1
|
Carrillo-Muñoz AI, R-Jaimes SY, Hernández-Hernández GC, Castelán F. Neurotrophins and their receptors in the peripheral nervous system and non-nervous tissue of fish. FISH PHYSIOLOGY AND BIOCHEMISTRY 2025; 51:38. [PMID: 39888528 PMCID: PMC11785713 DOI: 10.1007/s10695-025-01453-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 01/13/2025] [Indexed: 02/01/2025]
Abstract
Trophic factors, such as neurotrophins, are fundamental for cellular processes including differentiation, growth, survival, and regeneration. These molecules exhibit significant morphological and phylogenetic conservation throughout the animal kingdom, indicating conserved functions. In fish, the oldest and most diverse group of vertebrates, neurotrophins, and their receptors play pivotal roles not only within the central nervous system but also in various peripheral tissues. They are distributed in mechanosensory, muscle, skin, respiratory, circulatory, digestive, endocrine, urinary, reproductive, and immune systems, suggesting their involvement in the development and maintenance of all tissues/organs/systems. Despite this broad distribution, studies focusing on these molecules outside of the central nervous system have been limited to just 12 fish species. These investigations have revealed diverse expression patterns across different ages and tissues/organs/systems, expanding our comprehension of their functions beyond the central and peripheral nervous systems. Notably, BDNF and NT-3 are prominently expressed outside the central nervous system, particularly in mechanosensory and digestive tissues, whereas NGF is predominantly observed in mechanosensory and urinary systems. The expression and localization of neurotrophins and their receptors vary among organs, underscoring tissue-specific roles. Further research is imperative to decipher the precise functions and mechanisms of action of neurotrophins and their receptors in diverse fish tissues. Enhanced efforts are needed to include a broader range of fish species in these studies to advance our understanding of these agents in complex vertebrates, thereby shedding light on tissue development, regeneration, and maintenance, with potential implications for addressing organ-related issues.
Collapse
Affiliation(s)
- Aldo Isaac Carrillo-Muñoz
- Centro Tlaxcala de Biología de La Conducta, Universidad Autónoma de Tlaxcala, 90070, Tlaxcala, Mexico.
| | - Sharet Y R-Jaimes
- Facultad de Ciencias de La Salud, Universidad Autónoma de Tlaxcala, 90750, Zacatelco, Mexico
| | | | - Francisco Castelán
- Centro Tlaxcala de Biología de La Conducta, Universidad Autónoma de Tlaxcala, 90070, Tlaxcala, Mexico.
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 90070, Tlaxcala, Mexico.
| |
Collapse
|
2
|
Dasgupta S, Pandya MA, Friedman WJ. Microfluidic Cultures of Basal Forebrain Cholinergic Neurons for Assessing Retrograde Cell Death by Live Imaging. Bio Protoc 2025; 15:e5149. [PMID: 39803317 PMCID: PMC11717710 DOI: 10.21769/bioprotoc.5149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/30/2024] [Accepted: 11/03/2024] [Indexed: 01/16/2025] Open
Abstract
Neurons are highly polarized cells, with axons that may innervate distant target regions. In the brain, basal forebrain cholinergic neurons (BFCNs) possess extensive axons that project to several target regions such as the cortex, hippocampus, and amygdala, and may be exposed to a specific microenvironment in their axon targets that may have retrograde effects on neuronal health. Interestingly, BFCNs express the pan-neurotrophin receptor p75NTR throughout life while also concomitantly co-expressing all Trk receptors, making them capable of responding to both mature and precursor neurotrophins to promote survival or apoptosis, respectively. Levels of these trophic factors may be modulated in the BFCN axon or soma microenvironment under neurodegenerative conditions such as seizure and brain injury. In this protocol, BFCNs are established in microfluidic devices for compartmental culture, with the aim of studying the effects of axon- or soma-specific stimulation of BFCNs for an in vitro representation of distal axon vs. soma environments as seen in vivo. This study further establishes a novel method of tracing and imaging live BFCNs exposed to stimuli in their distal axons with the aim of assessing retrograde cell death. The in vitro compartmental culture system of BFCNs that allows live imaging may be applied to investigate various effects of axon- or soma-specific stimuli that affect BFCN health, maintenance, and death, to model events that occur in the context of brain injury and neurodegenerative disorders. Key features • Separation of axons and soma of basal forebrain primary neurons in vitro using microfluidic chambers. • Compartmental/localized treatment of axons or somas of BFCNs. • Live imaging of retrogradely labeled BFCNs to assess cell death.
Collapse
Affiliation(s)
- Srestha Dasgupta
- Department of Biological Sciences, Rutgers University, Newark, NJ, USA
| | - Mansi A. Pandya
- Department of Biological Sciences, Rutgers University, Newark, NJ, USA
| | - Wilma J. Friedman
- Department of Biological Sciences, Rutgers University, Newark, NJ, USA
| |
Collapse
|
3
|
Dasgupta S, Pandya MA, Zanin JP, Liu T, Sun Q, Li H, Friedman WJ. ProNGF elicits retrograde axonal degeneration of basal forebrain neurons through p75 NTR and induction of amyloid precursor protein. Sci Signal 2024; 17:eadn2616. [PMID: 39316663 PMCID: PMC11487763 DOI: 10.1126/scisignal.adn2616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 08/15/2024] [Indexed: 09/26/2024]
Abstract
Basal forebrain cholinergic neurons (BFCNs) extend long projections to multiple regions in the brain to regulate cognitive functions. Degeneration of BFCNs is seen with aging, after brain injury, and in neurodegenerative disorders. An increase in the amount of the immature proform of nerve growth factor (proNGF) in the cerebral cortex results in retrograde degeneration of BFCNs through activation of proNGF receptor p75NTR. Here, we investigated the signaling cascades initiated at the axon terminal that mediate proNGF-induced retrograde degeneration. We found that local axonal protein synthesis and retrograde transport mediated proNGF-induced degeneration initiated from the axon terminal. Analysis of the nascent axonal proteome revealed that proNGF stimulation of axonal terminals triggered the synthesis of numerous proteins within the axon, and pathway analysis showed that amyloid precursor protein (APP) was a key upstream regulator in cultured BFCNs and in mice. Our findings reveal a functional role for APP in mediating BFCN axonal degeneration and cell death induced by proNGF.
Collapse
Affiliation(s)
- Srestha Dasgupta
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA
| | - Mansi A. Pandya
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA
| | - Juan P. Zanin
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA
| | - Tong Liu
- New Jersey Medical School, Medical Science Building, 185 South Orange Avenue, Newark, NJ 07103, USA
| | - Qian Sun
- New Jersey Medical School, Medical Science Building, 185 South Orange Avenue, Newark, NJ 07103, USA
| | - Hong Li
- New Jersey Medical School, Medical Science Building, 185 South Orange Avenue, Newark, NJ 07103, USA
| | - Wilma J. Friedman
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA
| |
Collapse
|
4
|
Cao J, Gorwood P, Ramoz N, Viltart O. The Role of Central and Peripheral Brain-Derived Neurotrophic Factor (BDNF) as a Biomarker of Anorexia Nervosa Reconceptualized as a Metabo-Psychiatric Disorder. Nutrients 2024; 16:2617. [PMID: 39203753 PMCID: PMC11357464 DOI: 10.3390/nu16162617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/26/2024] [Accepted: 08/04/2024] [Indexed: 09/03/2024] Open
Abstract
Neurotrophic factors play pivotal roles in shaping brain development and function, with brain-derived neurotrophic factor (BDNF) emerging as a key regulator in various physiological processes. This review explores the intricate relationship between BDNF and anorexia nervosa (AN), a complex psychiatric disorder characterized by disordered eating behaviors and severe medical consequences. Beginning with an overview of BDNF's fundamental functions in neurodevelopment and synaptic plasticity, the review delves into recent clinical and preclinical evidence implicating BDNF in the pathophysiology of AN. Specifically, it examines the impact of BDNF polymorphisms, such as the Val66Met variant, on AN susceptibility, prognosis, and treatment response. Furthermore, the review discusses the interplay between BDNF and stress-related mood disorders, shedding light on the mechanisms underlying AN vulnerability to stress events. Additionally, it explores the involvement of BDNF in metabolic regulation, highlighting its potential implications for understanding the metabolic disturbances observed in AN. Through a comprehensive analysis of clinical data and animal studies, the review elucidates the nuanced role of BDNF in AN etiology and prognosis, emphasizing its potential as a diagnostic and prognostic biomarker. Finally, the review discusses limitations and future directions in BDNF research, underscoring the need for further investigations to elucidate the complex interplay between BDNF signaling and AN pathology.
Collapse
Affiliation(s)
- Jingxian Cao
- Institute of Psychiatry and Neuroscience of Paris (IPNP), Université Paris Cité, INSERM UMR-S 1266, F-75014 Paris, France (O.V.)
| | - Philip Gorwood
- Institute of Psychiatry and Neuroscience of Paris (IPNP), Université Paris Cité, INSERM UMR-S 1266, F-75014 Paris, France (O.V.)
- GHU Paris Psychiatrie et Neurosciences, CMME, Hôpital Sainte Anne, F-75014 Paris, France
| | - Nicolas Ramoz
- Institute of Psychiatry and Neuroscience of Paris (IPNP), Université Paris Cité, INSERM UMR-S 1266, F-75014 Paris, France (O.V.)
- GHU Paris Psychiatrie et Neurosciences, CMME, Hôpital Sainte Anne, F-75014 Paris, France
| | - Odile Viltart
- Institute of Psychiatry and Neuroscience of Paris (IPNP), Université Paris Cité, INSERM UMR-S 1266, F-75014 Paris, France (O.V.)
- SCALab Laboratory, PsySEF Faculty, Université de Lille, UMR CNRS 9193, F-59650 Villeneuve d’Ascq, France
| |
Collapse
|
5
|
Song J. BDNF Signaling in Vascular Dementia and Its Effects on Cerebrovascular Dysfunction, Synaptic Plasticity, and Cholinergic System Abnormality. J Lipid Atheroscler 2024; 13:122-138. [PMID: 38826183 PMCID: PMC11140249 DOI: 10.12997/jla.2024.13.2.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/29/2023] [Accepted: 12/19/2023] [Indexed: 06/04/2024] Open
Abstract
Vascular dementia (VaD) is the second most common type of dementia and is characterized by memory impairment, blood-brain barrier disruption, neuronal cell loss, glia activation, impaired synaptic plasticity, and cholinergic system abnormalities. To effectively prevent and treat VaD a good understanding of the mechanisms underlying its neuropathology is needed. Brain-derived neurotrophic factor (BDNF) is an important neurotrophic factor with multiple functions in the systemic circulation and the central nervous system and is known to regulate neuronal cell survival, synaptic formation, glia activation, and cognitive decline. Recent studies indicate that when compared with normal subjects, patients with VaD have low serum BDNF levels and that BDNF deficiency in the serum and cerebrospinal fluid is an important indicator of VaD. Here, we review current knowledge on the role of BDNF signaling in the pathology of VaD, such as cerebrovascular dysfunction, synaptic dysfunction, and cholinergic system impairment.
Collapse
Affiliation(s)
- Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Hwasun, Korea
| |
Collapse
|
6
|
Shulman D, Dubnov S, Zorbaz T, Madrer N, Paldor I, Bennett DA, Seshadri S, Mufson EJ, Greenberg DS, Loewenstein Y, Soreq H. Sex-specific declines in cholinergic-targeting tRNA fragments in the nucleus accumbens in Alzheimer's disease. Alzheimers Dement 2023; 19:5159-5172. [PMID: 37158312 PMCID: PMC10632545 DOI: 10.1002/alz.13095] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 03/21/2023] [Indexed: 05/10/2023]
Abstract
INTRODUCTION Females with Alzheimer's disease (AD) suffer accelerated dementia and loss of cholinergic neurons compared to males, but the underlying mechanisms are unknown. Seeking causal contributors to both these phenomena, we pursued changes in transfer RNS (tRNA) fragments (tRFs) targeting cholinergic transcripts (CholinotRFs). METHODS We analyzed small RNA-sequencing (RNA-Seq) data from the nucleus accumbens (NAc) brain region which is enriched in cholinergic neurons, compared to hypothalamic or cortical tissues from AD brains; and explored small RNA expression in neuronal cell lines undergoing cholinergic differentiation. RESULTS NAc CholinotRFs of mitochondrial genome origin showed reduced levels that correlated with elevations in their predicted cholinergic-associated mRNA targets. Single-cell RNA seq from AD temporal cortices showed altered sex-specific levels of cholinergic transcripts in diverse cell types; inversely, human-originated neuroblastoma cells under cholinergic differentiation presented sex-specific CholinotRF elevations. DISCUSSION Our findings support CholinotRFs contributions to cholinergic regulation, predicting their involvement in AD sex-specific cholinergic loss and dementia.
