1
|
Wang SK, Zhang H, Lin HC, Wang YL, Lin SC, Seymen F, Koruyucu M, Simmer JP, Hu JCC. AMELX Mutations and Genotype-Phenotype Correlation in X-Linked Amelogenesis Imperfecta. Int J Mol Sci 2024; 25:6132. [PMID: 38892321 PMCID: PMC11172428 DOI: 10.3390/ijms25116132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/26/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
AMELX mutations cause X-linked amelogenesis imperfecta (AI), known as AI types IE, IIB, and IIC in Witkop's classification, characterized by hypoplastic (reduced thickness) and/or hypomaturation (reduced hardness) enamel defects. In this study, we conducted whole exome analyses to unravel the disease-causing mutations for six AI families. Splicing assays, immunoblotting, and quantitative RT-PCR were conducted to investigate the molecular and cellular effects of the mutations. Four AMELX pathogenic variants (NM_182680.1:c.2T>C; c.29T>C; c.77del; c.145-1G>A) and a whole gene deletion (NG_012494.2:g.307534_403773del) were identified. The affected individuals exhibited enamel malformations, ranging from thin, poorly mineralized enamel with a "snow-capped" appearance to severe hypoplastic defects with minimal enamel. The c.145-1G>A mutation caused a -1 frameshift (NP_001133.1:p.Val35Cysfs*5). Overexpression of c.2T>C and c.29T>C AMELX demonstrated that mutant amelogenin proteins failed to be secreted, causing elevated endoplasmic reticulum stress and potential cell apoptosis. This study reveals a genotype-phenotype relationship for AMELX-associated AI: While amorphic mutations, including large deletions and 5' truncations, of AMELX cause hypoplastic-hypomaturation enamel with snow-capped teeth (AI types IIB and IIC) due to a complete loss of gene function, neomorphic variants, including signal peptide defects and 3' truncations, lead to severe hypoplastic/aplastic enamel (AI type IE) probably caused by "toxic" cellular effects of the mutant proteins.
Collapse
Affiliation(s)
- Shih-Kai Wang
- Department of Dentistry, National Taiwan University School of Dentistry, No. 1, Changde St., Taipei City 100229, Taiwan; (H.-C.L.); (Y.-L.W.); (S.-C.L.)
- Department of Pediatric Dentistry, National Taiwan University Children’s Hospital, No. 8, Zhongshan S. Rd., Taipei City 100226, Taiwan
| | - Hong Zhang
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1011 North University, Ann Arbor, MI 48109, USA; (H.Z.); (J.P.S.); (J.C.-C.H.)
| | - Hua-Chieh Lin
- Department of Dentistry, National Taiwan University School of Dentistry, No. 1, Changde St., Taipei City 100229, Taiwan; (H.-C.L.); (Y.-L.W.); (S.-C.L.)
| | - Yin-Lin Wang
- Department of Dentistry, National Taiwan University School of Dentistry, No. 1, Changde St., Taipei City 100229, Taiwan; (H.-C.L.); (Y.-L.W.); (S.-C.L.)
- Department of Pediatric Dentistry, National Taiwan University Children’s Hospital, No. 8, Zhongshan S. Rd., Taipei City 100226, Taiwan
| | - Shu-Chun Lin
- Department of Dentistry, National Taiwan University School of Dentistry, No. 1, Changde St., Taipei City 100229, Taiwan; (H.-C.L.); (Y.-L.W.); (S.-C.L.)
- Department of Pediatric Dentistry, National Taiwan University Children’s Hospital, No. 8, Zhongshan S. Rd., Taipei City 100226, Taiwan
| | - Figen Seymen
- Department of Pediatric Dentistry, Faculty of Dentistry, Altinbas University, Istanbul 34147, Turkey;
| | - Mine Koruyucu
- Department of Pedodontics, Faculty of Dentistry, Istanbul University, Istanbul 34116, Turkey;
| | - James P. Simmer
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1011 North University, Ann Arbor, MI 48109, USA; (H.Z.); (J.P.S.); (J.C.-C.H.)
| | - Jan C.-C. Hu
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1011 North University, Ann Arbor, MI 48109, USA; (H.Z.); (J.P.S.); (J.C.-C.H.)
| |
Collapse
|
2
|
An Intron c.103-3T>C Variant of the AMELX Gene Causes Combined Hypomineralized and Hypoplastic Type of Amelogenesis Imperfecta: Case Series and Review of the Literature. Genes (Basel) 2022; 13:genes13071272. [PMID: 35886055 PMCID: PMC9321068 DOI: 10.3390/genes13071272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/07/2022] [Accepted: 07/09/2022] [Indexed: 02/04/2023] Open
Abstract
Amelogenesis imperfecta (AI) is a heterogeneous group of genetic disorders of dental enamel. X-linked AI results from disease-causing variants in the AMELX gene. In this paper, we characterise the genetic aetiology and enamel histology of female AI patients from two unrelated families with similar clinical and radiographic findings. All three probands were carefully selected from 40 patients with AI. In probands from both families, scanning electron microscopy confirmed hypoplastic and hypomineralised enamel. A neonatal line separated prenatally and postnatally formed enamel of distinctly different mineralisation qualities. In both families, whole exome analysis revealed the intron variant NM_182680.1: c.103-3T>C, located three nucleotides before exon 4 of the AMELX gene. In family I, an additional variant, c.2363G>A, was found in exon 5 of the FAM83H gene. This report illustrates a variant in the AMELX gene that was not previously reported to be causative for AI as well as an additional variant in the FAM83H gene with probably limited clinical significance.
Collapse
|
3
|
Oleaga-Quintas C, Deswarte C, Moncada-Vélez M, Metin A, Krishna Rao I, Kanık-Yüksek S, Nieto-Patlán A, Guérin A, Gülhan B, Murthy S, Özkaya-Parlakay A, Abel L, Martínez-Barricarte R, Pérez de Diego R, Boisson-Dupuis S, Kong XF, Casanova JL, Bustamante J. A purely quantitative form of partial recessive IFN-γR2 deficiency caused by mutations of the initiation or second codon. Hum Mol Genet 2019; 27:3919-3935. [PMID: 31222290 DOI: 10.1093/hmg/ddy275] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 07/17/2018] [Accepted: 07/17/2018] [Indexed: 02/07/2023] Open
Abstract
Mendelian susceptibility to mycobacterial disease (MSMD) is characterized by clinical disease caused by weakly virulent mycobacteria, such as environmental mycobacteria and Bacillus Calmette-Guérin vaccines, in otherwise healthy individuals. All known genetic etiologies disrupt interferon (IFN)-γ immunity. Germline bi-allelic mutations of IFNGR2 can underlie partial or complete forms of IFN-γ receptor 2 (IFN-γR2) deficiency. Patients with partial IFN-γR2 deficiency express a dysfunctional molecule on the cell surface. We studied three patients with MSMD from two unrelated kindreds from Turkey (P1, P2) and India (P3), by whole-exome sequencing. P1 and P2 are homozygous for a mutation of the initiation codon(c.1A>G) of IFNGR2, whereas P3 is homozygous for a mutation of the second codon (c.4delC). Overexpressed mutant alleles produce small amounts of full-length IFN-γR2 resulting in an impaired, but not abolished, response to IFN-γ. Moreover, SV40-fibroblasts of P1 and P2 responded weakly to IFN-γ, and Epstein Barr virus-transformed B cells had a barely detectable response to IFN-γ. Studies in patients' primary T cells and monocyte-derived macrophages yielded similar results. The residual expression of IFN-γR2 protein of normal molecular weight and function is due to the initiation of translation between the second and ninth non-AUG codons. We thus describe mutations of the first and second codons of IFNGR2, which define a new form of partial recessive IFN-γR2 deficiency. Residual levels of IFN-γ signaling were very low, accounting for the more severe clinical phenotype of these patients with residual expression levels of normally functional surface receptors than of patients with partial recessive IFN-γR2 deficiency due to surface-expressed dysfunctional receptors, whose residual levels of IFN-γ signaling were higher.
Collapse
Affiliation(s)
- Carmen Oleaga-Quintas
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Imagine Institute, Necker Hospital for Sick Children, Paris, France.,Paris Descartes University, Paris, France.,Department of Immunology, School of Medicine, Complutense University, Madrid, Spain
| | - Caroline Deswarte
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Imagine Institute, Necker Hospital for Sick Children, Paris, France.,Paris Descartes University, Paris, France
| | - Marcela Moncada-Vélez
- Primary Immunodeficiencies Group, School of Medicine, University of Antioquia UdeA, Medellin, Colombia
| | - Ayse Metin
- Infectious Diseases Unit, Ankara Hematology Oncology Children's Training and Research Hospital, Ankara, Turkey
| | | | - Saliha Kanık-Yüksek
- Infectious Diseases Unit, Ankara Hematology Oncology Children's Training and Research Hospital, Ankara, Turkey
| | - Alejandro Nieto-Patlán
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Imagine Institute, Necker Hospital for Sick Children, Paris, France.,Paris Descartes University, Paris, France
| | - Antoine Guérin
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Imagine Institute, Necker Hospital for Sick Children, Paris, France.,Paris Descartes University, Paris, France
| | - Belgin Gülhan
- Infectious Diseases Unit, Ankara Hematology Oncology Children's Training and Research Hospital, Ankara, Turkey
| | - Savita Murthy
- Department of Pediatrics, St John's Medical College, Bangalore, India
| | - Aslınur Özkaya-Parlakay
- Infectious Diseases Unit, Ankara Hematology Oncology Children's Training and Research Hospital, Ankara, Turkey
| | - Laurent Abel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Imagine Institute, Necker Hospital for Sick Children, Paris, France.,Paris Descartes University, Paris, France.,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, the Rockefeller University, New York, USA
| | - Rubén Martínez-Barricarte
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, the Rockefeller University, New York, USA
| | - Rebeca Pérez de Diego
- Laboratory of Immunogenetics of Human Diseases IdiPAZ Institute for Health Research, La Paz University Hospital, Madrid, Spain
| | - Stéphanie Boisson-Dupuis
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Imagine Institute, Necker Hospital for Sick Children, Paris, France.,Paris Descartes University, Paris, France.,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, the Rockefeller University, New York, USA
| | - Xiao-Fei Kong
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, the Rockefeller University, New York, USA
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Imagine Institute, Necker Hospital for Sick Children, Paris, France.,Paris Descartes University, Paris, France.,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, the Rockefeller University, New York, USA.,Howard Hughes Medical Institute, New York, USA.,Pediatric Hematology-Immunology Unit, AP-HP, Necker Hospital for Sick Children, Paris, France
| | - Jacinta Bustamante
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Imagine Institute, Necker Hospital for Sick Children, Paris, France.,Paris Descartes University, Paris, France.,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, the Rockefeller University, New York, USA.,Center for the Study of Primary Immunodeficiencies, AP-HP, Necker Hospital for Sick Children, Paris, France
| |
Collapse
|
4
|
Duan X, Yang S, Zhang H, Wu J, Zhang Y, Ji D, Tie L, Boerkoel C. A Novel AMELX Mutation, Its Phenotypic Features, and Skewed X Inactivation. J Dent Res 2019; 98:870-878. [DOI: 10.1177/0022034519854973] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Amelogenesis imperfecta (AI) is a group of genetic disorders of defective dental enamel. Mutation of AMELX encoding amelogenin on the X chromosome is a major cause of AI. Here we report a Chinese family with hypoplastic and hypomineralized AI. Whole exome analysis revealed a novel mutation c.185delC in exon 5 of AMELX causing the frame shift p.Pro62ArgfsTer47 (or p.Pro62Argfs*47). By sequencing of polymerase chain reaction products and T-vector clones, the mutation was confirmed as homozygous in the proband, hemizygous in her father, and heterozygous in her mother. The proband and her father had small and yellowish teeth with thin and rough enamel that was radiographically indistinguishable from the underlying dentin. Scanning electronic microscopy of 1 maternal tooth showed cracks and exposed loosely packed enamel prisms in affected areas. Consistent with a 25:75 skewing of X inactivation in the peripheral blood DNA as measured by androgen receptor allele methylation, the surface of the mother’s tooth had alternating vertical ridges of transparent normal and white chalky enamel in a 34:66 ratio. In summary, this study provides one of the few phenotypic comparisons of hemizygous and homozygous AMELX mutations and suggests that the skewing of X inactivation in AI contributes to the phenotypic variations in heterozygous carriers of X-linked AI.
