1
|
Li Z, Duan R, Jiang Q, Liu J, Chen J, Jiang L, Wang T, Li H, Zhang Y, Peng X, Huang Z, Zhu L, Zou W, Lin Y, Su W. Dietary caloric restriction protects experimental autoimmune uveitis by regulating Teff/Treg balance. iScience 2024; 27:111279. [PMID: 39628557 PMCID: PMC11612795 DOI: 10.1016/j.isci.2024.111279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/29/2024] [Accepted: 10/25/2024] [Indexed: 12/06/2024] Open
Abstract
Uveitis, an autoimmune disease, often leads to blindness. CD4+ T cells, including regulatory T cells (Tregs) and effector T cells (Th1 and Th17), play a critical role in its pathogenesis. Caloric restriction (CR) has been shown to alleviate autoimmune diseases. However, careful characterization of the impact of CR on experimental autoimmune uveitis (EAU) is poorly understood. This study used single-cell RNA sequencing to analyze cervical draining lymph nodes in mice under ad libitum (AL) and CR diets, with or without EAU. CR increased Tregs, altered immune cell metabolism, reduced EAU symptoms, and downregulated inflammatory and glycolysis genes. Flow cytometry confirmed CR's inhibitory effect on Th1 and Th17 proliferation and its promotion of Treg proliferation. CR also balanced CD4+ T cells by inhibiting the PI3K/AKT/c-Myc pathway and reducing GM-CSF in Th17 cells. These findings suggest CR as a potential therapeutic strategy for autoimmune diseases.
Collapse
Affiliation(s)
- Zhaohuai Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Runping Duan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Qi Jiang
- Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China
| | - Jiaying Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Jialing Chen
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510060, China
| | - Loujing Jiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Tianfu Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - He Li
- Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China
| | - Yihan Zhang
- Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China
| | - Xuening Peng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Zhaohao Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Lei Zhu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Wenjun Zou
- Department of Ophthalmology, Wuxi No.2 People’s Hospital, Jiangnan University Medical Center, Wuxi, Jiangsu, China
| | - Ying Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Wenru Su
- Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China
| |
Collapse
|
2
|
Shirahama S, Okunuki Y, Lee MY, Karg MM, Refaian N, Krasniqi D, Connor KM, Gregory-Ksander MS, Ksander BR. Retinal microglia exacerbate uveitis by functioning as local antigen-presenting cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.23.586440. [PMID: 38585800 PMCID: PMC10996501 DOI: 10.1101/2024.03.23.586440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Autoimmune uveitis is a major cause of blindness in the working-age population of developed countries. Experimental autoimmune uveitis (EAU) depends on activation of interphotoreceptor retinoid-binding protein (IRBP) specific CD4 + effector T cells that migrate systemically and infiltrate into the retina. Following systemic induction of retinal antigen-specific T cells, the development of EAU can be broken down into three phases: early phase when inflammatory cells begin to infiltrate the retina, amplification phase, and peak phase. Although studied extensively, the function of local antigen-presenting cells (APCs) within the retina remains unclear. Two potential types of APCs are present during uveitis, resident microglia and infiltrating CD11c + dendritic cells (DCs). MHC class II (MHC II) is expressed within the retina on both CD11c + DCs and microglia during the amplification phase of EAU. Therefore, we used microglia specific (P2RY12 and TMEM119) and CD11c + DC specific MHC II knockout mice to study the function of APCs within the retina using the conventional and adoptive transfer methods of inducing EAU. Microglia were essential during all phases of EAU development: the early phase when microglia were MHC Il negative, and amplification and peak phases when microglia were MHC II positive. Unexpectedly, retinal infiltrating MHC Il + CD11c + DCs were present within the retina but their antigen-presenting function was not required for all phases of uveitis. Our data indicate microglia are the critical APCs within the retina and an important therapeutic target that can prevent and/or diminish uveitis even in the presence of circulating IRBP-specific CD4 + effector T cells.
