1
|
Zewodu A, Mohammed W, Shiferaw E. Analysis of genetic diversity and population structure of some Ethiopian barley (Hordeum vulgare L.) accessions using SSR markers. PLoS One 2024; 19:e0305945. [PMID: 38917122 PMCID: PMC11198791 DOI: 10.1371/journal.pone.0305945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 06/08/2024] [Indexed: 06/27/2024] Open
Abstract
Understanding the genetic diversity of existing genetic resources at the DNA level is an effective approach for germplasm conservation and utilization in breeding programs. However, the patterns of genetic diversity and population structure remain poorly characterized, making germplasm conservation and breeding efforts difficult to succeed. Thus, this study is aimed to evaluate the genetic diversity and population structure of 49 barley accessions collected from different geographic origins in Ethiopia. Twelve SSR markers were used to analyze all accessions and a total of 61 alleles were found, with a mean of 5.08 alleles per locus. The analysis pointed out the existence of moderate to high values of polymorphic information content ranging from 0.39 to 0.91 and the mean Shannon diversity index(I) was 1.25, indicating that they were highly informative markers. The highest Euclidean distance (1.32) was computed between accession 9950 and two accessions (247011 and 9949), while the lowest Euclidean distance (0.00) was estimated between accessions 243191 and 243192. The result of molecular variance analysis revealed that the highest variation was found among accessions (47) relative to within accessions (44) and among geographic origins (9). Cluster analysis grouped the 49 barley accessions into three major clusters regardless of their geographic origin which could be due to the presence of considerable gene flow (2.72). The result of the STRUCTURE analysis was consistent with neighbor-joining clustering and principal coordinate analysis. Generally, this study concluded that the variation among accessions was more important than the difference in geographical regions to develop an appropriate conservation strategy and for parental selection to use in breeding programs. This information will be helpful for barley conservation and breeding, and it may speed up the development of new competing barley varieties.
Collapse
Affiliation(s)
- Alemayehu Zewodu
- Department of Crop and Horticulture Biodiversity Research, Ethiopian Biodiversity Institute, Addis Ababa, Ethiopia
| | - Wassu Mohammed
- Department of Plant Science, Haramaya University, Haramaya, Ethiopia
| | - Eleni Shiferaw
- Department of Crop and Horticulture Biodiversity Research, Ethiopian Biodiversity Institute, Addis Ababa, Ethiopia
| |
Collapse
|
2
|
Chang KH, Chen CM. The Role of NRF2 in Trinucleotide Repeat Expansion Disorders. Antioxidants (Basel) 2024; 13:649. [PMID: 38929088 PMCID: PMC11200942 DOI: 10.3390/antiox13060649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/20/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
Trinucleotide repeat expansion disorders, a diverse group of neurodegenerative diseases, are caused by abnormal expansions within specific genes. These expansions trigger a cascade of cellular damage, including protein aggregation and abnormal RNA binding. A key contributor to this damage is oxidative stress, an imbalance of reactive oxygen species that harms cellular components. This review explores the interplay between oxidative stress and the NRF2 pathway in these disorders. NRF2 acts as the master regulator of the cellular antioxidant response, orchestrating the expression of enzymes that combat oxidative stress. Trinucleotide repeat expansion disorders often exhibit impaired NRF2 signaling, resulting in inadequate responses to excessive ROS production. NRF2 activation has been shown to upregulate antioxidative gene expression, effectively alleviating oxidative stress damage. NRF2 activators, such as omaveloxolone, vatiquinone, curcumin, sulforaphane, dimethyl fumarate, and resveratrol, demonstrate neuroprotective effects by reducing oxidative stress in experimental cell and animal models of these diseases. However, translating these findings into successful clinical applications requires further research. In this article, we review the literature supporting the role of NRF2 in the pathogenesis of these diseases and the potential therapeutics of NRF2 activators.
Collapse
Affiliation(s)
- Kuo-Hsuan Chang
- Department of Neurology, Chang Gung Memorial Hospital, Linkou Medical Center, Kueishan, Taoyuan 333, Taiwan;
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Chiung-Mei Chen
- Department of Neurology, Chang Gung Memorial Hospital, Linkou Medical Center, Kueishan, Taoyuan 333, Taiwan;
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| |
Collapse
|
3
|
Han C, Yang G, Zhang H, Peng H, Yang J, Zhu P, Zou J, Wang P. Development and validation of genome-wide SSR molecular markers of Tapes dorsatus. Mol Biol Rep 2024; 51:73. [PMID: 38175290 DOI: 10.1007/s11033-023-08949-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/24/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Tapes dorsatus is an economically important benthic animal in the Beibu Gulf of China. However, the deficiency of microsatellite markers has hindered the study of its genetics. The development of microsatellite markers will provide useful tools for genetic improvement, variety identification, phylogenetic analysis and resource conservation. METHODS AND RESULTS Within the genome sequence, 145,008 simple sequence repeats (SSRs) were identified, and 29,691 primer pairs were designed successfully. A total of 100 primer pairs were randomly synthesized for testing, and 93 primers yielded products. Sixty highly polymorphic primers were used to reveal the genetic diversity of 50 T. dorsatus individuals. The average number of alleles (Na) of the population was 10.40; the average number of effective alleles was 6.16, the average expected heterozygosity (He) was 0.82, and the average polymorphic information content was 0.80. The genetic structure of the population was detected, by which the population could be divided into three subpopulations. CONCLUSION We identified 145,008 SSRs in the genome of T. dorsatus and designed 29,691 primer pairs in this study. Of 100 synthesized primers, 60 were highly polymorphic and used to reveal the genetic diversity and structure of the population. The SSR markers identified here will provide useful tools and a foundation for genetic diversity, linkage mapping and molecular marker-aided breeding in T. dorsatus.
Collapse
Affiliation(s)
- Chunli Han
- College of Marine Science, Beibu Gulf University, Qinzhou, 535011, Guangxi, China.
| | - Guohao Yang
- College of Marine Science, Beibu Gulf University, Qinzhou, 535011, Guangxi, China
| | - Huiling Zhang
- College of Marine Science, Beibu Gulf University, Qinzhou, 535011, Guangxi, China
| | - Huijing Peng
- Guangxi Institute of Oceanology, Beihai, 536000, China
| | - Jialin Yang
- College of Marine Science, Beibu Gulf University, Qinzhou, 535011, Guangxi, China
| | - Peng Zhu
- College of Marine Science, Beibu Gulf University, Qinzhou, 535011, Guangxi, China
| | - Jie Zou
- Guangxi Institute of Oceanology, Beihai, 536000, China.
| | - Pengliang Wang
- College of Marine Science, Beibu Gulf University, Qinzhou, 535011, Guangxi, China.
| |
Collapse
|
4
|
Shao W, Cai W, Qiao F, Lin Z, Wei L. Comparison of microsatellite distribution in the genomes of Pteropus vampyrus and Miniopterus natalensis (Chiroptera). BMC Genom Data 2023; 24:5. [PMID: 36782146 PMCID: PMC9925362 DOI: 10.1186/s12863-023-01108-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 01/23/2023] [Indexed: 02/15/2023] Open
Abstract
BACKGROUND Microsatellites are a ubiquitous occurrence in prokaryotic and eukaryotic genomes. Microsatellites have become one of the most popular classes of genetic markers due to their high reproducibility, multi-allelic nature, co-dominant mode of inheritance, abundance and wide genome coverage. We characterised microsatellites in the genomes and genes of two bat species, Pteropus vampyrus and Miniopterus natalensis. This characterisation was used for gene ontology analysis and the Kyoto Encyclopedia of Genes and Genomes pathway enrichment of coding sequences (CDS). RESULTS Compared to M. natalensis, the genome size of P. vampyrus is larger and contains more microsatellites, but the total diversity of both species is similar. Mononucleotide and dinucleotide repeats were the most diverse in the genome of the two species. In each bat species, the microsatellite bias was obvious. The microsatellites with the largest number of repeat motifs in P. vampyrus from mononucleotide to hexanucleotide were (A)n, (AC)n, (CAA)n, (AAAC)n, (AACAA)n and (AAACAA)n, with frequencies of 97.94%, 58.75%, 30.53%, 22.82%, 54.68% and 22.87%, respectively, while in M. natalensis were (A)n, (AC)n, (TAT)n, (TTTA)n, (AACAA)n and (GAGAGG)n, with of 92.00%, 34.08%, 40.36%, 21.83%, 25.42% and 12.79%, respectively. In both species, the diversity of microsatellites was highest in intergenic regions, followed by intronic, untranslated and exonic regions and lowest in coding regions. Location analysis indicated that microsatellites were mainly concentrated at both ends of the genes. Microsatellites in the CDS are thus subject to higher selective pressure. In the GO analysis, two unique GO terms were found only in P. vampyrus and M. natalensis, respectively. In KEGG enriched pathway, the biosynthesis of other secondary metabolites and metabolism of other amino acids in metabolism pathways were present only in M. natalensis. The combined biological process, cellular components and molecular function ontology are reflected in the GO analysis and six functional enrichments in KEGG annotation, suggesting advantageous mutations during species evolution. CONCLUSIONS Our study gives a comparative characterization of the genomes of microsatellites composition in the two bat species. And also allow further study on the effect of microsatellites on gene function as well as provide an insight into the molecular basis for species adaptation to new and changing environments.
