1
|
Kim KM. Unveiling the Differences in Signaling and Regulatory Mechanisms between Dopamine D2 and D3 Receptors and Their Impact on Behavioral Sensitization. Int J Mol Sci 2023; 24:ijms24076742. [PMID: 37047716 PMCID: PMC10095578 DOI: 10.3390/ijms24076742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/25/2023] [Accepted: 03/28/2023] [Indexed: 04/09/2023] Open
Abstract
Dopamine receptors are classified into five subtypes, with D2R and D3R playing a crucial role in regulating mood, motivation, reward, and movement. Whereas D2R are distributed widely across the brain, including regions responsible for motor functions, D3R are primarily found in specific areas related to cognitive and emotional functions, such as the nucleus accumbens, limbic system, and prefrontal cortex. Despite their high sequence homology and similar signaling pathways, D2R and D3R have distinct regulatory properties involving desensitization, endocytosis, posttranslational modification, and interactions with other cellular components. In vivo, D3R is closely associated with behavioral sensitization, which leads to increased dopaminergic responses. Behavioral sensitization is believed to result from D3R desensitization, which removes the inhibitory effect of D3R on related behaviors. Whereas D2R maintains continuous signal transduction through agonist-induced receptor phosphorylation, arrestin recruitment, and endocytosis, which recycle and resensitize desensitized receptors, D3R rarely undergoes agonist-induced endocytosis and instead is desensitized after repeated agonist exposure. In addition, D3R undergoes more extensive posttranslational modifications, such as glycosylation and palmitoylation, which are needed for its desensitization. Overall, a series of biochemical settings more closely related to D3R could be linked to D3R-mediated behavioral sensitization.
Collapse
Affiliation(s)
- Kyeong-Man Kim
- Department of Pharmacology, College of Pharmacy, Chonnam National University, Gwang-Ju 61186, Republic of Korea
| |
Collapse
|
2
|
Kawamura S, Tachibanaki S. Molecular basis of rod and cone differences. Prog Retin Eye Res 2021; 90:101040. [PMID: 34974196 DOI: 10.1016/j.preteyeres.2021.101040] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/22/2021] [Accepted: 12/27/2021] [Indexed: 12/15/2022]
Abstract
In the vertebrate retina, rods and cones both detect light, but they are different in functional aspects such as light sensitivity and time resolution, for example, and in some of cell biological aspects. For functional aspects, both photoreceptors are known to share a common mechanism, phototransduction cascade, consisting of a series of enzyme reactions to convert a photon-capture signal to an electrical signal. To understand the mechanisms of the functional differences between rods and cones at the molecular level, we compared biochemically each of the reactions in the phototransduction cascade between rods and cones using the cells isolated and purified from carp retina. Although proteins in the cascade are functionally similar between rods and cones, their activities together with their expression levels are mostly different between these photoreceptors. In general, reactions to generate a response are slightly less effective, as a total, in cones than in rods, but each of the reactions for termination and recovery of a response are much more effective in cones. These findings explain lower light sensitivity and briefer light responses in cones than in rods. In addition, our considerations suggest that a Ca2+-binding protein, S-modulin or recoverin, has a currently unnoticed role in shaping light responses. With comparison of the expression levels of proteins and/or mRNAs using purified cells, several proteins were found to be specifically or predominantly expressed in cones. These proteins would be of interest for future studies on the difference between rods and cones.
Collapse
Affiliation(s)
- Satoru Kawamura
- Graduate School of Frontier Biosciences, Osaka University, Yamada-oka 1-3, Suita, Osaka, 565-0871, Japan; Department of Biological Sciences, Graduate School of Science, Osaka University, Yamada-oka 1-3, Suita, Osaka, 565-0871, Japan.
| | - Shuji Tachibanaki
- Graduate School of Frontier Biosciences, Osaka University, Yamada-oka 1-3, Suita, Osaka, 565-0871, Japan; Department of Biological Sciences, Graduate School of Science, Osaka University, Yamada-oka 1-3, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
3
|
Schroer AB, Branyan KW, Gross JD, Chantler PD, Kimple AJ, Vandenbeuch A, Siderovski DP. The stability of tastant detection by mouse lingual chemosensory tissue requires Regulator of G protein Signaling-21 (RGS21). Chem Senses 2021; 46:6414340. [PMID: 34718440 DOI: 10.1093/chemse/bjab048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The T1R and T2R families of G protein-coupled receptors (GPCRs) initiate tastant perception by signaling via guanine nucleotide exchange and hydrolysis performed by associated heterotrimeric G proteins (Gαβγ). Heterotrimeric G protein signal termination is sped up by Gα-directed GTPase-accelerating proteins (GAPs) known as the Regulators of G protein Signaling (RGS proteins). Of this family, RGS21 is highly expressed in lingual epithelial cells and we have shown it acting in vitro to decrease the potency of bitterants on cultured cells. However, constitutive RGS21 loss in mice reduces organismal response to GPCR-mediated tastants-opposite to expectations arising from observed in vitro activity of RGS21 as a GAP and inhibitor of T2R signaling. Here, we show reduced quinine aversion and reduced sucrose preference by mice lacking RGS21 does not result from post-ingestive effects, as taste-salient brief-access tests confirm the reduced bitterant aversion and reduced sweetener preference seen using two-bottle choice testing. Eliminating Rgs21 expression after chemosensory system development, via tamoxifen-induced Cre recombination in eight week-old mice, led to a reduction in quinine aversive behavior that advanced over time, suggesting that RGS21 functions as a negative regulator to sustain stable bitter tastant reception. Consistent with this notion, we observed downregulation of multiple T2R proteins in the lingual tissue of Rgs21-deficient mice. Reduced tastant-mediated responses exhibited by mice lacking Rgs21 expression either since birth or in adulthood has highlighted the potential requirement for a GPCR GAP to maintain the full character of tastant signaling, likely at the level of mitigating receptor downregulation.
