccines.
Collapse
|
12
|
Weigel KJ, Rues L, Doyle EJ, Buchheit CL, Wood JG, Gallagher RJ, Kelly LE, Radel JD, Bradley KA, LeVine SM. Rapid vascular responses to anthrax lethal toxin in mice containing a segment of chromosome 11 from the CAST/Ei strain on a C57BL/6 genetic background. PLoS One 2012; 7:e40126. [PMID: 22792226 PMCID: PMC3390349 DOI: 10.1371/journal.pone.0040126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 06/01/2012] [Indexed: 11/29/2022] Open
Abstract
Host allelic variation controls the response to B. anthracis and the disease course of anthrax. Mouse strains with macrophages that are responsive to anthrax lethal toxin (LT) show resistance to infection while mouse strains with LT non-responsive macrophages succumb more readily. B6.CAST.11M mice have a region of chromosome 11 from the CAST/Ei strain (a LT responsive strain) introgressed onto a LT non-responsive C57BL/6J genetic background. Previously, B6.CAST.11M mice were found to exhibit a rapid inflammatory reaction to LT termed the early response phenotype (ERP), and displayed greater resistance to B. anthracis infection compared to C57BL/6J mice. Several ERP features (e.g., bloat, hypothermia, labored breathing, dilated pinnae vessels) suggested vascular involvement. To test this, Evan’s blue was used to assess vessel leakage and intravital microscopy was used to monitor microvascular blood flow. Increased vascular leakage was observed in lungs of B6.CAST.11M mice compared to C57BL/6J mice 1 hour after systemic administration of LT. Capillary blood flow was reduced in the small intestine mesentery without concomitant leukocyte emigration following systemic or topical application of LT, the latter suggesting a localized tissue mechanism in this response. Since LT activates the Nlrp1b inflammasome in B6.CAST.11M mice, the roles of inflammasome products, IL-1β and IL-18, were examined. Topical application to the mesentery of IL-1β but not IL-18 revealed pronounced slowing of blood flow in B6.CAST.11M mice that was not present in C57BL/6J mice. A neutralizing anti-IL-1β antibody suppressed the slowing of blood flow induced by LT, indicating a role for IL-1β in the response. Besides allelic differences controlling Nlrp1b inflammasome activation by LT observed previously, evidence presented here suggests that an additional genetic determinant(s) could regulate the vascular response to IL-1β. These results demonstrate that vessel leakage and alterations to blood flow are part of the rapid response in mice resistant to B. anthracis infection.
Collapse
Affiliation(s)
- Kelsey J. Weigel
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- Rockhurst University, Kansas City, Missouri, United States of America
| | - Laura Rues
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- Rockhurst University, Kansas City, Missouri, United States of America
| | - Edward J. Doyle
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- Rockhurst University, Kansas City, Missouri, United States of America
| | - Cassandra L. Buchheit
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- Rockhurst University, Kansas City, Missouri, United States of America
| | - John G. Wood
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- Department of Surgery, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Ryan J. Gallagher
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Laura E. Kelly
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- Rockhurst University, Kansas City, Missouri, United States of America
| | - Jeffrey D. Radel
- Department of Occupational Therapy Education, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Kenneth A. Bradley
- Department of Microbiology, Immunology & Molecular Genetics, University of California Los Angeles, Los Angeles, California, United States of America
| | - Steven M. LeVine
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- * E-mail:
| |
Collapse
|
13
|
Veach RA, Zienkiewicz J, Collins RD, Hawiger J. Lethality in a murine model of pulmonary anthrax is reduced by combining nuclear transport modifier with antimicrobial therapy. PLoS One 2012; 7:e30527. [PMID: 22291977 PMCID: PMC3266913 DOI: 10.1371/journal.pone.0030527] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 12/22/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND In the last ten years, bioterrorism has become a serious threat and challenge to public health worldwide. Pulmonary anthrax caused by airborne Bacillus anthracis spores is a life-threatening disease often refractory to antimicrobial therapy. Inhaled spores germinate into vegetative forms that elaborate an anti-phagocytic capsule along with potent exotoxins which disrupt the signaling pathways governing the innate and adaptive immune responses and cause endothelial cell dysfunction leading to vascular injury in the lung, hypoxia, hemorrhage, and death. METHODS/PRINCIPAL FINDINGS Using a murine model of pulmonary anthrax disease, we showed that a nuclear transport modifier restored markers of the innate immune response in spore-infected animals. An 8-day protocol of single-dose ciprofloxacin had no significant effect on mortality (4% survival) of A/J mice lethally infected with B. anthracis Sterne. Strikingly, mice were much more likely to survive infection (52% survival) when treated with ciprofloxacin and a cell-penetrating peptide modifier of host nuclear transport, termed cSN50. In B. anthracis-infected animals treated with antibiotic alone, we detected a muted innate immune response manifested by cytokines, tumor necrosis factor alpha (TNFα), interleukin (IL)-6, and chemokine monocyte chemoattractant protein-1 (MCP-1), while the hypoxia biomarker, erythropoietin (EPO), was greatly elevated. In contrast, cSN50-treated mice receiving ciprofloxacin demonstrated a restored innate immune responsiveness and reduced EPO level. Consistent with this improvement of innate immunity response and suppression of hypoxia biomarker, surviving mice in the combination treatment group displayed minimal histopathologic signs of vascular injury and a marked reduction of anthrax bacilli in the lungs. CONCLUSIONS We demonstrate, for the first time, that regulating nuclear transport with a cell-penetrating modifier provides a cytoprotective effect, which enables the host's immune system to reduce its susceptibility to lethal B. anthracis infection. Thus, by combining a nuclear transport modifier with antimicrobial therapy we offer a novel adjunctive measure to control florid pulmonary anthrax disease.
Collapse
Affiliation(s)
- Ruth Ann Veach
- Department of Microbiology and Immunology, Vanderbilt University School of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Jozef Zienkiewicz
- Department of Microbiology and Immunology, Vanderbilt University School of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Robert D. Collins
- Department of Pathology, Vanderbilt University School of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Jacek Hawiger
- Department of Microbiology and Immunology, Vanderbilt University School of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
14
|
Terra JK, France B, Cote CK, Jenkins A, Bozue JA, Welkos SL, Bhargava R, Ho CL, Mehrabian M, Pan C, Lusis AJ, Davis RC, LeVine SM, Bradley KA. Allelic variation on murine chromosome 11 modifies host inflammatory responses and resistance to Bacillus anthracis. PLoS Pathog 2011; 7:e1002469. [PMID: 22241984 PMCID: PMC3248472 DOI: 10.1371/journal.ppat.1002469] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 11/16/2011] [Indexed: 01/23/2023] Open
Abstract
Anthrax is a potentially fatal disease resulting from infection with Bacillus anthracis. The outcome of infection is influenced by pathogen-encoded virulence factors such as lethal toxin (LT), as well as by genetic variation within the host. To identify host genes controlling susceptibility to anthrax, a library of congenic mice consisting of strains with homozygous chromosomal segments from the LT-responsive CAST/Ei strain introgressed on a LT-resistant C57BL/6 (B6) background was screened for response to LT. Three congenic strains containing CAST/Ei regions of chromosome 11 were identified that displayed a rapid inflammatory response to LT similar to, but more severe than that driven by a LT-responsive allele of the inflammasome constituent NRLP1B. Importantly, increased response to LT in congenic mice correlated with greater resistance to infection by the Sterne strain of B. anthracis. The genomic region controlling the inflammatory response to LT was mapped to 66.36–74.67 Mb on chromosome 11, a region that encodes the LT-responsive CAST/Ei allele of Nlrp1b. However, known downstream effects of NLRP1B activation, including macrophage pyroptosis, cytokine release, and leukocyte infiltration could not fully explain the response to LT or the resistance to B. anthracis Sterne in congenic mice. Further, the exacerbated response in congenic mice is inherited in a recessive manner while the Nlrp1b-mediated response to LT is dominant. Finally, congenic mice displayed increased responsiveness in a model of sepsis compared with B6 mice. In total, these data suggest that allelic variation of one or more chromosome 11 genes in addition to Nlrp1b controls the severity of host response to multiple inflammatory stimuli and contributes to resistance to B. anthracis Sterne. Expression quantitative trait locus analysis revealed 25 genes within this region as high priority candidates for contributing to the host response to LT. We show that genetic variation within an 8.3 Mb region on mouse chromosome 11 controls host response to anthrax lethal toxin (LT) and resistance to infection by the Sterne strain of Bacillus anthracis. Specifically, congenic C57BL/6 mice in which this region of chromosome 11 is derived from a genetically divergent CAST/Ei strain presented with a rapid and strong innate immune response to LT and displayed increased survival following infection with Sterne spores. CAST/Ei chromosome 11 encodes a dominant LT-responsive allele of Nlrp1b that may partially account for the severe response to LT. However, the strength of this response was attenuated in mice with only one copy of chromosome 11 derived from CAST/Ei indicating the existence of a recessive modifier of the inflammatory response to LT. In addition, congenic mice displayed a pronounced immune response using an experimental model of sepsis, indicating that one or more genes within the chromosome 11 region control host response to multiple inflammatory stimuli. Analyzing the influence of allelic variation on gene expression identified 25 genes as candidates for controlling these responses. In summary, we report a genetic model to study inflammatory responses beneficial to the host during anthrax.