Collapse
Affiliation(s)
- X. Duan
- Department of Oral Biology, Clinic of Oral Rare and Genetic Diseases, School of Stomatology, Air Force Military Medical University (the Fourth Military Medical University), Xi’an, China
| | - S. Yang
- Department of Oral Biology, Clinic of Oral Rare and Genetic Diseases, School of Stomatology, Air Force Military Medical University (the Fourth Military Medical University), Xi’an, China
| | - H. Zhang
- Department of Oral Biology, Clinic of Oral Rare and Genetic Diseases, School of Stomatology, Air Force Military Medical University (the Fourth Military Medical University), Xi’an, China
| | - J. Wu
- Department of Prosthodontic, School of Stomatology, Air Force Military Medical University (the Fourth Military Medical University), Xi’an, China
| | - Y. Zhang
- Department of Oral Biology, Clinic of Oral Rare and Genetic Diseases, School of Stomatology, Air Force Military Medical University (the Fourth Military Medical University), Xi’an, China
| | - D. Ji
- Department of Oral Biology, Clinic of Oral Rare and Genetic Diseases, School of Stomatology, Air Force Military Medical University (the Fourth Military Medical University), Xi’an, China
| | - L. Tie
- Department of Oral Biology, Clinic of Oral Rare and Genetic Diseases, School of Stomatology, Air Force Military Medical University (the Fourth Military Medical University), Xi’an, China
| | - C.F. Boerkoel
- Department of Medical Genetics, Children’s and Women’s Health Centre of BC, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
5
|
Bidlack FB, Xia Y, Pugach MK. Dose-Dependent Rescue of KO Amelogenin Enamel by Transgenes in Vivo. Front Physiol 2017; 8:932. [PMID: 29201008 PMCID: PMC5696357 DOI: 10.3389/fphys.2017.00932] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 11/02/2017] [Indexed: 01/22/2023] Open
Abstract
Mice lacking amelogenin (KO) have hypoplastic enamel. Overexpression of the most abundant amelogenin splice variant M180 and LRAP transgenes can substantially improve KO enamel, but only ~40% of the incisor thickness is recovered and the prisms are not as tightly woven as in WT enamel. This implies that the compositional complexity of the enamel matrix is required for different aspects of enamel formation, such as organizational structure and thickness. The question arises, therefore, how important the ratio of different matrix components, and in particular amelogenin splice products, is in enamel formation. Can optimal expression levels of amelogenin transgenes representing both the most abundant splice variants and cleavage product at protein levels similar to that of WT improve the enamel phenotype of KO mice? Addressing this question, our objective was here to understand dosage effects of amelogenin transgenes (Tg) representing the major splice variants M180 and LRAP and cleavage product CTRNC on enamel properties. Amelogenin KO mice were mated with M180Tg, CTRNCTg and LRAPTg mice to generate M180Tg and CTRNCTg double transgene and M180Tg, CTRNCTg, LRAPTg triple transgene mice with transgene hemizygosity (on one allelle) or homozygosity (on both alleles). Transgene homo- vs. hemizygosity was determined by qPCR and relative transgene expression confirmed by Western blot. Enamel volume and mineral density were analyzed by microCT, thickness and structure by SEM, and mechanical properties by Vickers microhardness testing. There were no differences in incisor enamel thickness between amelogenin KO mice with three or two different transgenes, but mice homozygous for a given transgene had significantly thinner enamel than mice hemizygous for the transgene (p < 0.05). The presence of the LRAPTg did not improve the phenotype of M180Tg/CTRNCTg/KO enamel. In the absence of endogenous amelogenin, the addition of amelogenin transgenes representing the most abundant splice variants and cleavage product can rescue abnormal enamel properties and structure, but only up to a maximum of ~80% that of molar and ~40% that of incisor wild-type enamel.
Collapse
Affiliation(s)
- Felicitas B Bidlack
- Forsyth Institute, Cambridge, MA, United States.,Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, United States
| | - Yan Xia
- Forsyth Institute, Cambridge, MA, United States
| | - Megan K Pugach
- Forsyth Institute, Cambridge, MA, United States.,Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, United States
| |
Collapse
|
6
|
Abstract
Amelogenesis (tooth enamel formation) is a biomineralization process consisting primarily of two stages (secretory stage and maturation stage) with unique features. During the secretory stage, the inner epithelium of the enamel organ (i.e., the ameloblast cells) synthesizes and secretes enamel matrix proteins (EMPs) into the enamel space. The protein-rich enamel matrix forms a highly organized architecture in a pH-neutral microenvironment. As amelogenesis transitions to maturation stage, EMPs are degraded and internalized by ameloblasts through endosomal-lysosomal pathways. Enamel crystallite formation is initiated early in the secretory stage, however, during maturation stage the more rapid deposition of calcium and phosphate into the enamel space results in a rapid expansion of crystallite length and mineral volume. During maturation-stage amelogenesis, the pH value of enamel varies considerably from slightly above neutral to acidic. Extracellular acid-base balance during enamel maturation is tightly controlled by ameloblast-mediated regulatory networks, which include significant synthesis and movement of bicarbonate ions from both the enamel papillary layer cells and ameloblasts. In this review we summarize the carbonic anhydrases and the carbonate transporters/exchangers involved in pH regulation in maturation-stage amelogenesis. Proteins that have been shown to be instrumental in this process include CA2, CA6, CFTR, AE2, NBCe1, SLC26A1/SAT1, SLC26A3/DRA, SLC26A4/PDS, SLC26A6/PAT1, and SLC26A7/SUT2. In addition, we discuss the association of miRNA regulation with bicarbonate transport in tooth enamel formation.
Collapse
Affiliation(s)
- Kaifeng Yin
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, 2250 Alcazar Street, CSA103, Los Angeles, CA, 90033, USA
- Department of Orthodontics, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| | - Michael L Paine
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, 2250 Alcazar Street, CSA103, Los Angeles, CA, 90033, USA.
| |
Collapse
|
7
|
Yin K, Guo J, Lin W, Robertson SYT, Soleimani M, Paine ML. Deletion of Slc26a1 and Slc26a7 Delays Enamel Mineralization in Mice. Front Physiol 2017; 8:307. [PMID: 28559854 PMCID: PMC5432648 DOI: 10.3389/fphys.2017.00307] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 04/28/2017] [Indexed: 12/12/2022] Open
Abstract
Amelogenesis features two major developmental stages—secretory and maturation. During maturation stage, hydroxyapatite deposition and matrix turnover require delicate pH regulatory mechanisms mediated by multiple ion transporters. Several members of the Slc26 gene family (Slc26a1, Slc26a3, Slc26a4, Slc26a6, and Slc26a7), which exhibit bicarbonate transport activities, have been suggested by previous studies to be involved in maturation-stage amelogenesis, especially the key process of pH regulation. However, details regarding the functional role of these genes in enamel formation are yet to be clarified, as none of the separate mutant animal lines demonstrates any discernible enamel defects. Continuing with our previous investigation of Slc26a1−/− and Slc26a7−/− animal models, we generated a double-mutant animal line with the absence of both Slc26a1 and Slc26a7. We showed in the present study that the double-mutant enamel density was significantly lower in the regions that represent late maturation-, maturation- and secretory-stage enamel development in wild-type mandibular incisors. However, the “maturation” and “secretory” enamel microstructures in double-mutant animals resembled those observed in wild-type secretory and/or pre-secretory stages. Elemental composition analysis revealed a lack of mineral deposition and an accumulation of carbon and chloride in double-mutant enamel. Deletion of Slc26a1 and Slc26a7 did not affect the stage-specific morphology of the enamel organ. Finally, compensatory expression of pH regulator genes and ion transporters was detected in maturation-stage enamel organs of double-mutant animals when compared to wild-type. Combined with the findings from our previous study, these data indicate the involvement of SLC26A1and SLC26A7 as key ion transporters in the pH regulatory network during enamel maturation.
Collapse
Affiliation(s)
- Kaifeng Yin
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry of University of Southern CaliforniaLos Angeles, CA, USA.,Department of Orthodontics, Herman Ostrow School of Dentistry of University of Southern CaliforniaLos Angeles, CA, USA
| | - Jing Guo
- Department of Endodontics, Herman Ostrow School of Dentistry of University of Southern CaliforniaLos Angeles, CA, USA
| | - Wenting Lin
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry of University of Southern CaliforniaLos Angeles, CA, USA
| | - Sarah Y T Robertson
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry of University of Southern CaliforniaLos Angeles, CA, USA
| | - Manoocher Soleimani
- Department of Medicine, University of Cincinnati, Research Services, Veterans Affairs Medical CenterCincinnati, OH, USA
| | - Michael L Paine
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry of University of Southern CaliforniaLos Angeles, CA, USA
| |
Collapse
|
8
|
Abstract
Amelogenin is the major organic component in the enamel matrix of developing teeth and plays an important role in enamel biomineralization. Amelogenin has been reported to be a specific secretory product of ameloblasts. In this study, we examined amelogenin gene expression in various cell layers prepared from a porcine permanent tooth germ using reverse transcription-polymerase chain-reaction (RT-PCR). Amelogenin amplification products were detected only in the secretory ameloblast layer after 20 cycles of PCR. After 30 cycles of PCR, amelogenin amplification products were detected in secretory and maturation-stage ameloblasts and in odontoblasts. The relative levels of amelogenin gene expression in secretory and maturation-stage ameloblasts and odontoblasts were determined. Secretory ameloblasts expressed over 1000 times the level of amelogenin mRNA found in odontoblasts. Amelogenin gene expression in odontoblasts was confirmed in an erupted porcine permanent first molar, which has no ameloblasts. Amelogenin PCR amplification products were identified from 4 different alternatively spliced transcripts in the ameloblast samples, and the same spliced forms were detected in the odontoblast samples.
Collapse
|
9
|
MiR-153 Regulates Amelogenesis by Targeting Endocytotic and Endosomal/lysosomal Pathways-Novel Insight into the Origins of Enamel Pathologies. Sci Rep 2017; 7:44118. [PMID: 28287144 PMCID: PMC5347039 DOI: 10.1038/srep44118] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 02/03/2017] [Indexed: 12/15/2022] Open
Abstract
Amelogenesis imperfecta (AI) is group of inherited disorders resulting in enamel pathologies. The involvement of epigenetic regulation in the pathogenesis of AI is yet to be clarified due to a lack of knowledge about amelogenesis. Our previous genome-wide microRNA and mRNA transcriptome analyses suggest a key role for miR-153 in endosome/lysosome-related pathways during amelogenesis. Here we show that miR-153 is significantly downregulated in maturation ameloblasts compared with secretory ameloblasts. Within ameloblast-like cells, upregulation of miR-153 results in the downregulation of its predicted targets including Cltc, Lamp1, Clcn4 and Slc4a4, and a number of miRNAs implicated in endocytotic pathways. Luciferase reporter assays confirmed the predicted interactions between miR-153 and the 3'-UTRs of Cltc, Lamp1 (in a prior study), Clcn4 and Slc4a4. In an enamel protein intake assay, enamel cells transfected with miR-153 show a decreased ability to endocytose enamel proteins. Finally, microinjection of miR-153 in the region of mouse first mandibular molar at postnatal day 8 (PN8) induced AI-like pathologies when the enamel development reached maturity (PN12). In conclusion, miR-153 regulates maturation-stage amelogenesis by targeting key genes involved in the endocytotic and endosomal/lysosomal pathways, and disruption of miR-153 expression is a potential candidate etiologic factor contributing to the occurrence of AI.