Collapse
|
3
|
Gonzalez-Fierro C, Fonte C, Dufourd E, Cazaentre V, Aydin S, Engelhardt B, Caspi RR, Xu B, Martin-Blondel G, Spicer JA, Trapani JA, Bauer J, Liblau RS, Bost C. Effects of a Small-Molecule Perforin Inhibitor in a Mouse Model of CD8 T Cell-Mediated Neuroinflammation. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2023; 10:e200117. [PMID: 37080596 PMCID: PMC10119812 DOI: 10.1212/nxi.0000000000200117] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 02/21/2023] [Indexed: 04/22/2023]
Abstract
BACKGROUND AND OBJECTIVES Alteration of the blood-brain barrier (BBB) at the interface between blood and CNS parenchyma is prominent in most neuroinflammatory diseases. In several neurologic diseases, including cerebral malaria and Susac syndrome, a CD8 T cell-mediated targeting of endothelial cells of the BBB (BBB-ECs) has been implicated in pathogenesis. METHODS In this study, we used an experimental mouse model to evaluate the ability of a small-molecule perforin inhibitor to prevent neuroinflammation resulting from cytotoxic CD8 T cell-mediated damage of BBB-ECs. RESULTS Using an in vitro coculture system, we first identified perforin as an essential molecule for killing of BBB-ECs by CD8 T cells. We then found that short-term pharmacologic inhibition of perforin commencing after disease onset restored motor function and inhibited the neuropathology. Perforin inhibition resulted in preserved BBB-EC viability, maintenance of the BBB, and reduced CD8 T-cell accumulation in the brain and retina. DISCUSSION Therefore, perforin-dependent cytotoxicity plays a key role in the death of BBB-ECs inflicted by autoreactive CD8 T cells in a preclinical model and potentially represents a therapeutic target for CD8 T cell-mediated neuroinflammatory diseases, such as cerebral malaria and Susac syndrome.
Collapse
Affiliation(s)
- Carmen Gonzalez-Fierro
- From the Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) (C.G.-F., C.F., E.D., V.C., G.M.-B., R.S.L., C.B.), University of Toulouse, CNRS, INSERM, UPS, France; Theodor Kocher Institute (S.A., B.E.), University of Bern, Switzerland; Laboratory of Immunology (R.R.C., B.X.), National Eye Institute, National Institutes of Health, Bethesda, MD; Department of Infectious and Tropical Diseases (G.M.-B.), Toulouse University Hospital, France; Auckland Cancer Society Research Centre (J.A.S.), Faculty of Medical and Health Sciences, The University of Auckland, New Zealand; Cancer Immunology Program (J.A.T.), Peter MacCallum Cancer Centre, Melbourne, Australia; Sir Peter MacCallum Department of Oncology (J.A.T.), The University of Melbourne, Parkville, Australia; Department of Neuroimmunology (J.B.), Center for Brain Research, Medical University of Vienna, Austria; and Department of Immunology (R.S.L., C.B.), Toulouse University Hospital, France
| | - Coralie Fonte
- From the Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) (C.G.-F., C.F., E.D., V.C., G.M.-B., R.S.L., C.B.), University of Toulouse, CNRS, INSERM, UPS, France; Theodor Kocher Institute (S.A., B.E.), University of Bern, Switzerland; Laboratory of Immunology (R.R.C., B.X.), National Eye Institute, National Institutes of Health, Bethesda, MD; Department of Infectious and Tropical Diseases (G.M.-B.), Toulouse University Hospital, France; Auckland Cancer Society Research Centre (J.A.S.), Faculty of Medical and Health Sciences, The University of Auckland, New Zealand; Cancer Immunology Program (J.A.T.), Peter MacCallum Cancer Centre, Melbourne, Australia; Sir Peter MacCallum Department of Oncology (J.A.T.), The University of Melbourne, Parkville, Australia; Department of Neuroimmunology (J.B.), Center for Brain Research, Medical University of Vienna, Austria; and Department of Immunology (R.S.L., C.B.), Toulouse University Hospital, France