Collapse
Affiliation(s)
- Jill K Terra
- Department of Microbiology, Immunology, and Molecular Genetics, University of California at Los Angeles, Los Angeles, California, United States of America
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Cote CK, Welkos SL, Bozue J. Key aspects of the molecular and cellular basis of inhalational anthrax. Microbes Infect 2011; 13:1146-55. [DOI: 10.1016/j.micinf.2011.07.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 07/05/2011] [Accepted: 07/07/2011] [Indexed: 01/25/2023]
|
16
|
Differential role of the interleukin-17 axis and neutrophils in resolution of inhalational anthrax. Infect Immun 2011; 80:131-42. [PMID: 22025514 DOI: 10.1128/iai.05988-11] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The roles of interleukin-17 (IL-17) and neutrophils in the lung have been described as those of two intricate but independent players. Here we identify neutrophils as the primary IL-17-secreting subset of cells in a model of inhalation anthrax using A/J and C57BL/6 mice. With IL-17 receptor A knockout (IL-17RA-/-) mice, we confirmed that IL-17A/F signaling is instrumental in the self-recruitment of this population. We also show that the IL-17A/F axis is critical for surviving pulmonary infection, as IL-17RA-/- mice become susceptible to intranasal infection by Bacillus anthracis Sterne spores. Strikingly, infection with a fully virulent strain did not affect IL-17RA-/- mouse survival. Eventually, by depleting neutrophils in wild-type and IL-17RA-/- mice, we demonstrated the crucial role of IL-17-secreting neutrophils in mouse survival of infection by fully virulent B. anthracis. This work demonstrates the important roles of both IL-17 signaling and neutrophils in clearing this pathogen and surviving pulmonary B. anthracis infection.
Collapse
|
17
|
Multigenic control and sex bias in host susceptibility to spore-induced pulmonary anthrax in mice. Infect Immun 2011; 79:3204-15. [PMID: 21628518 DOI: 10.1128/iai.01389-10] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Mechanisms underlying susceptibility to anthrax infection are unknown. Using a phylogenetically diverse panel of inbred mice and spores of Bacillus anthracis Ames, we investigated host susceptibility to pulmonary anthrax. Susceptibility profiles for survival time and organ pathogen load differed across strains, indicating distinct genetic controls. Tissue infection kinetics analysis showed greater systemic dissemination in susceptible DBA/2J (D) mice but a higher terminal bacterial load in resistant BALB/cJ (C) mice. Interestingly, the most resistant strains, C and C57BL/6J (B), demonstrated a sex bias for susceptibility. For example, BALB/cJ females had a significantly higher survival time and required 4-fold more spores for 100% mortality compared to BALB/cJ males. To identify genetic regions associated with differential susceptibility, survival time and extent of organ infection were assessed using mice derived from two susceptibility models: (i) BXD advanced recombinant inbred strains and (ii) F2 offspring generated from polar responding C and D strains. Genome-wide analysis of BXD strain survival identified linkage on chromosomes 5, 6, 9, 11, and 14. Quantitative trait locus (QTL) analysis of the C×DF2 population revealed a significant QTL (designated Rpai1 for resistance to pulmonary anthrax infection, locus 1) for survival time on chromosome 17 and also identified a chromosome 11 locus for lung pathogen burden. The striking difference between genome-wide linkage profiles for these two mouse models of anthrax susceptibility supports our hypothesis that these are multigenic traits. Our data provide the first evidence for a differential sex response to anthrax resistance and further highlight the unlikelihood of a single common genetic contribution for this response across strains.
Collapse
|
18
|
Moayeri M, Crown D, Newman ZL, Okugawa S, Eckhaus M, Cataisson C, Liu S, Sastalla I, Leppla SH. Inflammasome sensor Nlrp1b-dependent resistance to anthrax is mediated by caspase-1, IL-1 signaling and neutrophil recruitment. PLoS Pathog 2010; 6:e1001222. [PMID: 21170303 PMCID: PMC3000361 DOI: 10.1371/journal.ppat.1001222] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Accepted: 11/08/2010] [Indexed: 01/02/2023] Open
Abstract
Bacillus anthracis infects hosts as a spore, germinates, and disseminates in its vegetative form. Production of anthrax lethal and edema toxins following bacterial outgrowth results in host death. Macrophages of inbred mouse strains are either sensitive or resistant to lethal toxin depending on whether they express the lethal toxin responsive or non-responsive alleles of the inflammasome sensor Nlrp1b (Nlrp1bS/S or Nlrp1bR/R, respectively). In this study, Nlrp1b was shown to affect mouse susceptibility to infection. Inbred and congenic mice harboring macrophage-sensitizing Nlrp1bS/S alleles (which allow activation of caspase-1 and IL-1β release in response to anthrax lethal toxin challenge) effectively controlled bacterial growth and dissemination when compared to mice having Nlrp1bR/R alleles (which cannot activate caspase-1 in response to toxin). Nlrp1bS-mediated resistance to infection was not dependent on the route of infection and was observed when bacteria were introduced by either subcutaneous or intravenous routes. Resistance did not occur through alterations in spore germination, as vegetative bacteria were also killed in Nlrp1bS/S mice. Resistance to infection required the actions of both caspase-1 and IL-1β as Nlrp1bS/S mice deleted of caspase-1 or the IL-1 receptor, or treated with the Il-1 receptor antagonist anakinra, were sensitized to infection. Comparison of circulating neutrophil levels and IL-1β responses in Nlrp1bS/S,Nlrp1bR/R and IL-1 receptor knockout mice implicated Nlrp1b and IL-1 signaling in control of neutrophil responses to anthrax infection. Neutrophil depletion experiments verified the importance of this cell type in resistance to B. anthracis infection. These data confirm an inverse relationship between murine macrophage sensitivity to lethal toxin and mouse susceptibility to spore infection, and establish roles for Nlrp1bS, caspase-1, and IL-1β in countering anthrax infection. In this study, we show that anthrax lethal toxin activation of Nlrp1b in toxin-sensitive mouse macrophages imparts resistance to infection. Inbred and congenic mice harboring macrophage-sensitizing Nlrp1b alleles control bacterial growth and dissemination independent of infection route or effects on germination efficiency. Knockout mice demonstrate that resistance imparted by Nlrp1b requires caspase-1 activity and IL-1 signaling. Mice in which lethal toxin activates the Nlrp1b inflammasome show an IL-1β response and increased neutrophil recruitment leading to increased resistance to infection. Neutrophil depletion experiments verify the importance of this cell type in resistance to B. anthracis infection. These data confirm an inverse relationship between murine macrophage sensitivity to lethal toxin and mouse susceptibility to spore infection and demonstrate that the activation of the inflammasome in response to anthrax infection in mice is a protective event that occurs through IL-1β induction of neutrophil recruitment.
Collapse
Affiliation(s)
- Mahtab Moayeri
- Laboratory of Bacterial Diseases, Bacterial Toxins and Therapeutics Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Devorah Crown
- Laboratory of Bacterial Diseases, Bacterial Toxins and Therapeutics Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Zachary L. Newman
- Laboratory of Bacterial Diseases, Bacterial Toxins and Therapeutics Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Shu Okugawa
- Laboratory of Bacterial Diseases, Bacterial Toxins and Therapeutics Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Michael Eckhaus
- Diagnostic and Research Services Branch, Division of Veterinary Resources, Office of Research Services, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Christophe Cataisson
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Shihui Liu
- Laboratory of Bacterial Diseases, Bacterial Toxins and Therapeutics Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Inka Sastalla
- Laboratory of Bacterial Diseases, Bacterial Toxins and Therapeutics Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Stephen H. Leppla
- Laboratory of Bacterial Diseases, Bacterial Toxins and Therapeutics Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
19
|
Induction of neutralizing antibody responses to anthrax protective antigen by using influenza virus vectors: implications for disparate immune system priming pathways. J Virol 2010; 84:8300-7. [PMID: 20504926 DOI: 10.1128/jvi.00183-10] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Viral vectors based on influenza virus, rabies virus (RV), and vaccinia virus (VV) were used to express large polypeptide segments derived from the Bacillus anthracis protective antigen (PA). For the infectious influenza virus vector and recombinant VV constructs, the receptor binding domain (RBD or domain 4) or the lethal and edema factor binding domain (LEF or domain 1') were engineered into functional chimeric hemagglutinin (HA) glycoproteins. In the case of the RV vector, the viral glycoprotein (G) was used as a carrier for RBD in an inactivated form of the vector. These constructs were examined by using multiple homologous and heterologous prime/boost immunization regimens in order to optimize the induction of alpha-PA antibody responses. Several immunization combinations were shown to induce high titers of antibody recognizing the anthrax RBD and LEF domains, as well as the full-length PA protein in mice. The heterologous prime/boost immunization regimens that involved an initial intranasal administration of a live influenza virus vector, followed by an intramuscular boost with either the killed RV vector or the VV vector, were particularly effective, inducing antigen-specific antibodies at levels severalfold higher than homologous or alternative heterologous protocols. Furthermore, sera from several groups of the immunized mice demonstrated neutralization activity in an in vitro anthrax toxin neutralization assay. In some cases, such toxin-neutralizing activity was notably high, indicating that the mechanisms by which immunity is primed by live influenza virus vectors may have beneficial properties.