Collapse
Affiliation(s)
- Dana Shulman
- The Edmond & Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
- The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
- The Rachel and Selim Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Serafima Dubnov
- The Edmond & Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
- The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Tamara Zorbaz
- The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Nimrod Madrer
- The Edmond & Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
- The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Iddo Paldor
- The Neurosurgery Department, Shaare Zedek Medical Center, Jerusalem 9103102, Israel
| | - David A. Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, 600 South Paulina, Suite 1028, Chicago, IL 60612, USA
| | - Sudha Seshadri
- UT Health Medical Arts & Research Center, San Antonio , TX 78229, USA
| | - Elliott J. Mufson
- Barrow Neurological Institute, St. Joseph's Medical Center, Phoenix, AZ, 85013, USA
| | - David S. Greenberg
- The Edmond & Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
- The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Yonatan Loewenstein
- The Edmond & Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
- The Department of Neurobiology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
- The Department of Cognitive Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
- The Federmann Center for the Study of Rationality, Jerusalem 9190401, Israel
| | - Hermona Soreq
- The Edmond & Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
- The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| |
Collapse
|
7
|
Dasgupta S, Montroull LE, Pandya MA, Zanin JP, Wang W, Wu Z, Friedman WJ. Cortical Brain Injury Causes Retrograde Degeneration of Afferent Basal Forebrain Cholinergic Neurons via the p75NTR. eNeuro 2023; 10:ENEURO.0067-23.2023. [PMID: 37558465 PMCID: PMC10467018 DOI: 10.1523/eneuro.0067-23.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/15/2023] [Accepted: 07/01/2023] [Indexed: 08/11/2023] Open
Abstract
Traumatic brain injury (TBI) elicits neuronal loss at the site of injury and progressive neuronal loss in the penumbra. However, the consequences of TBI on afferent neurons projecting to the injured tissue from distal locations is unknown. Basal forebrain cholinergic neurons (BFCNs) extend long projections to multiple brain regions including the cortex, regulate many cognitive functions, and are compromised in numerous neurodegenerative disorders. To determine the consequence of cortical injury on these afferent neurons, we used the fluid percussion injury model of traumatic brain injury and assessed the effects on BFCN survival and axon integrity in male and female mice. Survival or death of BF neurons can be regulated by neurotrophins or proneurotrophins, respectively. The injury elicited an induction of proNGF and proBDNF in the cortex and a loss of BFCNs ipsilateral to the injury compared with sham uninjured mice. The p75NTR knock-out mice did not show loss of BFCN neurons, indicating a retrograde degenerative effect of the cortical injury on the afferent BFCNs mediated through p75NTR. In contrast, locus ceruleus neurons, which also project throughout the cortex, were unaffected by the injury, suggesting specificity in retrograde degeneration after cortical TBI. Proneurotrophins (proNTs) provided directly to basal forebrain axons in microfluidic cultures triggered retrograde axonal degeneration and cell death, which did not occur in the absence of p75NTR. This study shows that after traumatic brain injury, proNTs induced in the injured cortex promote BFCN axonal degeneration and retrograde neuron loss through p75NTR.
Collapse
Affiliation(s)
- Srestha Dasgupta
- Department of Biological Sciences, Rutgers University, Newark, New Jersey 07102
| | - Laura E Montroull
- Department of Biological Sciences, Rutgers University, Newark, New Jersey 07102
| | - Mansi A Pandya
- Department of Biological Sciences, Rutgers University, Newark, New Jersey 07102
| | - Juan P Zanin
- Department of Biological Sciences, Rutgers University, Newark, New Jersey 07102
| | - Wei Wang
- Helen and Robert Appel Alzheimer's Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10021
| | - Zhuhao Wu
- Helen and Robert Appel Alzheimer's Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10021
| | - Wilma J Friedman
- Department of Biological Sciences, Rutgers University, Newark, New Jersey 07102
| |
Collapse
|
8
|
Benwood C, Walters-Shumka J, Scheck K, Willerth SM. 3D bioprinting patient-derived induced pluripotent stem cell models of Alzheimer's disease using a smart bioink. Bioelectron Med 2023; 9:10. [PMID: 37221543 DOI: 10.1186/s42234-023-00112-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/09/2023] [Indexed: 05/25/2023] Open
Abstract
BACKGROUND Alzheimer's disease (AD), a progressive neurodegenerative disorder, is becoming increasingly prevalent as our population ages. It is characterized by the buildup of amyloid beta plaques and neurofibrillary tangles containing hyperphosphorylated-tau. The current treatments for AD do not prevent the long-term progression of the disease and pre-clinical models often do not accurately represent its complexity. Bioprinting combines cells and biomaterials to create 3D structures that replicate the native tissue environment and can be used as a tool in disease modeling or drug screening. METHODS This work differentiated both healthy and diseased patient-derived human induced pluripotent stems cells (hiPSCs) into neural progenitor cells (NPCs) that were bioprinted using the Aspect RX1 microfluidic printer into dome-shaped constructs. The combination of cells, bioink, and puromorphamine (puro)-releasing microspheres were used to mimic the in vivo environment and direct the differentiation of the NPCs into basal forebrain-resembling cholinergic neurons (BFCN). These tissue models were then characterized for cell viability, immunocytochemistry, and electrophysiology to evaluate their functionality and physiology for use as disease-specific neural models. RESULTS Tissue models were successfully bioprinted and the cells were viable for analysis after 30- and 45-day cultures. The neuronal and cholinergic markers β-tubulin III (Tuj1), forkhead box G1 (FOXG1), and choline acetyltransferase (ChAT) were identified as well as the AD markers amyloid beta and tau. Further, immature electrical activity was observed when the cells were excited with potassium chloride and acetylcholine. CONCLUSIONS This work shows the successful development of bioprinted tissue models incorporating patient derived hiPSCs. Such models can potentially be used as a tool to screen promising drug candidates for treating AD. Further, this model could be used to increase the understanding of AD progression. The use of patient derived cells also shows the potential of this model for use in personalized medicine applications.
Collapse
Affiliation(s)
- Claire Benwood
- Department of Mechanical Engineering, University of Victoria, Victoria, BC, V8P 5C2, Canada
| | | | - Kali Scheck
- Division of Medical Sciences, University of Victoria, Victoria, BC, V8P 5C2, Canada
| | - Stephanie M Willerth
- Department of Mechanical Engineering, University of Victoria, Victoria, BC, V8P 5C2, Canada.
- Division of Medical Sciences, University of Victoria, Victoria, BC, V8P 5C2, Canada.
- School of Biomedical Engineering, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
9
|
Wang Z, Zou Z, Xiao J, Min W, Nan LP, Yuan C, Yuan L, Yang C, Huang R, He Y. Brain-derived neurotrophic factor blood levels after electroconvulsive therapy in patients with mental disorders: A systematic review and meta-analysis. Gen Hosp Psychiatry 2023; 83:86-92. [PMID: 37148598 DOI: 10.1016/j.genhosppsych.2023.04.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/21/2023] [Accepted: 04/26/2023] [Indexed: 05/08/2023]
Abstract
OBJECTIVE Multiple studies have indicated that electroconvulsive therapy (ECT) could increase brain-derived neurotrophic factor (BDNF) concentrations in patients with different mental disorders. The aim of this synthesis was to evaluate post-ECT BDNF concentrations in patients with various mental disorders. METHODS The Embase, PubMed and Web of Science databases were systematically searched for studies in English comparing BDNF concentrations before and after ECT through 11/2022. We extracted the pertinent information from the included studies and evaluated their quality. The standardized mean difference (SMD) with a 95% confidence interval (CI) was calculated to quantify BDNF concentration differences. RESULTS In total, 35 studies assessed BDNF concentrations in 868 and 859 patients pre and post-ECT treatment, respectively. Post-ECT-treatment BDNF concentrations were significantly higher than the pretreatment concentrations (Hedges'g = -0.50, 95% CI (-0.70, -0.30), heterogeneity I2 = 74%, p < 0.001). The analysis that combined both ECT responders and non-responders demonstrated a marked increase in total BDNF levels subsequent to ECT treatment (Hedges'g = -0.27, 95% CI (-0.42, -0.11), heterogeneity I2 = 40%, p = 0.0007). CONCLUSION Irrespective of the effectiveness of ECT, Our study shows that peripheral BDNF concentrations increase significantly after the entire course of ECT, which may enhance our comprehension of the interplay between ECT treatment and BDNF levels. However, BDNF concentrations were not associated with the effectiveness of ECT, and abnormal concentrations of BDNF may be linked to the pathophysiological process of mental illness, necessitating more future research.
Collapse
Affiliation(s)
- Zuxing Wang
- Sichuan Provincial Center for Mental Health, The Center of Psychosomatic Medicine of Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, PR China.
| | - Zhili Zou
- Sichuan Provincial Center for Mental Health, The Center of Psychosomatic Medicine of Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Jun Xiao
- Sichuan Provincial Center for Mental Health, The Center of Psychosomatic Medicine of Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Wenjiao Min
- Sichuan Provincial Center for Mental Health, The Center of Psychosomatic Medicine of Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Li-Ping Nan
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Cui Yuan
- Sichuan Provincial Center for Mental Health, The Center of Psychosomatic Medicine of Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Lu Yuan
- Sichuan Provincial Center for Mental Health, The Center of Psychosomatic Medicine of Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Chenghui Yang
- Sichuan Provincial Center for Mental Health, The Center of Psychosomatic Medicine of Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Rui Huang
- Department of Neurology, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Chengdu, China
| | - Ying He
- Sichuan Provincial Center for Mental Health, The Center of Psychosomatic Medicine of Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, PR China.
| |
Collapse
|
10
|
Shulman D, Dubnov S, Zorbaz T, Madrer N, Paldor I, Bennett DA, Seshadri S, Mufson EJ, Greenberg DS, Loewenstein Y, Soreq H. Sex-specific declines in cholinergic-targeting tRNA fragments in the nucleus accumbens in Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.08.527612. [PMID: 36798311 PMCID: PMC9934682 DOI: 10.1101/2023.02.08.527612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Introduction Females with Alzheimer's disease (AD) suffer accelerated dementia and loss of cholinergic neurons compared to males, but the underlying mechanisms are unknown. Seeking causal contributors to both these phenomena, we pursued changes in tRNA fragments (tRFs) targeting cholinergic transcripts (CholinotRFs). Methods We analyzed small RNA-sequencing data from the nucleus accumbens (NAc) brain region which is enriched in cholinergic neurons, compared to hypothalamic or cortical tissues from AD brains; and explored small RNA expression in neuronal cell lines undergoing cholinergic differentiation. Results NAc CholinotRFs of mitochondrial genome origin showed reduced levels that correlated with elevations in their predicted cholinergic-associated mRNA targets. Single cell RNA seq from AD temporal cortices showed altered sex-specific levels of cholinergic transcripts in diverse cell types; inversely, human-originated neuroblastoma cells under cholinergic differentiation presented sex-specific CholinotRF elevations. Discussion Our findings support CholinotRFs contributions to cholinergic regulation, predicting their involvement in AD sex-specific cholinergic loss and dementia.
Collapse
Affiliation(s)
- Dana Shulman
- The Edmond & Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
- The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
- The Rachel and Selim Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Serafima Dubnov
- The Edmond & Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
- The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Tamara Zorbaz
- The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Nimrod Madrer
- The Edmond & Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
- The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Iddo Paldor
- The Neurosurgery Department, Shaare Zedek Medical Center, Jerusalem 9103102, Israel
| | - David A. Bennett
- Rush Alzheimer’s Disease Center, Rush University Medical Center, 600 South Paulina, Suite 1028, Chicago, IL 60612, USA
| | - Sudha Seshadri
- UT Health Medical Arts & Research Center, San Antonio, TX 78229, USA
| | - Elliott J. Mufson
- Barrow Neurological Institute, St. Joseph’s Medical Center, Phoenix, AZ, 85013, USA
| | - David S. Greenberg
- The Edmond & Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
- The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Yonatan Loewenstein
- The Edmond & Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
- The Department of Neurobiology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
- The Department of Cognitive Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
- The Federmann Center for the Study of Rationality, Jerusalem 9190401, Israel
| | - Hermona Soreq
- The Edmond & Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
- The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| |
Collapse
|
11
|
Kouter K, Nikolac Perkovic M, Nedic Erjavec G, Milos T, Tudor L, Uzun S, Mimica N, Pivac N, Videtic Paska A. Difference in Methylation and Expression of Brain-Derived Neurotrophic Factor in Alzheimer's Disease and Mild Cognitive Impairment. Biomedicines 2023; 11:235. [PMID: 36830773 PMCID: PMC9953261 DOI: 10.3390/biomedicines11020235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/31/2022] [Accepted: 01/11/2023] [Indexed: 01/19/2023] Open
Abstract
Due to the increasing number of progressive dementias in the population, numerous studies are being conducted that seek to determine risk factors, biomarkers and pathological mechanisms that could help to differentiate between normal symptoms of aging, mild cognitive impairment (MCI) and dementia. The aim of this study was to investigate the possible association of levels of BDNF and COMT gene expression and methylation in peripheral blood cells with the development of Alzheimer's disease (AD). Our results revealed higher expression levels of BDNF (p < 0.001) in MCI subjects compared to individuals diagnosed with AD. However, no difference in COMT gene expression (p = 0.366) was detected. DNA methylation of the CpG islands and other sequences with potential effects on gene expression regulation revealed just one region (BDNF_9) in the BDNF gene (p = 0.078) with marginally lower levels of methylation in the AD compared to MCI subjects. Here, we show that the level of BDNF expression in the periphery is decreased in subjects with AD compared to individuals with MCI. The combined results from the gene expression analysis and DNA methylation analysis point to the potential of BDNF as a marker that could help distinguish between MCI and AD patients.