Collapse
Affiliation(s)
- Weiwei Shao
- grid.440824.e0000 0004 1757 6428College of Ecology, Lishui University, Lishui, 323000 Zhejiang People’s Republic of China
| | - Wei Cai
- grid.440824.e0000 0004 1757 6428College of Ecology, Lishui University, Lishui, 323000 Zhejiang People’s Republic of China
| | - Fen Qiao
- grid.440824.e0000 0004 1757 6428College of Ecology, Lishui University, Lishui, 323000 Zhejiang People’s Republic of China
| | - Zhihua Lin
- grid.440824.e0000 0004 1757 6428College of Ecology, Lishui University, Lishui, 323000 Zhejiang People’s Republic of China
| | - Li Wei
- College of Ecology, Lishui University, Lishui, 323000, Zhejiang, People's Republic of China.
| |
Collapse
|
5
|
The Landscape of Genome-Wide and Gender-Specific Microsatellites in Indo-Pacific Humpback Dolphin and Potential Applications in Cetacean Resource Investigation. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022. [DOI: 10.3390/jmse10060834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Microsatellites are one of the important genome characterizations that can be a valuable resource for variety identification, genetic diversity, phylogenetic analysis, as well as comparative and conservation genomics research. Here, we developed comprehensive microsatellites through genome-wide mining for the threatened cetacean Indo-Pacific humpback dolphin (Sousa chinensis). We found 87,757 microsatellites with 2–6 bp nucleotide motifs, showing that about 32.5 microsatellites per megabase comprises microsatellites sequences. Approximately 97.8% of the markers developed in this study were consistent with the published identified markers. About 75.3% microsatellites were with dinucleotide motifs, followed by tetranucleotide motifs (17.4%), sharing the same composition pattern as other cetaceans. The microsatellites were not evenly distributed in the S. chinensis genome, mainly in non-coding regions, with only about 0.5% of the markers located in coding regions. The microsatellite-containing genes were mainly functionally enriched in the methylation process, probably demonstrating the potential impacts of microsatellites on biological functions. Polymorphic microsatellites were developed between different genders of S. chinensis, which was expected to lay the foundation for genetic diversity investigation in cetaceans. The specific markers for a male Indo-Pacific humpback dolphin will provide comprehensive and representative male candidate markers for sex identification, providing a potential biomolecular tool for further analysis of population structure and social behavior of wild populations, population trend evaluation, and species conservation management.
Collapse
|
6
|
Wang L, Zhu P, Mo Q, Luo W, Du Z, Jiang J, Yang S, Zhao L, Gong Q, Wang Y. Comprehensive analysis of full-length transcriptomes of Schizothorax prenanti by single-molecule long-read sequencing. Genomics 2021; 114:456-464. [PMID: 33516848 DOI: 10.1016/j.ygeno.2021.01.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 01/12/2021] [Accepted: 01/20/2021] [Indexed: 01/01/2023]
Abstract
Schizothorax prenanti (S. prenanti) is one of the most important aquaculture species in the southwest of China. However, information of the full-length transcripts in S. prenanti remains unknown. In this study, single-molecule real-time (SMRT) sequencing was performed to generate full-length transcriptomes of S.prenanti. In total, 23.26 Gb of clean reads were generated. A total of 312,587 circular consensus sequences (CCS) were obtained with average lengths of 2634 bp and 84.16% (270,662) of CCS were full-length non-chimeric reads. After being corrected with Illumina library sequencing, 18,005 contigs were obtained, with 17,797 (98.81%) successfully annotated in eight public databases, including 15,839 complete open reading frames (ORFs) with an average length of 1330 bp. Furthermore, a total of 4152 alternative splicing (AS) events and 250 long non-coding RNA (lncRNA) transcripts were detected. Additionally, a total of 1129 putative transcription factors (TFs) members from 56 TF families and 11,660 simple sequence repeats (SSRs) were identified. This study provided a valuable resource of full-length transcripts for further research on S. prenanti.
Collapse
Affiliation(s)
- Linjie Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China
| | - Peng Zhu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China
| | - Qilang Mo
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China
| | - Wei Luo
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China
| | - Zongjun Du
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China
| | - Jun Jiang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China
| | - Song Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China
| | - Liulan Zhao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China
| | - Quan Gong
- Fisheries institute, Sichuan Academy of Agricultural Sciences, Chengdu 611713, Sichuan, PR China
| | - Yan Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China.
| |
Collapse
|
7
|
La Rosa P, Petrillo S, Bertini ES, Piemonte F. Oxidative Stress in DNA Repeat Expansion Disorders: A Focus on NRF2 Signaling Involvement. Biomolecules 2020; 10:biom10050702. [PMID: 32369911 PMCID: PMC7277112 DOI: 10.3390/biom10050702] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 12/13/2022] Open
Abstract
DNA repeat expansion disorders are a group of neuromuscular and neurodegenerative diseases that arise from the inheritance of long tracts of nucleotide repetitions, located in the regulatory region, introns, or inside the coding sequence of a gene. Although loss of protein expression and/or the gain of function of its transcribed mRNA or translated product represent the major pathogenic effect of these pathologies, mitochondrial dysfunction and imbalance in redox homeostasis are reported as common features in these disorders, deeply affecting their severity and progression. In this review, we examine the role that the redox imbalance plays in the pathological mechanisms of DNA expansion disorders and the recent advances on antioxidant treatments, particularly focusing on the expression and the activity of the transcription factor NRF2, the main cellular regulator of the antioxidant response.
Collapse
|
8
|
Darling AL, Breydo L, Rivas EG, Gebru NT, Zheng D, Baker JD, Blair LJ, Dickey CA, Koren J, Uversky VN. Repeated repeat problems: Combinatorial effect of C9orf72-derived dipeptide repeat proteins. Int J Biol Macromol 2019; 127:136-145. [PMID: 30639592 DOI: 10.1016/j.ijbiomac.2019.01.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 12/16/2018] [Accepted: 01/08/2019] [Indexed: 12/26/2022]
Abstract
A microsatellite expansion mutation in C9orf72 is the most common genetic cause of Amyotrophic Lateral Sclerosis (ALS) and Frontotemporal Dementia (FTD). The expansion mutation leads to C9orf72 loss of function, RNA foci formation, and generation of five species of non-AUG RAN translated dipeptide repeat proteins (DPRs), such as poly(GA), poly(GP), poly(GR), poly(PA), and poly(PR). Although one cell can contain more than type of DPRs, information about interplay between different DPR species is limited. Here we show that the combined expression of distinct C9orf72-derived dipeptide repeat species produces cellular outcomes and structural differences that are unique compared to the expression of a single DPR species, suggesting the complex biological interactions that occur when multiple DPR variants are simultaneously expressed. Our data highlights the need for further analysis of how combined expression of different DPRs affects the disease state.
Collapse
Affiliation(s)
- April L Darling
- Department of Molecular Medicine, College of Medicine, Byrd Alzheimer's Institute, University of South Florida, Tampa, FL 33612, USA.
| | - Leonid Breydo
- Department of Molecular Medicine, College of Medicine, Byrd Alzheimer's Institute, University of South Florida, Tampa, FL 33612, USA
| | - Emma G Rivas
- Department of Molecular Medicine, College of Medicine, Byrd Alzheimer's Institute, University of South Florida, Tampa, FL 33612, USA
| | - Niad T Gebru
- Department of Molecular Medicine, College of Medicine, Byrd Alzheimer's Institute, University of South Florida, Tampa, FL 33612, USA
| | - Dali Zheng
- Department of Molecular Medicine, College of Medicine, Byrd Alzheimer's Institute, University of South Florida, Tampa, FL 33612, USA
| | - Jeremy D Baker
- Department of Molecular Medicine, College of Medicine, Byrd Alzheimer's Institute, University of South Florida, Tampa, FL 33612, USA
| | - Laura J Blair
- Department of Molecular Medicine, College of Medicine, Byrd Alzheimer's Institute, University of South Florida, Tampa, FL 33612, USA
| | - Chad A Dickey
- Department of Molecular Medicine, College of Medicine, Byrd Alzheimer's Institute, University of South Florida, Tampa, FL 33612, USA
| | - John Koren
- Department of Molecular Medicine, College of Medicine, Byrd Alzheimer's Institute, University of South Florida, Tampa, FL 33612, USA.
| | - Vladimir N Uversky
- Department of Molecular Medicine, College of Medicine, Byrd Alzheimer's Institute, University of South Florida, Tampa, FL 33612, USA; Institute for Biological Instrumentation of the Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia.