Collapse
|
20
|
Terra JK, Cote CK, France B, Jenkins AL, Bozue JA, Welkos SL, LeVine SM, Bradley KA. Cutting edge: resistance to Bacillus anthracis infection mediated by a lethal toxin sensitive allele of Nalp1b/Nlrp1b. THE JOURNAL OF IMMUNOLOGY 2009; 184:17-20. [PMID: 19949100 DOI: 10.4049/jimmunol.0903114] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Pathogenesis of Bacillus anthracis is associated with the production of lethal toxin (LT), which activates the murine Nalp1b/Nlrp1b inflammasome and induces caspase-1-dependent pyroptotic death in macrophages and dendritic cells. In this study, we investigated the effect of allelic variation of Nlrp1b on the outcome of LT challenge and infection by B. anthracis spores. Nlrp1b allelic variation did not alter the kinetics or pathology of end-stage disease induced by purified LT, suggesting that, in contrast to previous reports, macrophage lysis does not contribute directly to LT-mediated pathology. However, animals expressing a LT-sensitive allele of Nlrp1b showed an early inflammatory response to LT and increased resistance to infection by B. anthracis. Data presented here support a model whereby LT-mediated activation of Nlrp1b and subsequent lysis of macrophages is not a mechanism used by B. anthracis to promote virulence, but rather a protective host-mediated innate immune response.
Collapse
Affiliation(s)
- Jill K Terra
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Penetration of the blood-brain barrier by Bacillus anthracis requires the pXO1-encoded BslA protein. J Bacteriol 2009; 191:7165-73. [PMID: 19820089 DOI: 10.1128/jb.00903-09] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Anthrax is a zoonotic disease caused by the gram-positive spore-forming bacterium Bacillus anthracis. Human infection occurs after the ingestion, inhalation, or cutaneous inoculation of B. anthracis spores. The subsequent progression of the disease is largely mediated by two native virulence plasmids, pXO1 and pXO2, and is characterized by septicemia, toxemia, and meningitis. In order to produce meningitis, blood-borne bacteria must interact with and breach the blood-brain barrier (BBB) that is composed of a specialized layer of brain microvascular endothelial cells (BMEC). We have recently shown that B. anthracis Sterne is capable of penetrating the BBB in vitro and in vivo, establishing the classic signs of meningitis; however, the molecular mechanisms underlying the central nervous system (CNS) tropism are not known. Here, we show that attachment to and invasion of human BMEC by B. anthracis Sterne is mediated by the pXO1 plasmid and an encoded envelope factor, BslA. The results of studies using complementation analysis, recombinant BslA protein, and heterologous expression demonstrate that BslA is both necessary and sufficient to promote adherence to brain endothelium. Furthermore, mice injected with the BslA-deficient strain exhibited a significant decrease in the frequency of brain infection compared to mice injected with the parental strain. In addition, BslA contributed to BBB breakdown by disrupting tight junction protein ZO-1. Our results identify the pXO1-encoded BslA adhesin as a critical mediator of CNS entry and offer new insights into the pathogenesis of anthrax meningitis.
Collapse
|
22
|
Cybulski RJ, Sanz P, O'Brien AD. Anthrax vaccination strategies. Mol Aspects Med 2009; 30:490-502. [PMID: 19729034 DOI: 10.1016/j.mam.2009.08.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Accepted: 08/24/2009] [Indexed: 01/10/2023]
Abstract
The biological attack conducted through the US postal system in 2001 broadened the threat posed by anthrax from one pertinent mainly to soldiers on the battlefield to one understood to exist throughout our society. The expansion of the threatened population placed greater emphasis on the reexamination of how we vaccinate against Bacillus anthracis. The currently-licensed Anthrax Vaccine, Adsorbed (AVA) and Anthrax Vaccine, Precipitated (AVP) are capable of generating a protective immune response but are hampered by shortcomings that make their widespread use undesirable or infeasible. Efforts to gain US Food and Drug Administration (FDA) approval for licensure of a second generation recombinant protective antigen (rPA)-based anthrax vaccine are ongoing. However, this vaccine's reliance on the generation of a humoral immune response against a single virulence factor has led a number of scientists to conclude that the vaccine is likely not the final solution to optimal anthrax vaccine design. Other vaccine approaches, which seek a more comprehensive immune response targeted at multiple components of the B. anthracis organism, are under active investigation. This review seeks to summarize work that has been done to build on the current PA-based vaccine methodology and to evaluate the search for future anthrax prophylaxis strategies.
Collapse
Affiliation(s)
- Robert J Cybulski
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4799, United States
| | | | | |
Collapse
|
23
|
The global regulator CodY regulates toxin gene expression in Bacillus anthracis and is required for full virulence. Infect Immun 2009; 77:4437-45. [PMID: 19651859 DOI: 10.1128/iai.00716-09] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In gram-positive bacteria, CodY is an important regulator of genes whose expression changes upon nutrient limitation and acts as a repressor of virulence gene expression in some pathogenic species. Here, we report the role of CodY in Bacillus anthracis, the etiologic agent of anthrax. Disruption of codY completely abolished virulence in a toxinogenic, noncapsulated strain, indicating that the activity of CodY is required for full virulence of B. anthracis. Global transcriptome analysis of a codY mutant and the parental strain revealed extensive differences. These differences could reflect direct control for some genes, as suggested by the presence of CodY binding sequences in their promoter regions, or indirect effects via the CodY-dependent control of other regulatory proteins or metabolic rearrangements in the codY mutant strain. The differences included reduced expression of the anthrax toxin genes in the mutant strain, which was confirmed by lacZ reporter fusions and immunoblotting. The accumulation of the global virulence regulator AtxA protein was strongly reduced in the mutant strain. However, in agreement with the microarray data, expression of atxA, as measured using an atxA-lacZ transcriptional fusion and by assaying atxA mRNA, was not significantly affected in the codY mutant. An atxA-lacZ translational fusion was also unaffected. Overexpression of atxA restored toxin component synthesis in the codY mutant strain. These results suggest that CodY controls toxin gene expression by regulating AtxA accumulation posttranslationally.
Collapse
|
24
|
Watts CJ, Hahn BL, Sohnle PG. Resistance of athymic nude mice to experimental cutaneous Bacillus anthracis infection. J Infect Dis 2009; 199:673-9. [PMID: 19199545 DOI: 10.1086/596631] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND Previous studies in a murine cutaneous anthrax model have demonstrated that hairless and haired HRS/J mice are extremely resistant to Bacillus anthracis. Because these mice are relatively thymus deficient, we used C57BL/6 athymic nude and euthymic mice to evaluate the relationship between T cell deficiency and this heightened resistance. METHODS Animals were epicutaneously inoculated with 1 X 10(7) B. anthracis (Sterne) spores onto abraded skin or injected with the spores intradermally or subcutaneously. The mice were then either monitored for survival or killed for quantitative histological experiments. RESULTS Athymic mice were found to be markedly resistant to all 3 inoculation routes, compared with euthymic C57BL/6 mice. Athymic mice rendered leukopenic with cyclophosphamide became susceptible. Histological examination demonstrated increased inflammation and absence of organisms in the skin of athymic mice, compared with euthymic ones. The numbers of organisms in the athymic animals increased markedly after cyclophosphamide treatment. Superficial exudate fluids of inoculated skin showed many more neutrophils and ingested bacilli in the athymic mice. CONCLUSIONS These experiments demonstrate that athymic nude C57BL/6 mice are markedly resistant to experimental cutaneous anthrax, apparently because of a superficial neutrophilic response that clears the inoculated organisms before they can invade the underlying skin.