Collapse
Affiliation(s)
- Adam B Schroer
- Department of Neuroscience, West Virginia University School of Medicine, 64 Medical Center Drive, Morgantown, WV 26506, USA
| | - Kayla W Branyan
- Division of Exercise Physiology, West Virginia University School of Medicine, 64 Medical Center Drive, Morgantown, WV 26506, USA
| | - Joshua D Gross
- Department of Cell Biology, Duke University Medical Center, 307 Research Drive, Durham, NC 27710, USA
| | - Paul D Chantler
- Division of Exercise Physiology, West Virginia University School of Medicine, 64 Medical Center Drive, Morgantown, WV 26506, USA
| | - Adam J Kimple
- Department of Otolaryngology and Marsico Lung Institute, UNC School of Medicine , 170 Manning Drive, Chapel Hill, NC 27599-7070, USA
| | - Aurelie Vandenbeuch
- Department of Otolaryngology, University of Colorado-Denver, Anschutz Medical Campus, 12700 E. 19th Avenue, Aurora, CO 80045, USA
| | - David P Siderovski
- Department of Pharmacology & Neuroscience, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX 76107, USA
| |
Collapse
|
4
|
Schroer AB, Gross JD, Kaski SW, Wix K, Siderovski DP, Vandenbeuch A, Setola V. Development of Full Sweet, Umami, and Bitter Taste Responsiveness Requires Regulator of G protein Signaling-21 (RGS21). Chem Senses 2018; 43:367-378. [PMID: 29701767 PMCID: PMC6276893 DOI: 10.1093/chemse/bjy024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The mammalian tastes of sweet, umami, and bitter are initiated by activation of G protein-coupled receptors (GPCRs) of the T1R and T2R families on taste receptor cells. GPCRs signal via nucleotide exchange and hydrolysis, the latter hastened by GTPase-accelerating proteins (GAPs) that include the Regulators of G protein Signaling (RGS) protein family. We previously reported that RGS21, uniquely expressed in Type II taste receptor cells, decreases the potency of bitter-stimulated T2R signaling in cultured cells, consistent with its in vitro GAP activity. However, the role of RGS21 in organismal responses to GPCR-mediated tastants was not established. Here, we characterized mice lacking the Rgs21 fifth exon. Eliminating Rgs21 expression had no effect on body mass accumulation (a measure of alimentation), fungiform papillae number and morphology, circumvallate papillae morphology, and taste bud number. Two-bottle preference tests, however, revealed that Rgs21-null mice have blunted aversion to quinine and denatonium, and blunted preference for monosodium glutamate, the sweeteners sucrose and SC45647, and (surprisingly) NaCl. Observed reductions in GPCR-mediated tastant responses upon Rgs21 loss are opposite to original expectations, given that loss of RGS21-a GPCR signaling negative regulator-should lead to increased responsiveness to tastant-mediated GPCR signaling (all else being equal). Yet, reduced organismal tastant responses are consistent with observations of reduced chorda tympani nerve recordings in Rgs21-null mice. Reduced tastant-mediated responses and behaviors exhibited by adult mice lacking Rgs21 expression since birth have thus revealed an underappreciated requirement for a GPCR GAP to establish the full character of tastant signaling.
Collapse
Affiliation(s)
- Adam B Schroer
- Department of Physiology, Pharmacology, and Neuroscience, West Virginia School of Medicine, One Medical Center Drive, Morgantown, WV, USA
| | - Joshua D Gross
- Department of Physiology, Pharmacology, and Neuroscience, West Virginia School of Medicine, One Medical Center Drive, Morgantown, WV, USA
| | - Shane W Kaski
- Department of Physiology, Pharmacology, and Neuroscience, West Virginia School of Medicine, One Medical Center Drive, Morgantown, WV, USA
| | - Kim Wix
- Department of Physiology, Pharmacology, and Neuroscience, West Virginia School of Medicine, One Medical Center Drive, Morgantown, WV, USA
| | - David P Siderovski
- Department of Physiology, Pharmacology, and Neuroscience, West Virginia School of Medicine, One Medical Center Drive, Morgantown, WV, USA
| | - Aurelie Vandenbeuch
- Department of Otolaryngology, University of Colorado - Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Vincent Setola
- Department of Physiology, Pharmacology, and Neuroscience, West Virginia School of Medicine, One Medical Center Drive, Morgantown, WV, USA
- Department of Behavioral Medicine and Psychiatry, West Virginia School of Medicine, Morgantown, WV, USA
| |
Collapse
|
5
|
Petrukhin OV, Orlova TG, Nezvetsky AR, Orlov NY. Transducin-activated cGMP-specific phosphodiesterase of external segments of bovine retinal rods: The influence of magnesium ions. Biophysics (Nagoya-shi) 2016. [DOI: 10.1134/s0006350916050237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
6
|
Chen CKJ. RGS Protein Regulation of Phototransduction. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 133:31-45. [PMID: 26123301 DOI: 10.1016/bs.pmbts.2015.02.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
First identified in yeast and worm and later in other species, the physiological importance of Regulators of G-protein Signaling (RGS) in mammals was first demonstrated at the turn of the century in mouse retinal photoreceptors, in which RGS9 is needed for timely recovery of rod phototransduction. The role of RGS in vision has also been established a synapse away in retinal depolarizing bipolar cells (DBCs), where RGS7 and RGS11 work redundantly and in a complex with Gβ5-S as GAPs for Goα in the metabotropic glutamate receptor 6 pathway situated at DBC dendritic tips. Much less is known on how RGS protein subserves vision in the rest of the visual system. The research into the roles of RGS proteins in vision holds great potential for many exciting new discoveries.
Collapse
Affiliation(s)
- Ching-Kang Jason Chen
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, USA; Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA; Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA.
| |
Collapse
|
7
|
Petrukhin OV, Orlova TG, Nezvetsky AR, Orlov NY. Activation of bovine retinal rod outer segment cGMP-specific phosphodiesterase by the transducin-GTP complex in a physiologically significant range of free calcium ion concentrations. Biophysics (Nagoya-shi) 2014. [DOI: 10.1134/s0006350914050200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
8
|
Arshavsky VY, Wensel TG. Timing is everything: GTPase regulation in phototransduction. Invest Ophthalmol Vis Sci 2013; 54:7725-33. [PMID: 24265205 DOI: 10.1167/iovs.13-13281] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
As the molecular mechanisms of vertebrate phototransduction became increasingly clear in the 1980s, a persistent problem was the discrepancy between the slow GTP hydrolysis catalyzed by the phototransduction G protein, transducin, and the much more rapid physiological recovery of photoreceptor cells from light stimuli. Beginning with a report published in 1989, a series of studies revealed that transducin GTPase activity could approach the rate needed to explain physiological recovery kinetics in the presence of one or more factors present in rod outer segment membranes. One by one, these factors were identified, beginning with PDEγ, the inhibitory subunit of the cGMP phosphodiesterase activated by transducin. There followed the discovery of the crucial role played by the regulator of G protein signaling, RGS9, a member of a ubiquitous family of GTPase-accelerating proteins, or GAPs, for heterotrimeric G proteins. Soon after, the G protein β isoform Gβ5 was identified as an obligate partner subunit, followed by the discovery or R9AP, a transmembrane protein that anchors the RGS9 GAP complex to the disk membrane, and is essential for the localization, stability, and activity of this complex in vivo. The physiological importance of all of the members of this complex was made clear first by knockout mouse models, and then by the discovery of a human visual defect, bradyopsia, caused by an inherited deficiency in one of the GAP components. Further insights have been gained by high-resolution crystal structures of subcomplexes, and by extensive mechanistic studies both in vitro and in animal models.
Collapse
Affiliation(s)
- Vadim Y Arshavsky
- Albert Eye Research Institute, Duke University, Durham, North Carolina
| | | |
Collapse
|
9
|
Rebois RV, Hébert TE. Protein Complexes Involved in Heptahelical Receptor-Mediated Signal Transduction. ACTA ACUST UNITED AC 2011. [DOI: 10.3109/10606820308243] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
10
|
Palczewski K. Focus on vision: 3 decades of remarkable contributions to biology and medicine. FASEB J 2011; 25:439-43. [PMID: 21282210 DOI: 10.1096/fj.11-0202ufm] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The FASEB Journal is a pillar among biomedical publications, contributing greatly by disseminating the results of vision research during its lifetime. Progress over this period has been remarkable. George Wald provided the first chemical understanding of the fundamental processes governing vision: the photoisomerization of 11-cis-retinal to all-trans-retinal and the enzymatic regeneration of this chromophore. Contributions of this extraordinary scientist set the stage for discoveries ranging from gross recording of various electrical responses to light to elucidation of signal transduction at a structural level, and from characterization of retinal diseases to successful treatments.