Collapse
|
10
|
Kida M, Sakiyama Y, Matsuda A, Takabayashi S, Ochi H, Sekiguchi H, Minamitake S, Ariga T. A Novel Missense Mutation (p.P52R) in Amelogenin Gene Causing X-linked Amelogenesis Imperfecta. J Dent Res 2016; 86:69-72. [PMID: 17189466 DOI: 10.1177/154405910708600111] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Amelogenesis imperfecta (AI) is a hereditary disease with abnormal dental enamel formation. Here we report a Japanese family with X-linked AI transmitted over at least four generations. Mutation analysis revealed a novel mutation (p.P52R) in exon 5 of the amelogenin gene. The mutation was detected as heterozygous in affected females and as hemizygous in their affected father. The affected sisters exhibited vertical ridges on the enamel surfaces, whereas the affected father had thin, smooth, yellowish enamel with distinct widening of inter-dental spaces. To study the pathological cause underlying the disease in this family, we synthesized the mutant amelogenin p.P52R protein and evaluated it in vitro. Furthermore, we studied differences in the chemical composition between normal and affected teeth by x-ray diffraction analysis and x-ray fluorescence analysis. We believe that these results will greatly aid our understanding of the pathogenesis of X-linked AI.
Collapse
Affiliation(s)
- M Kida
- Department of Pediatrics, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Hu Y, Smith CE, Cai Z, Donnelly LAJ, Yang J, Hu JCC, Simmer JP. Enamel ribbons, surface nodules, and octacalcium phosphate in C57BL/6 Amelx-/- mice and Amelx+/- lyonization. Mol Genet Genomic Med 2016; 4:641-661. [PMID: 27896287 PMCID: PMC5118209 DOI: 10.1002/mgg3.252] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 09/07/2016] [Accepted: 09/13/2016] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Amelogenin is required for normal enamel formation and is the most abundant protein in developing enamel. METHODS Amelx+/+, Amelx+/- , and Amelx-/- molars and incisors from C57BL/6 mice were characterized using RT-PCR, Western blotting, dissecting and light microscopy, immunohistochemistry (IHC), transmission electron microscopy (TEM), scanning electron microscopy (SEM), backscattered SEM (bSEM), nanohardness testing, and X-ray diffraction. RESULTS No amelogenin protein was detected by Western blot analyses of enamel extracts from Amelx-/- mice. Amelx-/- incisor enamel averaged 20.3 ± 3.3 μm in thickness, or only 1/6th that of the wild type (122.3 ± 7.9 μm). Amelx-/- incisor enamel nanohardness was 1.6 Gpa, less than half that of wild-type enamel (3.6 Gpa). Amelx+/- incisors and molars showed vertical banding patterns unique to each tooth. IHC detected no amelogenin in Amelx-/- enamel and varied levels of amelogenin in Amelx+/- incisors, which correlated positively with enamel thickness, strongly supporting lyonization as the cause of the variations in enamel thickness. TEM analyses showed characteristic mineral ribbons in Amelx+/+ and Amelx-/- enamel extending from mineralized dentin collagen to the ameloblast. The Amelx-/- enamel ribbons were not well separated by matrix and appeared to fuse together, forming plates. X-ray diffraction determined that the predominant mineral in Amelx-/- enamel is octacalcium phosphate (not calcium hydroxyapatite). Amelx-/- ameloblasts were similar to wild-type ameloblasts except no Tomes' processes extended into the thin enamel. Amelx-/- and Amelx+/- molars both showed calcified nodules on their occlusal surfaces. Histology of D5 and D11 developing molars showed nodules forming during the maturation stage. CONCLUSION Amelogenin forms a resorbable matrix that separates and supports, but does not shape early secretory-stage enamel ribbons. Amelogenin may facilitate the conversion of enamel ribbons into hydroxyapatite by inhibiting the formation of octacalcium phosphate. Amelogenin is necessary for thickening the enamel layer, which helps maintain ribbon organization and development and maintenance of the Tomes' process.
Collapse
Affiliation(s)
- Yuanyuan Hu
- Department of Biologic and Materials Sciences University of Michigan School of Dentistry 1210 Eisenhower Place Ann Arbor Michigan 48108
| | - Charles E Smith
- Department of Biologic and Materials SciencesUniversity of Michigan School of Dentistry1210Eisenhower PlaceAnn ArborMichigan48108; Facility for Electron Microscopy ResearchDepartment of Anatomy and Cell BiologyFaculty of DentistryMcGill UniversityMontrealQuebecH3A 2B2Canada
| | - Zhonghou Cai
- Advanced Photon Source Argonne National Laboratory 9700 S. Cass Ave Building 431-B005 Argonne Illinois 60439
| | - Lorenza A-J Donnelly
- Department of Biologic and Materials Sciences University of Michigan School of Dentistry 1210 Eisenhower Place Ann Arbor Michigan 48108
| | - Jie Yang
- Department of Biologic and Materials SciencesUniversity of Michigan School of Dentistry1210Eisenhower PlaceAnn ArborMichigan48108; Department of Pediatric DentistrySchool and Hospital of StomatologyPeking University22 South AvenueZhongguancun Haidian DistrictBeijing100081China
| | - Jan C-C Hu
- Department of Biologic and Materials Sciences University of Michigan School of Dentistry 1210 Eisenhower Place Ann Arbor Michigan 48108
| | - James P Simmer
- Department of Biologic and Materials Sciences University of Michigan School of Dentistry 1210 Eisenhower Place Ann Arbor Michigan 48108
| |
Collapse
|
12
|
Varga G, Kerémi B, Bori E, Földes A. Function and repair of dental enamel - Potential role of epithelial transport processes of ameloblasts. Pancreatology 2015; 15:S55-60. [PMID: 25747281 DOI: 10.1016/j.pan.2015.01.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 01/28/2015] [Indexed: 12/11/2022]
Abstract
The hardest mammalian tissue, dental enamel is produced by ameloblasts, which are electrolyte-transporting epithelial cells. Although the end product is very different, they show many similarities to transporting epithelia of the pancreas, salivary glands and kidney. Enamel is produced in a multi-step epithelial secretory process that features biomineralization which is an interplay of secreted ameloblast specific proteins and the time-specific transport of minerals, protons and bicarbonate. First, "secretory" ameloblasts form the entire thickness of the enamel layer, but with low mineral content. Then they differentiate into "maturation" ameloblasts, which remove organic matrix from the enamel and in turn further build up hydroxyapatite crystals. The protons generated by hydroxyapatite formation need to be buffered, otherwise enamel will not attain full mineralization. Buffering requires a tight pH regulation and secretion of bicarbonate by ameloblasts. The whole process has been the focus of many immunohistochemical and gene knock-out studies, but, perhaps surprisingly, no functional data existed for mineral ion transport by ameloblasts. However, recent studies including ours provided a better insight for molecular mechanism of mineral formation. The secretory regulation is not completely known as yet, but its significance is crucial. Impairing regulation retards or prevents completion of enamel mineralization and results in the development of hypomineralized enamel that easily erodes after dental eruption. Factors that impair this function are fluoride and disruption of pH regulators. Revealing these factors may eventually lead to the treatment of enamel hypomineralization related to genetic or environmentally induced malformation.
Collapse
Affiliation(s)
- Gábor Varga
- Department of Oral Biology, Semmelweis University, Budapest, Hungary.
| | - Beáta Kerémi
- Department of Oral Biology, Semmelweis University, Budapest, Hungary
| | - Erzsébet Bori
- Department of Oral Biology, Semmelweis University, Budapest, Hungary
| | - Anna Földes
- Department of Oral Biology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
13
|
Wright JT, Carrion IA, Morris C. The molecular basis of hereditary enamel defects in humans. J Dent Res 2014; 94:52-61. [PMID: 25389004 DOI: 10.1177/0022034514556708] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The formation of human enamel is highly regulated at the molecular level and involves thousands of genes. Requisites for development of this highly mineralized tissue include cell differentiation; production of a unique extracellular matrix; processing of the extracellular matrix; altering of cell function during different stages of enamel formation; cell movement and attachment; regulation of ion and protein movement; and regulation of hydration, pH, and other conditions of the microenvironment, to name just a few. Not surprising, there is a plethora of hereditary conditions with an enamel phenotype. The objective of this review was to identify the hereditary conditions listed on Online Mendelian Inheritance in Man (OMIM) that have an associated enamel phenotype and whether a causative gene has been identified. The OMIM database was searched with the terms amelogenesis, enamel, dental, and tooth, and all results were screened by 2 individuals to determine if an enamel phenotype was identified. Gene and gene product function was reviewed on OMIM and from publications identified in PubMed. The search strategy revealed 91 conditions listed in OMIM as having an enamel phenotype, and of those, 71 have a known molecular etiology or linked genetic loci. The purported protein function of those conditions with a known genetic basis included enzymes, regulatory proteins, extracellular matrix proteins, transcription factors, and transmembrane proteins. The most common enamel phenotype was a deficient amount of enamel, or enamel hypoplasia, with hypomineralization defects being reported less frequently. Knowing these molecular defects allows an initial cataloging of molecular pathways that lead to hereditary enamel defects in humans. This knowledge provides insight into the diverse molecular pathways involved in enamel formation and can be useful when searching for the genetic etiology of hereditary conditions that involve enamel.
Collapse
Affiliation(s)
- J T Wright
- Department of Pediatric Dentistry, School of Dentistry, The University of North Carolina, Chapel Hill, NC, USA
| | - I A Carrion
- Meharry School of Dentistry, Nashville, TN, USA
| | - C Morris
- Bon Secours Pediatric Dental Associates, Richmond, VA, USA
| |
Collapse
|
14
|
Frank MJ, Walter MS, Rubert M, Thiede B, Monjo M, Reseland JE, Haugen HJ, Lyngstadaas SP. Cathodic Polarization Coats Titanium Based Implant Materials with Enamel Matrix Derivate (EMD). MATERIALS 2014; 7:2210-2228. [PMID: 28788564 PMCID: PMC5453263 DOI: 10.3390/ma7032210] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 03/05/2014] [Accepted: 03/10/2014] [Indexed: 01/09/2023]
Abstract
The idea of a bioactive surface coating that enhances bone healing and bone growth is a strong focus of on-going research for bone implant materials. Enamel matrix derivate (EMD) is well documented to support bone regeneration and activates growth of mesenchymal tissues. Thus, it is a prime candidate for coating of existing implant surfaces. The aim of this study was to show that cathodic polarization can be used for coating commercially available implant surfaces with an immobilized but functional and bio-available surface layer of EMD. After coating, XPS revealed EMD-related bindings on the surface while SIMS showed incorporation of EMD into the surface. The hydride layer of the original surface could be activated for coating in an integrated one-step process that did not require any pre-treatment of the surface. SEM images showed nano-spheres and nano-rods on coated surfaces that were EMD-related. Moreover, the surface roughness remained unchanged after coating, as it was shown by optical profilometry. The mass peaks observed in the matrix-assisted laser desorption/ionization time-of-flight mass spectroscopy (MALDI-TOF MS) analysis confirmed the integrity of EMD after coating. Assessment of the bioavailability suggested that the modified surfaces were active for osteoblast like MC3M3-E1 cells in showing enhanced Coll-1 gene expression and ALP activity.