Collapse
Affiliation(s)
- Katarina Kouter
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Matea Nikolac Perkovic
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Ruder Boskovic Institute, 10000 Zagreb, Croatia
| | - Gordana Nedic Erjavec
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Ruder Boskovic Institute, 10000 Zagreb, Croatia
| | - Tina Milos
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Ruder Boskovic Institute, 10000 Zagreb, Croatia
| | - Lucija Tudor
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Ruder Boskovic Institute, 10000 Zagreb, Croatia
| | - Suzana Uzun
- Department for Biological Psychiatry and Psychogeriatrics, University Psychiatric Hospital Vrapce, 10090 Zagreb, Croatia
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Ninoslav Mimica
- Department for Biological Psychiatry and Psychogeriatrics, University Psychiatric Hospital Vrapce, 10090 Zagreb, Croatia
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Nela Pivac
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Ruder Boskovic Institute, 10000 Zagreb, Croatia
| | - Alja Videtic Paska
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
12
|
Haque SS. Biomarkers in the diagnosis of neurodegenerative diseases. RUDN JOURNAL OF MEDICINE 2022. [DOI: 10.22363/2313-0245-2022-26-4-431-440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Biomarkers are molecules that behave as of biological states. Ideally, they should have high sensitivity, specificity, and accuracy in reflecting the total disease burden. The review discusses the current status of biomarkers used in neurological disorders. Neurodegenerative diseases are a heterogeneous group disorders characterized by progressive loss of structure and function of the central nervous system or peripheral nervous system. The review discusses the main biomarkers that have predictive value for describing clinical etiology, pathophysiology, and intervention strategies. Preciseness and reliability are one of important requirement for good biomarker. As a result of the analysis of literature data, it was revealed that beta-amyloid, total tau protein and its phosphorylated forms are the first biochemical biomarkers of neurodegenerative diseases measured in cerebrospinal fluid, but these markers are dependent upon invasive lumbar puncture and therefore it’s a cumbersome process for patients. Among the various biomarkers of neurodegenerative diseases, special attention is paid to miRNAs. MicroRNAs, important biomarkers in many disease states, including neurodegenerative disorders, make them promising candidates that may lead to identify new therapeutic targets. Conclusions. Biomarkers of neurological disease are present optimal amount in the cerebrospinal fluid but they are also present in blood at low levels. The data obtained reveal the predictive value of molecular diagnostics of neurodegenerative disorders and the need for its wider use.
Collapse
|
13
|
Yoon EJ, Choi Y, Kim TM, Choi EK, Kim YB, Park D. The Neuroprotective Effects of Exosomes Derived from TSG101-Overexpressing Human Neural Stem Cells in a Stroke Model. Int J Mol Sci 2022; 23:ijms23179532. [PMID: 36076942 PMCID: PMC9455780 DOI: 10.3390/ijms23179532] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/18/2022] [Accepted: 08/20/2022] [Indexed: 11/16/2022] Open
Abstract
Although tissue-type plasminogen activator was approved by the FDA for early reperfusion of occluded vessels, there is a need for an effective neuroprotective drug for stroke patients. In this study, we established tumor susceptibility gene (TSG)101-overexpressing human neural stem cells (F3.TSG) and investigated whether they showed enhanced secretion of exosomes and whether treatment with exosomes during reperfusion alleviated ischemia-reperfusion-mediated brain damage. F3.TSG cells secreted higher amounts of exosomes than the parental F3 cells. In N2A cells subjected to oxygen–glucose deprivation (OGD), treatment with exosomes or coculture with F3.TSG cells significantly attenuated lactate dehydrogenase release, the mRNA expression of proinflammatory factors, and the protein expression of DNA-damage-related proteins. In a middle cerebral artery occlusion (MCAO) rat model, treatment with exosomes, F3 cells, or F3.TSG cells after 2 h of occlusion followed by reperfusion reduced the infarction volume and suppressed inflammatory cytokines, DNA-damage-related proteins, and glial fibrillary acidic protein, and upregulated several neurotrophic factors. Thus, TSG101-overexpressing neural stem cells showed enhanced exosome secretion; exosome treatment protected against MCAO-induced brain damage via anti-inflammatory activities, DNA damage pathway inhibition, and growth/trophic factor induction. Therefore, exosomes and F3.TSG cells can affect neuroprotection and functional recovery in acute stroke patients.
Collapse
Affiliation(s)
- Eun-Jung Yoon
- Department of Biology Education, Korea National University of Education, Cheongju 28173, Korea
- Department of Counseling, Health, and Kinesiology, College of Education and Human Development, Texas A&M University-San Antonio, One University Way, San Antonio, TX 78224, USA
| | - Yunseo Choi
- Department of Biology Education, Korea National University of Education, Cheongju 28173, Korea
| | - Tae Myoung Kim
- Central Research Institute, Designed Cells Co., Ltd., Cheongju 28576, Korea
| | - Ehn-Kyoung Choi
- Central Research Institute, Designed Cells Co., Ltd., Cheongju 28576, Korea
| | - Yun-Bae Kim
- Central Research Institute, Designed Cells Co., Ltd., Cheongju 28576, Korea
- College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea
| | - Dongsun Park
- Department of Biology Education, Korea National University of Education, Cheongju 28173, Korea
- Correspondence: ; Tel.: +82-43-230-3652
| |
Collapse
|
14
|
The Relationship Between Trichotillomania and Serum Brain-Derived Neurotrophic Factor Levels in Children and Adolescents: A Case-Control Study. Clin Neuropharmacol 2022; 45:117-121. [PMID: 35947418 DOI: 10.1097/wnf.0000000000000515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Trichotillomania (TTM) is a clinical psychiatric manifestation involving significant hair loss in association with recurrent hair-pulling behavior, the etiology of which is still unknown. Insufficiency or disorder in the synthesis of brain-derived neurotrophic factor (BDNF) is reported to be potentially associated with neurological, neurodegenerative, and psychiatric diseases in humans and animals. This study examines the relationship between serum BDNF levels and TTM. METHODS Ninety-four children and adolescents, 47 patients with TTM and a 47-member control group, were included in the study. Participants were administered the Schedule for Affective Disorders and Schizophrenia for School-Aged Children (6-18 Years) Present and Lifetime Version, and the members of the case group completed the Clinical Global Impression scale. Serum BDNF levels were determined from blood specimens collected from the study and control groups, and the results were subjected to statistical analysis. RESULTS Serum BDNF levels were 11.06 ± 1.9 ng/mL in the TTM group and 13.78 ± 2.2 ng/mL in the control group. Serum BDNF was significantly lower in the case group than in the control group. Moderate negative correlation was also determined between Clinical Global Impression scores and serum BDNF levels in the case group. CONCLUSIONS Low serum BDNF was associated with TTM and the severity thereof. Furthermore, more extensive studies are needed to elucidate this association.
Collapse
|
15
|
Orciani C, Hall H, Pentz R, Foret MK, Do Carmo S, Cuello AC. Long-term nucleus basalis cholinergic depletion induces attentional deficits and impacts cortical neurons and BDNF levels without affecting the NGF synthesis. J Neurochem 2022; 163:149-167. [PMID: 35921478 DOI: 10.1111/jnc.15683] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/26/2022] [Accepted: 07/29/2022] [Indexed: 11/26/2022]
Abstract
Basal forebrain cholinergic neurons (BFCNs) represent the main source of cholinergic innervation to the cortex and hippocampus and degenerate early in Alzheimer's disease (AD) progression. Phenotypic maintenance of BFCNs depends on levels of mature nerve growth factor (mNGF) and mature brain-derived neurotrophic factor (mBDNF), produced by target neurons and retrogradely transported to the cell body. Whether a reciprocal interaction where BFCN inputs impact neurotrophin availability and affect cortical neuronal markers is unknown. To address our hypothesis, we immunolesioned the nucleus basalis (nb), a basal forebrain cholinergic nuclei projecting mainly to the cortex, by bilateral stereotaxic injection of 192-IgG-Saporin (the cytotoxin Saporin binds p75ntr receptors expressed exclusively by BFCNs) in 2.5-month-old Wistar rats. At six months post-lesion, Saporin-injected rats (SAP) showed an impairment in a modified version of the 5-Choice Serial Reaction Time Task (5-choice task). Post-mortem analyses of the brain revealed a reduction of Choline Acetyltransferase-immunoreactive neurons compared to wild-type controls. A diminished number of cortical vesicular acetylcholine transporter-immunoreactive boutons was accompanied by a reduction in BDNF mRNA, mBDNF protein levels, markers of glutamatergic (vGluT1) and GABAergic (GAD65) neurons in the SAP-group compared to the controls. NGF mRNA, NGF precursor and mNGF protein levels were not affected. Additionally, cholinergic markers correlated with the attentional deficit and BDNF levels. Our findings demonstrate that while cholinergic nb loss impairs cognition and reduces cortical neuron markers, it produces differential effects on neurotrophin availability, affecting BDNF but not NGF levels.
Collapse
Affiliation(s)
- Chiara Orciani
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Helene Hall
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Rowan Pentz
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Morgan K Foret
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Sonia Do Carmo
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - A Claudio Cuello
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.,Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada.,Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada.,Department of Pharmacology, Oxford University, US (Visiting Professor)
| |
Collapse
|
16
|
van Niekerk EA, Kawaguchi R, Marques de Freria C, Groeniger K, Marchetto MC, Dupraz S, Bradke F, Geschwind DH, Gage FH, Tuszynski MH. Methods for culturing adult CNS neurons reveal a CNS conditioning effect. CELL REPORTS METHODS 2022; 2:100255. [PMID: 35880023 PMCID: PMC9308166 DOI: 10.1016/j.crmeth.2022.100255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/10/2022] [Accepted: 06/17/2022] [Indexed: 05/30/2023]
Abstract
Neuronal cultures provide a basis for reductionist insights that rely on molecular and pharmacological manipulation. However, the inability to culture mature adult CNS neurons limits our understanding of adult neuronal physiology. Here, we report methods for culturing adult central nervous system neurons in large numbers and across multiple brain regions for extended time periods. Primary adult neuronal cultures develop polarity; they establish segregated dendritic and axonal compartments, maintain resting membrane potentials, exhibit spontaneous and evoked electrical activity, and form neural networks. Cultured adult neurons isolated from different brain regions such as the hippocampus, cortex, brainstem, and cerebellum exhibit distinct cell morphologies, growth patterns, and spontaneous firing characteristics reflective of their regions of origin. Using adult motor cortex cultures, we identify a CNS "conditioning" effect after spinal cord injury. The ability to culture adult neurons offers a valuable tool for studying basic and therapeutic science of the brain.
Collapse
Affiliation(s)
- Erna A van Niekerk
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Riki Kawaguchi
- Departments of Neurology and Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | | | - Kimberly Groeniger
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Maria C Marchetto
- Department of Anthropology, University of California, San Diego, La Jolla, CA, USA
| | - Sebastian Dupraz
- Laboratory of Axon Growth and Regeneration, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Frank Bradke
- Laboratory of Axon Growth and Regeneration, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Daniel H Geschwind
- Departments of Neurology and Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Fred H Gage
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Mark H Tuszynski
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
- Veterans Administration Medical Center, San Diego, CA, USA
| |
Collapse
|
17
|
Xie WS, Shehzadi K, Ma HL, Liang JH. A Potential Strategy for Treatment of Neurodegenerative Disorders by Regulation of Adult Hippocampal Neurogenesis in Human Brain. Curr Med Chem 2022; 29:5315-5347. [DOI: 10.2174/0929867329666220509114232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/13/2022] [Accepted: 03/17/2022] [Indexed: 11/22/2022]
Abstract
Abstract:
Adult hippocampal neurogenesis is a multistage mechanism that continues throughout the lifespan of human and non-human mammals. These adult-born neurons in the central nervous system (CNS) play a significant role in various hippocampus-dependent processes, including learning, mood regulation, pattern recognition, etc. Reduction of adult hippocampal neurogenesis, caused by multiple factors such as neurological disorders and aging, would impair neuronal proliferation and differentiation and result in memory loss. Accumulating studies have indicated that functional neuron impairment could be restored by promoting adult hippocampal neurogenesis. In this review, we summarized the small molecules that could efficiently promote the process of adult neurogenesis, particularly the agents that have the capacity of crossing the blood-brain barrier (BBB), and showed in vivo efficacy in mammalian brains. This may pave the way for the rational design of drugs to treat humnan neurodegenerative disorders in the future.
Collapse
Affiliation(s)
- Wei-Song Xie
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Kiran Shehzadi
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Hong-Le Ma
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Jian-Hua Liang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
- Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing 314019, China
| |
Collapse
|
18
|
Uhl M, Schmeisser MJ, Schumann S. The Sexual Dimorphic Synapse: From Spine Density to Molecular Composition. Front Mol Neurosci 2022; 15:818390. [PMID: 35250477 PMCID: PMC8894598 DOI: 10.3389/fnmol.2022.818390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/20/2022] [Indexed: 11/13/2022] Open
Abstract
A synaptic sexual dimorphism is relevant in the context of multiple neurodevelopmental, neurodegenerative, and neuropsychiatric disorders. Many of these disorders show a different prevalence and progression in woman and man. A similar variance is also present in corresponding animal models. To understand and characterize this dimorphism in pathologies it is important to first understand sex differences in unaffected individuals. Therefore, sexual differences have been studied since 1788, first focusing on brain weight, size, and volume. But as these measures are not directly related to brain function, the investigation of sexual dimorphism also expanded to other organizational levels of the brain. This review is focused on sexual dimorphism at the synaptic level, as these specialized structures are the smallest functional units of the brain, determining cell communication, connectivity, and plasticity. Multiple differences between males and females can be found on the levels of spine density, synaptic morphology, and molecular synapse composition. These differences support the importance of sex-disaggregated data. The specificity of changes to a particular brain region or circuit might support the idea of a mosaic brain, in which each tile individually lies on a continuum from masculinization to feminization. Moreover, synapses can be seen as the smallest tiles of the mosaic determining the classification of larger areas.
