1
|
Stefanik E, Dubińska-Magiera M, Lewandowski D, Daczewska M, Migocka-Patrzałek M. Metabolic aspects of glycogenolysis with special attention to McArdle disease. Mol Genet Metab 2024; 142:108532. [PMID: 39018613 DOI: 10.1016/j.ymgme.2024.108532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 07/19/2024]
Abstract
The physiological function of muscle glycogen is to meet the energy demands of muscle contraction. The breakdown of glycogen occurs through two distinct pathways, primarily cytosolic and partially lysosomal. To obtain the necessary energy for their function, skeletal muscles utilise also fatty acids in the β-oxidation. Ketogenesis is an alternative metabolic pathway for fatty acids, which provides an energy source during fasting and starvation. Diseases arising from impaired glycogenolysis lead to muscle weakness and dysfunction. Here, we focused on the lack of muscle glycogen phosphorylase (PYGM), a rate-limiting enzyme for glycogenolysis in skeletal muscles, which leads to McArdle disease. Metabolic myopathies represent a group of genetic disorders characterised by the limited ability of skeletal muscles to generate energy. Here, we discuss the metabolic aspects of glycogenosis with a focus on McArdle disease, offering insights into its pathophysiology. Glycogen accumulation may influence the muscle metabolic dynamics in different ways. We emphasize that a proper treatment approach for such diseases requires addressing three important and interrelated aspects, which include: symptom relief therapy, elimination of the cause of the disease (lack of a functional enzyme) and effective and early diagnosis.
Collapse
Affiliation(s)
- Ewa Stefanik
- Department of Animal Developmental Biology, Faculty of Biological Sciences, University of Wroclaw, Sienkiewicza 21, 50-335 Wrocław, Poland..
| | - Magda Dubińska-Magiera
- Department of Animal Developmental Biology, Faculty of Biological Sciences, University of Wroclaw, Sienkiewicza 21, 50-335 Wrocław, Poland..
| | - Damian Lewandowski
- Department of Animal Developmental Biology, Faculty of Biological Sciences, University of Wroclaw, Sienkiewicza 21, 50-335 Wrocław, Poland..
| | - Małgorzata Daczewska
- Department of Animal Developmental Biology, Faculty of Biological Sciences, University of Wroclaw, Sienkiewicza 21, 50-335 Wrocław, Poland..
| | - Marta Migocka-Patrzałek
- Department of Animal Developmental Biology, Faculty of Biological Sciences, University of Wroclaw, Sienkiewicza 21, 50-335 Wrocław, Poland..
| |
Collapse
|
2
|
Triggiani D, Demurtas OC, Illiano E, Massa S, Pasquo A, Dionisi-Vici C, Marino C, Giuliano G, Franconi R. A Functional Human Glycogen Debranching Enzyme Encoded by a Synthetic Gene: Its Implications for Glycogen Storage Disease Type III Management. Protein Pept Lett 2024; 31:519-531. [PMID: 39021187 DOI: 10.2174/0109298665307430240628063339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/14/2024] [Accepted: 05/21/2024] [Indexed: 07/20/2024]
Abstract
BACKGROUND Glycogen Storage Disease type III (GSD III) is a metabolic disorder resulting from a deficiency of the Glycogen Debranching Enzyme (GDE), a large monomeric protein (approximately 170 kDa) with cytoplasmic localization and two distinct enzymatic activities: 4-α-glucantransferase and amylo-α-1,6-glucosidase. Mutations in the Agl gene, with consequent deficiency in GDE, lead to the accumulation of abnormal/toxic glycogen with shorter chains (phosphorylase limit dextrin, PLD) in skeletal and/or heart muscle and/or in the liver. Currently, there is no targeted therapy, and available treatments are symptomatic, relying on specific diets. METHODS Enzyme Replacement Therapy (ERT) might represent a potential therapeutic strategy for GSD III. Moreover, the single-gene nature of GSD III, the subcellular localization of GDE, and the type of affected tissues represent ideal conditions for exploring gene therapy approaches. Toward this direction, we designed a synthetic, codon-optimized cDNA encoding the human GDE. RESULTS This gene yielded high amounts of soluble, enzymatically active protein in Escherichia coli. Moreover, when transfected in Human Embryonic Kidney cells (HEK-293), it successfully encoded a functional GDE. CONCLUSION These results suggest that our gene or protein might complement the missing function in GSD III patients, opening the door to further exploration of therapeutic approaches for this disease.
Collapse
Affiliation(s)
- Doriana Triggiani
- Department of Sustainability, ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Casaccia Research Center, Via Anguillarese 301, 00123, Rome, Italy
- AIG, Associazione Italiana Glicogenosi, ONLUS, Via Roma, 2/G 20090 Assago, Milan, Italy
| | - Olivia C Demurtas
- Department of Sustainability, ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Casaccia Research Center, Via Anguillarese 301, 00123, Rome, Italy
| | - Elena Illiano
- Department of Sustainability, ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Casaccia Research Center, Via Anguillarese 301, 00123, Rome, Italy
| | - Silvia Massa
- Department of Sustainability, ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Casaccia Research Center, Via Anguillarese 301, 00123, Rome, Italy
| | - Alessandra Pasquo
- Department of FSNTECFIS-DIM ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Frascati Research Center, Via Enrico Fermi 45, 00044, Frascati RM, Italy
| | - Carlo Dionisi-Vici
- Division of Metabolic Diseases and Hepatology, Ospedale Pediatrico Bambino Gesù IRCCS, Piazza S. Onofrio 4, 00165, Rome, Italy
| | - Carmela Marino
- Department of Sustainability, ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Casaccia Research Center, Via Anguillarese 301, 00123, Rome, Italy
| | - Giovanni Giuliano
- Department of Sustainability, ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Casaccia Research Center, Via Anguillarese 301, 00123, Rome, Italy
| | - Rosella Franconi
- Department of Sustainability, ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Casaccia Research Center, Via Anguillarese 301, 00123, Rome, Italy
| |
Collapse
|
3
|
Rouressol L, Briseno J, Vijayan N, Chen GY, Ritschard EA, Sanchez G, Nyholm SV, McFall-Ngai MJ, Simakov O. Emergence of novel genomic regulatory regions associated with light-organ development in the bobtail squid. iScience 2023; 26:107091. [PMID: 37426346 PMCID: PMC10329180 DOI: 10.1016/j.isci.2023.107091] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/25/2023] [Accepted: 06/07/2023] [Indexed: 07/11/2023] Open
Abstract
Light organs (LO) with symbiotic bioluminescent bacteria are hallmarks of many bobtail squid species. These organs possess structural and functional features to modulate light, analogous to those found in coleoid eyes. Previous studies identified four transcription factors and modulators (SIX, EYA, PAX6, DAC) associated with both eyes and light organ development, suggesting co-option of a highly conserved gene regulatory network. Using available topological, open chromatin, and transcriptomic data, we explore the regulatory landscape around the four transcription factors as well as genes associated with LO and shared LO/eye expression. This analysis revealed several closely associated and putatively co-regulated genes. Comparative genomic analyses identified distinct evolutionary origins of these putative regulatory associations, with the DAC locus showing a unique topological and evolutionarily recent organization. We discuss different scenarios of modifications to genome topology and how these changes may have contributed to the evolutionary emergence of the light organ.