| | - Eloïse Dufourd
- From the Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) (C.G.-F., C.F., E.D., V.C., G.M.-B., R.S.L., C.B.), University of Toulouse, CNRS, INSERM, UPS, France; Theodor Kocher Institute (S.A., B.E.), University of Bern, Switzerland; Laboratory of Immunology (R.R.C., B.X.), National Eye Institute, National Institutes of Health, Bethesda, MD; Department of Infectious and Tropical Diseases (G.M.-B.), Toulouse University Hospital, France; Auckland Cancer Society Research Centre (J.A.S.), Faculty of Medical and Health Sciences, The University of Auckland, New Zealand; Cancer Immunology Program (J.A.T.), Peter MacCallum Cancer Centre, Melbourne, Australia; Sir Peter MacCallum Department of Oncology (J.A.T.), The University of Melbourne, Parkville, Australia; Department of Neuroimmunology (J.B.), Center for Brain Research, Medical University of Vienna, Austria; and Department of Immunology (R.S.L., C.B.), Toulouse University Hospital, France
| | - Vincent Cazaentre
- From the Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) (C.G.-F., C.F., E.D., V.C., G.M.-B., R.S.L., C.B.), University of Toulouse, CNRS, INSERM, UPS, France; Theodor Kocher Institute (S.A., B.E.), University of Bern, Switzerland; Laboratory of Immunology (R.R.C., B.X.), National Eye Institute, National Institutes of Health, Bethesda, MD; Department of Infectious and Tropical Diseases (G.M.-B.), Toulouse University Hospital, France; Auckland Cancer Society Research Centre (J.A.S.), Faculty of Medical and Health Sciences, The University of Auckland, New Zealand; Cancer Immunology Program (J.A.T.), Peter MacCallum Cancer Centre, Melbourne, Australia; Sir Peter MacCallum Department of Oncology (J.A.T.), The University of Melbourne, Parkville, Australia; Department of Neuroimmunology (J.B.), Center for Brain Research, Medical University of Vienna, Austria; and Department of Immunology (R.S.L., C.B.), Toulouse University Hospital, France
| | - Sidar Aydin
- From the Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) (C.G.-F., C.F., E.D., V.C., G.M.-B., R.S.L., C.B.), University of Toulouse, CNRS, INSERM, UPS, France; Theodor Kocher Institute (S.A., B.E.), University of Bern, Switzerland; Laboratory of Immunology (R.R.C., B.X.), National Eye Institute, National Institutes of Health, Bethesda, MD; Department of Infectious and Tropical Diseases (G.M.-B.), Toulouse University Hospital, France; Auckland Cancer Society Research Centre (J.A.S.), Faculty of Medical and Health Sciences, The University of Auckland, New Zealand; Cancer Immunology Program (J.A.T.), Peter MacCallum Cancer Centre, Melbourne, Australia; Sir Peter MacCallum Department of Oncology (J.A.T.), The University of Melbourne, Parkville, Australia; Department of Neuroimmunology (J.B.), Center for Brain Research, Medical University of Vienna, Austria; and Department of Immunology (R.S.L., C.B.), Toulouse University Hospital, France
| | - Britta Engelhardt
- From the Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) (C.G.-F., C.F., E.D., V.C., G.M.-B., R.S.L., C.B.), University of Toulouse, CNRS, INSERM, UPS, France; Theodor Kocher Institute (S.A., B.E.), University of Bern, Switzerland; Laboratory of Immunology (R.R.C., B.X.), National Eye Institute, National Institutes of Health, Bethesda, MD; Department of Infectious and Tropical Diseases (G.M.-B.), Toulouse University Hospital, France; Auckland Cancer Society Research Centre (J.A.S.), Faculty of Medical and Health Sciences, The University of Auckland, New Zealand; Cancer Immunology Program (J.A.T.), Peter MacCallum Cancer Centre, Melbourne, Australia; Sir Peter MacCallum Department of Oncology (J.A.T.), The University of Melbourne, Parkville, Australia; Department of Neuroimmunology (J.B.), Center for Brain Research, Medical University of Vienna, Austria; and Department of Immunology (R.S.L., C.B.), Toulouse University Hospital, France