| |
Collapse
|
9
|
Consequences of EPR–Proton Qubits Populating DNA. ADVANCES IN QUANTUM CHEMISTRY 2018. [DOI: 10.1016/bs.aiq.2017.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
10
|
Nadeem MA, Nawaz MA, Shahid MQ, Doğan Y, Comertpay G, Yıldız M, Hatipoğlu R, Ahmad F, Alsaleh A, Labhane N, Özkan H, Chung G, Baloch FS. DNA molecular markers in plant breeding: current status and recent advancements in genomic selection and genome editing. BIOTECHNOL BIOTEC EQ 2017. [DOI: 10.1080/13102818.2017.1400401] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Muhammad Azhar Nadeem
- Department of Field Crops, Faculty of Agricultural and Natural Sciences, Abant İzzet Baysal University, Bolu, Turkey
| | - Muhammad Amjad Nawaz
- Department of Biotechnology, School of Engineering, Chonnam National University, Yeosu, Korea
| | - Muhammad Qasim Shahid
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, P. R. China
| | - Yıldız Doğan
- Department of Field Crops, Eastern Mediterranean Agricultural Research Institute, Agricultural Ministry, Adana, Turkey
| | - Gonul Comertpay
- Department of Field Crops, Eastern Mediterranean Agricultural Research Institute, Agricultural Ministry, Adana, Turkey
| | - Mehtap Yıldız
- Department of Agricultural Biotechnology, Faculty of Agriculture, Yuzuncu Yıl University, Van, Turkey
| | - Rüştü Hatipoğlu
- Department of Field Crops, Faculty of Agriculture, University of Çukurova, Adana, Turkey
| | - Fiaz Ahmad
- Botany Division, Institute of Pure and Applied Biology, Bahauddin Zakariya University, Punjab, Pakistan
| | - Ahmad Alsaleh
- Molecular Genetics Laboratory, Science and Technology Application and Research Center, Bozok University, Yozgat, Turkey
| | - Nitin Labhane
- Department of Botany, Bhavan's College, University of Mumbai, Mumbai, India
| | - Hakan Özkan
- Department of Field Crops, Faculty of Agriculture, University of Çukurova, Adana, Turkey
| | - Gyuhwa Chung
- Department of Biotechnology, School of Engineering, Chonnam National University, Yeosu, Korea
| | - Faheem Shehzad Baloch
- Department of Field Crops, Faculty of Agricultural and Natural Sciences, Abant İzzet Baysal University, Bolu, Turkey
| |
Collapse
|
11
|
Zheng JS, Sun CZ, Zhang SN, Hou XL, Bonnema G. Cytogenetic Diversity of Simple Sequences Repeats in Morphotypes of Brassica rapa ssp. chinensis. FRONTIERS IN PLANT SCIENCE 2016; 7:1049. [PMID: 27507974 PMCID: PMC4961004 DOI: 10.3389/fpls.2016.01049] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 07/04/2016] [Indexed: 05/29/2023]
Abstract
A significant fraction of the nuclear DNA of all eukaryotes is comprised of simple sequence repeats (SSRs). Although these sequences are widely used for studying genetic variation, linkage mapping and evolution, little attention had been paid to the chromosomal distribution and cytogenetic diversity of these sequences. In this paper, we report the distribution characterization of mono-, di-, and tri-nucleotide SSRs in Brassica rapa ssp. chinensis. Fluorescence in situ hybridization was used to characterize the cytogenetic diversity of SSRs among morphotypes of B. rapa ssp. chinensis. The proportion of different SSR motifs varied among morphotypes of B. rapa ssp. chinensis, with tri-nucleotide SSRs being more prevalent in the genome of B. rapa ssp. chinensis. We determined the chromosomal locations of mono-, di-, and tri-nucleotide repeat loci. The results showed that the chromosomal distribution of SSRs in the different morphotypes is non-random and motif-dependent, and allowed us to characterize the relative variability in terms of SSR numbers and similar chromosomal distributions in centromeric/peri-centromeric heterochromatin. The differences between SSR repeats with respect to abundance and distribution indicate that SSRs are a driving force in the genomic evolution of B. rapa species. Our results provide a comprehensive view of the SSR sequence distribution and evolution for comparison among morphotypes B. rapa ssp. chinensis.
Collapse
Affiliation(s)
- Jin-shuang Zheng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Horticulture, Nanjing Agricultural University, NanjingChina
- Hebei Normal University of Science and Technology, QinhuangdaoChina
| | - Cheng-zhen Sun
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Horticulture, Nanjing Agricultural University, NanjingChina
- Hebei Normal University of Science and Technology, QinhuangdaoChina
| | - Shu-ning Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Horticulture, Nanjing Agricultural University, NanjingChina
| | - Xi-lin Hou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Horticulture, Nanjing Agricultural University, NanjingChina
| | - Guusje Bonnema
- Wageningen UR Plant Breeding, Wageningen University and Research Centre, WageningenNetherlands
| |
Collapse
|
12
|
Cuadrado Á, Jouve N. Chromosomal detection of simple sequence repeats (SSRs) using nondenaturing FISH (ND-FISH). Chromosoma 2016; 119:495-503. [PMID: 20393739 DOI: 10.1007/s00412-010-0273-x] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Simple Sequence Repeats (SSRs) are known to be scattered and present in high number in eukaryotic genomes. We demonstrate that dye-labeled oligodeoxyribonucleotides with repeated mono-, di-, tri, or tetranucleotide motifs (15-20 nucleotides in length) have an unexpected ability to recognize SSR target sequences in non-denatured chromosomes. The results show that all these probes are able to invade chromosomes, independent of the size of the repeat motif, their nucleotide sequence, or their ability to form alternative B-DNA structures such as triplex DNA. This novel and remarkable property of binding SSR oligonucleotides to duplex DNA targets permitted the development of a non-denaturing fluorescence in situ hybridization method that quickly and efficiently detects SSR-enriched chromosome regions in mitotic, meiotic, and polytene chromosome spreads of different model organisms. These results have implications for genome analysis and for investigating the roles of SSRs in chromosome structure and function.
Collapse
Affiliation(s)
- Ángeles Cuadrado
- Department of Cell Biology and Genetics, University of Alcalá de Henares, 28871, Alcalá de Henares, Madrid, Spain.
| | | |
Collapse
|
13
|
Adams RH, Blackmon H, Reyes-Velasco J, Schield DR, Card DC, Andrew AL, Waynewood N, Castoe TA. Microsatellite landscape evolutionary dynamics across 450 million years of vertebrate genome evolution. Genome 2016; 59:295-310. [PMID: 27064176 DOI: 10.1139/gen-2015-0124] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The evolutionary dynamics of simple sequence repeats (SSRs or microsatellites) across the vertebrate tree of life remain largely undocumented and poorly understood. In this study, we analyzed patterns of genomic microsatellite abundance and evolution across 71 vertebrate genomes. The highest abundances of microsatellites exist in the genomes of ray-finned fishes, squamate reptiles, and mammals, while crocodilian, turtle, and avian genomes exhibit reduced microsatellite landscapes. We used comparative methods to infer evolutionary rates of change in microsatellite abundance across vertebrates and to highlight particular lineages that have experienced unusually high or low rates of change in genomic microsatellite abundance. Overall, most variation in microsatellite content, abundance, and evolutionary rate is observed among major lineages of reptiles, yet we found that several deeply divergent clades (i.e., squamate reptiles and mammals) contained relatively similar genomic microsatellite compositions. Archosauromorph reptiles (turtles, crocodilians, and birds) exhibit reduced genomic microsatellite content and the slowest rates of microsatellite evolution, in contrast to squamate reptile genomes that have among the highest rates of microsatellite evolution. Substantial branch-specific shifts in SSR content in primates, monotremes, rodents, snakes, and fish are also evident. Collectively, our results support multiple major shifts in microsatellite genomic landscapes among vertebrates.
Collapse
Affiliation(s)
- Richard H Adams
- a Department of Biology, 501 S. Nedderman Dr., University of Texas at Arlington, TX 76019, USA
| | - Heath Blackmon
- b Department of Ecology, Evolution & Behavior, 1987 Upper Buford Cir., University of Minnesota, Saint Paul, MN 55108-6097, USA
| | - Jacobo Reyes-Velasco
- a Department of Biology, 501 S. Nedderman Dr., University of Texas at Arlington, TX 76019, USA
| | - Drew R Schield
- a Department of Biology, 501 S. Nedderman Dr., University of Texas at Arlington, TX 76019, USA
| | - Daren C Card
- a Department of Biology, 501 S. Nedderman Dr., University of Texas at Arlington, TX 76019, USA
| | - Audra L Andrew
- a Department of Biology, 501 S. Nedderman Dr., University of Texas at Arlington, TX 76019, USA
| | - Nyimah Waynewood
- a Department of Biology, 501 S. Nedderman Dr., University of Texas at Arlington, TX 76019, USA
| | - Todd A Castoe
- a Department of Biology, 501 S. Nedderman Dr., University of Texas at Arlington, TX 76019, USA
| |
Collapse
|
14
|
Genetic analysis of Indian tasar silkmoth (Antheraea mylitta) populations. Sci Rep 2015; 5:15728. [PMID: 26510465 PMCID: PMC4625160 DOI: 10.1038/srep15728] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 09/30/2015] [Indexed: 11/08/2022] Open
Abstract
Indian tasar silkmoth, Antheraea mylitta is an economically important wild silkmoth species distributed across India. A number of morphologically and ethologically well-defined ecotypes are known for this species that differ in their primary food plant specificity. Most of these ecotypes do not interbreed in nature, but are able to produce offspring under captive conditions. Microsatellite markers were developed for A. mylitta, and out of these, ten well-behaved microsatellite loci were used to analyze the population structure of different ecoraces. A total of 154 individual moths belonging to eight different ecoraces, were screened at each locus. Hierarchical analysis of population structure using Analysis of MOlecular VAriance (AMOVA) revealed significant structuring (FST = 0.154) and considerable inbreeding (FIS = 0.505). A significant isolation by distance was also observed. The number of possible population clusters was investigated using distance method, Bayesian algorithm and self organization maps (SOM). The first two methods revealed two distinct clusters, whereas the SOM showed the different ecoraces not to be clearly differentiated. These results suggest that although there is a large degree of phenotypic variation among the different ecoraces of A. mylitta, genetically they are not very different, and the phenotypic differences may largely be a result of their respective ecology.