Collapse
Affiliation(s)
- Matthias J Frank
- Department of Biomaterials, Institute for Clinical Dentistry, University of Oslo, P.O. Box 1109 Blindern, Oslo NO-0317, Norway.
- Institute of Medical and Polymer Engineering, Technische Universität München, Boltzmannstrasse 15, Garching 85748, Germany.
| | - Martin S Walter
- Department of Biomaterials, Institute for Clinical Dentistry, University of Oslo, P.O. Box 1109 Blindern, Oslo NO-0317, Norway.
- Institute of Medical and Polymer Engineering, Technische Universität München, Boltzmannstrasse 15, Garching 85748, Germany.
| | - Marina Rubert
- Department of Fundamental Biology and Health Sciences, Research Institute on Health Sciences (IUNICS), University of Balearic Islands, Palma de Mallorca ES-07122, Spain.
| | - Bernd Thiede
- The Biotechnology Centre of Oslo, University of Oslo, P.O. Box 1125 Blindern, Oslo NO-0317, Norway.
| | - Marta Monjo
- Department of Biomaterials, Institute for Clinical Dentistry, University of Oslo, P.O. Box 1109 Blindern, Oslo NO-0317, Norway.
- Department of Fundamental Biology and Health Sciences, Research Institute on Health Sciences (IUNICS), University of Balearic Islands, Palma de Mallorca ES-07122, Spain.
| | - Janne E Reseland
- Department of Biomaterials, Institute for Clinical Dentistry, University of Oslo, P.O. Box 1109 Blindern, Oslo NO-0317, Norway.
| | - Håvard J Haugen
- Department of Biomaterials, Institute for Clinical Dentistry, University of Oslo, P.O. Box 1109 Blindern, Oslo NO-0317, Norway.
| | - Ståle Petter Lyngstadaas
- Department of Biomaterials, Institute for Clinical Dentistry, University of Oslo, P.O. Box 1109 Blindern, Oslo NO-0317, Norway.
| |
Collapse
|
15
|
Kalmar L, Homola D, Varga G, Tompa P. Structural disorder in proteins brings order to crystal growth in biomineralization. Bone 2012; 51:528-34. [PMID: 22634174 DOI: 10.1016/j.bone.2012.05.009] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Revised: 04/17/2012] [Accepted: 05/16/2012] [Indexed: 11/21/2022]
Abstract
Biomineralization, the generation of hard tissues of living organisms, is a process strictly regulated by hormones, enzymes and a range of regulatory proteins of which several resisted structural characterization thus far. Without actual generalizations, there have been scattered observations in the literature for the structural disorder of these proteins. To address this issue in general, we have collected SwissProt proteins involved in the formation of bone and teeth in vertebrates, annotated for biomineralization. All these proteins show an extremely high level of predicted disorder (with a mean of 53%), making them the most disordered functional class of the protein world. Exactly the same feature was established for evolutionarily more distant proteins involved in the formation of the silica wall of marine diatoms and the shell of oysters and other mollusks. Because these proteins also show an extremely biased amino acid composition, such as high negative charge, high frequency of Ser and Asp or Pro residues and repetitiveness, we also carried out a database search with these sequence features for further proteins. This search uncovered several further disordered proteins with clearly related functions, although their annotations made no mention of biomineralization. This general and very strong correlation between biomineralization, structural disorder of proteins and particular sequence features indicates that regulated growth of mineral phase in biology can only be achieved by the assistance of highly disordered proteins.
Collapse
Affiliation(s)
- Lajos Kalmar
- Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences, Budapest, Hungary
| | | | | | | |
Collapse
|
16
|
Muto T, Miyoshi K, Horiguchi T, Hagita H, Noma T. Novel genetic linkage of rat Sp6 mutation to Amelogenesis imperfecta. Orphanet J Rare Dis 2012; 7:34. [PMID: 22676574 PMCID: PMC3464675 DOI: 10.1186/1750-1172-7-34] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2012] [Accepted: 06/07/2012] [Indexed: 11/16/2022] Open
Abstract
Background Amelogenesis imperfecta (AI) is an inherited disorder characterized by abnormal formation of tooth enamel. Although several genes responsible for AI have been reported, not all causative genes for human AI have been identified to date. AMI rat has been reported as an autosomal recessive mutant with hypoplastic AI isolated from a colony of stroke-prone spontaneously hypertensive rat strain, but the causative gene has not yet been clarified. Through a genetic screen, we identified the causative gene of autosomal recessive AI in AMI and analyzed its role in amelogenesis. Methods cDNA sequencing of possible AI-candidate genes so far identified using total RNA of day 6 AMI rat molars identified a novel responsible mutation in specificity protein 6 (Sp6). Genetic linkage analysis was performed between Sp6 and AI phenotype in AMI. To understand a role of SP6 in AI, we generated the transgenic rats harboring Sp6 transgene in AMI (Ami/Ami + Tg). Histological analyses were performed using the thin sections of control rats, AMI, and Ami/Ami + Tg incisors in maxillae, respectively. Results We found the novel genetic linkage between a 2-bp insertional mutation of Sp6 gene and the AI phenotype in AMI rats. The position of mutation was located in the coding region of Sp6, which caused frameshift mutation and disruption of the third zinc finger domain of SP6 with 11 cryptic amino acid residues and a stop codon. Transfection studies showed that the mutant protein can be translated and localized in the nucleus in the same manner as the wild-type SP6 protein. When we introduced the CMV promoter-driven wild-type Sp6 transgene into AMI rats, the SP6 protein was ectopically expressed in the maturation stage of ameloblasts associated with the extended maturation stage and the shortened reduced stage without any other phenotypical changes. Conclusion We propose the addition of Sp6 mutation as a new molecular diagnostic criterion for the autosomal recessive AI patients. Our findings expand the spectrum of genetic causes of autosomal recessive AI and sheds light on the molecular diagnosis for the classification of AI. Furthermore, tight regulation of the temporospatial expression of SP6 may have critical roles in completing amelogenesis.
Collapse
Affiliation(s)
- Taro Muto
- Department of Molecular Biology, Institute of Health Biosciences, The University of Tokushima Graduate School, Kuramoto-cho, Japan
| | | | | | | | | |
Collapse
|
17
|
Lee KE, Lee SK, Jung SE, Song SJ, Cho SH, Lee ZH, Kim JW. A novel mutation in the AMELX gene and multiple crown resorptions. Eur J Oral Sci 2012; 119 Suppl 1:324-8. [DOI: 10.1111/j.1600-0722.2011.00858.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
18
|
Chan HC, Estrella NMRP, Milkovich RN, Kim JW, Simmer JP, Hu JCC. Target gene analyses of 39 amelogenesis imperfecta kindreds. Eur J Oral Sci 2011; 119 Suppl 1:311-23. [PMID: 22243262 PMCID: PMC3292789 DOI: 10.1111/j.1600-0722.2011.00857.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Previously, mutational analyses identified six disease-causing mutations in 24 amelogenesis imperfecta (AI) kindreds. We have since expanded the number of AI kindreds to 39, and performed mutation analyses covering the coding exons and adjoining intron sequences for the six proven AI candidate genes [amelogenin (AMELX), enamelin (ENAM), family with sequence similarity 83, member H (FAM83H), WD repeat containing domain 72 (WDR72), enamelysin (MMP20), and kallikrein-related peptidase 4 (KLK4)] and for ameloblastin (AMBN) (a suspected candidate gene). All four of the X-linked AI families (100%) had disease-causing mutations in AMELX, suggesting that AMELX is the only gene involved in the aetiology of X-linked AI. Eighteen families showed an autosomal-dominant pattern of inheritance. Disease-causing mutations were identified in 12 (67%): eight in FAM83H, and four in ENAM. No FAM83H coding-region or splice-junction mutations were identified in three probands with autosomal-dominant hypocalcification AI (ADHCAI), suggesting that a second gene may contribute to the aetiology of ADHCAI. Six families showed an autosomal-recessive pattern of inheritance, and disease-causing mutations were identified in three (50%): two in MMP20, and one in WDR72. No disease-causing mutations were found in 11 families with only one affected member. We conclude that mutation analyses of the current candidate genes for AI have about a 50% chance of identifying the disease-causing mutation in a given kindred.
Collapse
Affiliation(s)
- Hui-Chen Chan
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Ninna M. R. P. Estrella
- Department of Orthodontics and Pediatric Dentistry, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Rachel N. Milkovich
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Jung-Wook Kim
- Department of Pediatric Dentistry & Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea
| | - James P. Simmer
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Jan C-C. Hu
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| |
Collapse
|
19
|
The influence of Leucine-rich amelogenin peptide on MSC fate by inducing Wnt10b expression. Biomaterials 2011; 32:6478-86. [PMID: 21663957 DOI: 10.1016/j.biomaterials.2011.05.045] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Accepted: 05/15/2011] [Indexed: 01/24/2023]
Abstract
Amelogenin is the most abundant protein of the enamel organic matrix and is a structural protein indispensable for enamel formation. One of the amelogenin splicing isoforms, Leucine-rich Amelogenin Peptide (LRAP) induces osteogenesis in various cell types. Previously, we demonstrated that LRAP activates the canonical Wnt signaling pathway to induce osteogenic differentiation of mouse ES cells through the concerted regulation of Wnt agonists and antagonists. There is a reciprocal relationship between osteogenic and adipogenic differentiation in bone marrow mesenchymal stem cells (BMMSCs). Wnt10b-mediated activation of canonical Wnt signaling has been shown to regulate mesenchymal stem cell fate. Using the bipotential bone marrow stromal cell line ST2, we have demonstrated that LRAP activates the canonical Wnt/β-catenin signaling pathway. A specific Wnt inhibitor sFRP-1 abolishes the effect of LRAP on the stimulation of osteogenesis and the inhibition of adipogenesis of ST2 cells. LRAP treatment elevates the Wnt10b expression level whereas Wnt10b knockdown by siRNA abrogates the effect of LRAP. We show here that LRAP promotes osteogenesis of mesenchymal stem cells at the expense of adipogenesis through upregulating Wnt10b expression to activate Wnt signaling.
Collapse
|
20
|
Urzúa B, Ortega-Pinto A, Morales-Bozo I, Rojas-Alcayaga G, Cifuentes V. Defining a new candidate gene for amelogenesis imperfecta: from molecular genetics to biochemistry. Biochem Genet 2010; 49:104-21. [PMID: 21127961 DOI: 10.1007/s10528-010-9392-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Accepted: 07/23/2010] [Indexed: 10/18/2022]
Abstract
Amelogenesis imperfecta is a group of genetic conditions that affect the structure and clinical appearance of tooth enamel. The types (hypoplastic, hypocalcified, and hypomature) are correlated with defects in different stages of the process of enamel synthesis. Autosomal dominant, recessive, and X-linked types have been previously described. These disorders are considered clinically and genetically heterogeneous in etiology, involving a variety of genes, such as AMELX, ENAM, DLX3, FAM83H, MMP-20, KLK4, and WDR72. The mutations identified within these causal genes explain less than half of all cases of amelogenesis imperfecta. Most of the candidate and causal genes currently identified encode proteins involved in enamel synthesis. We think it is necessary to refocus the search for candidate genes using biochemical processes. This review provides theoretical evidence that the human SLC4A4 gene (sodium bicarbonate cotransporter) may be a new candidate gene.