Collapse
Affiliation(s)
- Christopher J Watts
- Division of Infectious Diseases, Department of Medicine, Medical College of Wisconsin, Consultant Care Division and Research Service, Milwaukee VA Medical Center, Milwaukee, USA
| | | | | |
Collapse
|
25
|
Seidman MA, Chew TW, Schenkel AR, Muller WA. PECAM-independent thioglycollate peritonitis is associated with a locus on murine chromosome 2. PLoS One 2009; 4:e4316. [PMID: 19180231 PMCID: PMC2628736 DOI: 10.1371/journal.pone.0004316] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2008] [Accepted: 01/05/2009] [Indexed: 01/13/2023] Open
Abstract
Background Previous studies have demonstrated that knockout or inhibition of Platelet/Endothelial Cell Adhesion Molecule (PECAM, CD31) in a number of murine strains results in impaired inflammatory responses, but that no such phenotype is seen in the C57BL/6 (B6) murine background. Methodology/Principal Findings We have undertaken a quantitative trait locus (QTL) mapping effort between FVB/n (FVB) and B6 mice deficient for PECAM to identify the gene or genes responsible for this unique feature of B6 mice. We have identified a locus on murine chromosome 2 at approximately 35.8 Mb that is strongly associated (LOD score = 9.0) with inflammatory responses in the absence of PECAM. Conclusions/Significance These data potentiate further study of the diapedesis machinery, as well as potential identification of new components of this machinery. As such, this study is an important step to better understanding the processes of inflammation.
Collapse
Affiliation(s)
- Michael A. Seidman
- Department of Pathology, Weill Cornell Medical College, New York, New York, United States of America
| | - Tina W. Chew
- Department of Pathology, Weill Cornell Medical College, New York, New York, United States of America
| | - Alan R. Schenkel
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biological Science, Colorado State University, Fort Collins, Colorado, United States of America
| | - William A. Muller
- Department of Pathology, Weill Cornell Medical College, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
26
|
Antimicrobial effects of interferon-inducible CXC chemokines against Bacillus anthracis spores and bacilli. Infect Immun 2009; 77:1664-78. [PMID: 19179419 DOI: 10.1128/iai.01208-08] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Based on previous studies showing that host chemokines exert antimicrobial activities against bacteria, we sought to determine whether the interferon-inducible Glu-Leu-Arg-negative CXC chemokines CXCL9, CXCL10, and CXCL11 exhibit antimicrobial activities against Bacillus anthracis. In vitro analysis demonstrated that all three CXC chemokines exerted direct antimicrobial effects against B. anthracis spores and bacilli including marked reductions in spore and bacillus viability as determined using a fluorometric assay of bacterial viability and CFU determinations. Electron microscopy studies revealed that CXCL10-treated spores failed to undergo germination as judged by an absence of cytological changes in spore structure that occur during the process of germination. Immunogold labeling of CXCL10-treated spores demonstrated that the chemokine was located internal to the exosporium in association primarily with the spore coat and its interface with the cortex. To begin examining the potential biological relevance of chemokine-mediated antimicrobial activity, we used a murine model of inhalational anthrax. Upon spore challenge, the lungs of C57BL/6 mice (resistant to inhalational B. anthracis infection) had significantly higher levels of CXCL9, CXCL10, and CXCL11 than did the lungs of A/J mice (highly susceptible to infection). Increased CXC chemokine levels were associated with significantly reduced levels of spore germination within the lungs as determined by in vivo imaging. Taken together, our data demonstrate a novel antimicrobial role for host chemokines against B. anthracis that provides unique insight into host defense against inhalational anthrax; these data also support the notion for an innovative approach in treating B. anthracis infection as well as infections caused by other spore-forming organisms.
Collapse
|
27
|
Killed but metabolically active Bacillus anthracis vaccines induce broad and protective immunity against anthrax. Infect Immun 2009; 77:1649-63. [PMID: 19168734 DOI: 10.1128/iai.00530-08] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Bacillus anthracis is the causative agent of anthrax. We have developed a novel whole-bacterial-cell anthrax vaccine utilizing B. anthracis that is killed but metabolically active (KBMA). Vaccine strains that are asporogenic and nucleotide excision repair deficient were engineered by deleting the spoIIE and uvrAB genes, rendering B. anthracis extremely sensitive to photochemical inactivation with S-59 psoralen and UV light. We also introduced point mutations into the lef and cya genes, which allowed inactive but immunogenic toxins to be produced. Photochemically inactivated vaccine strains maintained a high degree of metabolic activity and secreted protective antigen (PA), lethal factor, and edema factor. KBMA B. anthracis vaccines were avirulent in mice and induced less injection site inflammation than recombinant PA adsorbed to aluminum hydroxide gel. KBMA B. anthracis-vaccinated animals produced antibodies against numerous anthrax antigens, including high levels of anti-PA and toxin-neutralizing antibodies. Vaccination with KBMA B. anthracis fully protected mice against challenge with lethal doses of toxinogenic unencapsulated Sterne 7702 spores and rabbits against challenge with lethal pneumonic doses of fully virulent Ames strain spores. Guinea pigs vaccinated with KBMA B. anthracis were partially protected against lethal Ames spore challenge, which was comparable to vaccination with the licensed vaccine anthrax vaccine adsorbed. These data demonstrate that KBMA anthrax vaccines are well tolerated and elicit potent protective immune responses. The use of KBMA vaccines may be broadly applicable to bacterial pathogens, especially those for which the correlates of protective immunity are unknown.
Collapse
|
28
|
Lisanby MW, Swiecki MK, Dizon BLP, Pflughoeft KJ, Koehler TM, Kearney JF. Cathelicidin administration protects mice from Bacillus anthracis spore challenge. THE JOURNAL OF IMMUNOLOGY 2008; 181:4989-5000. [PMID: 18802102 DOI: 10.4049/jimmunol.181.7.4989] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cathelicidins are a family of cationic peptides expressed in mammals that possess numerous bactericidal and immunomodulatory properties. In vitro analyses showed that human, mouse, and pig cathelicidins inhibited Bacillus anthracis bacterial growth at micromolar concentrations in the presence or absence of capsule. Combined in vitro analyses of the effects of each peptide on spore germination and vegetative outgrowth by time lapse phase contrast microscopy, transmission electron microscopy, and flow cytometric analysis showed that only the pig cathelicidin was capable of directly arresting vegetative outgrowth and killing the developing bacilli within the confines of the exosporium. C57BL/6 mice were protected from spore-induced death by each cathelicidin in a time- and dose-dependent manner. Protection afforded by the porcine cathelicidin was due to its bactericidal effects, whereas the human and mouse cathelicidins appeared to mediate protection through increased recruitment of neutrophils to the site of infection. These findings suggest that cathelicidins might be utilized to augment the initial innate immune response to B. anthracis spore exposure and prevent the development of anthrax.
Collapse
Affiliation(s)
- Mark W Lisanby
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | | | | | |
Collapse
|
29
|
van Sorge NM, Ebrahimi CM, McGillivray SM, Quach D, Sabet M, Guiney DG, Doran KS. Anthrax toxins inhibit neutrophil signaling pathways in brain endothelium and contribute to the pathogenesis of meningitis. PLoS One 2008; 3:e2964. [PMID: 18698416 PMCID: PMC2493037 DOI: 10.1371/journal.pone.0002964] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2008] [Accepted: 07/22/2008] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Anthrax meningitis is the main neurological complication of systemic infection with Bacillus anthracis approaching 100% mortality. The presence of bacilli in brain autopsies indicates that vegetative bacteria are able to breach the blood-brain barrier (BBB). The BBB represents not only a physical barrier but has been shown to play an active role in initiating a specific innate immune response that recruits neutrophils to the site of infection. Currently, the basic pathogenic mechanisms by which B. anthracis penetrates the BBB and causes anthrax meningitis are poorly understood. METHODOLOGY/PRINCIPAL FINDINGS Using an in vitro BBB model, we show for the first time that B. anthracis efficiently invades human brain microvascular endothelial cells (hBMEC), the single cell layer that comprises the BBB. Furthermore, transcriptional profiling of hBMEC during infection with B. anthracis revealed downregulation of 270 (87%) genes, specifically key neutrophil chemoattractants IL-8, CXCL1 (Gro alpha) and CXCL2 (Gro beta), thereby strongly contrasting hBMEC responses observed with other meningeal pathogens. Further studies using specific anthrax toxin-mutants, quantitative RT-PCR, ELISA and in vivo assays indicated that anthrax toxins actively suppress chemokine production and neutrophil recruitment during infection, allowing unrestricted proliferation and dissemination of the bacteria. Finally, mice challenged with B. anthracis Sterne, but not the toxin-deficient strain, developed meningitis. CONCLUSIONS/SIGNIFICANCE These results suggest a significant role for anthrax toxins in thwarting the BBB innate defense response promoting penetration of bacteria into the central nervous system. Furthermore, establishment of a mouse model for anthrax meningitis will aid in our understanding of disease pathogenesis and development of more effective treatment strategies.