Collapse
|
15
|
Qi WH, Jiang XM, Du LM, Xiao GS, Hu TZ, Yue BS, Quan QM. Genome-Wide Survey and Analysis of Microsatellite Sequences in Bovid Species. PLoS One 2015. [PMID: 26196922 PMCID: PMC4510479 DOI: 10.1371/journal.pone.0133667] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Microsatellites or simple sequence repeats (SSRs) have become the most popular source of genetic markers, which are ubiquitously distributed in many eukaryotic and prokaryotic genomes. This is the first study examining and comparing SSRs in completely sequenced genomes of the Bovidae. We analyzed and compared the number of SSRs, relative abundance, relative density, guanine-cytosine (GC) content and proportion of SSRs in six taxonomically different bovid species: Bos taurus, Bubalus bubalis, Bos mutus, Ovis aries, Capra hircus, and Pantholops hodgsonii. Our analysis revealed that, based on our search criteria, the total number of perfect SSRs found ranged from 663,079 to 806,907 and covered from 0.44% to 0.48% of the bovid genomes. Relative abundance and density of SSRs in these Bovinae genomes were non-significantly correlated with genome size (Pearson, r < 0.420, p > 0.05). Perfect mononucleotide SSRs were the most abundant, followed by the pattern: perfect di- > tri- > penta- > tetra- > hexanucleotide SSRs. Generally, the number of SSRs, relative abundance, and relative density of SSRs decreased as the motif repeat length increased in each species of Bovidae. The most GC-content was in trinucleotide SSRs and the least was in the mononucleotide SSRs in the six bovid genomes. The GC-contents of tri- and pentanucleotide SSRs showed a great deal of similarity among different chromosomes of B. taurus, O. aries, and C. hircus. SSR number of all chromosomes in the B. taurus, O.aries, and C. hircus is closely positively correlated with chromosome sequence size (Pearson, r > 0.980, p < 0.01) and significantly negatively correlated with GC-content (Pearson, r < -0.638, p < 0.01). Relative abundance and density of SSRs in all chromosomes of the three species were significantly negatively correlated with GC-content (Pearson, r < -0.333, P < 0.05) but not significantly correlated with chromosome sequence size (Pearson, r < -0.185, P > 0.05). Relative abundances of the same nucleotide SSR type showed great similarity among different chromosomes of B. taurus, O. aries, and C. hircus.
Collapse
Affiliation(s)
- Wen-Hua Qi
- College of Life Science and Engineering, Chongqing Three Gorges University, Chongqing, 404100, China
- * E-mail:
| | - Xue-Mei Jiang
- College of Environmental and Chemistry Engineering, Chongqing Three Gorges University, Chongqing, 404100, China
| | - Lian-Ming Du
- Key Laboratory of Bio-resources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Guo-Sheng Xiao
- College of Life Science and Engineering, Chongqing Three Gorges University, Chongqing, 404100, China
| | - Ting-Zhang Hu
- College of Life Science and Engineering, Chongqing Three Gorges University, Chongqing, 404100, China
| | - Bi-Song Yue
- Key Laboratory of Bio-resources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Qiu-Mei Quan
- School of Life Sciences, China West Normal University, Nanchong, 637009, China
| |
Collapse
|
16
|
Restrepo A, Páez VP, Vásquez A, Daza JM. Rapid microsatellite marker development in the endangered neotropical freshwater turtle Podocnemis lewyana (Testudines: Podocnemididae) using 454 sequencing. BIOCHEM SYST ECOL 2015. [DOI: 10.1016/j.bse.2015.01.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Nguyen TTB, Arimatsu Y, Hong SJ, Brindley PJ, Blair D, Laha T, Sripa B. Genome-wide characterization of microsatellites and marker development in the carcinogenic liver fluke Clonorchis sinensis. Parasitol Res 2015; 114:2263-72. [PMID: 25782682 DOI: 10.1007/s00436-015-4419-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 03/04/2015] [Indexed: 10/23/2022]
Abstract
Clonorchis sinensis is an important carcinogenic human liver fluke endemic in East and Southeast Asia. There are several conventional molecular markers that have been used for identification and genetic diversity; however, no information about microsatellites of this liver fluke is published so far. We here report microsatellite characterization and marker development for a genetic diversity study in C. sinensis, using a genome-wide bioinformatics approach. Based on our search criteria, a total of 256,990 microsatellites (≥12 base pairs) were identified from a genome database of C. sinensis, with hexanucleotide motif being the most abundant (51%) followed by pentanucleotide (18.3%) and trinucleotide (12.7%). The tetranucleotide, dinucleotide, and mononucleotide motifs accounted for 9.75, 7.63, and 0.14%, respectively. The total length of all microsatellites accounts for 0. 72% of 547 Mb of the whole genome size, and the frequency of microsatellites was found to be one microsatellite in every 2.13 kb of DNA. For the di-, tri-, and tetranucleotide, the repeat numbers redundant are six (28%), four (45%), and three (76%), respectively. The ATC repeat is the most abundant microsatellites followed by AT, AAT, and AC, respectively. Within 40 microsatellite loci developed, 24 microsatellite markers showed potential to differentiate between C. sinensis and Opisthorchis viverrini. Seven out of 24 loci showed to be heterozygous with observed heterozygosity that ranged from 0.467 to 1. Four primer sets could amplify both C. sinensis and O. viverrini DNA with different sizes. This study provides basic information of C. sinensis microsatellites, and the genome-wide markers developed may be a useful tool for the genetic study of C. sinensis.
Collapse
Affiliation(s)
- Thao T B Nguyen
- WHO Collaborating Centre for Research and Control of Opisthorchiasis (Southeast Asian Liver Fluke Disease), Tropical Disease Research Laboratory, Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | | | | | | | | | | | | |
Collapse
|
18
|
Samardjieva KG, Marinova E. Microsatellites—A New Approach of Marker- Assisted Selection. BIOTECHNOL BIOTEC EQ 2014. [DOI: 10.1080/13102818.1995.10818855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
19
|
A genome-wide analysis of simple sequence repeats in maize and the development of polymorphism markers from next-generation sequence data. BMC Res Notes 2013; 6:403. [PMID: 24099602 PMCID: PMC3828028 DOI: 10.1186/1756-0500-6-403] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 09/12/2013] [Indexed: 01/10/2023] Open
Abstract
Background Maize (Zea mays ssp. mays L.), as the most important plant for staple food of several million people, animal feed and bioenergy productions, is widely cultivated around the world. Simple sequence repeats (SSRs) are widely used as molecular markers in maize genetics and breeding, but only two thousands pairs of SSRs have been published currently, which hardly satisfies for the increasing needs of geneticists and breeders. Furthermore, the increasing studies have revealed that SSRs also play a vital role in functional regulation and evolution. It is fortunate that the development of sequencing technology and bio-software provides the basis for characterization and development of SSRs in maize. Results In this study, MISA was applied to identify overall 179,681 SSRs in maize reference genome B73, with an average distance of 11.46 Kbp. Their distributions within the genome in different regions were non-random, and the density followed in a descending order of UTR, promotor, intron, intergenic and CDS. Meanwhile, 82,694 (46.02%) SSRs with unique flanking sequences were selected, and then applied to analyze the polymorphism of next-generation sequencing data from 345 maize inbred lines and data from maize reference genome B73. There were 58,946 SSRs with length information results in ten or more than ten genomes, accounting for 71.28% of SSRs with unique flanking sequences, while 55,621 SSRs had polymorphism, with an average PIC value of 0.498. 250 pairs of SSR primers in different genomic regions covering all maize chromosomes were randomly chosen for the experimental validation, with an average PIC value of 0.63 in 11 elite maize inbred lines. Conclusions Our work provided insight into the non-random distribution spatterns and compositions of SSRs in different regions of maize genome, and also developed more polymorphic SSR markers using next-generation sequencing reads. The genome-wide SSRs polymorphism markers could be useful for genetic analysis and marker-assisted selection in breeding practice, and it was also proved to be high efficient for molecular marker development via next-generation sequencing reads.
Collapse
|
20
|
Abstract
Several molecular methods like real-time PCR (Q-PCR), expression sequence tag (EST) scan, microarray and microRNA analysis, and massively parallel signature sequencing (MPSS) have proved to be increasingly sensitive and efficient for monitoring human embryonic stem cell (hESC) differentiation. However, most of these high-throughput tests have a limited use due to high cost, extended turnaround time, and the involvement of highly specialized technical expertise. Hence, there is a need of rapid, cost-effective, robust, yet sensitive method for routine screening of hESCs. A critical requirement in hESC cultures is to maintain a uniform undifferentiated state and to determine their differentiation capacity by showing the expression of germ-layer-specific gene markers. To determine the modulation of gene expression in hESCs during propagation, expansion, and differentiation via embryoid body (EB) formation, we developed a simple, rapid, inexpensive, and definitive multimarker, semiquantitative multiplex RT-PCR (mxPCR) platform technology. Among the 15 gene primers tested, 4 were pluripotent markers comprising of set 1; and 3 lineage-specific markers from each ecto-, meso-, and endoderm layers were combined as sets 2, 3, and 4, respectively. In summary, this study was performed to characterize hESCs on a molecular level and to determine the quality and degree of variability among hESC and their early progenies (EB). This single-reaction mxPCR assay was flexible and, by selecting appropriate reporter genes, can be designed for characterization of different hESC lines during routine maintenance and directed differentiation.