Collapse
Affiliation(s)
- Blanca Urzúa
- Department of Physical and Chemical Sciences, Faculty of Dentistry, University of Chile, Santiago, Chile.
| | | | | | | | | |
Collapse
|
21
|
Wright JT, Hart PS, Aldred MJ, Seow K, Crawford PJM, Hong SP, Gibson CW, Hart TC. Relationship of Phenotype and Genotype in X-Linked Amelogenesis Imperfecta. Connect Tissue Res 2009. [DOI: 10.1080/03008200390152124] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
|
22
|
Hu JCC, Chun YHP, Al Hazzazzi T, Simmer JP. Enamel formation and amelogenesis imperfecta. Cells Tissues Organs 2007; 186:78-85. [PMID: 17627121 DOI: 10.1159/000102683] [Citation(s) in RCA: 162] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Dental enamel is the epithelial-derived hard tissue covering the crowns of teeth. It is the most highly mineralized and hardest tissue in the body. Dental enamel is acellular and has no physiological means of repair outside of the protective and remineralization potential provided by saliva. Enamel is comprised of highly organized hydroxyapatite crystals that form in a defined extracellular space, the contents of which are supplied and regulated by ameloblasts. The entire process is under genetic instruction. The genetic control of amelogenesis is poorly understood, but requires the activities of multiple components that are uniquely important for dental enamel formation. Amelogenesis imperfecta (AI) is a collective designation for the variety of inherited conditions displaying isolated enamel malformations, but the designation is also used to indicate the presence of an enamel phenotype in syndromes. Recently, genetic studies have demonstrated the importance of genes encoding enamel matrix proteins in the etiology of isolated AI. Here we review the essential elements of dental enamel formation and the results of genetic analyses that have identified disease-causing mutations in genes encoding enamel matrix proteins. In addition, we provide a fresh perspective on the roles matrix proteins play in catalyzing the biomineralization of dental enamel.
Collapse
Affiliation(s)
- Jan C-C Hu
- University of Michigan School of Dentistry, Ann Arbor, MI 48108, USA
| | | | | | | |
Collapse
|
23
|
Jarjanazi H, Savas S, Pabalan N, Dennis JW, Ozcelik H. Biological implications of SNPs in signal peptide domains of human proteins. Proteins 2007; 70:394-403. [PMID: 17680692 DOI: 10.1002/prot.21548] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Proteins destined for secretion or membrane compartments possess signal peptides for insertion into the membrane. The signal peptide is therefore critical for localization and function of cell surface receptors and ligands that mediate cell-cell communication. About 4% of all human proteins listed in UniProt database have signal peptide domains in their N terminals. A comprehensive literature survey was performed to retrieve functional and disease associated genetic variants in the signal peptide domains of human proteins. In 21 human proteins we have identified 26 disease associated mutations within their signal peptide domains, 14 mutations of which have been experimentally shown to impair the signal peptide function and thus influence protein transportation. We took advantage of SignalP 3.0 predictions to characterize the signal peptide prediction score differences between the mutant and the wild-type alleles of each mutation, as well as 189 previously uncharacterized single nucleotide polymorphisms (SNPs) found to be located in the signal peptide domains of 165 human proteins. Comparisons of signal peptide prediction outcomes of mutations and SNPs, have implicated SNPs potentially impacting the signal peptide function, and thus the cellular localization of the human proteins. The majority of the top candidate proteins represented membrane and secreted proteins that are associated with molecular transport, cell signaling and cell to cell interaction processes of the cell. This is the first study that systematically characterizes genetic variation occurring in the signal peptides of all human proteins. This study represents a useful strategy for prioritization of SNPs occurring within the signal peptide domains of human proteins. Functional evaluation of candidates identified herein may reveal effects on major cellular processes including immune cell function, cell recognition and adhesion, and signal transduction.
Collapse
Affiliation(s)
- Hamdi Jarjanazi
- Fred A. Litwin Centre for Cancer Genetics, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
24
|
Abstract
The synthesis of tooth development biology with human studies focusing on inherited conditions that specifically interfere with tooth development is improving our understanding of normal and pathological tooth formation. The type of inherited dental malformations observed in a given kindred relate to when, during odontogenesis, the defective gene is critically expressed. Information about the protein encoded by the defective gene and the resulting dental phenotype helps us understand the major processes underway at different stages during tooth development. Genes affecting early tooth development (PAX9, MSX1, and AXIN2) are associated with familial tooth agenesis or oligodontia. Genes expressed by odontoblasts (COL1A1, COL1A2, and DSPP), and ameloblasts (AMELX, ENAM, MMP20, and KLK4) during the crown formation stage, are associated with dentinogenesis imperfecta, dentin dysplasia, and amelogenesis imperfecta. Late genes expressed during root formation (ALPL and DLX3) are associated with cementum agenesis (hypophosphatasia) and taurodontism. Understanding the relationships between normal tooth development and the dental pathologies associated with inherited diseases improves our ability to diagnose and treat patients suffering the manifestations of inherited dental disorders.
Collapse
Affiliation(s)
- Jan C-C Hu
- Department of Orthodontics and Pediatric Dentistry, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | | |
Collapse
|
25
|
Crawford PJM, Aldred M, Bloch-Zupan A. Amelogenesis imperfecta. Orphanet J Rare Dis 2007; 2:17. [PMID: 17408482 PMCID: PMC1853073 DOI: 10.1186/1750-1172-2-17] [Citation(s) in RCA: 206] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2007] [Accepted: 04/04/2007] [Indexed: 12/05/2022] Open
Abstract
Amelogenesis imperfecta (AI) represents a group of developmental conditions, genomic in origin, which affect the structure and clinical appearance of enamel of all or nearly all the teeth in a more or less equal manner, and which may be associated with morphologic or biochemical changes elsewhere in the body. The prevalence varies from 1:700 to 1:14,000, according to the populations studied. The enamel may be hypoplastic, hypomineralised or both and teeth affected may be discoloured, sensitive or prone to disintegration. AI exists in isolation or associated with other abnormalities in syndromes. It may show autosomal dominant, autosomal recessive, sex-linked and sporadic inheritance patterns. In families with an X-linked form it has been shown that the disorder may result from mutations in the amelogenin gene, AMELX. The enamelin gene, ENAM, is implicated in the pathogenesis of the dominant forms of AI. Autosomal recessive AI has been reported in families with known consanguinity. Diagnosis is based on the family history, pedigree plotting and meticulous clinical observation. Genetic diagnosis is presently only a research tool. The condition presents problems of socialisation, function and discomfort but may be managed by early vigorous intervention, both preventively and restoratively, with treatment continued throughout childhood and into adult life. In infancy, the primary dentition may be protected by the use of preformed metal crowns on posterior teeth. The longer-term care involves either crowns or, more frequently these days, adhesive, plastic restorations.
Collapse
Affiliation(s)
- Peter JM Crawford
- Paediatric Dentistry, Division of Child Dental Health, Dental School, Lower Maudlin St., Bristol BS1 2LY, UK
| | | | - Agnes Bloch-Zupan
- Faculté de Chirurgie Dentaire, Université Louis Pasteur; Centre de référence des manifestations odontologiques des maladies rares, Centre Hospitalier Universitaire, Strasbourg, F-67000, France
- IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), Département Génétique et Physiologie; Inserm, U596; CNRS, UMR7104, Illkirch, F-67400 France
- Eastman Dental Institute, Institute of Child Health, University College London, UK
| |
Collapse
|
26
|
Gutierrez SJ, Chaves M, Torres DM, Briceño I. Identification of a novel mutation in the enamalin gene in a family with autosomal-dominant amelogenesis imperfecta. Arch Oral Biol 2007; 52:503-6. [PMID: 17316551 DOI: 10.1016/j.archoralbio.2006.09.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2006] [Revised: 04/15/2006] [Accepted: 09/22/2006] [Indexed: 10/23/2022]
Abstract
Amelogenesis imperfecta (AI) is a heterogeneous genetic disorder that affects the formation of the dental enamel matrix. Mutations in the enamelin (ENAM) gene have been found in patients with this disorder. The objective of this research was to identify the mutations reported in exons 4, 7 and 9 of the ENAM gene in a single Colombian family with autosomal-dominant AI and to establish the phenotype. The fragments of exons 4, 7 and 9 of the ENAM gene were amplified by polymerase chain reaction and direct sequencing was performed. A mutation was found in exon 9 where guanine was substituted by thymine in one of the alleles in position 817, generating a change of arginine to methionine in codon 179 of the protein. The mutation was only found in affected members of this family who presented with the severe, generalised hypoplastic phenotype in all teeth. The genotype/phenotype correlation for different AI subtypes has not been established. These results support a possible correlation between hypoplastic AI and mutations in the ENAM gene; however, identification of additional mutations could be helpful in establishing phenotype/genotype relationships.
Collapse
|
27
|
Hu JCC, Yamakoshi Y, Yamakoshi F, Krebsbach PH, Simmer JP. Proteomics and genetics of dental enamel. Cells Tissues Organs 2006; 181:219-31. [PMID: 16612087 DOI: 10.1159/000091383] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The initiation of enamel crystals at the dentino-enamel junction is associated with the expression of dentin sialophosphoprotein (DSPP, a gene normally linked with dentin formation), three 'structural' enamel proteins--amelogenin (AMELX), enamelin (ENAM), and ameloblastin (AMBN)--and a matrix metalloproteinase, enamelysin (MMP20). Enamel formation proceeds with the steady elongation of the enamel crystals at a mineralization front just beneath the ameloblast distal membrane, where these proteins are secreted. As the crystal ribbons lengthen, enamelysin processes the secreted proteins. Some of the cleavage products accumulate in the matrix, others are reabsorbed back into the ameloblast. Once crystal elongation is complete and the enamel layer reaches its final thickness, kallikrein 4 (KLK4) facilitates the breakdown and reabsorption of accumulated enamel matrix proteins. The importance of the extracellular matrix proteins to proper tooth development is best illustrated by the dramatic dental phenotypes observed in the targeted knockouts of enamel matrix genes in mice (Dspp, Amelx, Ambn, Mmp20) and in human kindreds with defined mutations in the genes (DSPP, AMELX, ENAM, MMP20, KLK4) encoding these matrix proteins. However, ablation studies alone cannot give specific mechanistic information on how enamel matrix proteins combine to catalyze the formation of enamel crystals. The best approach for determining the molecular mechanism of dental enamel formation is to reconstitute the matrix and synthesize enamel crystals in vitro. Here, we report refinements to the procedures used to isolate porcine enamel and dentin proteins, recent advances in the characterization of enamel matrix protein posttranslational modifications, and summarize the results of human genetic studies that associate specific mutations in the genes encoding matrix proteins with a range of dental phenotypes.
Collapse
Affiliation(s)
- Jan C-C Hu
- University of Michigan Dental Research Lab, Ann Arbor, Mich. 48108, USA
| | | | | | | | | |
Collapse
|
28
|
Kim JW, Simmer JP, Lin BPL, Seymen F, Bartlett JD, Hu JCC. Mutational analysis of candidate genes in 24 amelogenesis imperfecta families. Eur J Oral Sci 2006; 114 Suppl 1:3-12; discussion 39-41, 379. [PMID: 16674655 DOI: 10.1111/j.1600-0722.2006.00278.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Amelogenesis imperfecta (AI) is a heterogeneous group of inherited defects in dental enamel formation. The malformed enamel can be unusually thin, soft, rough and stained. The strict definition of AI includes only those cases where enamel defects occur in the absence of other symptoms. Currently, there are seven candidate genes for AI: amelogenin, enamelin, ameloblastin, tuftelin, distal-less homeobox 3, enamelysin, and kallikrein 4. To identify sequence variations in AI candidate genes in patients with isolated enamel defects, and to deduce the likely effect of each sequence variation on protein expression and structure, families with isolated enamel defects were recruited. The coding exons and nearby intron sequences were amplified for each of the AI candidate genes by using genomic DNA from the proband as template. The amplification products for the proband were sequenced. Then, other family members were tested to determine their genotype with respect to each sequence variation. All subjects received an oral examination, and intraoral photographs and dental radiographs were obtained. Out of 24 families with isolated enamel defects, only six disease-causing mutations were identified in the AI candidate genes. This finding suggests that many additional genes potentially contribute to the etiology of AI.