Collapse
Affiliation(s)
- Lisa Rouressol
- Department for Neurosciences and Developmental Biology, University of Vienna, Vienna 1030, Austria
- Department of Biosphere Sciences and Engineering, Carnegie Institution for Science, Pasadena, CA 91125, USA
| | - John Briseno
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Nidhi Vijayan
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Grischa Y. Chen
- Department of Biosphere Sciences and Engineering, Carnegie Institution for Science, Pasadena, CA 91125, USA
| | - Elena A. Ritschard
- Department for Neurosciences and Developmental Biology, University of Vienna, Vienna 1030, Austria
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 80121 Napoli, NA, Italy
| | - Gustavo Sanchez
- Molecular Genetics Unit, Okinawa Institute of Science and Technology, Okinawa 904-0495, Japan
| | - Spencer V. Nyholm
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Margaret J. McFall-Ngai
- Department of Biosphere Sciences and Engineering, Carnegie Institution for Science, Pasadena, CA 91125, USA
| | - Oleg Simakov
- Department for Neurosciences and Developmental Biology, University of Vienna, Vienna 1030, Austria
| |
Collapse
|
4
|
Hijazi G, Paschall A, Young SP, Smith B, Case LE, Boggs T, Amarasekara S, Austin SL, Pendyal S, El-Gharbawy A, Deak KL, Muir AJ, Kishnani PS. A retrospective longitudinal study and comprehensive review of adult patients with glycogen storage disease type III. Mol Genet Metab Rep 2021; 29:100821. [PMID: 34820282 PMCID: PMC8600151 DOI: 10.1016/j.ymgmr.2021.100821] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 11/09/2021] [Indexed: 12/03/2022] Open
Abstract
INTRODUCTION A deficiency of glycogen debrancher enzyme in patients with glycogen storage disease type III (GSD III) manifests with hepatic, cardiac, and muscle involvement in the most common subtype (type a), or with only hepatic involvement in patients with GSD IIIb. OBJECTIVE AND METHODS To describe longitudinal biochemical, radiological, muscle strength and ambulation, liver histopathological findings, and clinical outcomes in adults (≥18 years) with glycogen storage disease type III, by a retrospective review of medical records. RESULTS Twenty-one adults with GSD IIIa (14 F & 7 M) and four with GSD IIIb (1 F & 3 M) were included in this natural history study. At the most recent visit, the median (range) age and follow-up time were 36 (19-68) and 16 years (0-41), respectively. For the entire cohort: 40% had documented hypoglycemic episodes in adulthood; hepatomegaly and cirrhosis were the most common radiological findings; and 28% developed decompensated liver disease and portal hypertension, the latter being more prevalent in older patients. In the GSD IIIa group, muscle weakness was a major feature, noted in 89% of the GSD IIIa cohort, a third of whom depended on a wheelchair or an assistive walking device. Older individuals tended to show more severe muscle weakness and mobility limitations, compared with younger adults. Asymptomatic left ventricular hypertrophy (LVH) was the most common cardiac manifestation, present in 43%. Symptomatic cardiomyopathy and reduced ejection fraction was evident in 10%. Finally, a urinary biomarker of glycogen storage (Glc4) was significantly associated with AST, ALT and CK. CONCLUSION GSD III is a multisystem disorder in which a multidisciplinary approach with regular clinical, biochemical, radiological and functional (physical therapy assessment) follow-up is required. Despite dietary modification, hepatic and myopathic disease progression is evident in adults, with muscle weakness as the major cause of morbidity. Consequently, definitive therapies that address the underlying cause of the disease to correct both liver and muscle are needed.
Collapse
Key Words
- AFP, Alpha-fetoprotein
- ALT, Alanine aminotransferase
- AST, Aspartate aminotransferase
- BG, Blood glucose
- BMI, Body mass index
- CEA, Carcinoembryonic antigen
- CPK, Creatine phosphokinase
- CT scan, Computerized tomography scan
- Cardiomyopathy
- Cirrhosis
- DM, Diabetes mellitus
- GDE, Glycogen debrancher enzyme
- GGT, Gamma glutamyl transferase
- GSD, Glycogen storage disease
- Glc4, Glucose tetrasaccharide
- Glycogen storage disease type III (GSD III)
- HDL, High density lipoprotein
- Hypoglycemia
- LDL, Low density lipoproteins
- LT, liver transplantation.
- Left ventricular hypertrophy (LVH)
- MRI, Magnetic resonance imaging
- TGs, Triglycerides
- US, Ultrasound
- and myopathy
Collapse
Affiliation(s)
- Ghada Hijazi
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Anna Paschall
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Sarah P. Young
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Brian Smith
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Laura E. Case
- Doctor of Physical Therapy Division, Department of Orthopedic Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Tracy Boggs
- Duke University Health System, Department of Physical Therapy and Occupational Therapy, USA
| | | | - Stephanie L. Austin
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Surekha Pendyal
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Areeg El-Gharbawy
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | | | - Andrew J. Muir
- Division of Gastroenterology, Duke University School of Medicine, Durham, NC, USA
| | - Priya S. Kishnani
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
5
|
Monda E, Rubino M, Lioncino M, Di Fraia F, Pacileo R, Verrillo F, Cirillo A, Caiazza M, Fusco A, Esposito A, Fimiani F, Palmiero G, Pacileo G, Calabrò P, Russo MG, Limongelli G. Hypertrophic Cardiomyopathy in Children: Pathophysiology, Diagnosis, and Treatment of Non-sarcomeric Causes. Front Pediatr 2021; 9:632293. [PMID: 33718303 PMCID: PMC7947260 DOI: 10.3389/fped.2021.632293] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 02/01/2021] [Indexed: 12/12/2022] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is a myocardial disease characterized by left ventricular hypertrophy not solely explained by abnormal loading conditions. Despite its rare prevalence in pediatric age, HCM carries a relevant risk of mortality and morbidity in both infants and children. Pediatric HCM is a large heterogeneous group of disorders. Other than mutations in sarcomeric genes, which represent the most important cause of HCM in adults, childhood HCM includes a high prevalence of non-sarcomeric causes, including inherited errors of metabolism (i.e., glycogen storage diseases, lysosomal storage diseases, and fatty acid oxidation disorders), malformation syndromes, neuromuscular diseases, and mitochondrial disease, which globally represent up to 35% of children with HCM. The age of presentation and the underlying etiology significantly impact the prognosis of children with HCM. Moreover, in recent years, different targeted approaches for non-sarcomeric etiologies of HCM have emerged. Therefore, the etiological diagnosis is a fundamental step in designing specific management and therapy in these subjects. The present review aims to provide an overview of the non-sarcomeric causes of HCM in children, focusing on the pathophysiology, clinical features, diagnosis, and treatment of these rare disorders.
Collapse
Affiliation(s)
- Emanuele Monda
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Marta Rubino
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Michele Lioncino
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Francesco Di Fraia
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Roberta Pacileo
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Federica Verrillo
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Annapaola Cirillo
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Martina Caiazza
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Adelaide Fusco
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Augusto Esposito
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Fabio Fimiani
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Giuseppe Palmiero
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Giuseppe Pacileo
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Paolo Calabrò
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Maria Giovanna Russo
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Giuseppe Limongelli
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy.,Institute of Cardiovascular Sciences, University College of London and St. Bartholomew's Hospital, London, United Kingdom
| |
Collapse
|
6
|
Perveen S, Gupta N, Kumar M, Kaur P, Chowdhury MR, Kabra M. Spectrum of amyloglucosidase mutations in Asian Indian patients with Glycogen storage disease type III. Am J Med Genet A 2020; 182:1190-1200. [PMID: 32222031 DOI: 10.1002/ajmg.a.61547] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/07/2020] [Accepted: 02/14/2020] [Indexed: 11/11/2022]
Abstract
Glycogen storage disease type III (GSD III) is a rare autosomal recessive inborn error of glycogen degradation pathway due to deficiency or reduced activity of glycogen debranching enzyme (GDE) that results in accumulation of abnormal glycogen in the liver, muscle, and heart. The cardinal hallmarks are hepatomegaly, fasting hypoglycemia, seizures, growth retardation, progressive skeletal myopathy, and cardiomyopathy in few. To date, 258 mutations in amyloglucosidase (AGL) gene have been identified worldwide. However, the mutation spectrum in the Asian Indian region is yet to be well characterized. We investigated 24 patients of Asian origin from 21 unrelated families with a provisional diagnosis of GSD III based on clinical and biochemical criteria. Molecular diagnosis was assessed by bidirectional sequencing and the impact of novel missense variants on the tertiary (three-dimensional) structure of GDE was evaluated by molecular modeling approach. Eighteen different pathogenic variants were identified, out of which 78% were novel. Novel variants included five nonsense, three small duplications and two small deletions, a splice site variant, and three missense variants. Variations in Exons 4, 14, 19, 24, 27, and 33 accounted for 61% of the total pathogenic variants identified and Allele p.Gly798Alafs*3 showed a high allele frequency of 11%. Molecular modeling study of novel pathogenic missense variants indicated the probable underlying molecular mechanism of adverse impact of variations on the structure and catalytic function of human GDE. Our study is the first large study on GSD III from the Asian subcontinent, which further expands the mutation spectrum of AGL.