Collapse
Affiliation(s)
- Mara Uhl
- Institute for Microscopic Anatomy and Neurobiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- Focus Program Translational Neurosciences, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Michael J. Schmeisser
- Institute for Microscopic Anatomy and Neurobiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- Focus Program Translational Neurosciences, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- *Correspondence: Michael J. Schmeisser,
| | - Sven Schumann
- Institute for Microscopic Anatomy and Neurobiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- Sven Schumann,
| |
Collapse
|
19
|
Gao L, Zhang Y, Sterling K, Song W. Brain-derived neurotrophic factor in Alzheimer's disease and its pharmaceutical potential. Transl Neurodegener 2022; 11:4. [PMID: 35090576 PMCID: PMC8796548 DOI: 10.1186/s40035-022-00279-0] [Citation(s) in RCA: 193] [Impact Index Per Article: 64.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 01/01/2022] [Indexed: 12/14/2022] Open
Abstract
Synaptic abnormalities are a cardinal feature of Alzheimer's disease (AD) that are known to arise as the disease progresses. A growing body of evidence suggests that pathological alterations to neuronal circuits and synapses may provide a mechanistic link between amyloid β (Aβ) and tau pathology and thus may serve as an obligatory relay of the cognitive impairment in AD. Brain-derived neurotrophic factors (BDNFs) play an important role in maintaining synaptic plasticity in learning and memory. Considering AD as a synaptic disorder, BDNF has attracted increasing attention as a potential diagnostic biomarker and a therapeutical molecule for AD. Although depletion of BDNF has been linked with Aβ accumulation, tau phosphorylation, neuroinflammation and neuronal apoptosis, the exact mechanisms underlying the effect of impaired BDNF signaling on AD are still unknown. Here, we present an overview of how BDNF genomic structure is connected to factors that regulate BDNF signaling. We then discuss the role of BDNF in AD and the potential of BDNF-targeting therapeutics for AD.
Collapse
Affiliation(s)
- Lina Gao
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, College of Pharmacy, Jining Medical University, Jining, 272067, Shandong, China
- Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Yun Zhang
- National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Keenan Sterling
- Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Weihong Song
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, College of Pharmacy, Jining Medical University, Jining, 272067, Shandong, China.
- Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada.
- National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, School of Mental Health and The Affiliated Kangning Hospital, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, 325001, Zhejiang, China.
| |
Collapse
|
20
|
Shekari A, Fahnestock M. Retrograde Axonal Transport of Neurotrophins in Basal Forebrain Cholinergic Neurons. Methods Mol Biol 2022; 2431:249-270. [PMID: 35412281 DOI: 10.1007/978-1-0716-1990-2_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Axonal transport is key for the survival and function of all neurons. This process is especially important in basal forebrain cholinergic neurons due to their extremely long and diffuse axonal projections. These neurons are critical for learning and memory and degenerate rapidly in age-related neurodegenerative disorders like Alzheimer's and Parkinson's disease. The vulnerability of these neurons to age-related neurodegeneration may be partially attributed to their reliance on retrograde axonal transport for neurotrophic support. Unfortunately, little is known about the molecular biology underlying the retrograde transport dynamics of these neurons due to the difficulty associated with their maintenance in vitro. Here, we outline a protocol for culturing primary rodent basal forebrain cholinergic neurons in microfluidic chambers, devices designed specifically for the study of axonal transport in vitro. We outline protocols for labeling neurotrophins and tracking neurotrophin transport in these neurons. Our protocols can also be used to study axonal transport in other types of primary neurons such as cortical and hippocampal neurons.
Collapse
Affiliation(s)
- Arman Shekari
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Margaret Fahnestock
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
21
|
Bohler MW, Chowdhury VS, Cline MA, Gilbert ER. Heat Stress Responses in Birds: A Review of the Neural Components. BIOLOGY 2021; 10:biology10111095. [PMID: 34827087 PMCID: PMC8614992 DOI: 10.3390/biology10111095] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/15/2021] [Accepted: 10/20/2021] [Indexed: 12/26/2022]
Abstract
Heat stress is one of the major environmental conditions causing significant losses in the poultry industry and having negative impacts on the world's food economy. Heat exposure causes several physiological impairments in birds, including oxidative stress, weight loss, immunosuppression, and dysregulated metabolism. Collectively, these lead not only to decreased production in the meat industry, but also decreases in the number of eggs laid by 20%, and overall loss due to mortality during housing and transit. Mitigation techniques have been discussed in depth, and include changes in air flow and dietary composition, improved building insulation, use of air cooling in livestock buildings (fogging systems, evaporation panels), and genetic alterations. Most commonly observed during heat exposure are reduced food intake and an increase in the stress response. However, very little has been explored regarding heat exposure, food intake and stress, and how the neural circuitry responsible for sensing temperatures mediate these responses. That thermoregulation, food intake, and the stress response are primarily mediated by the hypothalamus make it reasonable to assume that it is the central hub at which these systems interact and coordinately regulate downstream changes in metabolism. Thus, this review discusses the neural circuitry in birds associated with thermoregulation, food intake, and stress response at the level of the hypothalamus, with a focus on how these systems might interact in the presence of heat exposure.
Collapse
Affiliation(s)
- Mark W. Bohler
- Department of Animal and Poultry Sciences, 2160 Litton-Reaves Hall, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA; (M.W.B.); (M.A.C.)
| | - Vishwajit S. Chowdhury
- Laboratory of Stress Physiology and Metabolism, Faculty of Arts and Science, Kyushu University, Fukuoka 819-0395, Japan;
| | - Mark A. Cline
- Department of Animal and Poultry Sciences, 2160 Litton-Reaves Hall, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA; (M.W.B.); (M.A.C.)
| | - Elizabeth R. Gilbert
- Department of Animal and Poultry Sciences, 2160 Litton-Reaves Hall, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA; (M.W.B.); (M.A.C.)
- Correspondence: ; Tel.: +1-(540)-231-4750
| |
Collapse
|
22
|
Effect of Water and Ethanol Extracts from Hericium erinaceus Solid-State Fermented Wheat Product on the Protection and Repair of Brain Cells in Zebrafish Embryos. Molecules 2021; 26:molecules26113297. [PMID: 34070878 PMCID: PMC8198590 DOI: 10.3390/molecules26113297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/25/2021] [Accepted: 05/28/2021] [Indexed: 12/31/2022] Open
Abstract
Extracts from Hericium erinaceus can cause neural cells to produce nerve growth factor (NGF) and protect against neuron death. The objective of this study was to evaluate the effects of ethanol and hot water extracts from H. erinaceus solid-state fermented wheat product on the brain cells of zebrafish embryos in both pre-dosing protection mode and post-dosing repair mode. The results showed that 1% ethanol could effectively promote zebrafish embryo brain cell death. Both 200 ppm of ethanol and water extracts from H. erinaceus solid-state fermented wheat product protected brain cells and significantly reduced the death of brain cells caused by 1% ethanol treatment in zebrafish. Moreover, the zebrafish embryos were immersed in 1% ethanol for 4 h to cause brain cell damage and were then transferred and soaked in the 200 ppm of ethanol and water extracts from H. erinaceus solid-state fermented wheat product to restore the brain cells damaged by the 1% ethanol. However, the 200 ppm extracts from the unfermented wheat medium had no protective and repairing effects. Moreover, 200 ppm of ethanol and water extracts from H. erinaceus fruiting body had less significant protective and restorative effects on the brain cells of zebrafish embryos. Both the ethanol and hot water extracts from H. erinaceus solid-state fermented wheat product could protect and repair the brain cells of zebrafish embryos damaged by 1% ethanol. Therefore, it has great potential as a raw material for neuroprotective health product.
Collapse
|
23
|
Braschi C, Capsoni S, Narducci R, Poli A, Sansevero G, Brandi R, Maffei L, Cattaneo A, Berardi N. Intranasal delivery of BDNF rescues memory deficits in AD11 mice and reduces brain microgliosis. Aging Clin Exp Res 2021; 33:1223-1238. [PMID: 32676979 PMCID: PMC8081712 DOI: 10.1007/s40520-020-01646-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 06/29/2020] [Indexed: 01/22/2023]
Abstract
A decrease in brain-derived neurotrophic factor (BDNF), a neurotrophin essential for synaptic function, plasticity and neuronal survival, is evident early in the progression of Alzheimer's disease (AD), being apparent in subjects with mild cognitive impairment or mild AD, and both proBDNF and mature BDNF levels are positively correlated with cognitive measures. BDNF delivery is, therefore, considered of great interest as a potentially useful therapeutic strategy to contrast AD. Invasive BDNF administration has indeed been recently used in animal models of AD with promising results in rescuing memory deficits, synaptic density and cell loss. Here, we tested whether non-invasive intranasal administration of different BDNF concentrations after the onset of cognitive and anatomical deficits (6 months of age) could rescue neuropathological and memory deficits in AD11 mice, a model of NGF deprivation-induced neurodegeneration. In addition to AD hallmarks, we investigated BDNF effects on microglia presence in the brain of AD11 mice, since alterations in microglia activation have been associated with ageing-related cognitive decline and with the progression of neurodegenerative diseases, including AD. We found that intranasal delivery of 42 pmol BDNF (1 μM), but not PBS, was sufficient to completely rescue performance of AD11 mice both in the object recognition test and in the object context test. No further improvement was obtained with 420 pmol (10 μM) BDNF dose. The strong improvement in memory performance in BDNF-treated mice was not accompanied by an amelioration of AD-like pathology, Aβ burden, tau hyperphosphorylation and cholinergic deficit, but there was a dramatic decrease of CD11b immunoreactive brain microglia. These results reinforce the potential therapeutic uses of BDNF in AD and the non-invasive intranasal route as an effective delivery strategy of BDNF to the brain. They also strengthen the connection between neuroinflammation and neurodegenerative dementia and suggest microglia as a possible mediator of BDNF therapeutic actions in the brain.
Collapse
Affiliation(s)
- Chiara Braschi
- Institute of Neuroscience of the CNR, Via G. Moruzzi 1, 56124, Pisa, Italy
- Department of Neuroscience, Psychology, Drug Research, Child Health (NEUROFARBA), Florence University, Florence, Italy
| | - Simona Capsoni
- Scuola Normale Superiore, Pisa, Italy
- Human Physiology Section, Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, Ferrara, Italy
| | - Roberta Narducci
- Institute of Neuroscience of the CNR, Via G. Moruzzi 1, 56124, Pisa, Italy
- Department of Neuroscience, Psychology, Drug Research, Child Health (NEUROFARBA), Florence University, Florence, Italy
| | | | - Gabriele Sansevero
- Institute of Neuroscience of the CNR, Via G. Moruzzi 1, 56124, Pisa, Italy
- IRCCS Stella Maris, Calambrone, Pisa, Italy
| | | | - Lamberto Maffei
- Institute of Neuroscience of the CNR, Via G. Moruzzi 1, 56124, Pisa, Italy
- Scuola Normale Superiore, Pisa, Italy
| | - Antonino Cattaneo
- Scuola Normale Superiore, Pisa, Italy
- European Brain Research Institute, Rome, Italy
| | - Nicoletta Berardi
- Institute of Neuroscience of the CNR, Via G. Moruzzi 1, 56124, Pisa, Italy.
- Department of Neuroscience, Psychology, Drug Research, Child Health (NEUROFARBA), Florence University, Florence, Italy.
| |
Collapse
|
24
|
Mori Y, Tsuji M, Oguchi T, Kasuga K, Kimura A, Futamura A, Sugimoto A, Kasai H, Kuroda T, Yano S, Hieda S, Kiuchi Y, Ikeuchi T, Ono K. Serum BDNF as a Potential Biomarker of Alzheimer's Disease: Verification Through Assessment of Serum, Cerebrospinal Fluid, and Medial Temporal Lobe Atrophy. Front Neurol 2021; 12:653267. [PMID: 33967943 PMCID: PMC8102980 DOI: 10.3389/fneur.2021.653267] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 03/16/2021] [Indexed: 12/16/2022] Open
Abstract
There is an urgent need to establish blood biomarkers for Alzheimer's disease (AD). Although it has been speculated that brain-derived neurotrophic factor (BDNF) is associated with AD, whether it can be used as a blood biomarker has yet to be determined. We used serum, cerebrospinal fluid (CSF), and medial temporal lobe atrophy from patients with AD to evaluate the association of BDNF with AD and assess its severity. For the blood analysis, 66 participants [21 normal controls (NCs) with normal cognitive function, 22 patients with mild cognitive impairment (MCI) due to AD, and 23 patients with AD] were included. For the CSF analysis, 30 participants were included. Magnetic resonance imaging, including a voxel-based specific regional analysis system for AD, and a Mini Mental State Examination were performed. Serum levels of BDNF and CSF levels of amyloid-β42, total tau, and phosphorylated tau were measured using ELISA. Serum BDNF levels were significantly lower in the MCI due to AD group than in the NC group (p = 0.037). Although there was no significant difference in the AD group, there was a downward trend compared to the NC group. Serum BDNF levels were positively correlated with CSF Aβ42 levels (r = 0.49, p = 0.005). There was a significant correlation between serum BDNF levels and medial temporal lobe atrophy. Decreased serum BDNF can potentially be used as a biomarker for early AD detection. Early detection of AD with a less invasive blood test is very beneficial, as it allows for intervention before dementia progresses.