Collapse
Affiliation(s)
- Jung-Wook Kim
- University of Michigan School of Dentistry, University of Michigan Dental Research Laboratory, Ann Arbor, MI 48108, USA, and Department of Pediatric Dentistry & Dental Research Institute, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
29
|
Stephanopoulos G, Garefalaki ME, Lyroudia K. Genes and related proteins involved in amelogenesis imperfecta. J Dent Res 2006; 84:1117-26. [PMID: 16304440 DOI: 10.1177/154405910508401206] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Dental enamel formation is a remarkable example of a biomineralization process. The exact mechanisms involved in this process remain partly obscure. Some of the genes encoding specific enamel proteins have been indicated as candidate genes for amelogenesis imperfecta. Mutational analyses within studied families have supported this hypothesis. Mutations in the amelogenin gene (AMELX) cause X-linked amelogenesis imperfecta, while mutations in the enamelin gene (ENAM) cause autosomal-inherited forms of amelogenesis imperfecta. Recent reports involve kallikrein-4 (KLK4), MMP-20, and DLX3 genes in the etiologies of some cases. This paper focuses mainly on the candidate genes involved in amelogenesis imperfecta and the proteins derived from them, and reviews current knowledge on their structure, localization within the tissue, and correlation with the various types of this disorder.
Collapse
Affiliation(s)
- G Stephanopoulos
- Diploma in Dental Science, Aristotle University of Thessaloniki, Greece
| | | | | |
Collapse
|
30
|
Bartlett JD, Ganss B, Goldberg M, Moradian-Oldak J, Paine ML, Snead ML, Wen X, White SN, Zhou YL. Protein–Protein Interactions of the Developing Enamel Matrix. Curr Top Dev Biol 2006; 74:57-115. [PMID: 16860665 DOI: 10.1016/s0070-2153(06)74003-0] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Extracellular matrix proteins control the formation of the inorganic component of hard tissues including bone, dentin, and enamel. The structural proteins expressed primarily in the enamel matrix are amelogenin, ameloblastin, enamelin, and amelotin. Other proteins, like biglycan, are also present in the enamel matrix as well as in other mineralizing and nonmineralizing tissues of mammals. In addition, the presence of sulfated enamel proteins, and "tuft" proteins has been examined and discussed in relation to enamel formation. The structural proteins of the enamel matrix must have specific protein-protein interactions to produce a matrix capable of directing the highly ordered structure of the enamel crystallites. Protein-protein interactions are also likely to occur between the secreted enamel proteins and the plasma membrane of the enamel producing cells, the ameloblasts. Such protein-protein interactions are hypothesized to influence the secretion of enamel proteins, establish short-term order of the forming matrix, and to mediate feedback signals to the transcriptional machinery of these cells. Membrane-bound proteins identified in ameloblasts, and which interact with the structural enamel proteins, include Cd63 (cluster of differentiation 63 antigen), annexin A2 (Anxa2), and lysosomal-associated glycoprotein 1 (Lamp1). These and related data help explain the molecular and cellular mechanisms responsible for the removal of the organic enamel matrix during the events of enamel mineralization, and how the enamel matrix influences its own fate through signaling initiated at the cell surface. The knowledge gained from enamel developmental studies may lead to better dental and nondental materials, or materials inspired by Nature. These data will be critical to scientists, engineers, and dentists in their pursuits to regenerate an entire tooth. For tooth regeneration to become a reality, the protein-protein interactions involving the key dental proteins must be identified and understood. The scope of this review is to discuss the current understanding of protein-protein interactions of the developing enamel matrix, and relate this knowledge to enamel biomineralization.
Collapse
Affiliation(s)
- John D Bartlett
- The Forsyth Institute, 140 The Fenway, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Santos MCLGD, Line SRP. The genetics of amelogenesis imperfecta: a review of the literature. J Appl Oral Sci 2005; 13:212-7. [DOI: 10.1590/s1678-77572005000300002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2005] [Accepted: 06/06/2005] [Indexed: 11/22/2022] Open
Abstract
A melogenesis imperfecta (AI) is a group of inherited defects of dental enamel formation that show both clinical and genetic heterogeneity. Enamel findings in AI are highly variable, ranging from deficient enamel formation to defects in the mineral and protein content. Enamel formation requires the expression of multiple genes that transcribes matrix proteins and proteinases needed to control the complex process of crystal growth and mineralization. The AI phenotypes depend on the specific gene involved, the location and type of mutation, and the corresponding putative change at the protein level. Different inheritance patterns such as X-linked, autosomal dominant and autosomal recessive types have been reported. Mutations in the amelogenin, enamelin, and kallikrein-4 genes have been demonstrated to result in different types of AI and a number of other genes critical to enamel formation have been identified and proposed as candidates for AI. The aim of this article was to present an evaluation of the literature regarding role of proteins and proteinases important to enamel formation and mutation associated with AI.
Collapse
|
32
|
Tsujigiwa H, Nagatsuka H, Han PP, Gunduz M, Siar CH, Oida S, Nagai N. Analysis of amelogenin gene (AMGX, AMGY) expression in ameloblastoma. Oral Oncol 2005; 41:843-50. [PMID: 15979380 DOI: 10.1016/j.oraloncology.2005.04.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2005] [Accepted: 04/11/2005] [Indexed: 10/25/2022]
Abstract
Although the amelogenin gene is expressed in ameloblastoma, the precise expression pattern of X and Y amelogenin genes (AMGX, AMGY) in this tumor has not yet been identified. In this study, we analyzed amelogenin gene expression in 19 samples (9 male, 10 female) of oral ameloblastomas by RT-PCR and detect the chromosomal origin of amelogenin mRNA by restriction enzyme digestion of the RT-PCR product. All tumor samples expressed amelogenin mRNA. We could detect increased level of AMGY expression in all male samples, higher than that of AMEX. It is an interesting finding as in normal male tooth development, the expression of AMGY is very much lower than that of AMGX. We postulate that epigenetic change of sex chromosomes may have some correlations with tumorigenesis of ameloblastoma. We also discuss the other possible mechanisms and points for future studies on this change in expression pattern.
Collapse
Affiliation(s)
- Hidetsugu Tsujigiwa
- Department of Oral Pathology and Medicine, Graduate School of Medicine and Dentistry, Okayama University, Japan
| | | | | | | | | | | | | |
Collapse
|
33
|
Masuya H, Shimizu K, Sezutsu H, Sakuraba Y, Nagano J, Shimizu A, Fujimoto N, Kawai A, Miura I, Kaneda H, Kobayashi K, Ishijima J, Maeda T, Gondo Y, Noda T, Wakana S, Shiroishi T. Enamelin (Enam) is essential for amelogenesis: ENU-induced mouse mutants as models for different clinical subtypes of human amelogenesis imperfecta (AI). Hum Mol Genet 2005; 14:575-83. [PMID: 15649948 DOI: 10.1093/hmg/ddi054] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Amelogenesis imperfecta (AI) is a group of commonly inherited defects of dental enamel formation, which exhibits marked genetic and clinical heterogeneity. The genetic basis of this heterogeneity is still poorly understood. Enamelin, the affected gene product in one form of AI (AIH2), is an extracellular matrix protein that is one of the components of enamel. We isolated three ENU-induced dominant mouse mutations, M100395, M100514 and M100521, which caused AI-like phenotypes in the incisors and molars of the affected individuals. Linkage analyses mapped each of the three mutations to a region of chromosome 5 that contained the genes encoding enamelin (Enam) and ameloblastin (Ambn). Sequence analysis revealed that each mutation was a single-base substitution in Enam. M100395 (Enam(Rgsc395)) and M100514 (Enam(Rgsc514)) were putative missense mutations that caused S to I and E to G substitutions at positions 55 and 57 of the translated protein, respectively. Enam(Rgsc395) and Enam(Rgsc514) heterozygotes showed severe breakage of the enamel surface, a phenotype that resembled local hypoplastic AI. The M100521 mutation (Enam(Rgsc521)) was a T to A substitution at the splicing donor site in intron 4. This mutation resulted in a frameshift that gave rise to a premature stop codon. The transcript of the Enam(Rgsc521) mutant allele was degraded, indicating that Enam(Rgsc521) is a loss-of-function mutation. Enam(Rgsc521) heterozygotes showed a hypomaturation-type AI phenotype in the incisors, possibly due to haploinsufficiency of Enam. Enam(Rgsc521) homozygotes showed complete loss of enamel on the incisors and the molars. Thus, we report here that the Enam gene is essential for amelogenesis, and that mice with different point mutations at Enam may provide good animal models to study the different clinical subtypes of AI.
Collapse
Affiliation(s)
- Hiroshi Masuya
- Mouse Functional Genomics Research Group, Tsukuba, Ibaraki, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Kim JW, Simmer JP, Hu YY, Lin BPL, Boyd C, Wright JT, Yamada CJM, Rayes SK, Feigal RJ, Hu JCC. Amelogenin p.M1T and p.W4S mutations underlying hypoplastic X-linked amelogenesis imperfecta. J Dent Res 2004; 83:378-83. [PMID: 15111628 DOI: 10.1177/154405910408300505] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Mutations in the human amelogenin gene (AMELX, Xp22.3) cause a phenotypically diverse set of inherited enamel malformations. We hypothesize that the effects of specific mutations on amelogenin protein structure and expression will correlate with the enamel phenotype, clarify amelogenin structure/function relationships, and improve the clinical diagnosis of X-linked amelogenesis imperfecta (AI). We have identified two kindreds with X-linked AI and characterized the AMELX mutations underlying their AI phenotypes. The two missense mutations are both in exon 2 and affect the translation initiation codon and/or the secretion of amelogenin (p.M1T and p.W4S), resulting in hypoplastic enamel. Primary anterior teeth from affected females with the p.M1T mutation were characterized by light and scanning electron microscopy. The thin enamel had defective prism organization, and the surface was rough and pitted. Dentin was normal. The severity of the enamel phenotype correlated with the predicted effects of the mutations on amelogenin expression and secretion.