Collapse
Affiliation(s)
- Nina M. van Sorge
- Department of Pediatrics, University of California San Diego, La Jolla, California, United States of America
| | - Celia M. Ebrahimi
- Department of Biology and Center for Microbial Sciences, San Diego State University, San Diego, California, United States of America
| | - Shauna M. McGillivray
- Department of Pediatrics, University of California San Diego, La Jolla, California, United States of America
| | - Darin Quach
- Department of Biology and Center for Microbial Sciences, San Diego State University, San Diego, California, United States of America
| | - Mojgan Sabet
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Donald G. Guiney
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Kelly S. Doran
- Department of Biology and Center for Microbial Sciences, San Diego State University, San Diego, California, United States of America
- Department of Pediatrics, University of California San Diego, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
30
|
Recombinant Bacillus anthracis spore proteins enhance protection of mice primed with suboptimal amounts of protective antigen. Vaccine 2008; 26:4927-39. [PMID: 18657585 DOI: 10.1016/j.vaccine.2008.07.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2008] [Revised: 06/24/2008] [Accepted: 07/08/2008] [Indexed: 11/24/2022]
Abstract
Inactivated Bacillus anthracis spores given with protective antigen (PA) contribute to immunity against anthrax in several animal models. Antiserum raised against whole irradiated B. anthracis spores has been shown to have anti-germination and opsonic activities in vitro. Based on these observations, we hypothesized that surface-exposed spore proteins might serve as supplemental components of a PA-based anthrax vaccine. The protective anti-spore serum was tested for reactivity with recombinant forms of 30 proteins known, or believed to be, present within the B. anthracis exosporium. Eleven of those proteins were reactive with this antiserum, and, subsequently a subset of this group was used to generate rabbit polyclonal antibodies. These sera were evaluated for recognition of the immunogens on intact spores generated from Sterne strain, as well as from an isogenic mutant lacking the spore surface protein Bacillus collagen-like antigen (BclA). The data were consistent with the notion that the antigens in question were located beneath BclA on the basal surface of the exosporium. A/J mice immunized with either the here-to-for hypothetical protein p5303 or the structural protein BxpB, each in combination with subprotective levels of PA, showed enhanced protection against subcutaneous spore challenge. While neither anti-BxpB or anti-p5303 antibodies reduced the rate of spore germination in vitro, both caused increased uptake and lead to a higher rate of destruction by phagocytic cells. We conclude that by facilitating more efficient phagocytic clearance of spores, antibodies against individual exosporium components can contribute to protection against B. anthracis infection.
Collapse
|
31
|
Hudson MJ, Beyer W, Böhm R, Fasanella A, Garofolo G, Golinski R, Goossens PL, Hahn U, Hallis B, King A, Mock M, Montecucco C, Ozin A, Tonello F, Kaufmann SH. Bacillus anthracis: balancing innocent research with dual-use potential. Int J Med Microbiol 2008; 298:345-64. [PMID: 18375178 PMCID: PMC7106442 DOI: 10.1016/j.ijmm.2007.09.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2007] [Revised: 09/21/2007] [Accepted: 09/28/2007] [Indexed: 12/30/2022] Open
Abstract
Anthrax Euronet, a Coordination Action of the EU 6th Framework Programme, was designed to strengthen networking activities between anthrax research groups in Europe and to harmonise protocols for testing anthrax vaccines and therapeutics. Inevitably, the project also addressed aspects of the current political issues of biosecurity and dual-use research, i.e. research into agents of important diseases of man, livestock or agriculture that could be used as agents of bioterrorism. This review provides a comprehensive overview of the biology of Bacillus anthracis, of the pathogenesis, epidemiology and diagnosis of anthrax, as well as vaccine and therapeutic intervention strategies. The proposed requirement for a code of conduct for working with dual-use agents such as the anthrax bacillus is also discussed.
Collapse
Affiliation(s)
| | | | | | - Antonio Fasanella
- Istituto Zooprofilattico Sperimentale of Puglia and Basilicata, Foggia, Italy
| | - Giuliano Garofolo
- Istituto Zooprofilattico Sperimentale of Puglia and Basilicata, Foggia, Italy
| | - Robert Golinski
- Department of Immunology, Max Planck Institute for Infection Biology, Charitéplatz 1, D-10117 Berlin, Germany
| | | | | | - Bassam Hallis
- Health Protection Agency, Porton Down, Salisbury, UK
| | | | | | | | - Amanda Ozin
- Department of Immunology, Max Planck Institute for Infection Biology, Charitéplatz 1, D-10117 Berlin, Germany
| | | | - Stefan H.E. Kaufmann
- Department of Immunology, Max Planck Institute for Infection Biology, Charitéplatz 1, D-10117 Berlin, Germany
| |
Collapse
|
32
|
Watts CJ, Hahn BL, Sohnle PG. Progressive and destructive hair follicle infections in a murine cutaneous anthrax model. Microb Pathog 2008; 44:363-9. [PMID: 18551767 DOI: 10.1016/j.micpath.2007.10.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Hair follicles may allow pathogen entry because they represent potential barrier defects and because there is immunological privilege within actively growing follicles. Experimental cutaneous Bacillus anthracis infections in mice have previously shown prominent organism invasion and proliferation within hair follicles. For the present study, C57BL/6 mice were inoculated with B. anthracis (Sterne) spores onto abraded skin with either anagen (actively growing) or telogen (inactive) hair follicles; skin samples were evaluated by histologic methods and electron microscopy. The infections were found to progress similarly in either anagen or telogen hair follicles, with bacilli occasionally invading deeper sites in anagen hair follicles. The infections progressed from the surface inward, rather than growing outward from within the follicles. Infecting bacilli destroyed the hair follicle keratinocytes and were initially not contacted by inflammatory cells within the follicles. However, at 3-4 days after inoculation, inflammatory cells did contact and disperse the massed follicle bacilli and led to apparent resolution of the follicle infections. Therefore, in this model system B. anthracis initially attacks superficial sites in active or inactive hair follicles and then progresses inward, producing destructive infections of the hair follicles; these infections clear when the massed bacilli are eventually contacted and dispersed by inflammatory cells.
Collapse
Affiliation(s)
- Christopher J Watts
- Division of Infectious Diseases, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | | |
Collapse
|
33
|
Hahn BL, Bischof TS, Sohnle PG. Superficial exudates of neutrophils prevent invasion of Bacillus anthracis bacilli into abraded skin of resistant mice. Int J Exp Pathol 2008; 89:180-7. [PMID: 18460070 DOI: 10.1111/j.1365-2613.2008.00584.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Skin window procedures in humans have shown rapid accumulation of neutrophils into the exuded fluids above abraded skin. The present study was undertaken to determine if similar epicutaneous neutrophil accumulation might explain the extreme resistance of HRS/J mice, both hairless (hr/hr) and haired (hr/+), to experimental cutaneous Bacillus anthracis Sterne infections on abraded skin. In this study, very early (6 h) biopsies demonstrated a lack of bacilli in skin from the HRS/J hr/hr mice, indicating that the organisms never did invade in these animals as opposed to early skin entry and then efficient clearance by host responses in the tissues. Touch preparations of either the inoculation filter or the skin surface revealed more inflammatory cells, fewer bacilli, and a higher percentage of cell-associated bacilli in the HRS/J hr/hr mice than in comparator strains. In the HRS/J mice, cyclophosphamide treatment or separation of inoculated spores from the inflammatory infiltrates by a second filter below both produced marked increases in the number of bacilli observed. Examination of inoculation filter specimens demonstrated ingestion of spores and bacilli by neutrophils inside the filter at 6 h after inoculation. These findings suggest that an early and vigorous inflammatory cell infiltrate in HRS/J mice attacks the inoculated organisms above the skin surface and does not allow them to invade the tissues below.
Collapse
Affiliation(s)
- Beth L Hahn
- Division of Infectious Diseases, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | | | | |
Collapse
|
34
|
Passalacqua KD, Bergman NH. Bacillus anthracis: interactions with the host and establishment of inhalational anthrax. Future Microbiol 2007; 1:397-415. [PMID: 17661631 DOI: 10.2217/17460913.1.4.397] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Due to its potential as a bioweapon, Bacillus anthracis has received a great deal of attention in recent years, and a significant effort has been devoted to understanding how this organism causes anthrax. There has been a particular focus on the inhalational form of the disease, and studies over the past several years have painted an increasingly complex picture of how B. anthracis enters the mammalian host, survives the host's defense mechanisms, disseminates throughout the body and causes death. This article reviews recent advances in these areas, with a focus on how the bacterium interacts with its host in establishing infection and causing anthrax.