Collapse
|
21
|
Nagpure NS, Rashid I, Pati R, Pathak AK, Singh M, Singh SP, Sarkar UK. FishMicrosat: a microsatellite database of commercially important fishes and shellfishes of the Indian subcontinent. BMC Genomics 2013; 14:630. [PMID: 24047532 PMCID: PMC3852227 DOI: 10.1186/1471-2164-14-630] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 09/11/2013] [Indexed: 11/17/2022] Open
Abstract
Background Microsatellite DNA is one of many powerful genetic markers used for the construction of genetic linkage maps and the study of population genetics. The biological databases in public domain hold vast numbers of microsatellite sequences for many organisms including fishes. The microsatellite data available in these data sources were extracted and managed into a database that facilitates sequences analysis and browsing relevant information. The system also helps to design primer sequences for flanking regions of repeat loci for PCR identification of polymorphism within populations. Description FishMicrosat is a database of microsatellite sequences of fishes and shellfishes that includes important aquaculture species such as Lates calcarifer, Ctenopharyngodon idella, Hypophthalmichthys molitrix, Penaeus monodon, Labeo rohita, Oreochromis niloticus, Fenneropenaeus indicus and Macrobrachium rosenbergii. The database contains 4398 microsatellite sequences of 41 species belonging to 15 families from the Indian subcontinent. GenBank of NCBI was used as a prime data source for developing the database. The database presents information about simple and compound microsatellites, their clusters and locus orientation within sequences. The database has been integrated with different tools in a web interface such as primer designing, locus finding, mapping repeats, detecting similarities among sequences across species, and searching using motifs and keywords. In addition, the database has the ability to browse information on the top 10 families and the top 10 species, through record overview. Conclusions FishMicrosat database is a useful resource for fish and shellfish microsatellite analyses and locus identification across species, which has important applications in population genetics, evolutionary studies and genetic relatedness among species. The database can be expanded further to include the microsatellite data of fishes and shellfishes from other regions and available information on genome sequencing project of species of aquaculture importance.
Collapse
Affiliation(s)
- Naresh Sahebrao Nagpure
- Division of Molecular Biology and Biotechnology, National Bureau of Fish Genetic Resources, Lucknow 226002, India.
| | | | | | | | | | | | | |
Collapse
|
22
|
Grandi FC, An W. Non-LTR retrotransposons and microsatellites: Partners in genomic variation. Mob Genet Elements 2013; 3:e25674. [PMID: 24195012 PMCID: PMC3812793 DOI: 10.4161/mge.25674] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 07/07/2013] [Accepted: 07/09/2013] [Indexed: 01/10/2023] Open
Abstract
The human genome is laden with both non-LTR (long-terminal repeat) retrotransposons and microsatellite repeats. Both types of sequences are able to, either actively or passively, mutagenize the genomes of human individuals and are therefore poised to dynamically alter the human genomic landscape across generations. Non-LTR retrotransposons, such as L1 and Alu, are a major source of new microsatellites, which are born both concurrently and subsequently to L1 and Alu integration into the genome. Likewise, the mutation dynamics of microsatellite repeats have a direct impact on the fitness of their non-LTR retrotransposon parent owing to microsatellite expansion and contraction. This review explores the interactions and dynamics between non-LTR retrotransposons and microsatellites in the context of genomic variation and evolution.
Collapse
Affiliation(s)
- Fiorella C Grandi
- School of Molecular Biosciences and Center for Reproductive Biology; Washington State University; Pullman, WA USA
| | | |
Collapse
|
23
|
High SNP density in the blacklegged tick, Ixodes scapularis, the principal vector of Lyme disease spirochetes. Ticks Tick Borne Dis 2013; 4:63-71. [DOI: 10.1016/j.ttbdis.2012.07.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 07/19/2012] [Accepted: 07/23/2012] [Indexed: 11/20/2022]
|
24
|
Abstract
Instability of repetitive DNA sequences within the genome is associated with a number of human diseases. The expansion of trinucleotide repeats is recognized as a major cause of neurological and neuromuscular diseases, and progress in understanding the mutations over the last 20 years has been substantial. Here we provide a brief summary of progress with an emphasis on technical advances at different stages.
Collapse
Affiliation(s)
- Helen Budworth
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | |
Collapse
|
25
|
Grandi FC, Rosser JM, An W. LINE-1-derived poly(A) microsatellites undergo rapid shortening and create somatic and germline mosaicism in mice. Mol Biol Evol 2012; 30:503-12. [PMID: 23125228 DOI: 10.1093/molbev/mss251] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Interspersed and tandem repeat sequences comprise the bulk of mammalian genomes. Interspersed repeats result from successive replication by transposable elements, such as Alu and long interspersed element type 1 (L1). Microsatellites are tandem repeats of 1-6 base pairs, among which poly(A) microsatellites are the most abundant in the human genome. The rise and fall of a microsatellite has been depicted as a life cycle. Previous studies have demonstrated that Alu and L1 insertions are a major source of A-rich microsatellites owing to the concurrent formation of a poly(A) DNA tract at the 3'-end of each insertion. The fate of such poly(A) tracts has been studied by surveying the length distribution of genomic resident Alu and L1 insertions. However, these cross-sectional studies provide no information about the tempo of mutation immediately after birth. In this study, de novo L1 insertions were created using a transgenic L1 mouse model and traced through generations to investigate the early life of poly(A) microsatellites. High frequencies of intra-individual and intergenerational shortening were observed for long poly(A) tracts, creating somatic and germline mosaicism at the insertion site, whereas little variation was observed for short poly(A) alleles. As poly(A) microsatellites are the major intrinsic signal for nucleosome positioning, their remarkable abundance and variability make them a significant source of epigenetic variation. Thus, the birth of poly(A) microsatellites from retrotransposons and the subsequent rapid and variable shortening represent a new way with which retrotransposons can modify the genetic and epigenetic architecture of our genome.
Collapse
Affiliation(s)
- Fiorella C Grandi
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, USA
| | | | | |
Collapse
|
26
|
Zuo B, Du X, Zhao J, Yang H, Wang C, Wu Y, Lu J, Wang Y, Chen Z. Analysis of microsatellite polymorphism in inbred knockout mice. PLoS One 2012; 7:e34555. [PMID: 22509320 PMCID: PMC3324499 DOI: 10.1371/journal.pone.0034555] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 03/02/2012] [Indexed: 02/07/2023] Open
Abstract
Previously, we found that the genotype of 42 out of 198 mouse microsatellite loci, which are distributed among all chromosomes except the Y chromosome, changed from monomorphism to polymorphism (CMP) in a genetically modified inbred mouse strain. In this study, we further examined whether CMP also relates to the homologous recombination in gene knockout (KO) mouse strains. The same 42 microsatellite loci were analyzed by polymerase chain reaction (PCR) in 29 KO inbred mouse strains via short tandem sequence repeat (STR) scanning and direct sequence cloning to justify microsatellite polymorphisms. The C57BL/6J and 129 mouse strains, from which these 29 KO mice were derived, were chosen as the background controls. The results indicated that 10 out of 42 (23.8%) loci showed CMP in some of these mouse strains. Except for the trinucleotide repeat locus of D3Mit22, which had microsatellite CMP in strain number 9, the core sequences of the remaining 41 loci were dinucleotide repeats, and 9 out of 41 (21.95%) showed CMPs among detected mouse strains. However, 11 out of 29 (37.9%) KO mice strains were recognized as having CMPs. The popular dinucleotide motifs in CMP were (TG)n (50%, 2/4), followed by (GT)n (27.27%, 3/11) and (CA)n (23.08%, 3/13). The microsatellite CMP in (CT)n and (AG)n repeats were 20% (1/5). According to cloning sequencing results, 6 KO mouse strains showed insertions of nucleotides whereas 1 showed a deletion. Furthermore, 2 loci (D13Mit3 and D14Mit102) revealed CMP in 2 strains, and mouse strain number 9 showed CMPs in two loci (D3Mit22 and D13Mit3) simultaneously. Collectively, these results indicated that microsatellite polymorphisms were present in the examined inbred KO mice.
Collapse
Affiliation(s)
- Baofen Zuo
- Department of Laboratory Animal Science, School of Basic Medical Science, Capital Medical University, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Dudgeon CL, Blower DC, Broderick D, Giles JL, Holmes BJ, Kashiwagi T, Krück NC, Morgan JAT, Tillett BJ, Ovenden JR. A review of the application of molecular genetics for fisheries management and conservation of sharks and rays. JOURNAL OF FISH BIOLOGY 2012; 80:1789-1843. [PMID: 22497408 DOI: 10.1111/j.1095-8649.2012.03265.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Since the first investigation 25 years ago, the application of genetic tools to address ecological and evolutionary questions in elasmobranch studies has greatly expanded. Major developments in genetic theory as well as in the availability, cost effectiveness and resolution of genetic markers were instrumental for particularly rapid progress over the last 10 years. Genetic studies of elasmobranchs are of direct importance and have application to fisheries management and conservation issues such as the definition of management units and identification of species from fins. In the future, increased application of the most recent and emerging technologies will enable accelerated genetic data production and the development of new markers at reduced costs, paving the way for a paradigm shift from gene to genome-scale research, and more focus on adaptive rather than just neutral variation. Current literature is reviewed in six fields of elasmobranch molecular genetics relevant to fisheries and conservation management (species identification, phylogeography, philopatry, genetic effective population size, molecular evolutionary rate and emerging methods). Where possible, examples from the Indo-Pacific region, which has been underrepresented in previous reviews, are emphasized within a global perspective.