Collapse
Affiliation(s)
- Krzysztof Palczewski
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106-4965, USA.
| |
Collapse
|
11
|
Burns ME. Deactivation mechanisms of rod phototransduction: the Cogan lecture. Invest Ophthalmol Vis Sci 2010; 51:1282-8. [PMID: 20185839 DOI: 10.1167/iovs.09-4366] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The absorption of photons in rods and cones of the retina activate homologous biochemical signaling cascades that lead to the electrical changes that subserve the first steps in vision. Persistent activity of the cascade interferes with the ability of the photoreceptor to signal the absorption of subsequent photons, ultimately limiting the photoreceptor's sensitivity and temporal resolution. This article summarizes recent work on transgenic and knockout mouse rods that has revealed the deactivation mechanisms essential for normal response recovery and how each of these processes contributes to the overall time course of the flash response of rods.
Collapse
Affiliation(s)
- Marie E Burns
- Department of Ophthalmology and Vision Science and Center for Neuroscience, University of California, Davis, California, USA
| |
Collapse
|
12
|
Mechanism for the regulation of mammalian cGMP phosphodiesterase6. 2: isolation and characterization of the transducin-activated form. Mol Cell Biochem 2010; 339:235-51. [PMID: 20177739 DOI: 10.1007/s11010-010-0404-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Accepted: 01/25/2010] [Indexed: 10/19/2022]
Abstract
Rod photoreceptor cGMP phosphodiesterase (PDE6) consists of a catalytic subunit complex (Palphabeta) and two inhibitory subunits (Pgamma). In the accompanying article, using bovine photoreceptor outer segment homogenates, we show that Pgamma as a complex with the GTP-bound transducin alpha subunit (GTP-Talpha) dissociates from Palphabetagammagamma on membranes, and the Palphabetagammagamma becomes Pgamma-depleted. Here, we identify and characterize the Pgamma-depleted PDE. After incubation with or without guanosine 5'-O-(3-thiotriphosphate) (GTPgammaS), Palphabeta complexes are extracted. When a hypotonic buffer is used, Palphabetagammagamma, Palphabetagamma, and a negligible amount of a Palphabeta complex containing Pgamma are isolated with GTPgammaS, and only Palphabetagammagamma is obtained without GTPgammaS. When an isotonic buffer containing Pdelta, a prenyl-binding protein, is used, Palphabetagammagammadelta, Palphabetagammadeltadelta, and a negligible amount of a Palphabeta complex containing Pgamma and Pdelta are isolated with GTPgammaS, and Palphabetagammagammadelta is obtained without GTPgammaS. Neither Palphabeta nor Palphabetagammagamma complexed with GTPgammaS-Talpha is found under any condition we examined. Palphabetagamma has approximately 12 times higher PDE activity and approximately 30 times higher Pgamma sensitivity than those of Palphabetagammagamma. These results indicate that the Pgamma-depleted PDE is Palphabetagamma. Isolation of Palphabetagammagammadelta and Palphabetagammadeltadelta suggests that one C-terminus of Palphabeta is involved in the Palphabetagammagamma interaction with membranes, and that Pgamma dissociation opens another C-terminus for Pdelta binding, which may lead to the expression of high PDE activity. Cone PDE behaves similarly to rod PDE in the anion exchange column chromatography. We conclude that the mechanisms for PDE activation are similar in mammalian and amphibian photoreceptors as well as in rods and cones.
Collapse
|
13
|
Is the lifetime of light-stimulated cGMP phosphodiesterase regulated by recoverin through its regulation of rhodopsin phosphorylation? Behav Brain Sci 2010. [DOI: 10.1017/s0140525x00039522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
14
|
|
15
|
|
16
|
|
17
|
|
18
|
|
19
|
|
20
|
Guo LW, Ruoho AE. The retinal cGMP phosphodiesterase gamma-subunit - a chameleon. Curr Protein Pept Sci 2009; 9:611-25. [PMID: 19075750 DOI: 10.2174/138920308786733930] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Intrinsically disordered proteins (IDPs) represent an emerging class of proteins (or domains) that are characterized by a lack of ordered secondary and tertiary structure. This group of proteins has recently attracted tremendous interest primarily because of a unique feature: they can bind to different targets due to their structural plasticity, and thus fulfill diverse functions. The inhibitory gamma-subunit (PDEgamma) of retinal PDE6 is an intriguing IDP, of which unique protein properties are being uncovered. PDEgamma critically regulates the turn on as well as the turn off of visual signaling through alternate interactions with the PDE6 catalytic core, transducin, and the regulator of G protein signaling RGS9-1. The intrinsic disorder of PDEgamma does not compromise, but rather, optimizes its functionality. PDEgamma "curls up" when free in solution but "stretches out" when binding with the PDE6 catalytic core. Conformational changes of PDEgamma also likely occur in its C-terminal PDE6-binding region upon interacting with transducin during PDE6 activation. Growing evidence shows that PDEgamma is also a player in non-phototransduction pathways, suggesting additional protein targets. Thus, PDEgamma is highly likely to be adaptive in its structure and function, hence a "chameleon".
Collapse
Affiliation(s)
- Lian-Wang Guo
- Department of Pharmacology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA.
| | | |
Collapse
|
21
|
Astakhova LA, Firsov ML, Govardovskii VI. Kinetics of turn-offs of frog rod phototransduction cascade. ACTA ACUST UNITED AC 2009; 132:587-604. [PMID: 18955597 PMCID: PMC2571975 DOI: 10.1085/jgp.200810034] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The time course of the light-induced activity of phototrandsuction effector enzyme cGMP-phosphodiesterase (PDE) is shaped by kinetics of rhodopsin and transducin shut-offs. The two processes are among the key factors that set the speed and sensitivity of the photoresponse and whose regulation contributes to light adaptation. The aim of this study was to determine time courses of flash-induced PDE activity in frog rods that were dark adapted or subjected to nonsaturating steady background illumination. PDE activity was computed from the responses recorded from solitary rods with the suction pipette technique in Ca2+-clamping solution. A flash applied in the dark-adapted state elicits a wave of PDE activity whose rising and decaying phases have characteristic times near 0.5 and 2 seconds, respectively. Nonsaturating steady background shortens both phases roughly to the same extent. The acceleration may exceed fivefold at the backgrounds that suppress ≈70% of the dark current. The time constant of the process that controls the recovery from super-saturating flashes (so-called dominant time constant) is adaptation independent and, hence, cannot be attributed to either of the processes that shape the main part of the PDE wave. We hypothesize that the dominant time constant in frog rods characterizes arrestin binding to rhodopsin partially inactivated by phosphorylation. A mathematical model of the cascade that considers two-stage rhodopsin quenching and transducin inactivation can mimic experimental PDE activity quite well. The effect of light adaptation on the PDE kinetics can be reproduced in the model by concomitant acceleration on both rhodopsin phosphorylation and transducin turn-off, but not by accelerated arrestin binding. This suggests that not only rhodopsin but also transducin shut-off is under adaptation control.