Collapse
Affiliation(s)
- Yukiko Mori
- Department of Pharmacology, School of Medicine, Showa University, Tokyo, Japan
- Pharmacological Research Center, Showa University, Tokyo, Japan
- Division of Neurology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Mayumi Tsuji
- Pharmacological Research Center, Showa University, Tokyo, Japan
| | - Tatsunori Oguchi
- Department of Pharmacology, School of Medicine, Showa University, Tokyo, Japan
- Pharmacological Research Center, Showa University, Tokyo, Japan
| | - Kensaku Kasuga
- Department of Molecular Genetics, Brain Research Institute, Niigata University, Niigata, Japan
| | - Atsushi Kimura
- Department of Pharmacology, School of Medicine, Showa University, Tokyo, Japan
- Pharmacological Research Center, Showa University, Tokyo, Japan
- Division of Neurology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Akinori Futamura
- Division of Neurology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Azusa Sugimoto
- Division of Neurology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Hideyo Kasai
- Division of Neurology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Takeshi Kuroda
- Division of Neurology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Satoshi Yano
- Division of Neurology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Sotaro Hieda
- Division of Neurology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Yuji Kiuchi
- Department of Pharmacology, School of Medicine, Showa University, Tokyo, Japan
- Pharmacological Research Center, Showa University, Tokyo, Japan
| | - Takeshi Ikeuchi
- Department of Molecular Genetics, Brain Research Institute, Niigata University, Niigata, Japan
| | - Kenjiro Ono
- Division of Neurology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| |
Collapse
|
25
|
Voigt RM, Raeisi S, Yang J, Leurgans S, Forsyth CB, Buchman AS, Bennett DA, Keshavarzian A. Systemic brain derived neurotrophic factor but not intestinal barrier integrity is associated with cognitive decline and incident Alzheimer's disease. PLoS One 2021; 16:e0240342. [PMID: 33661922 PMCID: PMC7932071 DOI: 10.1371/journal.pone.0240342] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 02/15/2021] [Indexed: 11/19/2022] Open
Abstract
The inflammatory hypothesis posits that sustained neuroinflammation is sufficient to induce neurodegeneration and the development of Alzheimer's disease (AD) and Alzheimer's dementia. One potential source of inflammation is the intestine which harbors pro-inflammatory microorganisms capable of promoting neuroinflammation. Systemic inflammation is robustly associated with neuroinflammation as well as low levels of brain derived neurotrophic factor (BDNF) in the systemic circulation and brain. Thus, in this pilot study, we tested the hypothesis that intestinal barrier dysfunction precedes risk of death, incident AD dementia and MCI, cognitive impairment and neuropathology. Serum BDNF was associated with changes in global cognition, working memory, and perceptual speed but not risk of death, incident AD dementia, incident MCI, or neuropathology. Neither of the markers of intestinal barrier integrity examined, including lipopolysaccharide binding protein (LBP) nor intestinal fatty acid binding protein (IFABP), were associated with risk of death, incident AD dementia, incident mild cognitive impairment (MCI), change in cognition (global or domains), or neuropathology. Taken together, the data in this pilot study suggest that intestinal barrier dysfunction does not precede diagnosis of AD or MCI, changes in cognition, or brain pathology. However, since MCI and AD are related to global cognition, the findings with BDNF and the contiguous cognitive measures suggest low power with the trichotomous cognitive status measures. Future studies with larger sample sizes are necessary to further investigate the results from this pilot study.
Collapse
Affiliation(s)
- Robin M. Voigt
- Division of Digestive Diseases and Nutrition, Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, United States of America
- * E-mail:
| | - Shohreh Raeisi
- Division of Digestive Diseases and Nutrition, Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Jingyun Yang
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, Illinois, United States of America
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Sue Leurgans
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, Illinois, United States of America
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Christopher B. Forsyth
- Division of Digestive Diseases and Nutrition, Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Aron S. Buchman
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, Illinois, United States of America
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, United States of America
| | - David A. Bennett
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, Illinois, United States of America
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Ali Keshavarzian
- Division of Digestive Diseases and Nutrition, Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, United States of America
| |
Collapse
|
26
|
Goel A, Ncho CM, Choi YH. Regulation of gene expression in chickens by heat stress. J Anim Sci Biotechnol 2021; 12:11. [PMID: 33431031 PMCID: PMC7798204 DOI: 10.1186/s40104-020-00523-5] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 11/16/2020] [Indexed: 01/10/2023] Open
Abstract
Abstract High ambient temperatures are a critical challenge in the poultry industry which is a key producer of the animal-based food. To evaluate heat stress levels, various parameters have been used, including growth rates, blood metabolites, and hormones. The most recent advances have explored expression profiling of genes that may play vital roles under stress. A high ambient temperature adversely affects nutrient uptake and is known to modulate the expression of genes encoding for sodium-dependent glucose transporters, glucose transporters, excitatory amino acid transporters, and fatty acid-binding proteins which are responsible for the absorption of macronutrients in the intestine. Various defensive activities are stimulated to protect the cell of different tissues from the heat-generated stress, including expression of early stress response genes coding for heat shock protein (HSP), c-FOS like protein, brain-derived neurotrophic factor (BDNF), and neuronal nitric oxide synthase (nNOS); antioxidant enzyme genes such as superoxide dismutase (SOD), catalase (CAT), and nicotinamide adenine dinucleotide phosphate oxidase (NOX4); and immune-related genes such as cytokines and toll-like receptors (TLRs). The potential role of HSPs in protecting the cell from stress and their presence in several tissues make them suitable markers to be evaluated under heat stress. BDNF and c-FOS genes expressed in the hypothalamus help cells to adapt to an adverse environment. Heat causes damage to the cell by generating reactive oxygen species (ROS). The NOX4 gene is the inducer of ROS under heat stress, which is in turns controlled by antioxidant enzymes such as SOD and CAT. TLRs are responsible for protecting against pathogenic attacks arising from enhanced membrane permeability, and cytokines help in controlling the pathogen and maintaining homeostasis. Thus, the evaluation of nutrient transporters and defense mechanisms using the latest molecular biology tools has made it possible to shed light on the complex cellular mechanism of heat-stressed chickens. As the impacts of heat stress on the above-mentioned aspects are beyond the extent to which the reduced growth performance could be explained, heat stress has more specific effects on the regulation of these genes than previously thought. Graphical abstract Effect of heat exposure on the nutrient transporters, antioxidants, and immune inflammation in chickens. Most of the nutrient transporters were suppressed under heat stress. Increase in the production of reactive oxygen species resulted in enhanced production of antioxidant enzymes. Expression of various proinflammatory cytokines and toll-like receptors were enhanced due to heat stress in chicken.
![]()
Collapse
Affiliation(s)
- Akshat Goel
- Department of Animal Science, Gyeongsang National University, Jinju, 52828, Republic of Korea.,Division of Applied Life Sciences (BK21 Plus Program), Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Chris Major Ncho
- Department of Animal Science, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Yang-Ho Choi
- Department of Animal Science, Gyeongsang National University, Jinju, 52828, Republic of Korea. .,Division of Applied Life Sciences (BK21 Plus Program), Gyeongsang National University, Jinju, 52828, Republic of Korea. .,Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea.
| |
Collapse
|
27
|
Galle S, Licher S, Milders M, Deijen JB, Scherder E, Drent M, Ikram A, van Duijn CM. Plasma Brain-Derived Neurotropic Factor Levels Are Associated with Aging and Smoking But Not with Future Dementia in the Rotterdam Study. J Alzheimers Dis 2021; 80:1139-1149. [PMID: 33646145 PMCID: PMC8150496 DOI: 10.3233/jad-200371] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Brain-derived neurotropic factor (BDNF) plays a vital role in neuronal survival and plasticity and facilitates long-term potentiation, essential for memory. Alterations in BDNF signaling have been associated with cognitive impairment, dementia, and Alzheimer's disease. Although peripheral BDNF levels are reduced in dementia patients, it is unclear whether changes in BDNF levels precede or follow dementia onset. OBJECTIVE In the present study, we examined the association between BDNF plasma levels and dementia risk over a follow-up period of up to 16 years. METHODS Plasma BDNF levels were assessed in 758 participants of the Rotterdam Study. Dementia was assessed from baseline (1997-1999) to follow-up until January 2016. Associations of plasma BDNF and incident dementia were assessed with Cox proportional hazards models, adjusted for age and sex. Associations between plasma BDNF and lifestyle and metabolic factors are investigated using linear regression. RESULTS During a follow up of 3,286 person-years, 131 participants developed dementia, of whom 104 had Alzheimer's disease. We did not find an association between plasma BDNF and risk of dementia (adjusted hazard ratio 0.99; 95%CI 0.84-1.16). BDNF levels were positively associated with age (B = 0.003, SD = 0.001, p = 0.002), smoking (B = 0.08, SE = 0.01, p = < 0.001), and female sex (B = 0.03, SE = 0.01, p = 0.03), but not with physical activity level (B = -0.01, SE = 0.01, p = 0.06). CONCLUSION The findings suggest that peripheral BDNF levels are not associated with an increased risk of dementia.
Collapse
Affiliation(s)
- Sara Galle
- Department of Clinical, Neuro- and Developmental Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Silvan Licher
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Maarten Milders
- Department of Clinical, Neuro- and Developmental Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Jan Berend Deijen
- Department of Clinical, Neuro- and Developmental Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Hersencentrum Mental Health Institute, Amsterdam, The Netherlands
| | - Erik Scherder
- Department of Clinical, Neuro- and Developmental Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Madeleine Drent
- Department of Clinical, Neuro- and Developmental Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Internal Medicine, Endocrinology Section, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Arfan Ikram
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Cornelia M. van Duijn
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Oxford, United Kingdom
| |
Collapse
|
28
|
Kang DH, Choi BY, Lee SH, Kho AR, Jeong JH, Hong DK, Kang BS, Park MK, Song HK, Choi HC, Lim MS, Suh SW. Effects of Cerebrolysin on Hippocampal Neuronal Death After Pilocarpine-Induced Seizure. Front Neurosci 2020; 14:568813. [PMID: 33177978 PMCID: PMC7596733 DOI: 10.3389/fnins.2020.568813] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 09/18/2020] [Indexed: 12/11/2022] Open
Abstract
Epilepsy is one of the most common and severe brain diseases. The exact cause of epilepsy is unclear. Epilepsy often occurs following brain damage, such as traumatic brain injury (TBI) and ischemia. Cerebrolysin is a porcine brain peptide that is a unique neurotropic and neuroprotective agent. Cerebrolysin has been reported to increase neuroprotective effects after TBI, ischemia, and other CNS diseases. However, the effects of cerebrolysin on seizures are not known. Therefore, this study aimed to investigate the effects of neuropeptide cerebrolysin on neuronal death in the hippocampus after a seizure. To confirm the effects of cerebrolysin, we used a pilocarpine-induced seizure animal model. Cerebrolysin (2.5 ml/kg, i.p., once per day for 7 days) was immediately injected after a seizure induction. After 1 week, we obtained brain tissues and performed staining to histologically evaluate the potentially protective effects of cerebrolysin on seizure-induced neuronal death in the hippocampus. We found that cerebrolysin decreased hippocampal neuronal death after a seizure. In addition, an increase in brain-derived neurotrophic factor (BDNF) was confirmed through Western blot analysis to further support our hypothesis. Therefore, the present study suggests that the administration of cerebrolysin can be a useful therapeutic tool for preventing neuronal death after a seizure.
Collapse
Affiliation(s)
- Dong Hyeon Kang
- Department of Physiology, College of Medicine, Hallym University, Chuncheon, South Korea
- Neurology, College of Medicine, Hallym University, Chuncheon, South Korea
| | - Bo Young Choi
- Department of Physiology, College of Medicine, Hallym University, Chuncheon, South Korea
| | - Song Hee Lee
- Department of Physiology, College of Medicine, Hallym University, Chuncheon, South Korea
| | - A Ra Kho
- Department of Physiology, College of Medicine, Hallym University, Chuncheon, South Korea
| | - Jeong Hyun Jeong
- Department of Physiology, College of Medicine, Hallym University, Chuncheon, South Korea
| | - Dae Ki Hong
- Department of Physiology, College of Medicine, Hallym University, Chuncheon, South Korea
| | - Beom Seok Kang
- Department of Physiology, College of Medicine, Hallym University, Chuncheon, South Korea
| | - Min Kyu Park
- Department of Physiology, College of Medicine, Hallym University, Chuncheon, South Korea
| | - Hong Ki Song
- Neurology, College of Medicine, Hallym University, Chuncheon, South Korea
- Hallym Institute of Epilepsy Research, Chuncheon, South Korea
| | - Hui Chul Choi
- Neurology, College of Medicine, Hallym University, Chuncheon, South Korea
- Hallym Institute of Epilepsy Research, Chuncheon, South Korea
| | - Man-Sup Lim
- Department of Medical Education, College of Medicine, Hallym University, Chuncheon, South Korea
| | - Sang Won Suh
- Department of Physiology, College of Medicine, Hallym University, Chuncheon, South Korea
| |
Collapse
|
29
|
A Simple Differentiation Protocol for Generation of Induced Pluripotent Stem Cell-Derived Basal Forebrain-Like Cholinergic Neurons for Alzheimer's Disease and Frontotemporal Dementia Disease Modeling. Cells 2020; 9:cells9092018. [PMID: 32887382 PMCID: PMC7564334 DOI: 10.3390/cells9092018] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/20/2020] [Accepted: 08/29/2020] [Indexed: 12/20/2022] Open
Abstract
The study of neurodegenerative diseases using pluripotent stem cells requires new methods to assess neurodevelopment and neurodegeneration of specific neuronal subtypes. The cholinergic system, characterized by its use of the neurotransmitter acetylcholine, is one of the first to degenerate in Alzheimer’s disease and is also affected in frontotemporal dementia. We developed a differentiation protocol to generate basal forebrain-like cholinergic neurons (BFCNs) from induced pluripotent stem cells (iPSCs) aided by the use of small molecule inhibitors and growth factors. Ten iPSC lines were successfully differentiated into BFCNs using this protocol. The neuronal cultures were characterised through RNA and protein expression, and functional analysis of neurons was confirmed by whole-cell patch clamp. We have developed a reliable protocol using only small molecule inhibitors and growth factors, while avoiding transfection or cell sorting methods, to achieve a BFCN culture that expresses the characteristic markers of cholinergic neurons.