Collapse
Affiliation(s)
- Shama Perveen
- Division of Genetics, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Neerja Gupta
- Division of Genetics, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Manoj Kumar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Punit Kaur
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Madhumita R Chowdhury
- Division of Genetics, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Madhulika Kabra
- Division of Genetics, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
7
|
Zhang Y, Sun H, Wan N. Mutation analysis of SLC37A4 in a patient with glycogen storage disease-type Ib. J Int Med Res 2019; 47:5996-6003. [PMID: 31617422 PMCID: PMC7045669 DOI: 10.1177/0300060519867819] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Objective The aim of the study was to investigate the relationship between SLC37A4 gene mutation and clinical phenotype in a patient with glycogen storage disease-type I. Methods The clinical data of one patient with glycogen storage disease-type I accumulation syndrome and the results of SLC37A4 gene testing were analyzed. DNA from peripheral blood was used to analyze the SLC37A4 mutations of the patient and his parents. Results The patient carried a compound heterozygous mutation of SLC37A4, his mother was heterozygous for the c.572C > T (p.P191L) mutation, and his father was heterozygous for the c.359C > T (p.P120L) mutation. Conclusion The patient had two gene mutations: c.359C > T (p.P120L), which is closely related to glycogen storage disease-type I, and c.572C > T (p.P191L), which is a known mutation in the disease.
Collapse
Affiliation(s)
- Yamei Zhang
- Department of Pediatrics, Beijing Jishuitan Hospital, Beijing, China
| | - Huihui Sun
- Department of Pediatrics, Beijing Jishuitan Hospital, Beijing, China
| | - Naijun Wan
- Department of Pediatrics, Beijing Jishuitan Hospital, Beijing, China
| |
Collapse
|
8
|
[Molecular and clinical characterization of Colombian patients suffering from type III glycogen storage disease]. BIOMEDICA 2018; 38:30-42. [PMID: 29809327 DOI: 10.7705/biomedica.v38i0.3454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 04/10/2017] [Indexed: 11/21/2022]
Abstract
INTRODUCTION Type III glycogen storage disease (GSD III) is an autosomal recessive disorder in which a mutation in the AGL gene causes deficiency of the glycogen debranching enzyme. The disease is characterized by fasting hypoglycemia, hepatomegaly and progressive myopathy. Molecular analyses of AGL have indicated heterogeneity depending on ethnic groups. The full spectrum of AGL mutations in Colombia remains unclear. OBJECTIVE To describe the clinical and molecular characteristics of ten Colombian patients diagnosed with GSD III. MATERIALS AND METHODS We recruited ten Colombian children with a clinical and biochemical diagnosis of GSD III to undergo genetic testing. The full coding exons and the relevant exon-intron boundaries of the AGL underwent Sanger sequencing to identify mutation. RESULTS All patients had the classic phenotype of the GSD III. Genetic analysis revealed a mutation p.Arg910X in two patients. One patient had the mutation p.Glu1072AspfsX36, and one case showed a compound heterozygosity with p.Arg910X and p.Glu1072AspfsX36 mutations. We also detected the deletion of AGL gene 3, 4, 5, and 6 exons in three patients. The in silico studies predicted that these defects are pathogenic. No mutations were detected in the amplified regions in three patients. CONCLUSION We found mutations and deletions that explain the clinical phenotype of GSD III patients. This is the first report with a description of the clinical phenotype and the spectrum of AGL mutations in Colombian patients. This is important to provide appropriate prognosis and genetic counseling to the patient and their relatives.
Collapse
|
9
|
Zhang Y, Xu M, Chen X, Yan A, Zhang G, Liu Z, Qiu W. Genetic analysis and clinical assessment of four patients with Glycogen Storage Disease Type IIIa in China. BMC MEDICAL GENETICS 2018; 19:54. [PMID: 29614965 PMCID: PMC5883582 DOI: 10.1186/s12881-018-0560-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 03/19/2018] [Indexed: 11/17/2022]
Abstract
Background Glycogen Storage Disease Type III (GSD III) is a rare autosomal recessive metabolic disorder caused by AGL gene mutation. There is significant heterogeneity between the clinical manifestations and the gene mutation of AGL among different ethnic groups. However, GSD III is rarely reported in Chinese population. Case presentation In this study, we aimed to study the genetic and clinical characteristics of four patients with GSD IIIa from China, especially the neurological manifestations. Meanwhile, we conducted a literature review of GSD IIIa cases reported in Chinese population to investigate the relationship between genotype and phenotype. Conclusions Three different AGL gene mutations were identified in our patients: c.206dupA, c.1735 + 1G > T and c.2590 C>T. Moreover, progressive myopathy accompanied by elevated creatine kinase level was the main manifestation of our patients in adolescents. Our results showed that AGL c.206dupA was a novel mutation and caused severe clinical manifestations. AGL c.1735 + 1G > T might be a recurrent mutation in the Chinese population. Genetic analysis of AGL gene mutation combined with muscle magnetic resonance imaging (MRI) might provide greater benefit to the patient in diagnosing GSD IIIa, rather than an invasive diagnostic procedure of biopsy. Electronic supplementary material The online version of this article (10.1186/s12881-018-0560-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kong jiang Road, Shanghai, 200092, People's Republic of China
| | - Mingming Xu
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kong jiang Road, Shanghai, 200092, People's Republic of China
| | - Xiaoxia Chen
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kong jiang Road, Shanghai, 200092, People's Republic of China
| | - Aijuan Yan
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kong jiang Road, Shanghai, 200092, People's Republic of China
| | - Guoyong Zhang
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kong jiang Road, Shanghai, 200092, People's Republic of China
| | - Zhenguo Liu
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kong jiang Road, Shanghai, 200092, People's Republic of China.
| | - Wenjuan Qiu
- Department of Pediatric Endocrinology/Genetics, Shanghai Institute for Pediatric Research, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
10
|
Weinstein DA, Steuerwald U, De Souza CFM, Derks TGJ. Inborn Errors of Metabolism with Hypoglycemia: Glycogen Storage Diseases and Inherited Disorders of Gluconeogenesis. Pediatr Clin North Am 2018; 65:247-265. [PMID: 29502912 DOI: 10.1016/j.pcl.2017.11.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Although hyperinsulinism is the predominant inherited cause of hypoglycemia in the newborn period, inborn errors of metabolism are the primary etiologies after 1 month of age. Disorders of carbohydrate metabolism often present with hypoglycemia when fasting occurs. The presentation, diagnosis, and management of the hepatic glycogen storage diseases and disorders of gluconeogenesis are reviewed.
Collapse
Affiliation(s)
- David A Weinstein
- University of Connecticut School of Medicine, Farmington, CT, USA; Glycogen Storage Disease Program, Connecticut Children's Medical Center, 282 Washington Street, Hartford, CT 06106, USA.
| | | | - Carolina F M De Souza
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Terry G J Derks
- Section of Metabolic Diseases, University of Groningen, University Medical Center Groningen, Beatrix Children's Hospital, Groningen, The Netherlands
| |
Collapse
|
11
|
Chen MA, Weinstein DA. Glycogen storage diseases: Diagnosis, treatment and outcome. ACTA ACUST UNITED AC 2016. [DOI: 10.3233/trd-160006] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
| | - David A. Weinstein
- Glycogen Storage Disease Program, University of Florida College of Medicine, Gainesville, FL, USA
| |
Collapse
|
12
|
Lu C, Qiu Z, Sun M, Wang W, Wei M, Zhang X. Spectrum of AGL mutations in Chinese patients with glycogen storage disease type III: identification of 31 novel mutations. J Hum Genet 2016; 61:641-5. [DOI: 10.1038/jhg.2016.24] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 02/18/2016] [Accepted: 02/20/2016] [Indexed: 11/09/2022]
|
13
|
A Novel Nonsense Mutation of the AGL Gene in a Romanian Patient with Glycogen Storage Disease Type IIIa. Case Rep Genet 2016; 2016:8154910. [PMID: 26885414 PMCID: PMC4739001 DOI: 10.1155/2016/8154910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 12/06/2015] [Indexed: 11/18/2022] Open
Abstract
Background. Glycogen storage disease type III (GSDIII) is a rare metabolic disorder with autosomal recessive inheritance, caused by deficiency of the glycogen debranching enzyme. There is a high phenotypic variability due to different mutations in the AGL gene. Methods and Results. We describe a 2.3-year-old boy from a nonconsanguineous Romanian family, who presented with severe hepatomegaly with fibrosis, mild muscle weakness, cardiomyopathy, ketotic fasting hypoglycemia, increased transaminases, creatine phosphokinase, and combined hyperlipoproteinemia. GSD type IIIa was suspected. Accordingly, genomic DNA of the index patient was analyzed by next generation sequencing of the AGL gene. For confirmation of the two mutations found, genetic analysis of the parents and grandparents was also performed. The patient was compound heterozygous for the novel mutation c.3235C>T, p.Gln1079(⁎) (exon 24) and the known mutation c.1589C>G, p.Ser530(⁎) (exon 12). c.3235 >T, p.Gln1079(⁎) was inherited from the father, who inherited it from his mother. c.1589C>G, p.Ser530(⁎) was inherited from the mother, who inherited it from her father. Conclusion. We report the first genetically confirmed case of a Romanian patient with GSDIIIa. We detected a compound heterozygous genotype with a novel mutation, in the context of a severe hepatopathy and an early onset of cardiomyopathy.