Collapse
Affiliation(s)
- Karla D Passalacqua
- University of Michigan Medical School, Department of Microbiology & Immunology, Ann Arbor, MI 48109, USA.
| | | |
Collapse
|
35
|
Russell BH, Vasan R, Keene DR, Xu Y. Bacillus anthracis internalization by human fibroblasts and epithelial cells. Cell Microbiol 2007; 9:1262-74. [PMID: 17474904 DOI: 10.1111/j.1462-5822.2006.00869.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The current model for Bacillus anthracis dissemination in vivo focuses on macrophages as carriers. However, recent evidence suggested that other host cells may also play a role in the process. Here, we tested the possibility of B. anthracis being internalized by a human fibroblast cell line, HT1080 and an epithelial cell line, Caco-2. A combination of gentamicin protection assays, scanning and transmission electron microscopy (EM) and fluorescence microscopy was used. The results demonstrated for the first time that both spores and vegetative cells of B. anthracis Sterne strain 7702 were able to adhere to and be internalized by cultured HT1080 and Caco-2 cells. Spore adherence to and internalization by HT1080 cells were not affected by a germination inhibitor. This suggested that certain features on dormant spores were sufficient for these processes. Vegetative cell adherence to and internalization by both cell lines were growth phase-dependent. EM images suggested that vegetative cells may have the ability to escape phagocytic vacuoles. Finally, we showed that internalization of both spores and vegetative cells required active functions of the host cell cytoskeleton. These results raised the possibility that B. anthracis may disseminate in vivo by directly infecting non-phagocytic cells.
Collapse
Affiliation(s)
- Brooke H Russell
- Center for Extracellular Matrix Biology, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
36
|
Glomski IJ, Corre JP, Mock M, Goossens PL. Noncapsulated toxinogenic Bacillus anthracis presents a specific growth and dissemination pattern in naive and protective antigen-immune mice. Infect Immun 2007; 75:4754-61. [PMID: 17635863 PMCID: PMC2044546 DOI: 10.1128/iai.00575-07] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Bacillus anthracis is a spore-forming bacterium that causes anthrax. B. anthracis has three major virulence factors, namely, lethal toxin, edema toxin, and a poly-gamma-D-glutamic acid capsule. The toxins modulate host immune responses, and the capsule inhibits phagocytosis. With the goal of increasing safety, decreasing security concerns, and taking advantage of mammalian genetic tools and reagents, mouse models of B. anthracis infection have been developed using attenuated bacteria that produce toxins but no capsule. While these models have been useful in studying both toxinogenic infections and antitoxin vaccine efficacy, we questioned whether eliminating the capsule changed bacterial growth and dissemination characteristics. Thus, the progression of infection by toxinogenic noncapsulated B. anthracis was analyzed and compared to that by previously reported nontoxinogenic capsulated bacteria, using in vivo bioluminescence imaging. The influence of immunization with the toxin component protective antigen (PA) on the development of infection was also examined. The toxinogenic noncapsulated bacteria were initially confined to the cutaneous site of infection. Bacteria then progressed to the draining lymph nodes and, finally, late in the infection, to the lungs, kidneys, and frequently the gastrointestinal tract. There was minimal colonization of the spleen. PA immunization reduced bacterial growth from the outset and limited infection to the site of inoculation. These in vivo observations show that dissemination by toxinogenic noncapsulated strains differs markedly from that by nontoxinogenic capsulated strains. Additionally, PA immunization counters bacterial growth and dissemination in vivo from the onset of infection.
Collapse
Affiliation(s)
- Ian J Glomski
- Unité des Toxines et Pathogénie Bactérienne, Institut Pasteur, 28 rue du Dr. Roux, 75724 Paris Cedex 15, France
| | | | | | | |
Collapse
|
37
|
Bischof TS, Hahn BL, Sohnle PG. Experimental cutaneous Bacillus anthracis infections in hairless HRS/J mice. Int J Exp Pathol 2007; 88:75-84. [PMID: 17244341 PMCID: PMC2517287 DOI: 10.1111/j.1365-2613.2006.00519.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Previous studies of experimental Bacillus anthracis cutaneous infections in mice have implicated hair follicles as a likely entry site. Hairless HRS/J mice were used to investigate this possibility because of their non-functional hair follicles that lack penetrating hair shafts. These mice also have diminished macrophage function, increased susceptibility to Listeria, and enhanced neutrophil responses. HRS/J and Balb/c mice were found to be resistant to epicutaneous inoculation with Bacillus anthracis (Sterne) spores onto abraded skin when compared with DBA/2 mice or leucopenic C57BL/6 mice. The HRS/J mice also resisted spore injections that bypassed hair follicles. Haired HRS/J heterozygote mice demonstrated similar reduced susceptibility to B. anthracis spores. Hairless HRS/J mice that were made leucopenic did become susceptible to the epicutaneous spore inoculations. Histologically, the hairless and haired HRS/J mice showed markedly reduced numbers of organisms in hair follicles and the interfollicular dermis when compared even with the resistant Balb/c mice; inflammatory cell infiltrates in the superficial dermis were increased in the HRS/J mice compared with more sensitive strains. Therefore, resistance in the HRS/J mice was apparent at the initial site of epicutaneous inoculation and seemed related to an accumulation of dermal neutrophils rather than to a lack of functional hair follicles.
Collapse
MESH Headings
- Animals
- Anthrax/immunology
- Anthrax/pathology
- Anthrax/transmission
- Bacillus anthracis
- Cell Count
- Hair Follicle/immunology
- Hair Follicle/pathology
- Immunity, Innate
- Injections, Intradermal
- Mice
- Mice, Hairless/immunology
- Mice, Inbred C57BL
- Mice, Inbred DBA
- Mice, Inbred Strains
- Models, Animal
- Skin/immunology
- Skin/pathology
- Skin Diseases, Infectious/immunology
- Skin Diseases, Infectious/pathology
- Skin Diseases, Infectious/transmission
- Spores, Bacterial
Collapse
Affiliation(s)
- Timothy S Bischof
- Division of Infectious Diseases, Department of Medicine, Medical College of Wisconsin, and Consultant Care Division and Research Service, VA Medical Center, Milwaukee, WI 53295, USA
| | | | | |
Collapse
|
38
|
Loving CL, Kennett M, Lee GM, Grippe VK, Merkel TJ. Murine aerosol challenge model of anthrax. Infect Immun 2007; 75:2689-98. [PMID: 17353290 PMCID: PMC1932896 DOI: 10.1128/iai.01875-06] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The availability of relevant and useful animal models is critical for progress in the development of effective vaccines and therapeutics. The infection of rabbits and non-human primates with fully virulent Bacillus anthracis spores provides two excellent models of anthrax disease. However, the high cost of procuring and housing these animals and the specialized facilities required to deliver fully virulent spores limit their practical use in early stages of product development. Conversely, the small size and low cost associated with using mice makes this animal model more practical for conducting experiments in which large numbers of animals are required. In addition, the availability of knockout strains and well-characterized immunological reagents makes it possible to perform studies in mice that cannot be performed easily in other species. Although we, along with others, have used the mouse aerosol challenge model to examine the outcome of B. anthracis infection, a detailed characterization of the disease is lacking. The current study utilizes a murine aerosol challenge model to investigate disease progression, innate cytokine responses, and histological changes during the course of anthrax after challenge with aerosolized spores. Our results show that anthrax disease progression in a complement-deficient mouse after challenge with aerosolized Sterne spores is similar to that described for other species, including rabbits and non-human primates, challenged with fully virulent B. anthracis. Thus, the murine aerosol challenge model is both useful and relevant and provides a means to further investigate the host response and mechanisms of B. anthracis pathogenesis.
Collapse
Affiliation(s)
- Crystal L Loving
- Laboratory of Respiratory and Special Pathogens, DBPAP/CBER/FDA, Building 29, Room 418, 29 Lincoln Drive, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
39
|
Hu H, Sa Q, Koehler TM, Aronson AI, Zhou D. Inactivation of Bacillus anthracis spores in murine primary macrophages. Cell Microbiol 2006; 8:1634-42. [PMID: 16984418 DOI: 10.1111/j.1462-5822.2006.00738.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The current model for pathogenesis of inhalation anthrax indicates that the uptake and fate of Bacillus anthracis spores in alveolar macrophages are critical to the infection process. We have employed primary macrophages, which are more efficient for spore uptake than the macrophage-like cell line RAW264.7, to investigate spore uptake and survival. We found that at a multiplicity of infection (moi) of 5, greater than 80% of the spores of the Sterne strain containing only the pXO1 plasmid were internalized within 1 h. Within 4 h post infection, viability of internalized Sterne spores decreased to approximately 40%. Intracellular vegetative bacteria represented less than 1% of the total spore inoculum throughout the course of infection suggesting effective killing of germinated spores and/or vegetative bacteria. The Sterne spores trafficked quickly to phagolysosomes as indicated by colocalization with lysosome-associated membrane protein 1 (LAMP1). Expression of a dominant-negative Rab7 that blocked lysosome fusion enhanced Sterne spore survival. Addition of d-alanine to the infection resulted in 75% inhibition of spore germination and increased survival of internalized spores of the Sterne strain and a pathogenic strain containing both the pXO1 and pXO2 plasmids. Inhibition was reversed by the addition of l-alanine, which resumed spore germination and subsequent spore killing. Our data indicate that B. anthracis spores germinate in and are subsequently killed by primary macrophages.