Collapse
Affiliation(s)
- J-W Kim
- Department of Orthodontics and Pediatric Dentistry, University of Michigan Dental Research Lab, 1210 Eisenhower Place, Ann Arbor, MI 48108, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Chen E, Yuan ZA, Wright JT, Hong SP, Li Y, Collier PM, Hall B, D'Angelo M, Decker S, Piddington R, Abrams WR, Kulkarni AB, Gibson CW. The small bovine amelogenin LRAP fails to rescue the amelogenin null phenotype. Calcif Tissue Int 2003; 73:487-95. [PMID: 12958690 DOI: 10.1007/s00223-002-0036-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2002] [Accepted: 03/17/2003] [Indexed: 11/25/2022]
Abstract
Amelogenins are the most abundant secreted proteins in developing dental enamel. These evolutionarily-conserved proteins have important roles in enamel mineral formation, as mutations within the amelogenin gene coding region lead to defects in enamel thickness or mineral structure. Because of extensive alternative splicing of the primary RNA transcript and proteolytic processing of the secreted proteins, it has been difficult to assign functions to individual amelogenins. To address the function of one of the amelogenins, we have created a transgenic mouse that expresses bovine leucine-rich amelogenin peptide (LRAP) in the enamel-secreting ameloblast cells of the dental organ. Our strategy was to breed this transgenic mouse with the recently generated amelogenin knockout mouse, which makes none of the amelogenin proteins and has a severe hypoplastic and disorganized enamel phenotype. It was found that LRAP does not rescue the enamel defect in amelogenin null mice, and enamel remains hypoplastic and disorganized in the presence of this small amelogenin. In addition, LRAP overexpression in the transgenic mouse (wildtype background) leads to pitting in the enamel surface, which may result from excess protein production or altered protein processing due to minor differences between the amino acid compositions of murine and bovine LRAP. Since introduction of bovine LRAP into the amelogenin null mouse does not restore normal enamel structure, it is concluded that other amelogenin proteins are essential for normal appearance and function.
Collapse
Affiliation(s)
- E Chen
- Department of Anatomy and Cell Biology, University of Pennsylvania School of Dental Medicine, 240 S. 40th St., Philadelphia, PA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Ohnishi A, Emi Y. Rapid proteasomal degradation of translocation-deficient UDP-glucuronosyltransferase 1A1 proteins in patients with Crigler–Najjar type II. Biochem Biophys Res Commun 2003; 310:735-41. [PMID: 14550264 DOI: 10.1016/j.bbrc.2003.09.072] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
UDP-glucuronosyltransferase form 1A1 (UGT1A1) is the only bilirubin-glucuronidating isoform of this protein, and genetic deficiencies of UGT1A1 cause Crigler-Najjar syndrome, a disorder resulting from nonhemolytic unconjugated hyperbilirubinemia. Here we have focused on the instability of a translocation-deficient UGT1A1 protein, which has been found in patients with Crigler-Najjar type II, to elucidate the molecular basis underlying the deficiency in glucuronidation of bilirubin. A substitution of leucine to arginine at position 15 (L15R/1A1) is predicted to disrupt the hydrophobic core of the signal peptide of UGT1A1. L15R/1A1 was synthesized in similar amounts to wild-type UGT1A1 protein (WT/1A1) in transfected COS cells. However, L15R/1A1 did not translocate across the endoplasmic reticulum membrane and was degraded rapidly with a half-life of about 50min, in contrast to the much longer half-life of about 12.8h for WT/1A1. Our findings demonstrate that L15R/1A1 was rapidly degraded by the proteasome owing to its mislocalization in the cell.
Collapse
Affiliation(s)
- Aki Ohnishi
- Department of Life Science, Faculty of Science, Himeji Institute of Technology, Harima Science Park City, Hyogo, Japan
| | | |
Collapse
|
37
|
Katsuta O, Hoshino N, Takeda M, Ono A, Tsuchitani M. A spontaneous mutation: amelogenesis imperfecta with cysts in rats. Toxicol Pathol 2003; 31:411-6. [PMID: 12851106 DOI: 10.1080/01926230390202344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Amelogenesis imperfecta (AI) is an inherited dental disease of enamel formation in humans, and there are various phenotypes due to the combination of enamel quality and quantity. We encountered four female IGS rats with spontaneous AI including odontogenic cysts in the incisor teeth. Histopathologically, in the incisors of the rats, the enamel organ was disorganized with the remaining enamel matrix residing within the enamel space. The expanding cysts derived from the enamel organ were formed in the periosteal connective tissue on the labial side. At the bottom of the tooth germs, the precursor cells of the epithelial root sheath were arranged regularly and the enamel organs were preserved to the same degree as those of normal rats. In the molar teeth of the affected rats an enamel matrix remained on the neck and crown of the erupted teeth; however, no abnormality was observed at the tooth root. Although an animal model of AI has been developed from mutants of the SHR-SP rat strain, the present cases represent another potential model of the disease because of the differences in the way the enamel matured and the odontogenic cyst formation in the incisors.
Collapse
Affiliation(s)
- Osamu Katsuta
- Mitsubishi Chemical Safety Institute Ltd., Ibaraki-ken, Japan.
| | | | | | | | | |
Collapse
|
38
|
Thyagarajan T, Totey S, Danton MJS, Kulkarni AB. Genetically altered mouse models: the good, the bad, and the ugly. CRITICAL REVIEWS IN ORAL BIOLOGY AND MEDICINE : AN OFFICIAL PUBLICATION OF THE AMERICAN ASSOCIATION OF ORAL BIOLOGISTS 2003; 14:154-74. [PMID: 12799320 DOI: 10.1177/154411130301400302] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Targeted gene disruption in mice is a powerful tool for generating murine models for human development and disease. While the human genome program has helped to generate numerous candidate genes, few genes have been characterized for their precise in vivo functions. Gene targeting has had an enormous impact on our ability to delineate the functional roles of these genes. Many gene knockout mouse models faithfully mimic the phenotypes of the human diseases. Because some models display an unexpected or no phenotype, controversy has arisen about the value of gene-targeting strategies. We argue in favor of gene-targeting strategies, provided they are used with caution, particularly in interpreting phenotypes in craniofacial and oral biology, where many genes have pleiotropic roles. The potential pitfalls are outweighed by the unique opportunities for developing and testing different therapeutic strategies before they are introduced into the clinic. In the future, we believe that genetically engineered animal models will be indispensable for gaining important insights into the molecular mechanisms underlying development, as well as disease pathogenesis, diagnosis, prevention, and treatment.
Collapse
Affiliation(s)
- Tamizchelvi Thyagarajan
- Functional Genomics Unit and Gene Targeting Facility, National Institute of Dental and Craniofacial Research, National Institutes of Health, Building 30, Room 527, 30 Convent Drive, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
39
|
Kida M, Ariga T, Shirakawa T, Oguchi H, Sakiyama Y. Autosomal-dominant hypoplastic form of amelogenesis imperfecta caused by an enamelin gene mutation at the exon-intron boundary. J Dent Res 2002; 81:738-42. [PMID: 12407086 DOI: 10.1177/0810738] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Amelogenesis imperfecta (AI) is currently classified into 14 distinct subtypes based on various phenotypic criteria; however, the gene responsible for each phenotype has not been defined. We performed molecular genetic studies on a Japanese family with a possible autosomal-dominant form of AI. Previous studies have mapped an autosomal-dominant human AI locus to chromosome 4q11-q21, where two candidate genes, ameloblastin and enamelin, are located. We studied AI patients in this family, focusing on these genes, and found a mutation in the enamelin gene. The mutation detected was a heterozygous, single-G deletion within a series of 7 G residues at the exon 9-intron 9 boundary of the enamelin gene. The mutation was detected only in AI patients in the family and was not detected in other unaffected family members or control individuals. The male proband and his brother showed hypoplastic enamel in both their deciduous and permanent teeth, and their father showed local hypoplastic defects in the enamel of his permanent teeth. The clinical phenotype of these patients is similar to that of the first report of AI caused by an enamelin gene mutation. Thus, heterogeneous mutations in the enamelin gene are responsible for an autosomal-dominant hypoplastic form of AI.
Collapse
Affiliation(s)
- M Kida
- Research Group of Human Gene Therapy, Hokkaido University Graduate School of Medicine, N-15, W-7, Kita-ku, Sapporo, 060-8638, Hokkaido, Japan
| | | | | | | | | |
Collapse
|
40
|
Aldred MJ, Hall RK, Kilpatrick N, Bankier A, Savarirayan R, Lamandé SR, Lench NJ, Crawford PJM. Molecular analysis for genetic counselling in amelogenesis imperfecta. Oral Dis 2002; 8:249-53. [PMID: 12363109 DOI: 10.1034/j.1601-0825.2002.02835.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
OBJECTIVE To use molecular genetics to establish the mode of inheritance in a family with amelogenesis imperfecta. MATERIALS AND METHODS The polymerase chain reaction was used to amplify exons of the amelogenin gene on the short arm of the X chromosome. RESULTS A single base deletion mutation in exon 6 of the amelogenin gene was identified. This mutation was a single base deletion of a cytosine residue - 431delC - in codon 96 of exon 6, introducing a stop codon 30 codons downstream of the mutation in codon 126 of the exon. CONCLUSION The firm establishment of an X-linked mode of inheritance affects the genetic counselling for this family.
Collapse
Affiliation(s)
- M J Aldred
- Department of Dentistry, Royal Children's Hospital, Melbourne, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Mutations of the X-chromosome amelogenin gene (AMELX) are associated with amelogenesis imperfecta (AI) phenotypes (OMIM no. 301200). Currently, 12 different AMELX mutations have been identified in individuals with abnormal enamel characteristic of AI. A notable feature of AI is the variable clinical phenotype, spurring interest in genotype-phenotype correlations. It is important that researchers and clinicians have an informative and reliable means of reporting and communicating these molecular defects. Therefore, the purpose here was to present a systematic nosology for reporting the genomic, cDNA and protein consequences of AMELX mutations associated with AI. The proposed nomenclature adheres to conventions proposed for other conditions and can be adopted for the autosomal forms of AI as the molecular basis of these conditions becomes known.
Collapse
Affiliation(s)
- P S Hart
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | |
Collapse
|
42
|
Greene SR, Yuan ZA, Wright JT, Amjad H, Abrams WR, Buchanan JA, Trachtenberg DI, Gibson CW. A new frameshift mutation encoding a truncated amelogenin leads to X-linked amelogenesis imperfecta. Arch Oral Biol 2002; 47:211-7. [PMID: 11839357 DOI: 10.1016/s0003-9969(01)00111-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The amelogenin proteins are the most abundant organic components of developing dental enamel. Their importance for the proper mineralization of enamel is evident from the association between previously identified mutations in the X-chromosomal gene that encodes them and the enamel defect amelogenesis imperfecta. In this investigation, an adult male presenting with a severe hypoplastic enamel phenotype was found to have a single base deletion at the codon for amino acid 110 of the X-chromosomal 175-amino acid amelogenin protein. The proband's mother, who also has affected enamel, carries the identical deletion on one of her X-chromosomes, while the father has both normal enamel and DNA sequence. This frameshift mutation deletes part of the coding region for the repetitive portion of amelogenin as well as the hydrophilic tail, replacing them with a 47-amino acid segment containing nine cysteine residues. While greater than 60% of the protein is predicted to be intact, the severity of this phenotype illustrates the importance of the C-terminal region of the amelogenin protein for the formation of enamel with normal thickness.
Collapse
Affiliation(s)
- S R Greene
- Department of Anatomy and Histology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Hu JC, Sun X, Zhang C, Simmer JP. A comparison of enamelin and amelogenin expression in developing mouse molars. Eur J Oral Sci 2001; 109:125-32. [PMID: 11347656 DOI: 10.1034/j.1600-0722.2001.00998.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Amelogenin and enamelin are structural proteins in the enamel matrix of developing teeth. The temporal and spatial patterns of enamelin expression in developing mouse molars have not been characterized, while controversy remains with respect to amelogenin expression by odontoblasts and cementoblasts. Here we report the results of in situ hybridization analyses of amelogenin and enamelin expression in mouse molars from postnatal days 1, 2, 3, 7, 9, 14, and 21. Amelogenin and enamelin mRNA in maxillary first molars was first observed in pre-ameloblasts on the cusp slopes at day 2. The onsets of amelogenin and enamelin expression were approximately synchronous with the initial accumulation of predentin matrix. Both proteins were expressed by ameloblasts throughout the secretory, transition, and early maturation stages. Enamelin expression terminated in maturation stage ameloblasts on day 9, while amelogenin expression is still detected in maturation stage ameloblasts on day 14. No amelogenin expression was observed in day 21 mouse molars. Amelogenin and enamelin RNA messages were restricted to ameloblasts. No expression was observed in pulp, bone, or along the developing root. We conclude that amelogenin and enamelin are enamel-specific and do not directly participate in the formation of dentin or cementum in developing mouse molars.