| | - Rachel R Caspi
- From the Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) (C.G.-F., C.F., E.D., V.C., G.M.-B., R.S.L., C.B.), University of Toulouse, CNRS, INSERM, UPS, France; Theodor Kocher Institute (S.A., B.E.), University of Bern, Switzerland; Laboratory of Immunology (R.R.C., B.X.), National Eye Institute, National Institutes of Health, Bethesda, MD; Department of Infectious and Tropical Diseases (G.M.-B.), Toulouse University Hospital, France; Auckland Cancer Society Research Centre (J.A.S.), Faculty of Medical and Health Sciences, The University of Auckland, New Zealand; Cancer Immunology Program (J.A.T.), Peter MacCallum Cancer Centre, Melbourne, Australia; Sir Peter MacCallum Department of Oncology (J.A.T.), The University of Melbourne, Parkville, Australia; Department of Neuroimmunology (J.B.), Center for Brain Research, Medical University of Vienna, Austria; and Department of Immunology (R.S.L., C.B.), Toulouse University Hospital, France
| | - Biying Xu
- From the Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) (C.G.-F., C.F., E.D., V.C., G.M.-B., R.S.L., C.B.), University of Toulouse, CNRS, INSERM, UPS, France; Theodor Kocher Institute (S.A., B.E.), University of Bern, Switzerland; Laboratory of Immunology (R.R.C., B.X.), National Eye Institute, National Institutes of Health, Bethesda, MD; Department of Infectious and Tropical Diseases (G.M.-B.), Toulouse University Hospital, France; Auckland Cancer Society Research Centre (J.A.S.), Faculty of Medical and Health Sciences, The University of Auckland, New Zealand; Cancer Immunology Program (J.A.T.), Peter MacCallum Cancer Centre, Melbourne, Australia; Sir Peter MacCallum Department of Oncology (J.A.T.), The University of Melbourne, Parkville, Australia; Department of Neuroimmunology (J.B.), Center for Brain Research, Medical University of Vienna, Austria; and Department of Immunology (R.S.L., C.B.), Toulouse University Hospital, France
| | - Guillaume Martin-Blondel
- From the Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) (C.G.-F., C.F., E.D., V.C., G.M.-B., R.S.L., C.B.), University of Toulouse, CNRS, INSERM, UPS, France; Theodor Kocher Institute (S.A., B.E.), University of Bern, Switzerland; Laboratory of Immunology (R.R.C., B.X.), National Eye Institute, National Institutes of Health, Bethesda, MD; Department of Infectious and Tropical Diseases (G.M.-B.), Toulouse University Hospital, France; Auckland Cancer Society Research Centre (J.A.S.), Faculty of Medical and Health Sciences, The University of Auckland, New Zealand; Cancer Immunology Program (J.A.T.), Peter MacCallum Cancer Centre, Melbourne, Australia; Sir Peter MacCallum Department of Oncology (J.A.T.), The University of Melbourne, Parkville, Australia; Department of Neuroimmunology (J.B.), Center for Brain Research, Medical University of Vienna, Austria; and Department of Immunology (R.S.L., C.B.), Toulouse University Hospital, France
| | - Julie A Spicer
- From the Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) (C.G.-F., C.F., E.D., V.C., G.M.-B., R.S.L., C.B.), University of Toulouse, CNRS, INSERM, UPS, France; Theodor Kocher Institute (S.A., B.E.), University of Bern, Switzerland; Laboratory of Immunology (R.R.C., B.X.), National Eye Institute, National Institutes of Health, Bethesda, MD; Department of Infectious and Tropical Diseases (G.M.-B.), Toulouse University Hospital, France; Auckland Cancer Society Research Centre (J.A.S.), Faculty of Medical and Health Sciences, The University of Auckland, New Zealand; Cancer Immunology Program (J.A.T.), Peter MacCallum Cancer Centre, Melbourne, Australia; Sir Peter MacCallum Department of Oncology (J.A.T.), The University of Melbourne, Parkville, Australia; Department of Neuroimmunology (J.B.), Center for Brain Research, Medical University of Vienna, Austria; and Department of Immunology (R.S.L., C.B.), Toulouse University Hospital, France