Collapse
Affiliation(s)
- Haijing Hu
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | | | |
Collapse
|
40
|
Giorno R, Bozue J, Cote C, Wenzel T, Moody KS, Mallozzi M, Ryan M, Wang R, Zielke R, Maddock JR, Friedlander A, Welkos S, Driks A. Morphogenesis of the Bacillus anthracis spore. J Bacteriol 2006; 189:691-705. [PMID: 17114257 PMCID: PMC1797280 DOI: 10.1128/jb.00921-06] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacillus spp. and Clostridium spp. form a specialized cell type, called a spore, during a multistep differentiation process that is initiated in response to starvation. Spores are protected by a morphologically complex protein coat. The Bacillus anthracis coat is of particular interest because the spore is the infective particle of anthrax. We determined the roles of several B. anthracis orthologues of Bacillus subtilis coat protein genes in spore assembly and virulence. One of these, cotE, has a striking function in B. anthracis: it guides the assembly of the exosporium, an outer structure encasing B. anthracis but not B. subtilis spores. However, CotE has only a modest role in coat protein assembly, in contrast to the B. subtilis orthologue. cotE mutant spores are fully virulent in animal models, indicating that the exosporium is dispensable for infection, at least in the context of a cotE mutation. This has implications for both the pathophysiology of the disease and next-generation therapeutics. CotH, which directs the assembly of an important subset of coat proteins in B. subtilis, also directs coat protein deposition in B. anthracis. Additionally, however, in B. anthracis, CotH effects germination; in its absence, more spores germinate than in the wild type. We also found that SpoIVA has a critical role in directing the assembly of the coat and exosporium to an area around the forespore. This function is very similar to that of the B. subtilis orthologue, which directs the assembly of the coat to the forespore. These results show that while B. anthracis and B. subtilis rely on a core of conserved morphogenetic proteins to guide coat formation, these proteins may also be important for species-specific differences in coat morphology. We further hypothesize that variations in conserved morphogenetic coat proteins may play roles in taxonomic variation among species.
Collapse
MESH Headings
- Bacillus anthracis/genetics
- Bacillus anthracis/metabolism
- Bacillus anthracis/physiology
- Bacterial Proteins/genetics
- Bacterial Proteins/metabolism
- Electrophoresis, Polyacrylamide Gel
- Gene Expression Regulation, Bacterial
- Genes, Bacterial
- Microscopy, Electron
- Microscopy, Fluorescence
- Microscopy, Phase-Contrast
- Models, Biological
- Mutation
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
- Spores, Bacterial/genetics
- Spores, Bacterial/growth & development
- Spores, Bacterial/ultrastructure
Collapse
Affiliation(s)
- Rebecca Giorno
- Department of Microbiology and Immunology, Loyola University Medical Center, 2160 South First Avenue, Bldg. 105, Rm. 3820, Maywood, IL 60153, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Systemic anthrax infection is usually fatal even with optimal medical care. Further insights into anthrax pathogenesis are therefore urgently needed to develop more effective therapies. Animal models that reproduce human disease will facilitate this research. Here, we describe the detailed histopathology of systemic anthrax infection in A/J mice infected with Bacillus anthracis Sterne, a strain with reduced virulence for humans. Subcutaneous infection leads to systemic disease with multiple pathologies including oedema, haemorrhage, secondary pneumonia and lymphocytolysis. These pathologies bear marked similarity to primary pathologies observed during human disease. Therefore, this simple, small animal model will allow researchers to study the major pathologies observed in humans, while permitting experimentation in more widely available Biosafety Level 2 facilities.
Collapse
Affiliation(s)
- Scott Duong
- Division of Experimental Pathology, Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | | | | |
Collapse
|
42
|
Zhang J, Shi Z, Kong FK, Jex E, Huang Z, Watt JM, Van Kampen KR, Tang DCC. Topical application of Escherichia coli-vectored vaccine as a simple method for eliciting protective immunity. Infect Immun 2006; 74:3607-17. [PMID: 16714593 PMCID: PMC1479276 DOI: 10.1128/iai.01836-05] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
We report here that animals can be protected against lethal infection by Clostridium tetani cells and Bacillus anthracis spores following topical application of intact particles of live or gamma-irradiated Escherichia coli vectors overproducing tetanus and anthrax antigens, respectively. Cutaneous gammadeltaT cells were rapidly recruited to the administration site. Live E. coli cells were not found in nonskin tissues after topical application, although fragments of E. coli DNA were disseminated transiently. Evidence suggested that intact E. coli particles in the outer layer of skin may be disrupted by a gammadeltaT-cell-mediated innate defense mechanism, followed by the presentation of E. coli ligand-adjuvanted intravector antigens to the immune system and rapid degradation of E. coli components. The nonreplicating E. coli vector overproducing an exogenous immunogen may foster the development of a new generation of vaccines that can be manufactured rapidly and administered noninvasively in a wide variety of disease settings.
Collapse
|
43
|
Cote CK, Van Rooijen N, Welkos SL. Roles of macrophages and neutrophils in the early host response to Bacillus anthracis spores in a mouse model of infection. Infect Immun 2006; 74:469-80. [PMID: 16369003 PMCID: PMC1346637 DOI: 10.1128/iai.74.1.469-480.2006] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2005] [Revised: 08/29/2005] [Accepted: 10/13/2005] [Indexed: 11/20/2022] Open
Abstract
The development of new approaches to combat anthrax requires that the pathogenesis and host response to Bacillus anthracis spores be better understood. We investigated the roles that macrophages and neutrophils play in the progression of infection by B. anthracis in a mouse model. Mice were treated with a macrophage depletion agent (liposome-encapsulated clodronate) or with a neutrophil depletion agent (cyclophosphamide or the rat anti-mouse granulocyte monoclonal antibody RB6-8C5), and the animals were then infected intraperitoneally or by aerosol challenge with fully virulent, ungerminated B. anthracis strain Ames spores. The macrophage-depleted mice were significantly more susceptible to the ensuing infection than the saline-pretreated mice, whereas the differences observed between the neutropenic mice and the saline-pretreated controls were generally not significant. We also found that augmenting peritoneal neutrophil populations before spore challenge did not increase resistance of the mice to infection. In addition, the bacterial load in macrophage-depleted mice was significantly greater and appeared significantly sooner than that observed with the saline-pretreated mice. However, the bacterial load in the neutropenic mice was comparable to that of the saline-pretreated mice. These data suggest that, in our model, neutrophils play a relatively minor role in the early host response to spores, whereas macrophages play a more dominant role in early host defenses against infection by B. anthracis spores.
Collapse
Affiliation(s)
- Christopher K Cote
- Bacteriology Division, U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Fort Detrick, Frederick, MD 21702, USA
| | | | | |
Collapse
|
44
|
Hahn BL, Sharma S, Sohnle PG. Analysis of epidermal entry in experimental cutaneous Bacillus anthracis infections in mice. ACTA ACUST UNITED AC 2005; 146:95-102. [PMID: 16099239 DOI: 10.1016/j.lab.2005.04.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2004] [Revised: 04/13/2005] [Accepted: 04/15/2005] [Indexed: 11/27/2022]
Abstract
Cutaneous infection is the most common form of human anthrax, but little is known of Bacillus anthracis-epidermal interactions. To study the latter, we used experimental inoculations of B. anthracis Sterne spores onto mouse flank skin. In DBA/2 mice (a sensitive strain) 10(7) spores injected intradermally or applied under occlusive dressings to abraded skin produced ipsilateral inguinal edema and rapid death. Epicutaneous application to shaved-only skin produced edema and death in most animals, but at longer times. Mortality after inoculation onto abraded skin was less in C57BL/6 mice (a relatively resistant strain). Inoculations onto shaved-only skin immunized C57BL/6 mice, and they survived later intradermal spore injections. Histology revealed massive organism proliferation in remaining epidermis and hair follicles of inoculated abraded skin, but less growth in the dermis itself. Conversely, no foci could be located by microscopic examination after inoculation onto shaved-only skin. High-dose nonocclusive dressing inoculations onto unshaved skin in DBA/2 mice revealed small numbers of infective foci, all in hair follicles. These results suggest that epidermal damage may increase infection susceptibility to B. anthracis of hair follicle contents and remaining epidermal remnants; the findings also indicate that access may occur through hair follicles and the denuded dermis.