Collapse
Affiliation(s)
- C L Dudgeon
- The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
During the 1990s and the first several years of this century, microsatellites or short tandem repeats were the workhorse genetic markers for hypothesis-independent studies in human genetics, facilitating genome-wide linkage studies and allelic imbalance studies. However, the rise of higher throughput and cost-effective single-nucleotide polymorphism (SNP) platforms led to the era of the SNP for genome scans. Nevertheless, it is important to note that microsatellites remain highly informative and useful measures of genomic variation for linkage and association studies. Their continued advantage in complementing SNPs lies in their greater allelic diversity than biallelic SNPs as well as in their population history, in which single-step expansion or contraction of the tandem repeat on the background of ancestral SNP haplotypes can break up common haplotypes, leading to greater haplotype diversity within the linkage disequilibrium block of interest. In fact, microsatellites have starred in association studies leading to widely replicated discoveries of type 2 diabetes (TCF7L2) and prostate cancer genes (the 8q21 region). At the end of the day, it will be important to catalog all variation, including SNPs, microsatellites, copy number variations, and polymorphic inversions in human genetic studies. This article describes the utilities of microsatellites and experimental approaches in their use.
Collapse
|
29
|
Abstract
Structural studies have shown that four G-tracts along a DNA strand are the minimal requirement for intramolecular G-quadruplex formation. Longer DNA sequences containing multiples of four G-tracts could, in principle, form higher-order structures based on multiple G-quadruplex blocks. This latter condition is abundantly verified for the telomeric single-stranded overhang (~200 nt) consisting of tens of TTAGGG repeats, thus opening new interesting questions about the structure of the "real" telomeric DNA. How many quadruplex units form in the human telomeric overhang? Which type of quadruplex topologies? Do they interact or not? What about their binding properties? Although many of these questions are still unanswered, recent experimental and computational studies have begun to address them. The existence and relevance of these higher-order quadruplex structures in the human genome is now an interesting and stimulating research topic in the quadruplex field. The recent results, the unsolved problems, and the future prospects for understanding higher-order telomeric quadruplex structures are the main topics of this review. Other studies on long telomeric RNA sequences and on other intramolecular (non telomeric) DNA higher order quadruplex structures are also presented.
Collapse
|
30
|
Rawal L, Ali S, Ali S. Molecular mining of GGAA tagged transcripts and their expression in water buffalo Bubalus bubalis. Gene 2011; 492:290-5. [PMID: 22037482 DOI: 10.1016/j.gene.2011.10.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 09/15/2011] [Accepted: 10/01/2011] [Indexed: 12/27/2022]
Abstract
Repeat sequences are involved in regulation of gene expression both at the transcriptional and translational level. In the mammalian genomes, tri- and tetranucleotide repeats like ATA, AATA, GGAA and GAAA have been associated with diseases. In silico analysis of (GGAA)5 distribution across the species showed maximum number of this repeat in the mouse transcriptome compared to that in other species. Following this, we conducted minisatellite associated sequence amplification (MASA) to explore the buffalo's transcriptome using cDNA from different tissues and an oligo based on (GGAA)5 repeats. MASA uncovered twenty six mRNA transcripts showing homology to known genes in the database. qPCR studies showed the highest expression of twelve transcripts in the spleen. A transcript, pLRC107 with its partial sequence of 203 nucleotides showed sequence variation at several positions in spleen as compared to other four tissues examined. Transcript pLRC100 was found to represent the partial coding sequence of Bos taurus HECT {(homologous to E6-associated protein (UBE3A) carboxyl-terminus domain) and RCC1 (CHC1)-like domain (RLD) 1}, mRNA. We ascertained full length coding sequence of HECT gene and localized the same on buffalo chromosome 10 employing FISH. This gene was found to be conserved across the species. Another gene LRP8 uncovered in the process showed copy number variation between buffalo males (4-9) and females (34-54). The MASA approach enabled us to identify several genes in Bubalus bubalis without screening an entire cDNA library. The highest expression of 12 mRNA transcripts in spleen suggests their likely involvement with immuno transaction. A comprehensive knowledge of the repeat tagged transcriptomes is envisaged to help in understanding their significance in genome organization and evolution forming rich basis of functional and comparative genomics.
Collapse
Affiliation(s)
- Leena Rawal
- Molecular Genetics Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi-110067, India.
| | | | | |
Collapse
|
31
|
García-Obregón S, Alfonso-Sánchez MA, Gómez-Pérez L, Pérez-Miranda AM, Arroyo D, de Pancorbo MM, Peña JA. Microsatellites and Alu elements from the human MHC in Valencia (Spain): analysis of genetic relationships and linkage disequilibrium. Int J Immunogenet 2011; 38:483-91. [PMID: 21933351 DOI: 10.1111/j.1744-313x.2011.01037.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Two different sets of noncoding markers (microsatellites and Alu elements) from the human chromosome six were analysed in 106 individuals from Valencia (Spain), with the aim of exploring the effect of evolutionary forces on the genetic variability of the major histocompatibility complex (MHC) and assessing the potential usefulness of these genetic loci in phylogenetic studies. Linkage disequilibrium (LD) analyses revealed statistically significant associations among markers located in the MHC class I region, and also between the microsatellite D6S2792 and several genetic loci from MHC class I, II and III regions. Results of the Ewens-Watterson test indicated that only D6S2792 showed significant departure from selective neutrality. Despite the paucity of haplotype data in the literature, results of the phylogenetic analyses at world scale (Alu elements) showed that the genetic relationships of Valencia were mainly determined by the ethnic ancestry of the populations considered, whereas at European scale (microsatellites) population affinities were strongly influenced by geography. Our findings suggest that noncoding markers from the MHC such as Alu and microsatellite loci might have a potential value as lineage (ancestry) markers in investigations into evolutionary, medical and forensic perspectives.
Collapse
Affiliation(s)
- S García-Obregón
- Departamento de Genética y Antropología Física, Universidad del País Vasco, Bilbao, Spain
| | | | | | | | | | | | | |
Collapse
|
32
|
Simola DF, Kim J. Sniper: improved SNP discovery by multiply mapping deep sequenced reads. Genome Biol 2011; 12:R55. [PMID: 21689413 PMCID: PMC3218843 DOI: 10.1186/gb-2011-12-6-r55] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Revised: 04/22/2011] [Accepted: 06/20/2011] [Indexed: 11/10/2022] Open
Abstract
SNP (single nucleotide polymorphism) discovery using next-generation sequencing data remains difficult primarily because of redundant genomic regions, such as interspersed repetitive elements and paralogous genes, present in all eukaryotic genomes. To address this problem, we developed Sniper, a novel multi-locus Bayesian probabilistic model and a computationally efficient algorithm that explicitly incorporates sequence reads that map to multiple genomic loci. Our model fully accounts for sequencing error, template bias, and multi-locus SNP combinations, maintaining high sensitivity and specificity under a broad range of conditions. An implementation of Sniper is freely available at http://kim.bio.upenn.edu/software/sniper.shtml.
Collapse
Affiliation(s)
- Daniel F Simola
- Department of Biology, University of Pennsylvania, 433 S, University Ave., Philadelphia, PA 19104, USA
| | | |
Collapse
|
33
|
Fosmid library end sequencing reveals a rarely known genome structure of marine shrimp Penaeus monodon. BMC Genomics 2011; 12:242. [PMID: 21575266 PMCID: PMC3124438 DOI: 10.1186/1471-2164-12-242] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Accepted: 05/17/2011] [Indexed: 11/28/2022] Open
Abstract
Background The black tiger shrimp (Penaeus monodon) is one of the most important aquaculture species in the world, representing the crustacean lineage which possesses the greatest species diversity among marine invertebrates. Yet, we barely know anything about their genomic structure. To understand the organization and evolution of the P. monodon genome, a fosmid library consisting of 288,000 colonies and was constructed, equivalent to 5.3-fold coverage of the 2.17 Gb genome. Approximately 11.1 Mb of fosmid end sequences (FESs) from 20,926 non-redundant reads representing 0.45% of the P. monodon genome were obtained for repetitive and protein-coding sequence analyses. Results We found that microsatellite sequences were highly abundant in the P. monodon genome, comprising 8.3% of the total length. The density and the average length of microsatellites were evidently higher in comparison to those of other taxa. AT-rich microsatellite motifs, especially poly (AT) and poly (AAT), were the most abundant. High abundance of microsatellite sequences were also found in the transcribed regions. Furthermore, via self-BlastN analysis we identified 103 novel repetitive element families which were categorized into four groups, i.e., 33 WSSV-like repeats, 14 retrotransposons, 5 gene-like repeats, and 51 unannotated repeats. Overall, various types of repeats comprise 51.18% of the P. monodon genome in length. Approximately 7.4% of the FESs contained protein-coding sequences, and the Inhibitor of Apoptosis Protein (IAP) gene and the Innexin 3 gene homologues appear to be present in high abundance in the P. monodon genome. Conclusions The redundancy of various repeat types in the P. monodon genome illustrates its highly repetitive nature. In particular, long and dense microsatellite sequences as well as abundant WSSV-like sequences highlight the uniqueness of genome organization of penaeid shrimp from those of other taxa. These results provide substantial improvement to our current knowledge not only for shrimp but also for marine crustaceans of large genome size.