Collapse
|
14
|
Verbeek RJ, Sentner CP, Smit GPA, Maurits NM, Derks TGJ, van der Hoeven JH, Sival DA. Muscle Ultrasound in Patients with Glycogen Storage Disease Types I and III. ULTRASOUND IN MEDICINE & BIOLOGY 2016; 42:133-142. [PMID: 26437929 DOI: 10.1016/j.ultrasmedbio.2015.08.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Revised: 07/04/2015] [Accepted: 08/18/2015] [Indexed: 06/05/2023]
Abstract
In glycogen storage diseases (GSDs), improved longevity has resulted in the need for neuromuscular surveillance. In 12 children and 14 adults with the "hepatic" (GSD-I) and "myopathic" (GSD-III) phenotypes, we cross-sectionally assessed muscle ultrasound density (MUD) and muscle force. Children with both "hepatic" and "myopathic" GSD phenotypes had elevated MUD values (MUD Z-scores: GSD-I > 2.5 SD vs. GSD-III > 1 SD, p < 0.05) and muscle weakness (GSD-I muscle force; p < 0.05) of myopathic distribution. In "hepatic" GSD-I adults, MUD stabilized (GSD-I adults vs. GSD-I children, not significant), concurring with moderate muscle weakness (GSD-I adults vs. healthy matched pairs, p < 0.05). In "myopathic" GSD-III adults, MUD increased with age (MUD-GSD III vs. age: r = 0.71-0.83, GSD-III adults > GSD-III children, p < 0.05), concurring with pronounced muscle weakness (GSD-III adults vs. GSD-I adults, p < 0.05) of myopathic distribution. Children with "hepatic" and "myopathic" GSD phenotypes were both found to have myopathy. Myopathy stabilizes in "hepatic" GSD-I adults, whereas it progresses in "myopathic" GSD-III adults. Muscle ultrasonography provides an excellent, non-invasive tool for neuromuscular surveillance per GSD phenotype.
Collapse
Affiliation(s)
- Renate J Verbeek
- Department of Neurology, Beatrix Children's Hospital, University Medical Centre Groningen, University of Groningen, The Netherlands
| | - Christiaan P Sentner
- Department of Pediatrics, Beatrix Children's Hospital, University Medical Centre Groningen, University of Groningen, The Netherlands
| | - G Peter A Smit
- Department of Pediatrics, Beatrix Children's Hospital, University Medical Centre Groningen, University of Groningen, The Netherlands
| | - Natasha M Maurits
- Department of Neurology, Beatrix Children's Hospital, University Medical Centre Groningen, University of Groningen, The Netherlands
| | - Terry G J Derks
- Department of Pediatrics, Beatrix Children's Hospital, University Medical Centre Groningen, University of Groningen, The Netherlands
| | - Johannes H van der Hoeven
- Department of Neurology, Beatrix Children's Hospital, University Medical Centre Groningen, University of Groningen, The Netherlands
| | - Deborah A Sival
- Department of Pediatrics, Beatrix Children's Hospital, University Medical Centre Groningen, University of Groningen, The Netherlands.
| |
Collapse
|
15
|
Michon CC, Gargiulo M, Hahn-Barma V, Petit F, Nadaj-Pakleza A, Herson A, Eymard B, Labrune P, Laforet P. Cognitive profile of patients with glycogen storage disease type III: a clinical description of seven cases. J Inherit Metab Dis 2015; 38:573-80. [PMID: 25388549 DOI: 10.1007/s10545-014-9789-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 08/04/2014] [Accepted: 10/29/2014] [Indexed: 10/24/2022]
Abstract
BACKGROUND Glycogen storage disease type III (GSDIII) is a rare autosomal recessive disorder due to glycogen debranching enzyme (GDE) deficiency. It results in a multisystemic disease with predominant hepatic and myopathic symptoms. While frequent social maladjustment has been observed in our clinical practice, cognitive and psychological disturbances have never been assessed. The aim of this pilot study was to examine and characterize the cognitive profile of patients with GSDIII. METHODS Seven patients (six women and one man, mean age: 38.7 ± 11.6 years) with GSDIII underwent a neuropsychological set of tests assessing global cognitive efficiency, executive functions, social cognition, apathy, and episodic memory. RESULTS All patients presented previous psychopathological history. We observed attention fluctuations for each patient, and impaired global cognitive efficiency with deficiencies in executive functions in 5/7 patients. Emotional skills (social cognition) were impaired in five patients. Memory was mostly preserved. CONCLUSION The impairment in social cognition (recognition of emotions and ability to attribute mental states to others) and executive functions observed could be a consequence of orbito-frontal dysfunction due to the abnormal glycogen metabolism characteristic of the underlying disease. These results are consistent with the hypothesis of a central nervous system involvement in patients with GSDIII, but need to be confirmed in future research. This could explain the social and economic difficulties, and the lack of compliance to the medical follow-up presented by these patients. It suggests that these disturbances need to be taken into account when planning the medical management of patients with GSDIII.
Collapse
Affiliation(s)
- Claire-Cécile Michon
- APHP, Groupe Hospitalier Pitié-Salpêtrière, Centre de Référence des Pathologies Neuromusculaires Paris-Est, Institut de Myologie, 83 boulevard de l'Hôpital, 75680, Paris CEDEX 13, France,
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Mutation Analysis in Glycogen Storage Disease Type III Patients in the Netherlands: Novel Genotype-Phenotype Relationships and Five Novel Mutations in the AGL Gene. JIMD Rep 2012; 7:19-26. [PMID: 23430490 DOI: 10.1007/8904_2012_134] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Revised: 02/07/2012] [Accepted: 02/13/2012] [Indexed: 12/05/2022] Open
Abstract
Glycogen Storage Disease type III (GSD III) is an autosomal recessive disorder in which a mutation in the AGL gene causes deficiency of the glycogen debranching enzyme. In childhood, it is characterized by hepatomegaly, keto-hypoglycemic episodes after short periods of fasting, and hyperlipidemia. In adulthood, myopathy, cardiomyopathy, and liver cirrhosis are the main complications. To determine the genotype of the GSD III patients (n = 14) diagnosed and treated in our center, mutation analysis was performed by either denaturing gradient gel electrophoresis or full gene sequencing. We developed, validated and applied both methods, and in all patients a mutation was identified on both alleles. Five novel pathogenic mutations were identified in seven patients, including four missense mutations (c.643G>A, p.Asp215Asn; c.655A>G, p.Asn219Asp; c.1027C>T, p.Arg343Trp; c.1877A>G, p.His626Arg) and one frameshift mutation (c.3911delA, p.Asn1304fs). The c.643G>A, p.Asp215Asn mutation is related with type IIIa, as this mutation was found homozygously in two type IIIa patients. In addition to five novel mutations, we present new genotype-phenotype relationships for c.2039G>A, p.Trp680X; c.753_756delCAGA, p.Asp251fs; and the intron 32 c.4260-12A>G splice site mutation. The p.Trp680X mutation was found homozygously in four patients, presenting a mild IIIa phenotype with mild skeletal myopathy, elevated CK values, and no cardiomyopathy. The p.Asp251fs mutation was found homozygously in one patient presenting with a severe IIIa phenotype, with skeletal myopathy, and severe symptomatic cardiomyopathy. The c.4260-12A>G mutation was found heterozygously, together with the p.Arg343Trp mutation in a severe IIIb patient who developed liver cirrhosis and hepatocellular carcinoma, necessitating an orthotopic liver transplantation.