Collapse
Affiliation(s)
- Luba A Astakhova
- Sechenov Institute for Evolutionary Physiology & Biochemistry, Russian Academy of Sciences, 194223 St. Petersburg, Russia
| | | | | |
Collapse
|
22
|
Chapter 7 Biology and Functions of the RGS9 Isoforms. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 86:205-27. [DOI: 10.1016/s1877-1173(09)86007-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
23
|
Dohlman HG. Chapter 1 RGS Proteins. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 86:1-14. [DOI: 10.1016/s1877-1173(09)86001-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
24
|
Abstract
Retinal rods and cones, which are the front-end light detectors in the eye, achieve wonders together by being able to signal single-photon absorption and yet also able to adjust their function to brightness changes spanning 10(9)-fold. How these cells detect light is now quite well understood. Not surprising for almost any biological process, the intial step of seeing reveals a rich complexity as the probing goes deeper. The odyssey continues, but the knowledge gained so far is already nothing short of remarkable in qualitative and quantitative detail. It has also indirectly opened up the mystery of odorant sensing. Basic science aside, clinical ophthalmology has benefited tremendously from this endeavor as well. This article begins by recapitulating the key developments in this understanding from the mid-1960s to the late 1980s, during which period the advances were particularly rapid and fit for an intricate detective story. It then highlights some details discovered more recently, followed by a comparison between rods and cones.
Collapse
Affiliation(s)
- Dong-Gen Luo
- *Solomon H. Snyder Department of Neuroscience and
- Center for Sensory Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Tian Xue
- *Solomon H. Snyder Department of Neuroscience and
- Center for Sensory Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - King-Wai Yau
- *Solomon H. Snyder Department of Neuroscience and
- Department of Ophthalmology and
- Center for Sensory Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| |
Collapse
|
25
|
Sprang SR, Chen Z, Du X. Structural basis of effector regulation and signal termination in heterotrimeric Galpha proteins. ADVANCES IN PROTEIN CHEMISTRY 2007; 74:1-65. [PMID: 17854654 DOI: 10.1016/s0065-3233(07)74001-9] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This chapter addresses, from a molecular structural perspective gained from examination of x-ray crystallographic and biochemical data, the mechanisms by which GTP-bound Galpha subunits of heterotrimeric G proteins recognize and regulate effectors. The mechanism of GTP hydrolysis by Galpha and rate acceleration by GAPs are also considered. The effector recognition site in all Galpha homologues is formed almost entirely of the residues extending from the C-terminal half of alpha2 (Switch II) together with the alpha3 helix and its junction with the beta5 strand. Effector binding does not induce substantial changes in the structure of Galpha*GTP. Effectors are structurally diverse. Different effectors may recognize distinct subsets of effector-binding residues of the same Galpha protein. Specificity may also be conferred by differences in the main chain conformation of effector-binding regions of Galpha subunits. Several Galpha regulatory mechanisms are operative. In the regulation of GMP phospodiesterase, Galphat sequesters an inhibitory subunit. Galphas is an allosteric activator and inhibitor of adenylyl cyclase, and Galphai is an allosteric inhibitor. Galphaq does not appear to regulate GRK, but is rather sequestered by it. GTP hydrolysis terminates the signaling state of Galpha. The binding energy of GTP that is used to stabilize the Galpha:effector complex is dissipated in this reaction. Chemical steps of GTP hydrolysis, specifically, formation of a dissociative transition state, is rate limiting in Ras, a model G protein GTPase, even in the presence of a GAP; however, the energy of enzyme reorganization to produce a catalytically active conformation appears to be substantial. It is possible that the collapse of the switch regions, associated with Galpha deactivation, also encounters a kinetic barrier, and is coupled to product (Pi) release or an event preceding formation of the GDP*Pi complex. Evidence for a catalytic intermediate, possibly metaphosphate, is discussed. Galpha GAPs, whether exogenous proteins or effector-linked domains, bind to a discrete locus of Galpha that is composed of Switch I and the N-terminus of Switch II. This site is immediately adjacent to, but does not substantially overlap, the Galpha effector binding site. Interactions of effectors and exogenous GAPs with Galpha proteins can be synergistic or antagonistic, mediated by allosteric interactions among the three molecules. Unlike GAPs for small GTPases, Galpha GAPs supply no catalytic residues, but rather appear to reduce the activation energy for catalytic activation of the Galpha catalytic site.
Collapse
Affiliation(s)
- Stephen R Sprang
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | | | | |
Collapse
|
26
|
Tsang SH, Woodruff ML, Chen CK, Yamashita CY, Cilluffo MC, Rao AL, Farber DB, Fain GL. GAP-independent termination of photoreceptor light response by excess gamma subunit of the cGMP-phosphodiesterase. J Neurosci 2006; 26:4472-80. [PMID: 16641226 PMCID: PMC2852461 DOI: 10.1523/jneurosci.4775-05.2006] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We have generated a mouse with rod photoreceptors overexpressing the gamma inhibitory subunit (PDE6gamma) of the photoreceptor G-protein effector cGMP phosphodiesterase (PDE6). PDE6gamma overexpression decreases the rate of rise of the rod response at dim intensities, indicating a reduction in the gain of transduction that may be the result of cytoplasmic PDE6gamma binding to activated transducin alpha GTP (Talpha-GTP) before the Talpha-GTP binds to endogenous PDE6gamma. Excess PDE6gamma also produces a marked acceleration in the falling phase of the light response and more rapid recovery of sensitivity and circulating current after prolonged light exposure. These effects are not mediated by accelerating GTP hydrolysis through the GAP (GTPase activating protein) complex, because the decay of the light response is also accelerated in rods that overexpress PDE6gamma but lack RGS9. Our results show that the PDE6gamma binding sites of PDE6 alpha and beta are accessible to excess (presumably cytoplasmic) PDE6gamma in the light, once endogenous PDE6gamma has been displaced from its binding site by Talpha-GTP. They also suggest that in the presence of Talpha-GTP, the PDE6gamma remains attached to the rest of the PDE6 molecule, but after conversion of Talpha-GTP to Talpha-GDP, the PDE6gamma may dissociate from the PDE6 and exchange with a cytoplasmic pool. This pool may exist even in wild-type rods and may explain the decay of rod photoresponses in the presence of nonhydrolyzable analogs of GTP.
Collapse
|
27
|
Chen CK. The vertebrate phototransduction cascade: amplification and termination mechanisms. Rev Physiol Biochem Pharmacol 2006; 154:101-21. [PMID: 16634148 DOI: 10.1007/s10254-005-0004-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
The biochemical cascade which transduces light into a neuronal signal in retinal photoreceptors is a heterotrimeric GTP-binding protein (G protein) signaling pathway called phototransduction. Works from psychophysicists, electrophysiologists, biochemists, and geneticists over several decades have come together to shape our understanding of how photon absorption leads to photoreceptor membrane hyperpolarization. The insights of phototransduction provide the foundation for a mechanistic account of signaling from many other G protein-coupled receptors (GPCR) found throughout nature. The application of reverse genetic techniques has strengthened many historic findings and helped to describe this pathway at greater molecular details. However, many important questions remain to be answered.