Collapse
|
30
|
Swimming exercise improves cognitive and behavioral disorders in male NMRI mice with sporadic Alzheimer-like disease. Physiol Behav 2020; 223:113003. [DOI: 10.1016/j.physbeh.2020.113003] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/16/2020] [Accepted: 06/04/2020] [Indexed: 12/11/2022]
|
31
|
Niu Y, Wang T, Liang S, Li W, Hu X, Wu X, Jin F. Sex-dependent aberrant PFC development in the adolescent offspring rats exposed to variable prenatal stress. Int J Dev Neurosci 2020; 80:464-476. [PMID: 32358823 DOI: 10.1002/jdn.10034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 04/27/2020] [Accepted: 04/27/2020] [Indexed: 01/26/2023] Open
Abstract
Adolescence is a remarkable period of brain development. Prenatal stress can increase the risk of various neuropsychiatric disorders. This research investigated neurochemical and behavioural changes in the offspring rats (especially adolescences) who were treated with repeated variable prenatal stress (PNS) during the third week of gestation. The study tested the concentration of brain-derived neurotrophic factor (BDNF), cluster of differentiation 68 (CD68), synaptotagmin-1(Syt-1), 5-hydroxytryptamine (5-HT), dopamine (DA), glucocorticoid receptors (GRs) and oestrogen receptors (ERs) in the PFC (prefrontal cortex). We also tested prepulse inhibition (PPI) of the acoustic startle reflex (ASR) (a measure of sensorimotor gating). The main results were as follows: PNS increased the BDNF and CD68 concentrations in adolescent females, and increased the Syt-1 concentration in adolescent males. The increases in BDNF/CD68 concentration (in females) and Syt-1/DA concentration (in males) with age were disturbed by PNS, and PNS changed the sex differences in CD68 concentration in adolescence and disturbed the sex differences in the Syt-1 concentration (in adolescence) and DA concentration (in adults). In conclusion, we found that PNS lead to Sex-dependent aberrant PFC development, and might accelerate the development of the adolescent PFC, and so that lessened the age difference (between adolescence and adulthood) and the sex difference.
Collapse
Affiliation(s)
- Yunxia Niu
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.,CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China.,School of Vocational Education, Tianjin University of Technology and Education, Tianjin, China
| | - Tao Wang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China
| | - Shan Liang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Wei Li
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China
| | - Xu Hu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China
| | - Xiaoli Wu
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.,CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China
| | - Feng Jin
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China
| |
Collapse
|
32
|
Dong BE, Chen H, Sakata K. BDNF deficiency and enriched environment treatment affect neurotransmitter gene expression differently across ages. J Neurochem 2020; 154:41-55. [PMID: 32222968 DOI: 10.1111/jnc.15017] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/24/2020] [Accepted: 03/19/2020] [Indexed: 12/20/2022]
Abstract
Deficiency of activity-induced expression of brain-derived neurotrophic factor (BDNF) disturbs neurotransmitter gene expression. Enriched environment treatment (EET) ameliorates the defects. However, how BDNF deficiency and EET affect the neurotransmitter gene expression differently across ages remains unclear. We addressed this question by determining the neurotransmitter gene expression across three life stages in wild-type and activity-dependent BDNF-deficient (KIV) mice. Mice received 2-months of standard control treatment (SCT) or EET at early-life development (ED: 0-2 months), young adulthood (2-4 months), and old adulthood (12-14 months) (N = 16/group). Half of these mice received additional 1-month SCT to examine persisting EET effects. High-throughput quantitative reverse transcription polymerase chain reaction measured expression of 81 genes for dopamine, adrenaline, serotonin, gamma aminobutyric acid, glutamate, acetylcholine, and BDNF systems in the frontal cortex (FC) and hippocampus. Results revealed that BDNF deficiency mostly reduced neurotransmitter gene expression, greatest at ED in the FC. EET increased expression of a larger number of genes at ED than adulthood, particularly in the KIV FC. Many genes down-regulated in KIV mice were up-regulated by EET, which persisted when EET was provided at ED (e.g., 5-hydroxytryptamine (serotonin) transporter [5HTT], ADRA1D, GRIA3, GABRA5, GABBR2). In both the regions, BDNF deficiency decreased the density of gene co-expression network specifically at ED, while EET increased the density and hub genes (e.g., GAT1, GABRG3, GRIN1, CHRNA7). These results suggest that BDNF deficiency, which occurs under chronic stress, causes neurotransmitter dysregulations prominently at ED, particularly in the FC. EET at ED may be most effective to normalize the dysregulations, providing persisting effects later in life. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. More information about the Open Science badges can be found at https://cos.io/our-services/open-science-badges/.
Collapse
Affiliation(s)
- Brittany E Dong
- Department of Pharmacology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Hao Chen
- Department of Pharmacology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Kazuko Sakata
- Department of Pharmacology, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
33
|
Treadmill exercise enhances the promoting effects of preconditioned stem cells on memory and neurogenesis in Aβ-induced neurotoxicity in the rats. Life Sci 2020; 249:117482. [DOI: 10.1016/j.lfs.2020.117482] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 02/26/2020] [Accepted: 02/28/2020] [Indexed: 12/11/2022]
|
34
|
Sasan H, Hashemabadi M, Amandadi M, Ravan H. Alteration in the Expression of Parkinson’s-Related Genes in Rat Hippocampus by Exercise and Morphine Treatments. RUSS J GENET+ 2020. [DOI: 10.1134/s1022795420040122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
35
|
Kim J, Shin K, Cha Y, Ban YH, Park SK, Jeong HS, Park D, Choi EK, Kim YB. Neuroprotective effects of human neural stem cells over-expressing choline acetyltransferase in a middle cerebral artery occlusion model. J Chem Neuroanat 2019; 103:101730. [PMID: 31837389 DOI: 10.1016/j.jchemneu.2019.101730] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 10/25/2022]
Abstract
Stroke is one of the most-devastating brain diseases causing acute death or permanent disability. Although tissue-type plasminogen activator was approved by Food and Drug Administration for early reperfusion of the occluded vessels, oxidative injury may cause extensive brain infarction. Accordingly, there is a need for effective neuroprotection during reperfusion, and stem cell-based therapeutic approaches should fulfill this requirement. We established human neural stem cells (NSCs) encoding gene of choline acetyltransferase (F3.ChAT), an acetylcholine-synthesizing enzyme, and investigated whether infusion of the F3.ChAT cells attenuate the ischemia-reperfusion brain damage in a rat model of middle cerebral artery occlusion (MCAO). F3.ChAT cells were found to produce much higher amounts of ChAT as well as neuroprotective and anti-inflammatory neurotrophins than their parental F3 NSCs. After 2-h occlusion, the artery was reperfused, along with intravenous infusion of the stem cells (1 × 106 cells/rat). Administration of the F3.ChAT cells markedly reduced the infarction volume and improved both the cognitive dysfunction and behavioural deficits of MCAO animals, in which F3.ChAT cells were superior to F3 cells. F3.ChAT cells not only restored microtubule-associated protein-2, a neuronal cytoskeletal protein, and preserved microvessels, but also suppressed lipid peroxidation, pro-inflammatory cytokines, glial fibrillary acidic protein, and intercellular adhesion molecule-1 in the brain tissues. The results demonstrate that early intravenous infusion of NSCs expressing ChAT and neurotrophins attenuate brain and capillary injuries and restore neurobehavioural functions via neuroprotective and anti-inflammatory activities, and that F3.ChAT cells could be a candidate for the neuroprotection and functional recovery of acute stroke patients.
Collapse
Affiliation(s)
- Jihyun Kim
- College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Kyungha Shin
- College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Yeseul Cha
- College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Young-Hwan Ban
- College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Sung Kyeong Park
- Daejeon Health Institute of Technology, Daejeon, Republic of Korea
| | - Heon Sang Jeong
- Department of Food Science and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Dongsun Park
- Department of Biology Education, Korea National University of Education, Cheongju, Chungbuk, Republic of Korea
| | - Ehn-Kyoung Choi
- College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Yun-Bae Kim
- College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea.
| |
Collapse
|
36
|
Reduced Cholinergic Activity in the Hippocampus of Hippocampal Cholinergic Neurostimulating Peptide Precursor Protein Knockout Mice. Int J Mol Sci 2019; 20:ijms20215367. [PMID: 31661900 PMCID: PMC6862429 DOI: 10.3390/ijms20215367] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/24/2019] [Accepted: 10/25/2019] [Indexed: 12/20/2022] Open
Abstract
The cholinergic efferent network from the medial septal nucleus to the hippocampus has an important role in learning and memory processes. This cholinergic projection can generate theta oscillations in the hippocampus to efficiently encode novel information. Hippocampal cholinergic neurostimulating peptide (HCNP) induces acetylcholine synthesis in medial septal nuclei. HCNP is processed from the N-terminal region of a 186 amino acid, 21 kD HCNP precursor protein called HCNP-pp (also known as Raf kinase inhibitory protein (RKIP) and phosphatidylethanolamine-binding protein 1 (PEBP1)). In this study, we generated HCNP-pp knockout (KO) mice and assessed their cholinergic septo-hippocampal projection, local field potentials in CA1, and behavioral phenotypes. No significant behavioral phenotype was observed in HCNP-pp KO mice. However, theta power in the CA1 of HCNP-pp KO mice was significantly reduced because of fewer cholineacetyltransferase-positive axons in the CA1 stratum oriens. These observations indicated disruption of cholinergic activity in the septo-hippocampal network. Our study demonstrates that HCNP may be a cholinergic regulator in the septo-hippocampal network.
Collapse
|
37
|
Kim H, Hur SW, Park JB, Seo J, Shin JJ, Kim S, Kim M, Han DH, Park J, Park JM, Kim SJ, Chun Y. Histone demethylase PHF2 activates CREB and promotes memory consolidation. EMBO Rep 2019; 20:e45907. [PMID: 31359606 PMCID: PMC6726911 DOI: 10.15252/embr.201845907] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 07/01/2019] [Accepted: 07/08/2019] [Indexed: 01/21/2023] Open
Abstract
Long-term memory formation is attributed to experience-dependent gene expression. Dynamic changes in histone methylation are essential for the epigenetic regulation of memory consolidation-related genes. Here, we demonstrate that the plant homeodomain finger protein 2 (PHF2) histone demethylase is upregulated in the mouse hippocampus during the experience phase and plays an essential role in memory formation. PHF2 promotes the expression of memory-related genes by epigenetically reinforcing the TrkB-CREB signaling pathway. In behavioral tests, memory formation is enhanced by transgenic overexpression of PHF2 in mice, but is impaired by silencing PHF2 in the hippocampus. Electrophysiological studies reveal that PHF2 elevates field excitatory postsynaptic potential (fEPSP) and NMDA receptor-mediated evoked excitatory postsynaptic current (EPSC) in CA1 pyramidal neurons, suggesting that PHF2 promotes long-term potentiation. This study provides insight into the epigenetic regulation of learning and memory formation, which advances our knowledge to improve memory in patients with degenerative brain diseases.
Collapse
Affiliation(s)
- Hye‐Jin Kim
- Department of Physiology and Biomedical ScienceSeoul National University College of MedicineSeoulKorea
- Ischemic/Hypoxic disease InstitutesSeoul National University College of MedicineSeoulKorea
| | - Sung Won Hur
- Department of Physiology and Biomedical ScienceSeoul National University College of MedicineSeoulKorea
| | - Jun Bum Park
- Department of Physiology and Biomedical ScienceSeoul National University College of MedicineSeoulKorea
| | - Jieun Seo
- Department of Physiology and Biomedical ScienceSeoul National University College of MedicineSeoulKorea
| | - Jae Jin Shin
- Department of Physiology and Biomedical ScienceSeoul National University College of MedicineSeoulKorea
- Center for cognition and SocialityInstitute for Basic Science (IBS)DaejeonKorea
| | - Seon‐Young Kim
- Department of Physiology and Biomedical ScienceSeoul National University College of MedicineSeoulKorea
| | - Myoung‐Hwan Kim
- Department of Physiology and Biomedical ScienceSeoul National University College of MedicineSeoulKorea
| | - Do Hyun Han
- Proteomics Core FacilityBiomedical Research InstituteSeoul National University HospitalSeoulKorea
| | - Jong‐Wan Park
- Ischemic/Hypoxic disease InstitutesSeoul National University College of MedicineSeoulKorea
| | - Joo Min Park
- Center for cognition and SocialityInstitute for Basic Science (IBS)DaejeonKorea
| | - Sang Jeong Kim
- Department of Physiology and Biomedical ScienceSeoul National University College of MedicineSeoulKorea
- Ischemic/Hypoxic disease InstitutesSeoul National University College of MedicineSeoulKorea
| | - Yang‐Sook Chun
- Department of Physiology and Biomedical ScienceSeoul National University College of MedicineSeoulKorea
- Ischemic/Hypoxic disease InstitutesSeoul National University College of MedicineSeoulKorea
| |
Collapse
|
38
|
Abstract
There are 3 common physiological estrogens, of which estradiol (E2) is seen to decline rapidly over the menopausal transition. This decline in E2 has been associated with a number of changes in the brain, including cognitive changes, effects on sleep, and effects on mood. These effects have been demonstrated in both rodent and non-human preclinical models. Furthermore, E2 interactions have been indicated in a number of neuropsychiatric disorders, including Alzheimer's disease, schizophrenia, and depression. In normal brain aging, there are a number of systems that undergo changes and a number of these show interactions with E2, particularly the cholinergic system, the dopaminergic system, and mitochondrial function. E2 treatment has been shown to ameliorate some of the behavioral and morphological changes seen in preclinical models of menopause; however, in clinical populations, the effects of E2 treatment on cognitive changes after menopause are mixed. The future use of sex hormone treatment will likely focus on personalized or precision medicine for the prevention or treatment of cognitive disturbances during aging, with a better understanding of who may benefit from such treatment.