Collapse
|
17
|
Echocardiographic manifestations of Glycogen Storage Disease III: increase in wall thickness and left ventricular mass over time. Genet Med 2010; 12:413-23. [PMID: 20526204 DOI: 10.1097/gim.0b013e3181e0e979] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
PURPOSE Glycogen Storage Disease Type III, glycogen debranching enzyme deficiency, causes accumulation of glycogen in liver, skeletal, and cardiac muscle. Some patients develop increased left ventricular thickness by echocardiography, but the rate of increase and its significance remain unclear. METHODS We evaluated 33 patients with Glycogen Storage Disease Type III, 23 with IIIa and 10 with IIIb, ages 1 month to 55.5 years, by echocardiography for wall thickness, left ventricular mass, shortening and ejection fractions, at 1 time point (n = 33) and at 2 time points in patients with more than 1 echocardiogram (13 of the 33). RESULTS Of 23 cross-sectional patients with type IIIa, 12 had elevated left ventricular mass, 11 had elevated wall thickness. One type IIIb patient had elevated left ventricular mass but four had elevated wall thickness. For those with multiple observations, 9 of 10 with type IIIa developed increased left ventricular mass over time, with three already increased at first measurement. Shortening and ejection fractions were generally normal. CONCLUSION Elevated left ventricular mass and wall thickness is more common in patients with type IIIa but develops rarely in type IIIb, although ventricular systolic function is preserved. This suggests serial echocardiograms with attention to left ventricular thickness and mass are important for care of these patients.
Collapse
|
18
|
Hobson-Webb LD, Austin SL, Bali DS, Kishnani PS. The electrodiagnostic characteristics of Glycogen Storage Disease Type III. Genet Med 2010; 12:440-5. [DOI: 10.1097/gim.0b013e3181cd735b] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
19
|
Oh SH, Park HD, Ki CS, Choe YH, Lee SY. Biochemical and molecular investigation of two Korean patients with glycogen storage disease type III. Clin Chem Lab Med 2008; 46:1245-9. [PMID: 18785866 DOI: 10.1515/cclm.2008.252] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Glycogen storage disease type III (GSD-III) is an inborn error of glycogen metabolism caused by a deficiency of the glycogen debranching enzyme, amylo-1,6-glucosidase,4-alpha-glucanotransferase (AGL). Here, we describe two unrelated Korean patients with GSD-III and review their clinical and laboratory findings. METHODS The patients were 18- and 11-month-old girls. They presented with hepatosplenomegaly, developmental delay and hypotonia. The routine laboratory findings showed an elevated serum aspartate aminotransferase, alanine aminotransferase, creatine kinase and triglyceride levels. The blood lactate and uric acid levels were within normal limits. PCR and direct sequencing were performed to determine genetic findings. RESULTS Glycogen quantitation was markedly increased and AGL activity was undetectable in both patients. Sequence analysis of the AGL gene showed that both patients were compound heterozygotes for c.853C>T (p.R285X) and c.1735+1G>T in one patient, and c.2894_2896delGGAinsTG and c.4090G>C (p.D1364H) in the other patient. The c.2894_2896delGGAinsTG and c.4090G>C (p.D1364H) mutation was a novel finding. CONCLUSIONS GSD-III should be ruled out when a patient presents with hepatic abnormalities, hypoglycemia, myopathy and hyperlipidemia. This is the first report of confirmation of GSD-III in Korean patients by biochemical and genetic findings.
Collapse
Affiliation(s)
- Sue-Hyun Oh
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | | | | | | | | |
Collapse
|
20
|
Lam CW, Lee ATC, Lam YY, Wong TW, Mak TWL, Fung WC, Chan KC, Ho CS, Tong SF. DNA-based subtyping of glycogen storage disease type III: mutation and haplotype analysis of the AGL gene in Chinese. Mol Genet Metab 2004; 83:271-5. [PMID: 15542399 DOI: 10.1016/j.ymgme.2004.07.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2004] [Revised: 07/25/2004] [Accepted: 07/29/2004] [Indexed: 11/30/2022]
Abstract
Glycogen storage disease type III (GSD III) is an inborn error of glycogen metabolism caused by a deficiency of glycogen debranching enzyme (AGL). Here, we investigate two unrelated Hong Kong Chinese GSD III patients and identify a novel 5-base pair deletional mutation, 2715_2719delTCAGAin exon 22, in one patient and a nonsense mutation, 1222C>T (R408X) in exon 11, in another patient. Since GSD IIIb is only caused by mutation in exon 3 of the AGL gene, we diagnose our patients to have GSD IIIa, which is consistent with the clinical diagnosis. Until now, R408X has only been reported in Faroe Islands GSDIII patients and was thought to demonstrate a founder effect. In this study, haplotyping of the disease-bearing chromosomes in the AGL locus by 19 intragenic single nucleotide polymorphisms shows that R408X is linked with IVS16+8T and IVS23-21T in our patient while R408X is linked with IVS16+8C and IVS23-21A in the Faroe Islands. The different haplotypes of R408X in Chinese and Faroese indicated that R408X is a recurrent mutation.
Collapse
Affiliation(s)
- Ching-Wan Lam
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Vincentiis S, Valente KD, Valente M. Polymicrogyria in glycogenosis type III: an incidental finding? Pediatr Neurol 2004; 31:143-5. [PMID: 15301837 DOI: 10.1016/j.pediatrneurol.2004.02.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2003] [Accepted: 02/19/2004] [Indexed: 11/16/2022]
Abstract
The purpose of the present report is to document a 20-year-old woman with glycogenosis type III who presented a malformation of cortical development, in this case a polymicrogyria over bilateral perisylvian regions. Association of a malformation of cortical development in this type of glycogenosis has not been previously reported. The existence of previous cases of glycogenosis associated with malformations of cortical development led us to believe that glycogen storage during pregnancy may act as a harmful prenatal event. On the other hand, the presence of a lesion associated with severe neurologic deficits in one patient with a milder form of glycogenosis is in disagreement with the idea that there is a strong correlation between the severity of the central nervous system lesion and that of the disease.
Collapse
Affiliation(s)
- Silvia Vincentiis
- Laboratory of Clinical Neurophysiology, University of São Paulo Medical School, São Paulo, Brazil
| | | | | |
Collapse
|
22
|
Stratil A, Blazková P, Kopecný M, Bartenschlager H, Van Poucke M, Peelman LJ, Fontanesi L, Davoli R, Scotti E, Russo V, Geldermann H. Characterization of a SINE indel polymorphism in the porcine AGL gene and assignment of the gene to chromosome 4q. Anim Genet 2003; 34:146-8. [PMID: 12648099 DOI: 10.1046/j.1365-2052.2003.00965_1.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- A Stratil
- Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, 277 21 Libechov, Czech Republic.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Lucchiari S, Fogh I, Prelle A, Parini R, Bresolin N, Melis D, Fiori L, Scarlato G, Comi GP. Clinical and genetic variability of glycogen storage disease type IIIa: seven novel AGL gene mutations in the Mediterranean area. AMERICAN JOURNAL OF MEDICAL GENETICS 2002; 109:183-90. [PMID: 11977176 DOI: 10.1002/ajmg.10347] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Deficiency of amylo-1,6-glucosidase, 4-alpha-glucanotransferase enzyme (AGL or glycogen debrancher enzyme) is responsible for glycogen storage disease type III, a rare autosomal recessive disorder of glycogen metabolism. The AGL gene is located on chromosome 1p21, and contains 35 exons translated in a monomeric protein product. The disease has recognized clinical and biochemical heterogeneity, reflecting the genotype-phenotype heterogeneity among different subjects. The clinical manifestations of GSD III are represented by hepatomegaly, hypoglycemia, hyperlipidemia, short stature and, in a number of subjects, cardiomyopathy and myopathy. In this article, we discuss the genotypic-phenotypic heterogeneity of GSD III by the molecular characterization of mutations responsible for the disease on a collection of 18 independent alleles from the Mediterranean area. We identified by heteroduplex band shift, DNA direct sequencing, and restriction analysis, seven novel mutations (four nonsense point-mutations: R34X, S530X, R1218X, W1398X; two microinsertions: 1072insT and 4724insAA; and one bp deletion: 676DeltaG), together with two new cases carrying a IVS21 + 1 G --> A splicing site mutation previously described in Italian patients. Altogether, 15 alleles were characterized. The correlation between type of mutation and clinical severity was studied in six patients in whom both mutated alleles were detected. Our data confirm the extreme genetic heterogeneity of this disease, thus precluding a strategy of mutation finding based on screening of recurrent common mutations.