Collapse
Affiliation(s)
- C K Chen
- Virginia Commonwealth University, Department of Biochemistry, 1101 E. Marshall Street, Rm 2-032, Richmond, 23298-0614 VA, USA.
| |
Collapse
|
28
|
von Buchholtz L, Elischer A, Tareilus E, Gouka R, Kaiser C, Breer H, Conzelmann S. RGS21 is a novel regulator of G protein signalling selectively expressed in subpopulations of taste bud cells. Eur J Neurosci 2004; 19:1535-44. [PMID: 15066150 DOI: 10.1111/j.1460-9568.2004.03257.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Abstract G-protein-mediated signalling processes are involved in sweet and bitter taste transduction. In particular, the G protein alpha-subunit gustducin has been implicated in these processes. One of the limiting factors for the time-course of cellular responses induced by tastants is therefore the intrinsic GTPase activity of alpha-gustducin, which determines the lifetime of the active G protein complex. In several signalling systems specific 'regulator of G protein signalling' (RGS) proteins accelerate the GTPase activity of G protein alpha-subunits. Using differential screening approaches, we have identified a novel RGS protein termed RGS21, which represents the smallest known member of this protein family. Reverse transcription polymerase chain reaction and in situ hybridization experiments demonstrated that RGS21 is expressed selectively in taste tissue where it is found in a subpopulation of sensory cells. Furthermore, it is coexpressed in individual taste cells with bitter and sweet transduction components including alpha-gustducin, phospholipase Cbeta2, T1R2/T1R3 sweet taste receptors and T2R bitter taste receptors. In vitro binding assays demonstrate that RGS21 binds alpha-gustducin in a conformation-dependent manner and has the potential to interact with the same Galpha subtypes as T1R receptors. These results suggest that RGS21 could play a regulatory role in bitter as well as sweet taste transduction processes.
Collapse
Affiliation(s)
- Lars von Buchholtz
- Institute of Physiology, University of Hohenheim, Garbenstr. 30, 70599 Stuttgart, Germany.
| | | | | | | | | | | | | |
Collapse
|
29
|
Hu G, Zhang Z, Wensel TG. Activation of RGS9-1GTPase acceleration by its membrane anchor, R9AP. J Biol Chem 2003; 278:14550-4. [PMID: 12560335 DOI: 10.1074/jbc.m212046200] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The GTPase-accelerating protein (GAP) complex RGS9-1.G beta(5) plays an important role in the kinetics of light responses by accelerating the GTP hydrolysis of G alpha(t) in vertebrate photoreceptors. Much, but not all, of this complex is tethered to disk membranes by the transmembrane protein R9AP. To determine the effect of the R9AP membrane complex on GAP activity, we purified recombinant R9AP and reconstituted it into lipid vesicles along with the photon receptor rhodopsin. Full-length RGS9-1.G beta(5) bound to R9AP-containing vesicles with high affinity (K(d) < 10 nm), but constructs lacking the DEP (dishevelled/EGL-10/pleckstrin) domain bound with much lower affinity, and binding of those lacking the entire N-terminal domain (i.e. the dishevelled/EGL-10/pleckstrin domain plus intervening domain) was not detectable. Formation of the membrane-bound complex with R9AP increased RGS9-1 GAP activity by a factor of 4. Vesicle titrations revealed that on the time scale of phototransduction, the entire reaction sequence from GTP uptake to GAP-catalyzed hydrolysis is a membrane-delimited process, and exchange of G alpha(t) between membrane surfaces is much slower than hydrolysis. Because in rod cells different pools exist of RGS9-1.G beta(5) that are either associated with R9AP or not, regulation of the association between R9AP and RGS9-1.G beta(5) represents a potential mechanism for the regulation of recovery kinetics.
Collapse
Affiliation(s)
- Guang Hu
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | |
Collapse
|
30
|
Liu H, Seno K, Hayashi F. Active transducin alpha subunit carries PDE6 to detergent-resistant membranes in rod photoreceptor outer segments. Biochem Biophys Res Commun 2003; 303:19-23. [PMID: 12646160 DOI: 10.1016/s0006-291x(03)00284-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
cGMP-Phosphodiesterase 6 (PDE6) is the central effector enzyme in the phototransduction system of vertebrate photoreceptors. We have recently found that PDE6 accumulates in a detergent-resistant membrane (DRM) fraction in response to excitation of bovine rod phototransduction system. Here, we studied the molecular mechanism of the PDE6 translocation to DRM. Pertussis toxin inhibited the translocation of PDE6. Upon addition of AlF(4)(-) to dark-adapted ROS, PDE6 translocated to DRM along with a minor fraction of the alpha subunit of transducin (T alpha). The addition of an excess of the inhibitory subunit of PDE6 blocked its accumulation in the DRM, but did not block the translocation of the minor fraction of T alpha. These data suggested that the formation of a complex between activated T alpha and PDE6 imparted upon T alpha a high affinity for the DRM. The translocation of PDE6 to the DRM may be involved in the spatiotemporal regulation of its activity on disk membranes.
Collapse
Affiliation(s)
- Han Liu
- Graduate School of Science and Technology, Kobe University, Japan
| | | | | |
Collapse
|
31
|
Hu G, Wensel TG. R9AP, a membrane anchor for the photoreceptor GTPase accelerating protein, RGS9-1. Proc Natl Acad Sci U S A 2002; 99:9755-60. [PMID: 12119397 PMCID: PMC125004 DOI: 10.1073/pnas.152094799] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2002] [Indexed: 11/18/2022] Open
Abstract
The regulator of G protein signaling (RGS)-9-1.G(beta 5) complex forms the GTPase accelerating protein for G(alpha t) in vertebrate photoreceptors. Although the complex is soluble when expressed in vitro, extraction of the endogenous protein from membranes requires detergents. The detergent extracts contain a complex of RGS9-1, G(beta 5), G(alpha t), and a 25-kDa phosphoprotein, R9AP (RGS9-1-Anchor Protein). R9AP is encoded by one intronless gene in both human and mouse. Full or partial cDNA or genomic clones were obtained from mice, cattle, human, zebrafish, and Xenopus laevis. R9AP mRNA was detected only in the retina, and the protein only in photoreceptors. R9AP binds to the N-terminal domain of RGS9-1, and anchors it to the disk membrane via a C-terminal transmembrane helix.
Collapse
Affiliation(s)
- Guang Hu
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | |
Collapse
|
32
|
Affiliation(s)
- Elliott M Ross
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| |
Collapse
|
33
|
Affiliation(s)
- Wei He
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | |
Collapse
|
34
|
Abstract
Phototransduction is the process by which a photon of light captured by a molecule of visual pigment generates an electrical response in a photoreceptor cell. Vertebrate rod phototransduction is one of the best-studied G protein signaling pathways. In this pathway the photoreceptor-specific G protein, transducin, mediates between the visual pigment, rhodopsin, and the effector enzyme, cGMP phosphodiesterase. This review focuses on two quantitative features of G protein signaling in phototransduction: signal amplification and response timing. We examine how the interplay between the mechanisms that contribute to amplification and those that govern termination of G protein activity determine the speed and the sensitivity of the cellular response to light.