Collapse
Affiliation(s)
- Jason K Russell
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, 37232, USA
| | - Carrie K Jones
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, 37232, USA
| | - Paul A Newhouse
- Center for Cognitive Medicine, Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, 37212, USA.
- Geriatric Research, Education, and Clinical Center (GRECC), Tennessee VA Health Systems, Nashville, TN, 37212, USA.
| |
Collapse
|
39
|
Adamson SXF, Shen X, Jiang W, Lai V, Wang X, Shannahan JH, Cannon JR, Chen J, Zheng W. Subchronic Manganese Exposure Impairs Neurogenesis in the Adult Rat Hippocampus. Toxicol Sci 2019; 163:592-608. [PMID: 29579278 DOI: 10.1093/toxsci/kfy062] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Adult neurogenesis takes place in the brain subventricular zone (SVZ) in the lateral walls of lateral ventricles and subgranular zone (SGZ) in the hippocampal dentate gyrus (HDG), and functions to supply newborn neurons for normal brain functionality. Subchronic Mn exposure is known to disrupt adult neurogenesis in the SVZ. This study was designed to determine whether Mn exposure disturbed neurogenesis within the adult HDG. Adult rats (10 weeks old) received a single dose of bromodeoxyuridine (BrdU) at the end of 4-week Mn exposure to label the proliferating cells. Immunostaining and cell counting data showed that BrdU(+) cells in Mn-exposed HDG were about 37% lower than that in the control (p < .05). The majority of BrdU(+) cells were identified as Sox2(+) cells. Another set of adult rats received BrdU injections for 3 consecutive days followed by 2- or 4-week Mn exposure to trace the fate of BrdU-labeled cells in the HDG. The time course studies indicated that Mn exposure significantly reduced the survival rate (54% at 2 weeks and 33% at 4 weeks), as compared with that in the control (80% at 2 weeks and 51% at 4 weeks) (p < .01). A significant time-dependent migration of newborn cells from the SGZ toward the granule cell layer was also observed in both control and Mn-exposed HDG. Triple-stained neuroblasts and mature neurons further revealed that Mn exposure significantly inhibited the differentiation of immature neuroblasts into mature neurons in the HDG. Taken together, these observations suggest that subchronic Mn exposure results in a reduced cell proliferation, diminished survival of adult-born neurons, and inhibited overall neurogenesis in the adult HDG. Impaired adult neurogenesis is likely one of the mechanisms contribute to Mn-induced Parkinsonian disorder.
Collapse
Affiliation(s)
| | | | | | | | - Xiaoting Wang
- Spinal Cord and Brain Injury Research Group, Stark Neuroscience Research Institute.,Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN 46202
| | | | - Jason R Cannon
- School of Health Sciences.,Purdue Institute for Integrative Neurosciences, Purdue University, West Lafayette, IN 47907
| | - Jinhui Chen
- Spinal Cord and Brain Injury Research Group, Stark Neuroscience Research Institute.,Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Wei Zheng
- School of Health Sciences.,Purdue Institute for Integrative Neurosciences, Purdue University, West Lafayette, IN 47907
| |
Collapse
|
40
|
Jang M, Gould E, Xu J, Kim EJ, Kim JH. Oligodendrocytes regulate presynaptic properties and neurotransmission through BDNF signaling in the mouse brainstem. eLife 2019; 8:42156. [PMID: 30998186 PMCID: PMC6504230 DOI: 10.7554/elife.42156] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 04/17/2019] [Indexed: 12/17/2022] Open
Abstract
Neuron–glia communication contributes to the fine-tuning of synaptic functions. Oligodendrocytes near synapses detect and respond to neuronal activity, but their role in synapse development and plasticity remains largely unexplored. We show that oligodendrocytes modulate neurotransmitter release at presynaptic terminals through secretion of brain-derived neurotrophic factor (BDNF). Oligodendrocyte-derived BDNF functions via presynaptic tropomyosin receptor kinase B (TrkB) to ensure fast, reliable neurotransmitter release and auditory transmission in the developing brain. In auditory brainstem slices from Bdnf+/– mice, reduction in endogenous BDNF significantly decreased vesicular glutamate release by reducing the readily releasable pool of glutamate vesicles, without altering presynaptic Ca2+ channel activation or release probability. Using conditional knockout mice, cell-specific ablation of BDNF in oligodendrocytes largely recapitulated this effect, which was recovered by BDNF or TrkB agonist application. This study highlights a novel function for oligodendrocytes in synaptic transmission and their potential role in the activity-dependent refinement of presynaptic properties.
Collapse
Affiliation(s)
- Miae Jang
- The Department of Cellular and Integrative Physiology, University of Texas Health Science Center, San Antonio, United States
| | - Elizabeth Gould
- The Department of Cellular and Integrative Physiology, University of Texas Health Science Center, San Antonio, United States
| | - Jie Xu
- The Department of Cellular and Integrative Physiology, University of Texas Health Science Center, San Antonio, United States.,Children's Medical Center, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Eun Jung Kim
- The Department of Cellular and Integrative Physiology, University of Texas Health Science Center, San Antonio, United States
| | - Jun Hee Kim
- The Department of Cellular and Integrative Physiology, University of Texas Health Science Center, San Antonio, United States
| |
Collapse
|
41
|
Ishola IO, Osele MO, Chijioke MC, Adeyemi OO. Isorhamnetin enhanced cortico-hippocampal learning and memory capability in mice with scopolamine-induced amnesia: Role of antioxidant defense, cholinergic and BDNF signaling. Brain Res 2019; 1712:188-196. [PMID: 30772273 DOI: 10.1016/j.brainres.2019.02.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/10/2019] [Accepted: 02/14/2019] [Indexed: 12/22/2022]
Abstract
Isorhamnetin (IRN), a 3'-O-methylated metabolite of quercetin has antioxidant, anti-inflammatory and neuroprotective properties. In this study, we investigated the learning and memory enhancing effects of IRN on spatial and non-spatial learning and memory deficits induced by scopolamine (3 mg/kg, i.p; muscarinic antagonist) using the novel object recognition test (NORT) and Morris water maze (MWM) task. IRN (1, 5 or 50 mg/kg, p.o.) or vehicle was administered to male albino for 3 consecutive days, scopolamine was given 1 h after last administration on day 3. Five minutes post scopolamine administration the behavioural test of cognitive function was carried out. One hour after probe test (MWM task) on day 7, the brains were isolated to assay for oxidative stress, cholinesterase activity and brain derived neurotrophic factor (BDNF) levels in the prefrontal cortex (PFC) and hippocampus (HIPPO). IRN treatment significantly improved scopolamine-induced learning and memory impairment in behavioural tests. IRN reduced malondialdehyde and nitrite generation induced by scopolamine through increase in glutathione (GSH) level, superoxide dismutase (SOD) and catalase (CAT) activities in the prefrontal cortex and hippocampus. In addition, IRN attenuates scopolamine induced cholinesterase activity and BDNF level in the prefrontal cortex and hippocampus of mice. Findings from this study showed that IRN possesses cognition and memory enhancing properties possibly through enhancement of antioxidant defense system, cholinergic signaling and synaptic plasticity.
Collapse
Affiliation(s)
- Ismail O Ishola
- Department of Pharmacology, Therapeutics and Toxicology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, PMB 12003, Surulere, Lagos State, Nigeria
| | - Mmesomachukwu O Osele
- Department of Pharmacology, Therapeutics and Toxicology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, PMB 12003, Surulere, Lagos State, Nigeria
| | - Micah C Chijioke
- Department of Pharmacology, Therapeutics and Toxicology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, PMB 12003, Surulere, Lagos State, Nigeria
| | - Olufunmilayo O Adeyemi
- Department of Pharmacology, Therapeutics and Toxicology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, PMB 12003, Surulere, Lagos State, Nigeria
| |
Collapse
|
42
|
Valko K, Ciesla L. Amyotrophic lateral sclerosis. PROGRESS IN MEDICINAL CHEMISTRY 2019; 58:63-117. [DOI: 10.1016/bs.pmch.2018.12.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
43
|
Zhang Z, Klausen LH, Chen M, Dong M. Electroactive Scaffolds for Neurogenesis and Myogenesis: Graphene-Based Nanomaterials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1801983. [PMID: 30264534 DOI: 10.1002/smll.201801983] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 07/28/2018] [Indexed: 05/24/2023]
Abstract
One of the major issues in tissue engineering is constructing a functional scaffold to support cell growth and also provide proper synergistic guidance cues. Graphene-based nanomaterials have emerged as biocompatible and electroactive scaffolds for neurogenesis and myogenesis, due to their excellent tunable chemical, physical, and mechanical properties. This review first assesses the recent investigations focusing on the fabrication and applications of graphene-based nanomaterials for neurogenesis and myogenesis, in the form of either 2D films, 3D scaffolds, or composite architectures. Besides, because of their outstanding electrical properties, graphene family materials are particularly suitable for designing electroactive scaffolds that could provide proper electrical stimulation (i.e., electrical or photo stimuli) to promote the regeneration of excitable neurons and muscle cells. Therefore, the effects and mechanism of electrical and/or photo stimulations on neurogenesis and myogenesis are followed. Furthermore, studies on their biocompatibilities and toxicities especially to neural and muscle cells are evaluated. Finally, the future challenges and perspectives in facilitating the development of clinical translation of graphene-family nanomaterials in treating neurodegenerative and muscle diseases are discussed.
Collapse
Affiliation(s)
- Zhongyang Zhang
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000, Aarhus C, Denmark
| | | | - Menglin Chen
- Department of Engineering, Aarhus University, DK-8000, Aarhus C, Denmark
| | - Mingdong Dong
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000, Aarhus C, Denmark
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
44
|
Simmons DA. Modulating Neurotrophin Receptor Signaling as a Therapeutic Strategy for Huntington's Disease. J Huntingtons Dis 2018; 6:303-325. [PMID: 29254102 PMCID: PMC5757655 DOI: 10.3233/jhd-170275] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Huntington’s disease (HD) is an autosomal dominant neurodegenerative disorder caused by CAG repeat expansions in the IT15 gene which encodes the huntingtin (HTT) protein. Currently, no treatments capable of preventing or slowing disease progression exist. Disease modifying therapeutics for HD would be expected to target a comprehensive set of degenerative processes given the diverse mechanisms contributing to HD pathogenesis including neuroinflammation, excitotoxicity, and transcription dysregulation. A major contributor to HD-related degeneration is mutant HTT-induced loss of neurotrophic support. Thus, neurotrophin (NT) receptors have emerged as therapeutic targets in HD. The considerable overlap between NT signaling networks and those dysregulated by mutant HTT provides strong theoretical support for this approach. This review will focus on the contributions of disrupted NT signaling in HD-related neurodegeneration and how targeting NT receptors to augment pro-survival signaling and/or to inhibit degenerative signaling may combat HD pathologies. Therapeutic strategies involving NT delivery, peptidomimetics, and the targeting of specific NT receptors (e.g., Trks or p75NTR), particularly with small molecule ligands, are discussed.
Collapse
Affiliation(s)
- Danielle A Simmons
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
45
|
Vojdani A, Vojdani E. Amyloid-Beta 1-42 Cross-Reactive Antibody Prevalent in Human Sera May Contribute to Intraneuronal Deposition of A-Beta-P-42. Int J Alzheimers Dis 2018; 2018:1672568. [PMID: 30034864 PMCID: PMC6032666 DOI: 10.1155/2018/1672568] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 04/13/2018] [Accepted: 04/29/2018] [Indexed: 12/11/2022] Open
Abstract
Antibodies against many neural antigens are detected in the sera of both patients with Alzheimer's disease (AD) and some healthy individuals. Blood-brain barrier dysfunction could make it possible for brain-reactive autoantibodies to reach the brain, where they can react with amyloid ß peptide (AßP). The origin of these autoreactive antibodies in the blood is unclear. The goals of this study were as follows: (1) to examine the immune reactivity of anti-AßP-42 with 22 neuronal and other associated antigens, some of which are involved in the pathophysiology of AD; (2) to classify antibodies to these 22 different antigens into those that cross-react with AßP-42 and those that do not; (3) to determine whether these antibodies react with BBB proteins, nerve growth factors, and enteric neuronal antigens. Using monoclonal AßP-42 antibody and ELISA methodology, we found that the antibody was highly reactive with Aß protein, tau protein, presenilin, rabaptin-5, β-NGF, BDNF, mTG, and enteric nerve. The same antibody produced equivocal to moderate reactions with glutamate-R, S100B, AQP4, GFAP, MBP, α-synuclein, tTG-2, and tTG-3, and not with the rest. These antibodies were also measured in blood samples from 47 AD patients and 47 controls. IgG antibodies were found to be elevated against AßP-42 and many other antigens in a significant percentage of controls. Overall, the mean OD values were significantly higher against 9/23 tested antigens (p <0.001) in the samples with AD. We were indeed able to classify the detected neuronal antibodies into those that cross-react with AßP-42 and those that do not. Our main finding is that although these antibodies may be harmless in a subgroup of controls, in individuals with compromised BBBs these antibodies that cross-react with AßP-42 can reach the brain, where their cross-reactivity with AßP-42 may contribute to the onset and progression of AD, and perhaps other neurodegenerative disorders.