Collapse
|
34
|
Abstract
The identification of genomic loci linked to or associated with human disease has been greatly facilitated by the evolution of genotyping strategies and techniques. The success of these strategies continues to be based upon clear clinical assessment, accurate sample handling, and careful data management, but also increasingly upon experimental design. Technological advances in the field of genotyping have permitted increasingly complex and large population studies to be performed. An understanding of publicly available genetic variation databases, including an awareness of the limitations of these data, and an appreciation of the strategic approaches that should be used to exploit this information will provide tremendous insight for researchers are aiming to utilize this accessible technology. As genome-wide association studies (GWAS) and Next Generation (NextGen) sequencing become the mainstays of genetic analyses, it is important that their technical strengths and limitations, as well as their impact on study design, be understood before use in a linkage or genetic association study.
Collapse
Affiliation(s)
- Dana C Crawford
- Center for Human Genetics Research, Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | | |
Collapse
|
35
|
Sun D, Guo K, Shin YJ. Evidence of the formation of G-quadruplex structures in the promoter region of the human vascular endothelial growth factor gene. Nucleic Acids Res 2011; 39:1256-65. [PMID: 20959293 PMCID: PMC3045601 DOI: 10.1093/nar/gkq926] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Revised: 09/24/2010] [Accepted: 09/27/2010] [Indexed: 11/29/2022] Open
Abstract
The polypurine/polypyrimidine (pPu/pPy) tract of the human vascular endothelial growth factor (VEGF) gene is proposed to be structurally dynamic and to have potential to adopt non-B DNA structures. In the present study, we further provide evidence for the existence of the G-quadruplex structure within this tract both in vitro and in vivo using the dimethyl sulfate (DMS) footprinting technique and nucleolin as a structural probe specifically recognizing G-quadruplex structures. We observed that the overall reactivity of the guanine residues within this tract toward DMS was significantly reduced compared with other guanine residues of the flanking regions in both in vitro and in vivo footprinting experiments. We also demonstrated that nucleolin, which is known to bind to G-quadruplex structures, is able to bind specifically to the G-rich sequence of this region in negatively supercoiled DNA. Our chromatin immunoprecipitation analysis further revealed binding of nucleolin to the promoter region of the VEGF gene in vivo. Taken together, our results are in agreement with our hypothesis that secondary DNA structures, such as G-quadruplexes, can be formed in supercoiled duplex DNA and DNA in chromatin in vivo under physiological conditions similar to those formed in single-stranded DNA templates.
Collapse
Affiliation(s)
- Daekyu Sun
- College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA.
| | | | | |
Collapse
|
36
|
|
37
|
Gineikiene E, Stoskus M, Griskevicius L. Recent advances in quantitative chimerism analysis. Expert Rev Mol Diagn 2010; 9:817-32. [PMID: 19895227 DOI: 10.1586/erm.09.66] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Quantitative chimerism analysis is a diagnostic tool used to monitor engraftment kinetics after allogeneic stem cell transplantation. It reflects the proportion of recipient and donor genotypes and is based on the identification of genetic markers characteristic to a given transplant pair. Currently, PCR amplification of short tandem repeats and single-nucleotide polymorphism-specific quantitative real-time PCR are the most widely used techniques for this purpose. In this review, we will address advances as well as technology-specific imperfections, of both techniques that have emerged over the recent years. We will discuss new principles that may simplify assay design, and improve its robustness and reliability. A better chimerism assay could then guide clinical interventions and may, eventually, improve the outcome of allogeneic stem cell transplantation.
Collapse
Affiliation(s)
- Egle Gineikiene
- Department of Molecular and Regenerative Medicine, Hematology, Oncology and Transfusion Medicine Center, Vilnius University Hospital Santariskiu Clinics, Santariskiu 2, LT-08661, Vilnius, Lithuania.
| | | | | |
Collapse
|
38
|
Rajendran A, Nakano SI, Sugimoto N. Molecular crowding of the cosolutes induces an intramolecular i-motif structure of triplet repeat DNA oligomers at neutral pH. Chem Commun (Camb) 2010; 46:1299-301. [DOI: 10.1039/b922050j] [Citation(s) in RCA: 147] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
39
|
|
40
|
da Silva AG, Williams KE, Kirk SL, Bishop CA, Hodges KE, Russello MA. Isolation and characterization of microsatellite loci in two species-at-risk in British Columbia: Great Basin spadefoot (Spea intermontana) and Western painted turtle (Chrysemys picta bellii). CONSERV GENET RESOUR 2009. [DOI: 10.1007/s12686-009-9136-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
41
|
Giese H, Lam R, Selden R, Tan E. Fast multiplexed polymerase chain reaction for conventional and microfluidic short tandem repeat analysis. J Forensic Sci 2009; 54:1287-96. [PMID: 19840207 DOI: 10.1111/j.1556-4029.2009.01200.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The time required for short tandem repeat (STR) amplification is determined by the temperature ramp rates of the thermal cycler, the components of the reaction mix, and the properties of the reaction vessel. Multiplex amplifications in microfluidic biochip-based and conventional tube-based thermal cyclers have been demonstrated in 17.3 and 19 min, respectively. Optimized 28-cycle amplification protocols generated alleles with signal strengths above calling thresholds, heterozygous peak height ratios of greater than 0.65, and incomplete nontemplate nucleotide addition and stutter of less than 15%. Full CODIS-compatible profiles were generated using the Profiler Plus ID, COfiler and Identifiler primer sets. PCR performance over a wide range of DNA template levels from 0.006 to 4 ng was characterized by separation and detection on a microfluidic electrophoresis system, Genebench-FX. The fast multiplex PCR approach has the potential to reduce process time and cost for STR analysis and enables development of a fully integrated microfluidic forensic DNA analysis system.
Collapse
|
42
|
Plötner J, Köhler F, Uzzell T, Beerli P, Schreiber R, Guex GD, Hotz H. Evolution of serum albumin intron-1 is shaped by a 5' truncated non-long terminal repeat retrotransposon in western Palearctic water frogs (Neobatrachia). Mol Phylogenet Evol 2009; 53:784-91. [PMID: 19665056 DOI: 10.1016/j.ympev.2009.07.037] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Revised: 07/30/2009] [Accepted: 07/31/2009] [Indexed: 10/20/2022]
Abstract
A 5' truncated non-LTR CR1-like retrotransposon, named RanaCR1, was identified in the serum albumin intron-1 (SAI-1) of at least seven species of western Palearctic water frogs (WPWF). Based on sequence similarity of the carboxy-terminal region (CTR) of ORF2 and/or the highly conserved 3' untranslated region (3' UTR), RanaCR1-like elements occur also in the genome of Xenopus tropicalis and Rana temporaria. Unlike other CR1 elements, RanaCR1 contains a CA microsatellite in its 3' UTR. The low nucleotide diversity of the 3' UTR compared to the CTR and to SAI-1 suggests that this region still plays a role in WPWF, either as a structure-stabilizing element, or within a species-specific transcriptional network. Length variation of water frog SAI-1 sequences is caused by deletions that extend in some cases beyond the 5' or 3' ends of RanaCR1, probably a result of selection for structural and functional stability of the primary transcript. The impact of RanaCR1 on SAI-1 evolution is also indicated by the significant negative correlation between the length of both SAI-1 and RanaCR1 and the percentage GC content of RanaCR1. Both SAI-1 and RanaCR1 sequences support the sister group relationship of R. perezi and R. saharica, which are placed in the phylogenetic tree at a basal position, the sister clade to other water frog taxa. It also supports the monophyly of the R. lessonae group; of Anatolian water frogs (R. cf. bedriagae), which are not conspecific with R. bedriagae, and of the European ridibunda group. Within the ridibunda clade, Greek frogs are clearly separated, supporting the hypothesis that Balkan water frogs represent a distinct species. Frogs from Atyrau (Kazakhstan), the type locality of R. ridibunda, were heterozygous for a ridibunda and a cf. bedriagae specific allele.
Collapse
Affiliation(s)
- Jörg Plötner
- Museum für Naturkunde, Leibniz-Institut für Evolutions - und Biodiversitätsforschung an der Humboldt-Universität zu Berlin, Invalidenstrasse 43, 10115 Berlin, Germany.
| | | | | | | | | | | | | |
Collapse
|
43
|
Fragmented coronoid process in the dog: a heritable disease. Vet J 2009; 185:123-9. [PMID: 19640749 DOI: 10.1016/j.tvjl.2009.06.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Revised: 06/12/2009] [Accepted: 06/27/2009] [Indexed: 11/24/2022]
Abstract
Fragmented coronoid process (FCP) is one of the main diseases associated with elbow dysplasia. FCP is often diagnosed in medium-to-large breed dogs with front leg lameness, for instance in Rottweilers, Labrador Retrievers and Bernese Mountain dogs. Dogs with FCP develop osteoarthrosis of the elbow joint despite conservative or surgical treatment. Although FCP is considered a hereditary condition, the gene or genes causing FCP have yet to be identified. This article provides an overview of different aspects of FCP, including elbow joint development, hypotheses about disease pathogenesis, the genetic background of FCP, and genetic methodology to identify gene or genes responsible for FCP.