Collapse
Affiliation(s)
- Vadim Y Arshavsky
- Howe Laboratory of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02114, USA.
| | | | | |
Collapse
|
35
|
Nasuhoglu C, Feng S, Mao J, Yamamoto M, Yin HL, Earnest S, Barylko B, Albanesi JP, Hilgemann DW. Nonradioactive analysis of phosphatidylinositides and other anionic phospholipids by anion-exchange high-performance liquid chromatography with suppressed conductivity detection. Anal Biochem 2002; 301:243-54. [PMID: 11814295 DOI: 10.1006/abio.2001.5489] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Phosphatidylinositol 4,5-biphosphate (PIP(2)) modulates the function of numerous ion transporters and channels, as well as cell signaling and cytoskeletal proteins. To study PIP(2) levels of cells without radiolabeling, we have developed a new method to quantify anionic phospholipid species. Phospholipids are extracted and deacylated to glycero-head groups, which are then separated by anion-exchange HPLC and detected by suppressed conductivity measurements. The major anionic head groups can be quantified in single runs with practical detection limits of about 100 pmol, and the D3 isoforms of phosphatidylinositol phosphate (PIP) and PIP(2) are detected as shoulder peaks. In HeLa, Hek 293 and COS cells, as well as intact heart, PIP(2) amounts to 0.5 to 1.5% of total anionic phospholipid (10 to 30 micromol/liter cell water or 0.15 to 0.45 nmol/mg protein). In cell cultures, overexpression of Type I PIP5-kinase specifically increases PIP(2), whereas overexpression of Type II PI4-kinase can increase both PIP and PIP(2). Phosphatidylinositol 3,4,5-trisphosphate (PIP(3)) and the D3 isomers of PIP(2) are detected after treatment of cells with pervanadate; in yeast, overexpression of a phosphatidylinositol 3-kinase (VPS34) specifically increases phosphatidylinositol 3-phosphate (PI3P). Using isolated cardiac membranes, lipid kinase and lipid phosphatase activities can be monitored with the same methods. Upon addition of ATP, PIP increases while PIP(2) remains low; exogenous PIP(2) is rapidly degraded to PIP and phosphatidylinositol (PI). In summary, the HPLC methods described here can be used to probe multiple aspects of phosphatidylinositide (Ptide) metabolism without radiolabeling.
Collapse
Affiliation(s)
- Cem Nasuhoglu
- Department of Physiology, Department of Pharmacology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-9040, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
He W, Melia TJ, Cowan CW, Wensel TG. Dependence of RGS9-1 membrane attachment on its C-terminal tail. J Biol Chem 2001; 276:48961-6. [PMID: 11677233 DOI: 10.1074/jbc.m107428200] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
RGS9-1 is a GTPase-accelerating protein (GAP) required for rapid recovery of the light response in vertebrate rod and cone photoreceptors. Similar to its phototransduction partners transducin (G(t)) and cGMP phosphodiesterase, it is a peripheral protein of the disc membranes, but it binds membranes much more tightly. It lacks the lipid modifications found on G(t) and cGMP phosphodiesterase, and the mechanism for membrane attachment is unknown. We have used limited proteolysis to generate a fragment of RGS9-1 that is readily removed from membranes under moderate salt conditions. Immunoblots reveal that this soluble fragment lacks a 3-kDa fragment from the C-terminal domain, the only domain within RGS9-1 that differs in sequence from the brain-specific isoform RGS9-2. Recombinant fragments of RGS9-1 with or without the partner subunit G beta(5L) were constructed with or without the C-terminal domain. Those lacking the C-terminal domain bound to photoreceptor membranes much less tightly than those containing it. Removal by urea of G beta(5L) from endogenous or recombinant RGS9-1 bound to rod outer segment membranes left RGS9-1 tightly membrane-bound, and recombinant RGS9-1 was urea-soluble in the absence of membranes. Thus the C-terminal domain of RGS9-1 is critical for membrane binding, whereas G beta(5L) does not play an important role in membrane attachment.
Collapse
Affiliation(s)
- W He
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
37
|
Skiba NP, Martemyanov KA, Elfenbein A, Hopp JA, Bohm A, Simonds WF, Arshavsky VY. RGS9-G beta 5 substrate selectivity in photoreceptors. Opposing effects of constituent domains yield high affinity of RGS interaction with the G protein-effector complex. J Biol Chem 2001; 276:37365-72. [PMID: 11495924 DOI: 10.1074/jbc.m106431200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
RGS proteins regulate the duration of G protein signaling by increasing the rate of GTP hydrolysis on G protein alpha subunits. The complex of RGS9 with type 5 G protein beta subunit (G beta 5) is abundant in photoreceptors, where it stimulates the GTPase activity of transducin. An important functional feature of RGS9-G beta 5 is its ability to activate transducin GTPase much more efficiently after transducin binds to its effector, cGMP phosphodiesterase. Here we show that different domains of RGS9-G beta 5 make opposite contributions toward this selectivity. G beta 5 bound to the G protein gamma subunit-like domain of RGS9 acts to reduce RGS9 affinity for transducin, whereas other structures restore this affinity specifically for the transducin-phosphodiesterase complex. We suggest that this mechanism may serve as a general principle conferring specificity of RGS protein action.
Collapse
Affiliation(s)
- N P Skiba
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Visual transduction captures widespread interest because its G-protein signaling motif recurs throughout nature yet is uniquely accessible for study in the photoreceptor cells. The light-activated currents generated at the photoreceptor outer segment provide an easily observed real-time measure of the output of the signaling cascade, and the ease of obtaining pure samples of outer segments in reasonable quantity facilitates biochemical experiments. A quiet revolution in the study of the mechanism has occurred during the past decade with the advent of gene-targeting techniques. These have made it possible to observe how transduction is perturbed by the deletion, overexpression, or mutation of specific components of the transduction apparatus.
Collapse
Affiliation(s)
- M E Burns
- Department of Neurobiology, Stanford University Medical Center, Stanford, California 94305, USA.
| | | |
Collapse
|
39
|
Nagata Y, Oda M, Nakata H, Shozaki Y, Kozasa T, Todokoro K. A novel regulator of G-protein signaling bearing GAP activity for Galphai and Galphaq in megakaryocytes. Blood 2001; 97:3051-60. [PMID: 11342430 DOI: 10.1182/blood.v97.10.3051] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The regulator of G-protein signaling (RGS) negatively regulates the alpha subunit of G proteins by accelerating their intrinsic guanosine triphosphatase (GTPase) activity. Here are reported the isolation and characterization of a novel mouse RGS, termed RGS18, which is a new member of RGS subfamily B. Northern blot analysis showed that RGS18 messenger RNA was detected predominantly in spleen and hematopoietic cells, and immunohistochemical studies demonstrated that RGS18 was expressed in megakaryocytes, platelets, granulocytes/monocytes, and, weakly, in hematopoietic stem cells, but not in lymphocytes or erythrocytes. Although various subcellular localizations of RGS have been reported, RGS18 was found to be localized in cytoplasm in megakaryocytes. In vitro binding assays of RGS18 with megakaryocyte cell lysates with or without AlF(4)(-) treatment demonstrated that RGS18 specifically binds to 2 alpha subunits of the G protein, Galphai and Galphaq. Furthermore, RGS18 clearly exhibited GTPase-activating protein (GAP) activity for Galphai and Galphaq but not for Galphas or Galpha12. In addition, chemokine stromal-derived factor 1 (SDF-1), which has been reported to stimulate megakaryocyte colony formation in the presence of thrombopoietin, affected the binding of RGS18 to Galphai but not to Galphaq. Therefore, the newly isolated RGS18 turned out to be a new member of the RGS family bearing GAP activity for Galphai, which might be stimulated by SDF-1 in megakaryocytes, as well as for Galphaq. Thus, RGS18 may play an important role in proliferation, differentiation, and/or migration of megakaryocytes.