Collapse
Affiliation(s)
- S Lucchiari
- Centro Dino Ferrari, Dipartimento di Scienze Neurologiche, Universita' degli Studi di Milano, I.R.C.C.S. Ospedale Maggiore Policlinico, Milano, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Sugie H, Fukuda T, Ito M, Sugie Y, Kojoh T, Nonaka I. Novel exon 11 skipping mutation in a patient with glycogen storage disease type IIId. J Inherit Metab Dis 2001; 24:535-45. [PMID: 11757581 DOI: 10.1023/a:1012459625902] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We report the molecular genetic abnormalities of a patient with GSD IIId presenting with progressive myopathy and cardiopathy leading to a fatal outcome. We identified two independent deletions including a 4 bp deletion (117-1120) and a 98 bp deletion (1135-1232) in cDNA. Sequencing of the genomic DNA of the corresponding region revealed a 4 bp deletion in exon 10; however, the other 98 bp deletion corresponding to exon 11, which was deleted in cDNA, was present in genomic DNA. We therefore concluded that skipping of exon 11 occurred in the cDNA of the patient. Intron/exon boundary analysis of the skipped exon 11 revealed no mutation in the consensus splice-site sequence. If normal splicing had occurred, a stop codon would have appeared within exon II due to frameshift mutation. The mechanism of exon skipping observed in our patient is as yet unknown, and it is still not clear whether intraexonal mutation of the preceding exon can influence splice-site selection. It is possible that a unique exon skipping occurred, preventing the appearance of a stop codon in our patient.
Collapse
Affiliation(s)
- H Sugie
- Department of Pediatric Neurology, Neuromuscular Laboratory, Hamamatsu City Medical Center for Developmental Medicine, Hamakita City, Shizuoka, Japan.
| | | | | | | | | | | |
Collapse
|
25
|
Nakayama A, Yamamoto K, Tabata S. High expression of glycogen-debranching enzyme in Escherichia coli and its competent purification method. Protein Expr Purif 2000; 19:298-303. [PMID: 10873545 DOI: 10.1006/prep.2000.1252] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Glycogen-debranching enzyme (GDE) gene from Saccharomyces cerevisiae was cloned and expressed into Escherichia coli. A 99.3% homology was found between the nucleotide sequences of GDE gene harbored in the recombinant E. coli plasmid (pTrc99A) and the open reading frame (902039-906646 position) of the 4608-bp fragment of S. cerevisiae chromosome XVI. We investigated the best conditions for GDE expression. When the cultivation temperature of recombinant E. coli strains was lowered to 25 degrees C and the isopropyl-beta-d-thiogalactopyranoside (IPTG) concentration used for induction was decreased to as low as 0.02 mM, a total of about 33 mg of recombinant GDE can be isolated from a liter culture as estimated by amylo-1,6-glucosidase activity. Consecutively, we developed a new method for purifying GDE. The method requires only a single-step purification via beta-cyclodextrin-immobilized Sepharose 6B (beta-CD Sepharose 6B) affinity chromatography and renders a 90% recovery of the enzyme. Moreover, the purified recombinant GDE is a homogeneous protein and possesses the same characteristics as those of S. cerevisiae. With the highly expressed GDE in recombinant E. coli and a rapid and effective purification method, we successfully resolved the hurdle always faced for obtaining an ample amount of purified GDE. The availability of GDE, hence, may allow advancement on GDE studies and provide new prospects for GDE on biotechnological application.
Collapse
Affiliation(s)
- A Nakayama
- Nara Prefectural Hospital, Hiramatsu, Nara City, Nara, 631-0846, Japan
| | | | | |
Collapse
|
26
|
Fukuda T, Sugie H, Ito M. Novel mutations in two Japanese cases of glycogen storage disease type IIIa and a review of the literature of the molecular basis of glycogen storage disease type III. J Inherit Metab Dis 2000; 23:95-106. [PMID: 10801050 DOI: 10.1023/a:1005695229464] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We report two novel mutations in two Japanese patients with glycogen storage disease type IIIa (GSD IIIa). In addition, we review the literature on mutations in GSD III to understand better the molecular basis of GSD III. In our first case, the homozygous A-to-C mutation at the acceptor site of intron 5 (IVS5-2A > C) was identified. This leads to the skipping of exon 6 and the predicted mutant protein was found to be 68 amino acids shorter than normal. This is the first report of skipping exon 6, which encodes one of the putative active sites, resulting in a profoundly deleterious effect on debrancher activity. In our second case, the homozygous deletion of an A at position 4234 (4234delA) was identified; this induces a frameshift resulting in the appearance of a stop codon at amino acid position 1276 (1276X). In patients with GSD IIIa, several mutations of the debrancher gene located in the C-terminal region containing putative glycogen binding domains have been identified as well as 4234delA in our second case. On the other hand, specific localization of the mutations within exon 3 was proposed in patients with GSD IIIb.
Collapse
Affiliation(s)
- T Fukuda
- Department of Pediatric Neurology, Hamamatsu City Medical Center for Developmental Medicine, Takazono, Hamakita, Japan.
| | | | | |
Collapse
|
27
|
Abstract
Major recent advances in the field of metabolic myopathies have helped delineate the genetic and biochemical basis of these disorders. This progress has also resulted in the development of new diagnostic and therapeutic methodologies. In this second part, we present an updated review of the main nonlysosomal and lysosomal glycogenoses and lipid metabolism defects that manifest with signs of transient or permanent muscle dysfunction. Our intent is to increase the pediatric neurologist's familiarity with these conditions and thus improve decision making in the areas of diagnosis and treatment.
Collapse
Affiliation(s)
- B T Darras
- Neuromuscular Program, Department of Neurology, Children's Hospital, Harvard Medical School, Massachusetts, USA
| | | |
Collapse
|
28
|
Abstract
There are 11 glycogen diseases (GSD), nine of which are associated with myopathy. Most of these glycogen storage myopathies are associated with dynamic symptoms and signs in that the major neuromuscular complaints are exercise-induced muscle pain, cramps, and myoglobinura (e.g., GSD V or McArdle's disease associated with myophosphorylase deficiency). The other types of glycogen storage myopathies are considered static in that they are associated with fixed weakness rather than dynamic symptoms and signs. The static glycogen storage myopathies include: GSD I or Pompe's disease (acid maltase or (-glucosidase deficiency), GSD II or Cori-Forbes disease (debranching enzyme deficiency), and GSD IV or Andersen's disease (branching enzyme deficiency). This article reviews the clinical, laboratory, electrophysiologic, histopathologic, and pathogenesis of these static GSD myopathies.
Collapse
Affiliation(s)
- A A Amato
- Department of Neurology, Brigham and Women's Hospital; and Associate Professor, Department of Neurology, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
29
|
Abstract
The glycogen storage myopathies are caused by enzyme defects in the glycogenolytic or in the glycolytic pathway affecting skeletal muscle alone or in conjunction with other tissues. The authors review recent findings in this area, including a new entity, aldolase deficiency, and the wealth of molecular genetic data that are rapidly accumulating. Despite this progress, genotype-phenotyp3 correlations are still murky in most glycogen storage myopathies.
Collapse
Affiliation(s)
- S Tsujino
- Section Chief, Department of Inherited Metabolic Disease, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | | | | |
Collapse
|
30
|
Abstract
The metabolic myopathies are distinguished by extensive clinical and genetic heterogeneity within and between individual disorders. There are a number of explanations for the variability observed that go beyond single gene mutations or degrees of heteroplasmy in the case of mitochondrial DNA mutations. Some of the contributing factors include protein subunit interactions, tissue-specificity, modifying genetic factors, and environmental triggers. Advances in the molecular analysis of metabolic myopathies during the last decade have not only improved the diagnosis of individual disorders but also helped to characterize the contributing factors that make these disorders so complex.