Collapse
Affiliation(s)
- Beth L Hahn
- Division of Infectious Diseases, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | | | | |
Collapse
|
45
|
Harvill ET, Lee G, Grippe VK, Merkel TJ. Complement depletion renders C57BL/6 mice sensitive to the Bacillus anthracis Sterne strain. Infect Immun 2005; 73:4420-2. [PMID: 15972541 PMCID: PMC1168577 DOI: 10.1128/iai.73.7.4420-4422.2005] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Concerns regarding safety and control of virulent Bacillus anthracis have created substantial hurdles to the study of anthrax. The Sterne strain is considered relatively safe to study, but this acapsular strain has a defect in normal mice and is often studied in A/J mice. A/J mice are highly susceptible to the Sterne strain, due to a defect in the Hc locus, which encodes complement factor 5 (C5). Here we show that normally resistant C57BL/6 mice become highly susceptible to the Sterne strain upon complement depletion with cobra venom factor. This generalizable approach should allow the virulence of anthrax to be studied under relatively safe conditions and using a wide variety of mouse strains.
Collapse
Affiliation(s)
- Eric T Harvill
- Laboratory of Respiratory and Special Pathogens, Center for Biologics Evaluation and Research, Food and Drug Administration, 8800 Rockville Pike, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
46
|
Pickering AK, Osorio M, Lee GM, Grippe VK, Bray M, Merkel TJ. Cytokine response to infection with Bacillus anthracis spores. Infect Immun 2004; 72:6382-9. [PMID: 15501768 PMCID: PMC523056 DOI: 10.1128/iai.72.11.6382-6389.2004] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacillus anthracis, the etiological agent of anthrax, is a gram-positive, spore-forming bacterium. The inhalational form of anthrax is the most severe and is associated with rapid progression of the disease and the outcome is frequently fatal. Transfer from the respiratory epithelium to regional lymph nodes appears to be an essential early step in the establishment of infection. This transfer is believed to occur by means of carriage within alveolar macrophages following phagocytosis. Therefore, the ability of B. anthracis to transit through the host macrophage or dendritic cell appears to be an early and critical step in B. anthracis pathogenesis. In this work, we examined the cytokine responses to spore infection in mouse primary peritoneal macrophages, in primary human dendritic cells, and during a spore aerosol infection model utilizing the susceptible A/J mouse strain. We demonstrated that both mouse peritoneal macrophages and human dendritic cells exhibited significant intracellular bactericidal activity during the first hours following uptake, providing the necessary time to mount a cytokine response prior to cell lysis. Strong tumor necrosis factor (TNF-alpha) and interleukin-6 (IL-6) responses were seen in mouse peritoneal macrophages. In addition to TNF-alpha and IL-6, human dendritic cells produced the cytokines IL-1beta, IL-8, and IL-12. A mixture of Th1 and Th2 cytokines were detected in sera obtained from infected animals. In this study, we provide further evidence of an acute cytokine response when cells in culture and mice are infected with B. anthracis spores.
Collapse
Affiliation(s)
- Alison K Pickering
- Laboratory of Respiratory and Special Pathogens, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
47
|
Lyons CR, Lovchik J, Hutt J, Lipscomb MF, Wang E, Heninger S, Berliba L, Garrison K. Murine model of pulmonary anthrax: kinetics of dissemination, histopathology, and mouse strain susceptibility. Infect Immun 2004; 72:4801-9. [PMID: 15271942 PMCID: PMC470666 DOI: 10.1128/iai.72.8.4801-4809.2004] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2004] [Revised: 03/30/2004] [Accepted: 05/07/2004] [Indexed: 11/20/2022] Open
Abstract
Bioweapons are most often designed for delivery to the lung, although this route is not the usual portal of entry for many of the pathogens in the natural environment. Vaccines and therapeutics that are efficacious for natural routes of infection may not be effective against the pulmonary route. Pulmonary models are needed to investigate the importance of specific bacterial genes in virulence, to identify components of the host immune system that are important in providing innate and acquired protection, and for testing diagnostic and therapeutic strategies. This report describes the characteristics of host and Bacillus anthracis interactions in a murine pulmonary-infection model. The infective dose varied depending on the route and method of inoculation. The germination process in the lung began within 1 h of inoculation into the lung, although growth within the lung was limited. B. anthracis was found in the lung-associated lymph nodes approximately 5 h after infection. Minimal pneumonitis was associated with the lung infection, but significant systemic pathology was noted after dissemination. Infected mice typically succumbed to infection approximately 3 to 4 days after inoculation. The 50% lethal doses differed among inbred strains of mice, but within a given mouse strain, neither the age nor the sex of the mice influenced susceptibility to B. anthracis.
Collapse
Affiliation(s)
- C Rick Lyons
- Department of Internal Medicine, University of New Mexico Health Science Center, Albuquerque, 87131, USA.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Little SF, Webster WM, Ivins BE, Fellows PF, Norris SL, Andrews GP. Development of an in vitro-based potency assay for anthrax vaccine. Vaccine 2004; 22:2843-52. [PMID: 15246620 DOI: 10.1016/j.vaccine.2003.12.027] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2003] [Revised: 12/23/2003] [Accepted: 12/24/2003] [Indexed: 11/16/2022]
Abstract
The potency assay currently used to evaluate consistency of manufacture for the anthrax vaccine is contingent upon meeting specified parameters after statistical analysis of the percent survival and time to death of vaccinated guinea pigs after challenge with spores of a virulent strain of Bacillus anthracis. During the development of a new anthrax vaccine based upon recombinant protective antigen (rPA) adsorbed to aluminum hydroxide gel (Alhydrogel), we found that the serological response of female A/J mice, as measured by a quantitative anti-rPA IgG ELISA, may be an effective method to monitor a manufacturer's consistency for rPA-based vaccines. An advantage of the proposed in vitro-based potency assay is that it will not need stringent biosafety containment measures as required by the current guinea pig potency assay.
Collapse
Affiliation(s)
- S F Little
- United States Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, MD 21702-5033, USA.
| | | | | | | | | | | |
Collapse
|
49
|
Muñiz AE. Lymphocytic vasculitis associated with the anthrax vaccine: case report and review of anthrax vaccination. J Emerg Med 2003; 25:271-6. [PMID: 14585454 DOI: 10.1016/s0736-4679(03)00201-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Anthrax is caused by the spore-forming bacteria Bacillus anthracis. It occurs naturally, but recently has been manufactured as a biological warfare agent. This makes prophylaxis for anthrax an urgent concern and efforts are ongoing for the production of an efficient and safe vaccine. Side effects to the current anthrax vaccine are usually minor and mainly consist of local skin reactions. Occasionally an unusual complication may occur; a case of a patient with lymphocytic vasculitis temporally associated with the anthrax vaccine is reported.
Collapse
Affiliation(s)
- Antonio E Muñiz
- Department of Emergency Medicine and Pediatrics, Medical College of Virginia, 401 N. 12th Street, Richmond, VA 23298-0401, USA
| |
Collapse
|
50
|
Palladino MA, Bahjat FR, Theodorakis EA, Moldawer LL. Anti-TNF-alpha therapies: the next generation. Nat Rev Drug Discov 2003; 2:736-46. [PMID: 12951580 DOI: 10.1038/nrd1175] [Citation(s) in RCA: 427] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The functioning of the immune system is finely balanced by the activities of pro-inflammatory and anti-inflammatory mediators or cytokines. Unregulated activities of these mediators can lead to the development of serious inflammatory diseases. In particular, enhanced tumour-necrosis factor-alpha (TNF-alpha) synthesis is associated with the development of rheumatoid arthritis, psoriatic arthritis and inflammatory bowel disease. Inhibiting TNF-alpha activities in these diseases has been remarkably successful. However, the current injectable protein therapies have associated risks and limitations. An oral, small molecule that regulates TNF-alpha biology could either replace the injectables or provide better disease control when used alone or in conjunction with existing therapies. In this review, we discuss briefly the present understanding of TNF-alpha-mediated biology and the current injectable therapies in clinical use, and focus on some of the new therapeutic approaches with oral, small-molecule inhibitors.
Collapse
Affiliation(s)
- Michael A Palladino
- Nereus Pharmaceuticals, 10480 Wateridge Circle, San Diego, California 92121, USA.
| | | | | | | |
Collapse
|