Collapse
Affiliation(s)
- Y Nagata
- Tsukuba Life Science Center, The Institute of Physical and Chemical Research, Japan.
| | | | | | | | | | | |
Collapse
|
40
|
Ross EM, Wilkie TM. GTPase-activating proteins for heterotrimeric G proteins: regulators of G protein signaling (RGS) and RGS-like proteins. Annu Rev Biochem 2001; 69:795-827. [PMID: 10966476 DOI: 10.1146/annurev.biochem.69.1.795] [Citation(s) in RCA: 891] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
GTPase-activating proteins (GAPs) regulate heterotrimeric G proteins by increasing the rates at which their subunits hydrolyze bound GTP and thus return to the inactive state. G protein GAPs act allosterically on G subunits, in contrast to GAPs for the Ras-like monomeric GTP-binding proteins. Although they do not contribute directly to the chemistry of GTP hydrolysis, G protein GAPs can accelerate hydrolysis >2000-fold. G protein GAPs include both effector proteins (phospholipase C-¿, p115RhoGEF) and a growing family of regulators of G protein signaling (RGS proteins) that are found throughout the animal and fungal kingdoms. GAP activity can sharpen the termination of a signal upon removal of stimulus, attenuate a signal either as a feedback inhibitor or in response to a second input, promote regulatory association of other proteins, or redirect signaling within a G protein signaling network. GAPs are regulated by various controls of their cellular concentrations, by complex interactions with G¿ or with G¿5 through an endogenous G-like domain, and by interaction with multiple other proteins.
Collapse
Affiliation(s)
- E M Ross
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9041, USA.
| | | |
Collapse
|
41
|
Slep KC, Kercher MA, He W, Cowan CW, Wensel TG, Sigler PB. Structural determinants for regulation of phosphodiesterase by a G protein at 2.0 A. Nature 2001; 409:1071-7. [PMID: 11234020 DOI: 10.1038/35059138] [Citation(s) in RCA: 203] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A multitude of heptahelical receptors use heterotrimeric G proteins to transduce signals to specific effector target molecules. The G protein transducin, Gt, couples photon-activated rhodopsin with the effector cyclic GMP phosophodiesterase (PDE) in the vertebrate phototransduction cascade. The interactions of the Gt alpha-subunit (alpha(t)) with the inhibitory PDE gamma-subunit (PDEgamma) are central to effector activation, and also enhance visual recovery in cooperation with the GTPase-activating protein regulator of G-protein signalling (RGS)-9 (refs 1-3). Here we describe the crystal structure at 2.0 A of rod transducin alpha x GDP x AlF4- in complex with the effector molecule PDEgamma and the GTPase-activating protein RGS9. In addition, we present the independently solved crystal structures of the RGS9 RGS domain both alone and in complex with alpha(t/i1) x GDP x AlF4-. These structures reveal insights into effector activation, synergistic GTPase acceleration, RGS9 specificity and RGS activity. Effector binding to a nucleotide-dependent site on alpha(t) sequesters PDEgamma residues implicated in PDE inhibition, and potentiates recruitment of RGS9 for hydrolytic transition state stabilization and concomitant signal termination.
Collapse
Affiliation(s)
- K C Slep
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06511, USA.
| | | | | | | | | | | |
Collapse
|
42
|
Abstract
The basis of the duplex theory of vision is examined in view of the dazzling array of data on visual pigment sequences and the pigments they form, on the microspectrophotometry measurements of single photoreceptor cells, on the kinds of photoreceptor cascade enzymes, and on the electrophysiological properties of photoreceptors. The implications of the existence of five distinct visual pigment families are explored, especially with regard to what pigments are in what types of photoreceptors, if there are different phototransduction enzymes associated with different types of photoreceptors, and if there are electrophysiological differences between different types of cones.
Collapse
Affiliation(s)
- T Ebrey
- University of Washington, Seattle 98195, USA
| | | |
Collapse
|
43
|
Abstract
When light is absorbed within the outer segment of a vertebrate photoreceptor, the conformation of the photopigment rhodopsin is altered to produce an activated photoproduct called metarhodopsin II or Rh(*). Rh(*) initiates a transduction cascade similar to that for metabotropic synaptic receptors and many hormones; the Rh(*) activates a heterotrimeric G protein, which in turn stimulates an effector enzyme, a cyclic nucleotide phosphodiesterase. The phosphodiesterase then hydrolyzes cGMP, and the decrease in the concentration of free cGMP reduces the probability of opening of channels in the outer segment plasma membrane, producing the electrical response of the cell. Photoreceptor transduction can be modulated by changes in the mean light level. This process, called light adaptation (or background adaptation), maintains the working range of the transduction cascade within a physiologically useful region of light intensities. There is increasing evidence that the second messenger responsible for the modulation of the transduction cascade during background adaptation is primarily, if not exclusively, Ca(2+), whose intracellular free concentration is decreased by illumination. The change in free Ca(2+) is believed to have a variety of effects on the transduction mechanism, including modulation of the rate of the guanylyl cyclase and rhodopsin kinase, alteration of the gain of the transduction cascade, and regulation of the affinity of the outer segment channels for cGMP. The sensitivity of the photoreceptor is also reduced by previous exposure to light bright enough to bleach a substantial fraction of the photopigment in the outer segment. This form of desensitization, called bleaching adaptation (the recovery from which is known as dark adaptation), seems largely to be due to an activation of the transduction cascade by some form of bleached pigment. The bleached pigment appears to activate the G protein transducin directly, although with a gain less than Rh(*). The resulting decrease in intracellular Ca(2+) then modulates the transduction cascade, by a mechanism very similar to the one responsible for altering sensitivity during background adaptation.
Collapse
Affiliation(s)
- G L Fain
- Department of Physiological Science, University of California, Los Angeles, California 90095-1527, USA.
| | | | | | | |
Collapse
|
44
|
He W, Lu L, Zhang X, El-Hodiri HM, Chen CK, Slep KC, Simon MI, Jamrich M, Wensel TG. Modules in the photoreceptor RGS9-1.Gbeta 5L GTPase-accelerating protein complex control effector coupling, GTPase acceleration, protein folding, and stability. J Biol Chem 2000; 275:37093-100. [PMID: 10978345 DOI: 10.1074/jbc.m006982200] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
RGS (regulators of G protein signaling) proteins regulate G protein signaling by accelerating GTP hydrolysis, but little is known about regulation of GTPase-accelerating protein (GAP) activities or roles of domains and subunits outside the catalytic cores. RGS9-1 is the GAP required for rapid recovery of light responses in vertebrate photoreceptors and the only mammalian RGS protein with a defined physiological function. It belongs to an RGS subfamily whose members have multiple domains, including G(gamma)-like domains that bind G(beta)(5) proteins. Members of this subfamily play important roles in neuronal signaling. Within the GAP complex organized around the RGS domain of RGS9-1, we have identified a functional role for the G(gamma)-like-G(beta)(5L) complex in regulation of GAP activity by an effector subunit, cGMP phosphodiesterase gamma and in protein folding and stability of RGS9-1. The C-terminal domain of RGS9-1 also plays a major role in conferring effector stimulation. The sequence of the RGS domain determines whether the sign of the effector effect will be positive or negative. These roles were observed in vitro using full-length proteins or fragments for RGS9-1, RGS7, G(beta)(5S), and G(beta)(5L). The dependence of RGS9-1 on G(beta)(5) co-expression for folding, stability, and function has been confirmed in vivo using transgenic Xenopus laevis. These results reveal how multiple domains and regulatory polypeptides work together to fine tune G(talpha) inactivation.