Collapse
Affiliation(s)
- G D Vladutiu
- Associate Professor, Departments of Pediatrics, Neurology, and Pathology, Division of Genetics, School of Medicine and Biomedical Studies, State University of New York at Buffalo, 14209, USA.
| |
Collapse
|
31
|
Shaiu WL, Kishnani PS, Shen J, Liu HM, Chen YT. Genotype-phenotype correlation in two frequent mutations and mutation update in type III glycogen storage disease. Mol Genet Metab 2000; 69:16-23. [PMID: 10655153 DOI: 10.1006/mgme.1999.2953] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Deficiency of glycogen debranching enzyme (AGL) activity causes glycogen storage disease type III (GSD-III). Generalized loss of AGL activity results in GSD-IIIa, and muscle-specific retention of AGL activity results in GSD-IIIb. To date, no common mutation has been described among GSD-III patients, except for three alleles; two linked specifically with GSD-IIIb, and the third found only in North African Jews with GSD-IIIa. Here we report two frequent mutations, each of which was found in the homozygous state in multiple patients, and each of which was associated with a subset of clinical phenotype in those patients with that mutation. A novel point mutation of a single T deletion at cDNA position 3964 (3964delT) was first detected in an African American patient, who has a severe phenotype and early onset of clinical symptoms. The second mutation was an A to G transition at position -12 upstream of the 3' splice site of intron 32 (IVS32-12A > G). This lesion, previously implicated as a IIIb mutation in a Japanese patient, was identified in a confirmed GSD-IIIa Caucasian patient presenting with mild clinical symptoms. These two mutations together account for more than 12% of the molecular defects in the GSD-III patients tested. Our molecular and clinical data suggest a genotype-phenotype correlation for each of these mutations. Furthermore, this current study, coupled with our previous reports, describes the molecular tools necessary for the development of a DNA-based diagnostic test for GSD-III.
Collapse
Affiliation(s)
- W L Shaiu
- Division of Medical Genetics, Duke University Medical Center, Durham, North Carolina, 27710, USA
| | | | | | | | | |
Collapse
|
32
|
Wolfsdorf JI, Holm IA, Weinstein DA. Glycogen storage diseases. Phenotypic, genetic, and biochemical characteristics, and therapy. Endocrinol Metab Clin North Am 1999; 28:801-23. [PMID: 10609121 DOI: 10.1016/s0889-8529(05)70103-1] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The glycogen storage diseases are caused by inherited deficiencies of enzymes that regulate the synthesis or degradation of glycogen. In the past decade, considerable progress has been made in identifying the precise genetic abnormalities that cause the specific impairments of enzyme function. Likewise, improved understanding of the pathophysiologic derangements resulting from individual enzyme defects has led to the development of effective nutritional therapies for each of these disorders. Meticulous adherence to dietary therapy prevents hypoglycemia, ameliorates the biochemical abnormalities, decreases the size of the liver, and results in normal or nearly normal physical growth and development. Nevertheless, serious long-term complications, including nephropathy that can cause renal failure and hepatic adenomata that can become malignant, are a major concern in GSD-I. In GSD-III, the risk for hypoglycemia diminishes with age, and the liver decreases in size during puberty. Cirrhosis develops in some adult patients, and progressive myopathy and cardiomyopathy occur in patients with absent GDE activity in muscle. It remains unclear whether these complications of glycogen storage disease can be prevented by dietary therapy. Glycogen storage diseases caused by lack of phosphorylase activity are milder disorders with a good prognosis. The liver decreases in size, and biochemical abnormalities disappear by puberty.
Collapse
Affiliation(s)
- J I Wolfsdorf
- Department of Pediatrics, Harvard Medical School, Boston, Massachussetts, USA
| | | | | |
Collapse
|
33
|
Abstract
The molecular pathology of classical glycogen storage disorders, glycogen synthase deficiency and Fanconi-Bickel syndrome is reviewed. The isolation of the respective cDNAs, the chromosomal localization of the genes and the elucidation of the genomic organization enabled mutation analysis in most disorders. The findings have shed light on the multi-protein structure of the glucose-6-phosphatase system, the phosphorylase kinase enzymatic complex and the molecular background of the differential tissue expression in debranching enzyme deficiency. The immediate practical benefit of these studies is our extending ability to predict the outcome of clinical variants and to offer genetic counseling to most families. The elucidation of the tertiary structure of these proteins and their structure-function relationship poses major challenges for the future.
Collapse
Affiliation(s)
- O N Elpeleg
- Metabolic Disease Unit, Shaare Zedek Medical Center, Jerusalem, Israel
| |
Collapse
|
34
|
Abstract
The primary presentations of neuromuscular disease in the newborn period are hypotonia and weakness. Although metabolic myopathies are inherited disorders that present from birth and may present with subtle to marked neonatal hypotonia, a number of these defects are diagnosed classically in childhood, adolescence, or adulthood. Disorders of glycogen, lipid, or mitochondrial metabolism may cause three main clinical syndromes in muscle, namely, (1) progressive weakness with hypotonia (e.g., acid maltase, debrancher enzyme, and brancher enzyme deficiencies among the glycogenoses; carnitine uptake and carnitine acylcarnitine translocase defects among the fatty acid oxidation (FAO) defects; and cytochrome oxidase deficiency among the mitochondrial disorders) or (2) acute, recurrent, reversible muscle dysfunction with exercise intolerance and acute muscle breakdown or myoglobinuria (with or without cramps), e.g., phosphorylase, phosphofructokinase, and phosphoglycerate kinase among the glycogenoses and carnitine palmitoyltransferase II deficiency among the disorders of FAO or (3) both (e.g., long-chain or very long-chain acyl coenzyme A (CoA) dehydrogenase, short-chain L-3-hydroxyacyl-CoA dehydrogenase, and trifunctional protein deficiencies among the FAO defects). Episodes of exercise-induced myoglobinuria tend to present in later childhood or adolescence; however, myoglobinuria in the first year of life may occur in FAO disorders during catabolic crises precipitated by fasting or infection. The following is a survey of genetic disorders of glycogen and lipid metabolism resulting in myopathy, focusing primarily on those defects, to date, that have presented in the neonatal or early infancy period. Disorders of mitochondrial metabolism are discussed in another chapter.
Collapse
Affiliation(s)
- I Tein
- Department of Pediatrics, Hospital for Sick Children, University of Toronto, Ontario, Canada
| |
Collapse
|
35
|
Shen J, Liu HM, McConkie-Rosell A, Chen YT. Prenatal diagnosis and carrier detection for glycogen storage disease type III using polymorphic DNA markers. Prenat Diagn 1998; 18:61-4. [PMID: 9483641 DOI: 10.1002/(sici)1097-0223(199801)18:1<61::aid-pd223>3.0.co;2-i] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Deficiency of glycogen debranching enzyme gene (AGL) causes glycogen storage disease type III (GSD-III), an autosomal recessive disease. Prenatal diagnosis and carrier detection using enzymatic methods are technically difficult and have limited ability to distinguish a carrier from an affected patient. Mutations in the AGL gene can be used for these purposes. However, the mutations identified thus far account for less than half of the total mutant alleles, and no common mutations have been detected except in North African Jews and in a rare subtype of the disease (GSD-IIIb). Our recent identification of three highly informative DNA polymorphic markers in the AGL gene allowed us to perform prenatal diagnosis and carrier detection in two GSD-III families with unknown mutations, using the polymerase chain reaction (PCR) and restriction analysis. In one family, a fetus was diagnosed to be a GSD-III carrier and his carrier status was confirmed postnatally. A newborn in the second family was postnatally diagnosed with the disease.