Collapse
|
44
|
Yang C, Zhu X, Sun X. Development of microsatellite markers and their utilization in genetic diversity analysis of cultivated and wild populations of the mud carp (Cirrhina molitorella). J Genet Genomics 2009; 35:201-6. [PMID: 18439976 DOI: 10.1016/s1673-8527(08)60028-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2007] [Revised: 09/24/2007] [Accepted: 09/24/2007] [Indexed: 10/22/2022]
Abstract
Microsatellite markers have been increasingly used in genetic studies on fishery species because of their high applicability in selective breeding programs. Here we reported the development of microsatellite markers and their utilization in mud carp (Cirrhina molitorella). An (CA)(15) enriched library has been constructed for mud carp, using the magnetic beads enrichment procedure. Sequence analysis of 60 randomly picked positive colonies indicate that 56 (93.3%) of the colonies contain microsatellites. Microsatellite polymorphism was assessed using 10 mud carp individuals, and 12 microsatellite loci turned out to be polymorphic. We utilized these loci to study the genetic diversity of a wild population (WM) and a cultured population (CM) of the mud carp. A total of 109 alleles were detected with an average of 9.08 alleles per locus. The mean value of the observed heterozygosity of WM and CM was 0.6361 and 0.6417, respectively, and significant decrease of genetic diversity in CM was not observed. The genetic distance between the two populations was 0.1546 and the value of G(ST) was 0.0473. This showed that there existed a slight genetic differentiation between WM and CM.
Collapse
Affiliation(s)
- Cheng Yang
- College of Aqua-Life Science and Technology, Shanghai Fisheries University, Shanghai 200090, China
| | | | | |
Collapse
|
45
|
Ramamoorthi J, Thilagam K, Sivaselvam SN, Karthickeyan SMK. Genetic characterization of Barbari goats using microsatellite markers. J Vet Sci 2009; 10:73-6. [PMID: 19255527 PMCID: PMC2801097 DOI: 10.4142/jvs.2009.10.1.73] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Genetic variation in Barbari goats, a highly prolific breed distributed widely in the northern part of India, known for better milk and meat quality, was studied as a part of genetic characterization and conservation. The genomic DNA from 50 unrelated Barbari goats were amplified via PCR with a panel of 21 microsatellite markers, and resolved through 6 per cent denaturing polyacrylamide gel electrophoresis followed by silver staining. The number of alleles ranged from 4 to 11, with allele sizes ranging from 88 to 220 bp. The distribution of allele frequencies was between 0.0104 and 0.5208. Polymorphism information content varied from 0.5563 to 0.8348. The population was not in Hardy-Weinberg equilibrium for all except two microsatellite loci (ILSTS044 and ILSTS060). The observed heterozygosity ranged from 0.8478 to 1.0000 while the expected heterozygosity ranged from 0.6208 to 0.8509. Based on the results of the present study, there is a good scope for exploiting the genetic variability in the Barbari goats for further improvement of performance.
Collapse
Affiliation(s)
- J Ramamoorthi
- Department of Animal Genetics and Breeding, Madras Veterinary College, Tamilnadu Veterinary and Animal Sciences University, Chennai-600 007, India
| | | | | | | |
Collapse
|
46
|
Wang S, Zhang L, Matz M. Microsatellite characterization and marker development from public EST and WGS databases in the reef-building coral Acropora millepora (Cnidaria, Anthozoa, Scleractinia). J Hered 2008; 100:329-37. [PMID: 19043068 DOI: 10.1093/jhered/esn100] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Mining for microsatellites (also called simple sequence repeats [SSRs]) in public sequence databases of a common Indo-Pacific coral Acropora millepora identified 191 SSRs from 10 258 expressed sequence tag (EST) and 618 SSRs from 14 625 whole-genome shotgun (WGS) sequences. In contrast to other animals, trinucleotide repeats, rather than dinucleotide repeats, are dominant in the WGS-SSRs, and AAT is the most frequent trinucleotide motif in EST-SSRs. We successfully developed 40 polymorphic markers from EST-SSRs and WGS-SSRs. Both EST- and WGS-SSRs show high levels of polymorphism within corals from the same reef patch. Interestingly, markers WGS079 and WGS227 revealed SSR duplications in a few individuals, suggesting recent duplication events. Genotypic linkage disequilibrium was identified in 5 pairs of SSR markers, which will be invaluable for high-resolution studies of genetic admixture in natural populations of A. millepora. Transferability analysis showed that 25 of these markers can be successfully amplified in one of the most ubiquitous Indo-Pacific corals Acropora hyacinthus. The marker collection reported here is the largest ever developed for any reef-building coral. It holds great potential for addressing coral reef connectivity across the Indo-Pacific with an unprecedented precision, especially taking into account the cross-species transferability of a substantial number of markers.
Collapse
Affiliation(s)
- Shi Wang
- University of Texas at Austin, 78712, USA.
| | | | | |
Collapse
|
47
|
Xu Z, Gutierrez L, Hitchens M, Scherer S, Sater AK, Wells DE. Distribution of polymorphic and non-polymorphic microsatellite repeats in Xenopus tropicalis. Bioinform Biol Insights 2008; 2:157-69. [PMID: 19812773 PMCID: PMC2735965 DOI: 10.4137/bbi.s561] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The results of our bioinformatics analysis have found over 91,000 di-, tri-, and tetranucleotide microsatellites in our survey of 25% of the X. tropicalis genome, suggesting there may be over 360,000 within the entire genome. Within the X. tropicalis genome, dinucleotide (78.7%) microsatellites vastly out numbered tri- and tetranucleotide microsatellites. Similarly, AT-rich repeats are overwhelmingly dominant. The four AT-only motifs (AT, AAT, AAAT, and AATT) account for 51,858 out of 91,304 microsatellites found. Individually, AT microsatellites were the most common repeat found, representing over half of all di-, tri-, and tetranucleotide microsatellites. This contrasts with data from other studies, which show that AC is the most frequent microsatellite in vertebrate genomes (Toth et al. 2000). In addition, we have determined the rate of polymorphism for 5,128 non-redundant microsatellites, embedded in unique sequences. Interestingly, this subgroup of microsatellites was determined to have significantly longer repeats than genomic microsatellites as a whole. In addition, microsatellite loci with tandem repeat lengths more than 30 bp exhibited a significantly higher degree of polymorphism than other loci. Pairwise comparisons show that tetranucleotide microsatellites have the highest polymorphic rates. In addition, AAT and ATC showed significant higher polymorphism than other trinucleotide microsatellites, while AGAT and AAAG were significantly more polymorphic than other tetranucleotide microsatellites.
Collapse
Affiliation(s)
- Zhenkang Xu
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | | | | | | | | | | |
Collapse
|
48
|
Abstract
Unstable repeats are associated with various types of cancer and have been implicated in more than 40 neurodegenerative disorders. Trinucleotide repeats are located in non-coding and coding regions of the genome. Studies of bacteria, yeast, mice and man have helped to unravel some features of the mechanism of trinucleotide expansion. Looped DNA structures comprising trinucleotide repeats are processed during replication and/or repair to generate deletions or expansions. Most in vivo data are consistent with a model in which expansion and deletion occur by different mechanisms. In mammals, microsatellite instability is complex and appears to be influenced by genetic, epigenetic and developmental factors.
Collapse
|
49
|
Cuadrado A, Jouve N. Similarities in the chromosomal distribution of AG and AC repeats within and between Drosophila, human and barley chromosomes. Cytogenet Genome Res 2007; 119:91-9. [PMID: 18160787 DOI: 10.1159/000109624] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2007] [Accepted: 06/20/2007] [Indexed: 11/19/2022] Open
Abstract
Two simple sequence repeats (SSRs), AG and AC, were mapped directly in the metaphase chromosomes of man and barley (Hordeum vulgare L.), and in the metaphase and polytene chromosomes of Drosophila melanogaster. To this end, synthetic oligonucleotides corresponding to (AG)(12) and (AC)(8) were labelled by the random primer technique and used as probes in fluorescent in situ hybridisation (FISH) under high stringency and strict washing conditions. The distribution and intensity of the signals for the repeat sequences were found to be characteristic of the chromosomes and genomes of the three species analysed. The AC repeat sites were uniformly dispersed along the euchromatic segments of all three genomes; in fact, they were largely excluded from the heterochromatin. The Drosophila genome showed a high density of AC sequences on the X chromosome in both mitotic and polytene nuclei. In contrast, the AG repeats were associated with the euchromatic regions of the polytene chromosomes (and in high density on the X chromosome), but were only seen in specific heterochromatic regions in the mitotic chromosomes of all three species. In Drosophila, the AG repeats were exclusively distributed on the tips of the Y chromosome and near the centromere on both arms of chromosome 2. In barley and man, AG repeats were associated with the centromeres (of all chromosomes) and nucleolar organizer regions, respectively. The conserved chromosome distribution of AC within and between these three phylogenetically distant species, and the association of AG in specific chromosome regions with structural or functional properties, suggests that long clusters of these repeats may have some, as yet unknown, role.
Collapse
Affiliation(s)
- A Cuadrado
- Department of Cell Biology and Genetics, University of Alcalá, Madrid, Spain.
| | | |
Collapse
|
50
|
|