Collapse
Affiliation(s)
- Aristo Vojdani
- Immunosciences Lab., Inc., 822 S. Robertson Blvd., Ste. 312, Los Angeles, CA 90035, USA
- Department of Preventive Medicine, Loma Linda University School of Medicine, 24785 Stewart St., Evans Hall, Ste. 111, Loma Linda, CA 92354, USA
| | - Elroy Vojdani
- Regenera Medical, 11860 Wilshire Blvd., Ste. 301, Los Angeles, CA 90025, USA
| |
Collapse
|
46
|
Brague JC, Lenchur CN, Hayden JM, Davidson RH, Corrigan K, Santini GT, Swann JM. BDNF infusion into the MPN mag is sufficient to restore copulatory behavior in the castrated Syrian hamster. Horm Behav 2018; 102:69-75. [PMID: 29750970 DOI: 10.1016/j.yhbeh.2018.05.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 05/03/2018] [Accepted: 05/06/2018] [Indexed: 11/18/2022]
Abstract
Testosterone plays a key role in the expression of male sex behavior by influencing cellular activity and synapses within the magnocellular medial preoptic nucleus (MPN mag), a sub-nucleus of the medial preoptic area (MPOA) in the Syrian hamster. Although the mechanisms underlying hormonally-induced synaptic plasticity in this region remain elusive, the data suggests that an increase in synaptic density may mediate testosterone's effects on copulation. As brain derived neurotrophic factor (BDNF) plays an integral role in regulating synaptic plasticity and gonadal steroids regulate the levels of BDNF, we hypothesize that BDNF may mediate the effects of gonadal hormones on copulatory behavior. To test this hypothesis, we infused BDNF or controls into the MPN mag of long-term castrates. Our results indicate that BDNF, but not the controls, restored copulatory behavior in castrated male Syrian hamsters. Furthermore, the rise of BDNF expression in the MPOA preceded the rise of synaptophysin following testosterone replacement in castrated males. These data are consistent with our hypothesis, implicating a role for BDNF in mediating testosterone's action on copulation and suggest that the delay in testosterone's restoration of copulation is, in part, due to the delay in the increase of BDNF and synaptophysin.
Collapse
Affiliation(s)
- Joe C Brague
- Lsehigh University, Department of Biological Sciences, Iacocca Hall, 111 Research Dr., Bethlehem, PA 18015, United States.
| | - Christine N Lenchur
- Lsehigh University, Department of Biological Sciences, Iacocca Hall, 111 Research Dr., Bethlehem, PA 18015, United States.
| | - Julia M Hayden
- Lsehigh University, Department of Biological Sciences, Iacocca Hall, 111 Research Dr., Bethlehem, PA 18015, United States.
| | - Rachel H Davidson
- Lsehigh University, Department of Biological Sciences, Iacocca Hall, 111 Research Dr., Bethlehem, PA 18015, United States.
| | - Kelly Corrigan
- Lsehigh University, Department of Biological Sciences, Iacocca Hall, 111 Research Dr., Bethlehem, PA 18015, United States.
| | - Garrett T Santini
- Lsehigh University, Department of Biological Sciences, Iacocca Hall, 111 Research Dr., Bethlehem, PA 18015, United States.
| | - Jennifer M Swann
- Lsehigh University, Department of Biological Sciences, Iacocca Hall, 111 Research Dr., Bethlehem, PA 18015, United States.
| |
Collapse
|
47
|
Beyond good and evil: A putative continuum-sorting hypothesis for the functional role of proBDNF/BDNF-propeptide/mBDNF in antidepressant treatment. Neurosci Biobehav Rev 2018; 90:70-83. [PMID: 29626490 DOI: 10.1016/j.neubiorev.2018.04.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 03/13/2018] [Accepted: 04/03/2018] [Indexed: 02/07/2023]
Abstract
Depression and posttraumatic stress disorder are assumed to be maladaptive responses to stress and antidepressants are thought to counteract such responses by increasing BDNF (brain-derived neurotrophic factor) levels. BDNF acts through TrkB (tropomyosin-related receptor kinase B) and plays a central role in neuroplasticity. In contrast, both precursor proBDNF and BDNF propeptide (another metabolic product from proBDNF cleavage) have a high affinity to p75 receptor (p75R) and usually convey apoptosis and neuronal shrinkage. Although BDNF and proBDNF/propeptide apparently act in opposite ways, neuronal turnover and remodeling might be a final common way that both act to promote more effective neuronal networking, avoiding neuronal redundancy and the misleading effects of environmental contingencies. This review aims to provide a brief overview about the BDNF functional role in antidepressant action and about p75R and TrkB signaling to introduce the "continuum-sorting hypothesis." The resulting hypothesis suggests that both BDNF/proBDNF and BDNF/propeptide act as protagonists to fine-tune antidepressant-dependent neuroplasticity in crucial brain structures to modulate behavioral responses to stress.
Collapse
|
48
|
Guo W, Nagappan G, Lu B. Differential effects of transient and sustained activation of BDNF-TrkB signaling. Dev Neurobiol 2018; 78:647-659. [PMID: 29575722 DOI: 10.1002/dneu.22592] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 03/20/2018] [Indexed: 12/31/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) serves a pleiotropic role in the central nervous system, ranging from promoting neuronal survival and differentiation during development and synaptic modulation in the adult. An important, yet unanswered question is how BDNF could serve such diverse functions, sometimes in the same cell. At least two modes of BDNF actions have been elucidated so far based on BDNF signaling kinetics and/or the activity status of the responding neurons. Acute and gradual increases in extracellular BDNF concentrations elicit, respectively, transient and sustained activation of TrkB receptor and its downstream signaling, leading to differential molecular and cellular functions. In cultured neurons, sustained TrkB activation promotes neuronal dendritic arborization and spinogenesis, whereas transient TrkB activation facilitates dendritic growth and spine morphogenesis. In hippocampal slices, slow delivery of BDNF facilitates LTP, whereas fast application of BDNF enhances basal synaptic transmission in schaffer collateral synapses. High-frequency stimulation of neurons converts BDNF-induced TrkB signaling from a transient to a sustained mode. These initial insights lay the foundation for future investigation of the BDNF-TrkB pathway, and analogous signaling pathways to gain a comprehensive understanding to enable translational research. © 2018 Wiley Periodicals, Inc. Develop Neurobiol 78: 647-659, 2018.
Collapse
Affiliation(s)
- Wei Guo
- School of Pharmaceutical Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, China.,R&D Center for the Diagnosis and Treatment of Major Brain Diseases, Research Institute of Tsinghua University in Shenzhen, Shenzhen, Guandong, 518057, China
| | | | - Bai Lu
- School of Pharmaceutical Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, China.,R&D Center for the Diagnosis and Treatment of Major Brain Diseases, Research Institute of Tsinghua University in Shenzhen, Shenzhen, Guandong, 518057, China
| |
Collapse
|
49
|
Kalenda A, Landgraf K, Löffler D, Kovacs P, Kiess W, Körner A. The BDNF Val66Met polymorphism is associated with lower BMI, lower postprandial glucose levels and elevated carbohydrate intake in children and adolescents. Pediatr Obes 2018; 13:159-167. [PMID: 28960774 DOI: 10.1111/ijpo.12238] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 08/05/2017] [Indexed: 11/29/2022]
Abstract
BACKGROUND The amino acid-changing exonic variant rs6265 (Val66Met polymorphism) in the brain-derived neurotrophic factor (BDNF) has been linked to obesity in several genotype-phenotype association studies. OBJECTIVE To identify metabolic factors by which this effect might be conveyed, we aimed to investigate its correlation with (i) obesity, (ii) metabolic parameters, (iii) serum levels of BDNF and (iv) measures of energy intake in children and adolescents. METHODS We genotyped the variant in 2131 subjects (age 6-18 years) and checked for an association with obesity. Secondly, we correlated the genotype with parameters of glucose and lipid metabolism (fasting/postprandial glucose and insulin levels, HbA1c, homeostasis model assessment, Matsuda, high-density lipoprotein, low-density lipoprotein, total cholesterol and triglycerides) in a smaller subset of 845 subjects. We determined BDNF serum levels in 177 individuals by enzyme-linked immunosorbent assay and assessed the association with genotype and metabolic parameters. Finally, we investigated the association between genotype and macronutrient intake from self-reported food diaries (n = 146). RESULTS The minor Met allele was associated with lower BMI standard deviation score (p = 0.002). Post-pubertal Met allele carriers showed lower postprandial glucose levels and a lower HbA1c (β = 0.15, p = 0.046 and β = 0.27, p = 0.012, respectively). Neither the genotype nor any of the metabolic parameters correlated with BDNF serum levels. We observed an increased total calorie intake (β = -0.21, p = 0.007) with increased carbohydrate and protein intake (β = -0.22, p = 0.005 and β = -0.14, p = 0.028, respectively) in Met allele carriers. CONCLUSIONS We confirmed the association of the minor Met allele with lower BMI in children and provide new data that it is associated with lower postprandial glucose in post-pubertal subjects. Moreover, Met allele carriers reported to consume more carbohydrates and proteins.
Collapse
Affiliation(s)
- A Kalenda
- Center for Pediatric Research Leipzig (CPL), University Hospital for Children and Adolescents, University Hospital Leipzig, Leipzig, Germany.,Integrated Research and Treatment Centre (IFB) AdiposityDiseases, University of Leipzig, Leipzig, Germany
| | - K Landgraf
- Center for Pediatric Research Leipzig (CPL), University Hospital for Children and Adolescents, University Hospital Leipzig, Leipzig, Germany.,Integrated Research and Treatment Centre (IFB) AdiposityDiseases, University of Leipzig, Leipzig, Germany
| | - D Löffler
- Center for Pediatric Research Leipzig (CPL), University Hospital for Children and Adolescents, University Hospital Leipzig, Leipzig, Germany.,Integrated Research and Treatment Centre (IFB) AdiposityDiseases, University of Leipzig, Leipzig, Germany
| | - P Kovacs
- Integrated Research and Treatment Centre (IFB) AdiposityDiseases, University of Leipzig, Leipzig, Germany
| | - W Kiess
- Center for Pediatric Research Leipzig (CPL), University Hospital for Children and Adolescents, University Hospital Leipzig, Leipzig, Germany
| | - A Körner
- Center for Pediatric Research Leipzig (CPL), University Hospital for Children and Adolescents, University Hospital Leipzig, Leipzig, Germany.,Integrated Research and Treatment Centre (IFB) AdiposityDiseases, University of Leipzig, Leipzig, Germany
| |
Collapse
|
50
|
Cruz E, Kumar S, Yuan L, Arikkath J, Batra SK. Intracellular amyloid beta expression leads to dysregulation of the mitogen-activated protein kinase and bone morphogenetic protein-2 signaling axis. PLoS One 2018; 13:e0191696. [PMID: 29470488 PMCID: PMC5823380 DOI: 10.1371/journal.pone.0191696] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 01/09/2018] [Indexed: 12/11/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative syndrome classically depicted by the parenchymal accumulation of extracellular amyloid beta plaques. However, recent findings suggest intraneuronal amyloid beta (iAβ1-42) accumulation precedes extracellular deposition. Furthermore, the pathologic increase in iAβ1-42 has been implicated in dysregulation of cellular mechanisms critically important in axonal transport. Owing to neuronal cell polarity, retrograde and anterograde axonal transport are essential trafficking mechanism necessary to convey membrane bound neurotransmitters, neurotrophins, and endosomes between soma and synaptic interfaces. Although iAβ1-42 disruption of axonal transport has been implicated in dysregulation of neuronal synaptic transmission, the role of iAβ1-42 and its influence on signal transduction involving the mitogen-activated protein kinase (MAPK) and morphogenetic signaling axis are unknown. Our biochemical characterization of intracellular amyloid beta accumulation on MAPK and morphogenetic signaling have revealed increased iAβ1-42 expression leads to significant reduction in ERK 1/2 phosphorylation and increased bone morphogenetic protein 2 dependent Smad 1/5/8 phosphorylation. Furthermore, rescue of iAβ1-42 mediated attenuation of MAPK signaling can be accomplished with the small molecule PLX4032 as a downstream enhancer of the MAPK pathway. Consequently, our observations regarding the dysregulation of these gatekeepers of neuronal viability may have important implications in understanding the iAβ1-42 mediated effects observed in AD.
Collapse
Affiliation(s)
- Eric Cruz
- Department of Biochemistry and Molecular Biology, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Sushil Kumar
- Department of Biochemistry and Molecular Biology, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Li Yuan
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Jyothi Arikkath
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Developmental Neuroscience, Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Surinder K. Batra
- Department of Biochemistry and Molecular Biology, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| |
Collapse
|