Collapse
Affiliation(s)
- W He
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology and the Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Cowan CW, He W, Wensel TG. RGS proteins: lessons from the RGS9 subfamily. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2000; 65:341-59. [PMID: 11008492 DOI: 10.1016/s0079-6603(00)65009-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
RGS proteins enhance the time resolution of G protein signaling cascades by accelerating GTP hydrolysis of G alpha subunits of heterotrimeric G proteins. RGS9-1, a photoreceptor-specific RGS protein, is the first vertebrate member of this sizeable family whose physiological function in a well-defined G protein pathway has been identified. It is essential for normal subsecond recovery kinetics of the light responses in retinal photoreceptors. Understanding this role allows RGS9-1 to serve as a useful model for understanding how specificity and regulation of RGS function are achieved. In addition to the catalytic RGS domain, shared among all members of this family, RGS9-1 contains several other domains, which are also found in a closely related subset of RGS proteins, the RGS9 subfamily. One of these domains, the G gamma-like (GGL) domain, has been identified as the attachment site for G beta 5 proteins, which act as obligate subunits for this subfamily. Results from RGS9-1 and other subfamily members suggest that specificity is achieved by cell type-specific transcription, RNA processing, and G beta 5-dependent protein stabilization. In addition, membrane localization via specific targeting domains likely plays an important role.
Collapse
Affiliation(s)
- C W Cowan
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | |
Collapse
|
46
|
Affiliation(s)
- C W Cowan
- Department of Biochemistry, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | |
Collapse
|
47
|
Pugh E, Lamb T. Chapter 5 Phototransduction in vertebrate rods and cones: Molecular mechanisms of amplification, recovery and light adaptation. HANDBOOK OF BIOLOGICAL PHYSICS 2000. [DOI: 10.1016/s1383-8121(00)80008-1] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
48
|
Zhang K, Howes KA, He W, Bronson JD, Pettenati MJ, Chen C, Palczewski K, Wensel TG, Baehr W. Structure, alternative splicing, and expression of the human RGS9 gene. Gene 1999; 240:23-34. [PMID: 10564809 DOI: 10.1016/s0378-1119(99)00393-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
An isoform of RGS9 was recently identified as the GTPase activating protein in bovine and mouse rod and cone photoreceptors. To explore the potential role of the RGS9 gene in human retinal disease, we determined its exon/intron arrangement, and investigated its expression in human retina. The results show that the gene, located on 17q24, consists of 19 exons and spans more than 75kb of genomic DNA. The entire gene was found to be contained on a single BAC clone with an insert size of 170kb. The major transcripts of the gene are alternatively spliced into a 9.5kb retina-specific transcript (RGS9-1) and a brain specific 2.5kb transcript (RGS9-2). Exons 1-16 are constitutive and present in both variants. Exon 17 contains the 3' end of the open reading frame and the 3'-UTR of the RGS9-1 variant. In RGS9-2, exon 17 is alternatively spliced and joined to exons 18 and 19 that are not present in the retina variant. Immunolocalization with a monoclonal antibody recognizing the retina and brain variants shows abundant expression in photoreceptors and possibly very low levels in cell types of the inner retina. Owing to the specific expression of RGS9-1 in photoreceptors the RGS9 gene is a candidate gene for RP17, a form of autosomal retinitis pigmentosa, located on the long arm of chromosome 17.
Collapse
MESH Headings
- Aged
- Alternative Splicing
- Amino Acid Sequence
- Animals
- Base Sequence
- Blotting, Southern
- Blotting, Western
- Brain/metabolism
- Child, Preschool
- Chromosome Mapping
- Chromosomes, Human, Pair 17/genetics
- Corpus Striatum/chemistry
- Cricetinae
- DNA/analysis
- DNA, Complementary/genetics
- DNA, Complementary/isolation & purification
- Exons
- Gene Expression Regulation, Developmental
- Genes/genetics
- Genetic Variation
- Humans
- Hybrid Cells
- Immunohistochemistry
- In Situ Hybridization, Fluorescence
- Introns
- Mammals/genetics
- Molecular Sequence Data
- Protein Isoforms/genetics
- RGS Proteins/analysis
- RGS Proteins/genetics
- Retina/chemistry
- Retina/metabolism
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- K Zhang
- Moran Eye Center, University of Utah, Salt Lake City, UT, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Faurobert E, Scotti A, Hurley JB, Chabre M. RET-RGS, a retina-specific regulator of G-protein signaling, is located in synaptic regions of the rat retina. Neurosci Lett 1999; 269:41-4. [PMID: 10821640 DOI: 10.1016/s0304-3940(99)00423-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
RGS (regulators of G protein signaling) proteins negatively regulate the alpha subunit of G proteins by accelerating their intrinsic GTPase activity. In a previous work, we reported the cloning of a cDNA encoding for a new RGS protein, RET-RGS. We showed that it is specifically expressed in the retina, notably by photoreceptor cells and that it has an in vitro GAP activity on transducin. To understand the role of RET-RGS, and in particular to determine whether it regulates the phototransduction cascade in photoreceptor cells, RET-RGS was immunolocalized on rat retina sections. Whereas no labeling was detected in outer nor inner segments of photoreceptors cells, dense immunoreactive products were localized in the outer and inner plexiform layers which correspond to the regions of synaptic interplay between the different neurons of the retina including the photoreceptor cells. These results rule out a role of RET-RGS on the phototransduction cascade and suggest that it may participate in retina specific synaptic transductions.
Collapse
Affiliation(s)
- E Faurobert
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS UPR 411 660, Valbonne, France.
| | | | | | | |
Collapse
|
50
|
Skiba NP, Yang CS, Huang T, Bae H, Hamm HE. The alpha-helical domain of Galphat determines specific interaction with regulator of G protein signaling 9. J Biol Chem 1999; 274:8770-8. [PMID: 10085118 DOI: 10.1074/jbc.274.13.8770] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
RGS proteins (regulators of G protein signaling) are potent accelerators of the intrinsic GTPase activity of G protein alpha subunits (GAPs), thus controlling the response kinetics of a variety of cell signaling processes. Most RGS domains that have been studied have relatively little GTPase activating specificity especially for G proteins within the Gi subfamily. Retinal RGS9 is unique in its ability to act synergistically with a downstream effector cGMP phosphodiesterase to stimulate the GTPase activity of the alpha subunit of transducin, Galphat. Here we report another unique property of RGS9: high specificity for Galphat. The core (RGS) domain of RGS9 (RGS9) stimulates Galphat GTPase activity by 10-fold and Galphai1 GTPase activity by only 2-fold at a concentration of 10 microM. Using chimeric Galphat/Galphai1 subunits we demonstrated that the alpha-helical domain of Galphat imparts this specificity. The functional effects of RGS9 were well correlated with its affinity for activated Galpha subunits as measured by a change in fluorescence of a mutant Galphat (Chi6b) selectively labeled at Cys-210. Kd values for RGS9 complexes with Galphat and Galphai1 calculated from the direct binding and competition experiments were 185 nM and 2 microM, respectively. The gamma subunit of phosphodiesterase increases the GAP activity of RGS9. We demonstrate that this is because of the ability of Pgamma to increase the affinity of RGS9 for Galphat. A distinct, nonoverlapping pattern of RGS and Pgamma interaction with Galphat suggests a unique mechanism of effector-mediated GAP function of the RGS9.
Collapse
Affiliation(s)
- N P Skiba
- Northwestern University Institute for Neuroscience, Department of Molecular Pharmacology and Biological Chemistry, and Department of Ophthalmology, Northwestern University, Chicago, Illinois 60611, USA
| | | | | | | | | |
Collapse
|