Collapse
Affiliation(s)
- J Shen
- Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
36
|
Bao Y, Yang BZ, Dawson TL, Chen YT. Isolation and nucleotide sequence of human liver glycogen debranching enzyme mRNA: identification of multiple tissue-specific isoforms. Gene 1997; 197:389-98. [PMID: 9332391 DOI: 10.1016/s0378-1119(97)00291-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Glycogen storage disease type III (GSD-III) is caused by a deficiency of glycogen debranching enzyme (AGL) activity. Patients are found to have deficient AGL activity in both muscle and liver, and also enzyme deficiency in the liver, but not in muscle. To determine the molecular basis of enzymatic variability in GSD-III and to elucidate the mechanism for control of tissue-specific expression of AGL, we previously cloned and sequenced the human muscle AGL cDNA. Here we report the isolation and nucleotide sequence of liver AGL cDNA and the tissue distribution of the isoform mRNAs. The predominant form of human liver AGL cDNA (isoform 1) contained 400 bp of 5' untranslated region, 4596 bp of coding region, and 2371 bp of 3' untranslated region. The liver AGL mRNA sequence was identical to the previously published muscle sequence (isoform 5) for most of the length, except for the 5' end, in which the liver sequence diverged completely from the muscle sequence. The divergence began with the transcription start point and extended 82 nucleotides downstream from the translation initiation codon. Six isoforms of AGL mRNA were identified and sequenced from liver and muscle. These isoforms differed only at the 5' end. Tissue distribution studies showed that liver, kidney and lymphoblastoid cells expressed predominantly isoform 1; whereas muscle and heart expressed not only isoform 1, but also muscle-specific isoform mRNAs (isoforms 2, 3 and 4). Defining tissue-specific AGL isoform mRNAs is an important step toward understanding the molecular basis of enzymatic variability in GSD-III.
Collapse
Affiliation(s)
- Y Bao
- Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
37
|
Shen J, Liu HM, Bao Y, Chen YT. Polymorphic markers of the glycogen debranching enzyme gene allowing linkage analysis in families with glycogen storage disease type III. J Med Genet 1997; 34:34-8. [PMID: 9032647 PMCID: PMC1050844 DOI: 10.1136/jmg.34.1.34] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Glycogen storage disease type III (GSD-III), an autosomal recessive disease, is caused by deficient glycogen debranching enzyme (GDE) activity. We identified three polymorphic markers in the GDE gene using single strand conformation polymorphism (SSCP) analysis and DNA sequencing. They were -10G/A in the 5' non-translated region of exon 3,2001 + 8C/T in intron 16, and 3199C/T (P1067S) in exon 25. Two polymorphic markers (-10G/A and 2001 + 8C/T) were highly informative in both controls and GSD-III patients with heterozygosity values of 0.50 and 0.46, respectively. The third marker (3199C/T) had a heterozygosity value of 0.26. Restriction analysis of the PCR amplified genomic DNA products in two GSD-III families showed for the first time the potential use of these markers for carrier detection and prenatal diagnosis in this disease.
Collapse
Affiliation(s)
- J Shen
- Department of Pediatrics, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | |
Collapse
|
38
|
Shen J, Bao Y, Chen YT. A nonsense mutation due to a single base insertion in the 3'-coding region of glycogen debranching enzyme gene associated with a severe phenotype in a patient with glycogen storage disease type IIIa. Hum Mutat 1997; 9:37-40. [PMID: 8990006 DOI: 10.1002/(sici)1098-1004(1997)9:1<37::aid-humu6>3.0.co;2-m] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Glycogen storage disease type III (GSD-III) is an autosomal recessive disease resulting from deficient glycogen debranching enzyme (GDE) activity. A child with GDE deficient in both liver and muscle (GSD-IIIa) had recurrent hypoglycemia, seizures, severe cardiomegaly, and hepatomegaly and died at 4 years of age. Analysis of the GDE gene in this child by single-strand conformation polymorphism, followed by direct DNA sequencing and restriction analysis, revealed an insertion of a nucleotide A into position 4529 of the GDE cDNA (4529insA). This insertion resulted in substitution of a tyrosine to a stop codon at amino acid 1510 (Y1510X). The 4529insA mutation appeared to be homozygous in this patient and was not found in 20 unrelated controls or 18 other GSD-III patients (14 GSD-IIIa and 4 GSD-IIIb). This is the first identification of a disease mutation in this gene, and the data suggest that homozygous 4529insA may be associated with a severe phenotype in GSD-IIIa.
Collapse
Affiliation(s)
- J Shen
- Department of Pediatrics, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|
39
|
Shen J, Bao Y, Liu HM, Lee P, Leonard JV, Chen YT. Mutations in exon 3 of the glycogen debranching enzyme gene are associated with glycogen storage disease type III that is differentially expressed in liver and muscle. J Clin Invest 1996; 98:352-7. [PMID: 8755644 PMCID: PMC507437 DOI: 10.1172/jci118799] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Glycogen storage disease type HI (GSD-III), an autosomal recessive disease, is caused by deficient glycogen debranching enzyme (GDE) activity. Most GSD-III patients are GDE deficient in both liver and muscle (type IIIa), and some GSD-III patients have GDE absent in liver but retained in muscle (type IIIb). The molecular basis for this enzymatic variability is largely unknown. In the present study, the analysis of the GDE gene in three GSD-IIIb patients by single-strand conformation polymorphism (SSCP), DNA sequencing, restriction analysis, and family studies, revealed each of them as being a compound heterozygote for two different mutations. The first mutant alleles in all three patients involved mutations in exon 3 at amino acid codon 6 of the GDE protein. Two had an AG deletion at nucleotides 17 and 18 of the GDE cDNA (17delAG) which resulted in change of subsequent amino acid sequence and a truncated protein (25X); the other had a C to T transition at nucleotide 16 of the cDNA which changed a Glutamine codon to a stop codon (Q6X). The 17delAG mutation was also found in 8 of the 10 additional GSD-IIIb patients. The Q6X mutation was found in one of the remaining two GSD-IIIb patients. These two mutations were not found in any of the 31 GSD-IIIa patients, 2 GSD-IIId patients, nor 28 unrelated normal controls. The second mutant alleles in each of the three GSD-IIIb patients were R864X, R1228X, and W68OX. The R864X and R1228X were not unique for GSD-IIIb as they were also found in GSD-IIIa patients (frequency of 10.3% and 5.2% in Caucasian patients, respectively). Our data demonstrated that both IIIa and IIIb had mutations in the same GDE gene and established for the first time the molecular basis of GSD-III that differentially expressed in liver and muscle. The striking and specific association of exon 3 mutations with GSD-IIIb may provide insight into mechanisms controlling tissue-specific expression of the GDE gene. The identification of exon 3 mutations has clinical significance as well because it distinguished GSD-IIIb from IIIa hence permitting diagnosis from a blood sample rather than a more invasive muscle biopsy.
Collapse
Affiliation(s)
- J Shen
- Department of Pediatrics, Division of Medical Genetics, Duke University Medical Center, North Carolina 27710, USA
| | | | | | | | | | | |
Collapse
|
40
|
Abstract
Disorders of glycogen, lipid or mitochondrial metabolism may cause two main clinical syndromes, namely (1) progressive weakness (eg, acid maltase, debrancher enzyme, and brancher enzyme deficiencies among the glycogenoses; long- and very-long-chain acyl-CoA dehydrogenase (LCAD, VLCAD), and trifunctional enzyme deficiencies among the fatty acid oxidation (FAO) defects; and mitochondrial enzyme deficiencies) or (2) acute, recurrent, reversible muscle dysfunction with exercise intolerance and acute muscle breakdown or myoglobinuria (with or without cramps) (eg, phosphorylase (PPL), phosphorylase b kinase (PBK), phosphofructokinase (PFK), phosphoglycerate kinase (PGK), phosphoglycerate mutase (PGAM), and lactate dehydrogenase (LDH) among the glycogenoses and carnitine palmitoyltransferase II (CPT II) deficiency among the disorders of FAO or (3) both (eg, PPL, PBK, PFK among the glycogenoses; LCAD, VLCAD, short-chain L-3-hydroxyacyl-CoA dehydrogenase (SCHAD), and trifunctional enzyme deficiencies among the FAO defects; and multiple mitochondrial DNA (mtDNA) deletions). Myoadenylate deaminase deficiency, a purine nucleotide cycle defect, is somewhat controversial and is characterized by exercise-related cramps leading rarely to myoglobinuria.
Collapse
Affiliation(s)
- I Tein
- Division of Neurology, Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
41
|
Mishori-Dery A, Bashan N, Moses S, Hershkovitz E, Bao Y, Chen YT, Parvari R. RFLPs for linkage analysis in families with glycogen storage disease type III. J Inherit Metab Dis 1995; 18:207-10. [PMID: 7564248 DOI: 10.1007/bf00711768] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- A Mishori-Dery
- Department of Clinical Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | | | | | | | | | | | | |
Collapse
|