Collapse
Affiliation(s)
- J C Hu
- University of Texas Health Science Center at San Antonio, 78229-3900, USA
| | | | | | | |
Collapse
|
44
|
Paine ML, White SN, Luo W, Fong H, Sarikaya M, Snead ML. Regulated gene expression dictates enamel structure and tooth function. Matrix Biol 2001; 20:273-92. [PMID: 11566262 DOI: 10.1016/s0945-053x(01)00153-6] [Citation(s) in RCA: 140] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Enamel is a complex bioceramic tissue. In its final form, enamel is a reflection of the unique molecular and cellular activities occurring during organogenesis. From the ectodermal origins of ameloblasts, their gene activity and protein expression profiles exist for the sole purpose of producing a mineralized shell, almost entirely devoid of protein, deposited over the 'bone-like' dentine. The interface between enamel and dentine is referred to as the dentine enamel junction and it is also unique in its biology. This review article is narrow in its scope. We restrict our review to selected advances in our understanding of the genetic, molecular and structural aspects of enamel biology. We present a model of enamel formation that relates gene expression to the assembly of an extracellular protein matrix that in turn controls the structural hierarchy and mechanical aspects of enamel and the tooth organ.
Collapse
Affiliation(s)
- M L Paine
- University of Southern California, Center for Craniofacial Molecular Biology, Los Angeles, CA 90033, USA.
| | | | | | | | | | | |
Collapse
|
45
|
Gibson CW, Yuan ZA, Hall B, Longenecker G, Chen E, Thyagarajan T, Sreenath T, Wright JT, Decker S, Piddington R, Harrison G, Kulkarni AB. Amelogenin-deficient mice display an amelogenesis imperfecta phenotype. J Biol Chem 2001; 276:31871-5. [PMID: 11406633 DOI: 10.1074/jbc.m104624200] [Citation(s) in RCA: 365] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dental enamel is the hardest tissue in the body and cannot be replaced or repaired, because the enamel secreting cells are lost at tooth eruption. X-linked amelogenesis imperfecta (MIM 301200), a phenotypically diverse hereditary disorder affecting enamel development, is caused by deletions or point mutations in the human X-chromosomal amelogenin gene. Although the precise functions of the amelogenin proteins in enamel formation are not well defined, these proteins constitute 90% of the enamel organic matrix. We have disrupted the amelogenin locus to generate amelogenin null mice, which display distinctly abnormal teeth as early as 2 weeks of age with chalky-white discoloration. Microradiography revealed broken tips of incisors and molars and scanning electron microscopy analysis indicated disorganized hypoplastic enamel. The amelogenin null phenotype reveals that the amelogenins are apparently not required for initiation of mineral crystal formation but rather for the organization of crystal pattern and regulation of enamel thickness. These null mice will be useful for understanding the functions of amelogenin proteins during enamel formation and for developing therapeutic approaches for treating this developmental defect that affects the enamel.
Collapse
Affiliation(s)
- C W Gibson
- Department of Anatomy and Histology, University of Pennsylvania School of Dental Medicine, Philadelphia, Pennsylvania 19104, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Sekiguchi H, Tanakamaru H, Minaguchi K, Machida Y, Yakushiji M. A case of amelogenesis imperfecta of deciduous and all permanent teeth. THE BULLETIN OF TOKYO DENTAL COLLEGE 2001; 42:45-50. [PMID: 11484794 DOI: 10.2209/tdcpublication.42.45] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We experienced a case with severe enamel defects of both the deciduous teeth and all the permanent teeth. In order to clarify the etiology of enamel defects in this patient, we performed a DNA analysis in addition to conventional examinations. Although we suspected a variety of systemic factors causing enamel defects, there was no evidence suggesting disturbances of amelogenesis. In the present case, we suspected a mutation in the amelogenin gene and performed nucleotide sequencing of the exons of the amelogenin gene, but we could not find any evidence of mutation. We suggest that a mutation of some other gene related to enamel formation or the adventitious factors contributed to the amelogenesis imperfecta in this case.
Collapse
Affiliation(s)
- H Sekiguchi
- Department of Pediatric Dentistry, Tokyo Dental College, Chiba, Japan
| | | | | | | | | |
Collapse
|
47
|
Mårdh CK, Bäckman B, Simmons D, Golovleva I, Gu TT, Holmgren G, MacDougall M, Forsman-Semb K. Human ameloblastin gene: genomic organization and mutation analysis in amelogenesis imperfecta patients. Eur J Oral Sci 2001; 109:8-13. [PMID: 11330937 DOI: 10.1034/j.1600-0722.2001.00979.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A gene encoding the enamel protein ameloblastin (AMBN) was recently localized to a region on chromosome 4q21 containing a gene for the inherited enamel defect local hypoplastic amelogenesis imperfecta (AIH2). Ameloblastin protein is located at the Tomes processes of secretory ameloblasts and in the sheath space between rod-interrod enamel, and the AMBN gene therefore represents a viable candidate gene for local hypoplastic amelogenesis imperfecta (AI). In this study, the genomic organization of human AMBN was characterized. The gene was shown to consist of 13 exons and 12 introns. An alternatively spliced 45 bp sequence was shown not to represent a separate exon and is most likely spliced by the use of a cryptic splice site. The finding that there were no recombinations between an intragenic microsatellite and AIH2 encouraged us to evaluate this gene's potential role as a candidate gene for local hypoplastic AI. Mutation screening was performed on all 13 exons in 20 families and 8 sporadic cases with 6 different forms of AI. DNA variants were found but none that was associated exclusively with local hypoplastic AI or any of the other variants of AI in the identified Swedish families. This study excludes the coding regions and the splice sites of AMBN from a causative role in the pathogenesis of AIH2.
Collapse
Affiliation(s)
- C K Mårdh
- Department of Clinical Genetics, University Hospital, Umeå, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Paine ML, Zhu DH, Luo W, Bringas P, Goldberg M, White SN, Lei YP, Sarikaya M, Fong HK, Snead ML. Enamel biomineralization defects result from alterations to amelogenin self-assembly. J Struct Biol 2000; 132:191-200. [PMID: 11243888 DOI: 10.1006/jsbi.2000.4324] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Enamel formation is a powerful model for the study of biomineralization. A key feature common to all biomineralizing systems is their dependency upon the biosynthesis of an extracellular organic matrix that is competent to direct the formation of the subsequent mineral phase. The major organic component of forming mouse enamel is the 180-amino-acid amelogenin protein (M180), whose ability to undergo self-assembly is believed to contribute to biomineralization of vertebrate enamel. Two recently defined domains (A and B) within amelogenin appear essential for this self-assembly. The significance of these two domains has been demonstrated previously by the yeast two-hybrid system, atomic force microscopy, and dynamic light scattering. Transgenic animals were used to test the hypothesis that the self-assembly domains identified with in vitro model systems also operate in vivo. Transgenic animals bearing either a domain-A-deleted or domain-B-deleted amelogenin transgene expressed the altered amelogenin exclusively in ameloblasts. This altered amelogenin participates in the formation an organic enamel extracellular matrix and, in turn, this matrix is defective in its ability to direct enamel mineralization. At the nanoscale level, the forming matrix adjacent to the secretory face of the ameloblast shows alteration in the size of the amelogenin nanospheres for either transgenic animal line. At the mesoscale level of enamel structural hierarchy, 6-week-old enamel exhibits defects in enamel rod organization due to perturbed organization of the precursor organic matrix. These studies reflect the critical dependency of amelogenin self-assembly in forming a competent enamel organic matrix and that alterations to the matrix are reflected as defects in the structural organization of enamel.
Collapse
Affiliation(s)
- M L Paine
- University of Southern California, School of Dentistry, Center for Craniofacial Molecular Biology, 2250 Alcazar Street, CSA Room 142, Los Angeles, California 90033-1004, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Kindelan SA, Brook AH, Gangemi L, Lench N, Wong FS, Fearne J, Jackson Z, Foster G, Stringer BM. Detection of a novel mutation in X-linked amelogenesis imperfecta. J Dent Res 2000; 79:1978-82. [PMID: 11201048 DOI: 10.1177/00220345000790120901] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Amelogenesis imperfecta (AI) is a heterogeneous group of inherited disorders of defective enamel formation. The major protein involved in enamel formation, amelogenin, is encoded by a gene located at Xp22.1-Xp22.3. This study investigated the molecular defect producing a combined phenotype of hypoplasia and hypomineralization in a family with the clinical features and inheritance pattern of X-linked amelogenesis imperfecta (XAI). Genomic DNA was prepared from buccal cells sampled from family members. The DNA was subjected to the polymerase chain-reaction (PCR) in the presence of a series of oligonucleotide primers designed to amplify all 7 exons of the amelogenin gene. Cloning and sequencing of the purified amplification products identified a cytosine deletion in exon VI at codon 119. The deletion resulted in a frameshift mutation, introducing a premature stop signal at codon 126, producing a truncated protein lacking the terminal 18 amino acids. Identifying mutations assists our understanding of the important functional domains within the gene, and finding another novel mutation emphasizes the need for family-specific diagnosis of amelogenesis imperfecta.
Collapse
Affiliation(s)
- S A Kindelan
- Department of Child Dental Health, School of Clinical Dentistry, University of Sheffield, Claremont Crescent, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Zhou YL, Lei Y, Snead ML. Functional antagonism between Msx2 and CCAAT/enhancer-binding protein alpha in regulating the mouse amelogenin gene expression is mediated by protein-protein interaction. J Biol Chem 2000; 275:29066-75. [PMID: 10859305 DOI: 10.1074/jbc.m002031200] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ameloblast-specific amelogenin gene expression is spatiotemporally regulated during tooth development. In a previous study, the CCAAT/enhancer-binding protein alpha (C/EBPalpha) was identified as a transcriptional activator of the mouse amelogenin gene in a cell type-specific manner. Here, Msx2 is shown to repress the promoter activity of amelogenin-promoter reporter constructs independent of its intrinsic DNA binding activity. In transient cotransfection assays, Msx2 and C/EBPalpha antagonize each other in regulating the expression of the mouse amelogenin gene. Electrophoresis mobility shift assays demonstrate that Msx2 interferes with the binding of C/EBPalpha to its cognate site in the mouse amelogenin minimal promoter, although Msx2 itself does not bind to the same promoter fragment. Protein-protein interaction between Msx2 and C/EBPalpha is identified with co-immunoprecipitation analyses. Functional antagonism between Msx2 and C/EBPalpha is also observed on the stably transfected 2.2-kilobase mouse amelogenin promoter in ameloblast-like LS8 cells. Furthermore, the carboxyl-terminal residues 183-267 of Msx2 are required for protein-protein interaction, whereas the amino-terminal residues 2-97 of Msx2 play a less critical role. Among three family members tested (C/EBPalpha, -beta, and -gamma), Msx2 preferentially interacts with C/EBPalpha. Taken together, these data indicate that protein-protein interaction rather than competition for overlapping binding sites results in the functional antagonism between Msx2 and C/EBPalpha in regulating the mouse amelogenin gene expression.
Collapse
Affiliation(s)
- Y L Zhou
- The Center for Craniofacial Molecular Biology, The University of Southern California, Los Angeles, California 90033, USA
| | | | | |
Collapse
|