| | - Joseph A Trapani
- From the Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) (C.G.-F., C.F., E.D., V.C., G.M.-B., R.S.L., C.B.), University of Toulouse, CNRS, INSERM, UPS, France; Theodor Kocher Institute (S.A., B.E.), University of Bern, Switzerland; Laboratory of Immunology (R.R.C., B.X.), National Eye Institute, National Institutes of Health, Bethesda, MD; Department of Infectious and Tropical Diseases (G.M.-B.), Toulouse University Hospital, France; Auckland Cancer Society Research Centre (J.A.S.), Faculty of Medical and Health Sciences, The University of Auckland, New Zealand; Cancer Immunology Program (J.A.T.), Peter MacCallum Cancer Centre, Melbourne, Australia; Sir Peter MacCallum Department of Oncology (J.A.T.), The University of Melbourne, Parkville, Australia; Department of Neuroimmunology (J.B.), Center for Brain Research, Medical University of Vienna, Austria; and Department of Immunology (R.S.L., C.B.), Toulouse University Hospital, France
| | - Jan Bauer
- From the Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) (C.G.-F., C.F., E.D., V.C., G.M.-B., R.S.L., C.B.), University of Toulouse, CNRS, INSERM, UPS, France; Theodor Kocher Institute (S.A., B.E.), University of Bern, Switzerland; Laboratory of Immunology (R.R.C., B.X.), National Eye Institute, National Institutes of Health, Bethesda, MD; Department of Infectious and Tropical Diseases (G.M.-B.), Toulouse University Hospital, France; Auckland Cancer Society Research Centre (J.A.S.), Faculty of Medical and Health Sciences, The University of Auckland, New Zealand; Cancer Immunology Program (J.A.T.), Peter MacCallum Cancer Centre, Melbourne, Australia; Sir Peter MacCallum Department of Oncology (J.A.T.), The University of Melbourne, Parkville, Australia; Department of Neuroimmunology (J.B.), Center for Brain Research, Medical University of Vienna, Austria; and Department of Immunology (R.S.L., C.B.), Toulouse University Hospital, France
| | - Roland S Liblau
- From the Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) (C.G.-F., C.F., E.D., V.C., G.M.-B., R.S.L., C.B.), University of Toulouse, CNRS, INSERM, UPS, France; Theodor Kocher Institute (S.A., B.E.), University of Bern, Switzerland; Laboratory of Immunology (R.R.C., B.X.), National Eye Institute, National Institutes of Health, Bethesda, MD; Department of Infectious and Tropical Diseases (G.M.-B.), Toulouse University Hospital, France; Auckland Cancer Society Research Centre (J.A.S.), Faculty of Medical and Health Sciences, The University of Auckland, New Zealand; Cancer Immunology Program (J.A.T.), Peter MacCallum Cancer Centre, Melbourne, Australia; Sir Peter MacCallum Department of Oncology (J.A.T.), The University of Melbourne, Parkville, Australia; Department of Neuroimmunology (J.B.), Center for Brain Research, Medical University of Vienna, Austria; and Department of Immunology (R.S.L., C.B.), Toulouse University Hospital, France.
| | - Chloé Bost
- From the Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) (C.G.-F., C.F., E.D., V.C., G.M.-B., R.S.L., C.B.), University of Toulouse, CNRS, INSERM, UPS, France; Theodor Kocher Institute (S.A., B.E.), University of Bern, Switzerland; Laboratory of Immunology (R.R.C., B.X.), National Eye Institute, National Institutes of Health, Bethesda, MD; Department of Infectious and Tropical Diseases (G.M.-B.), Toulouse University Hospital, France; Auckland Cancer Society Research Centre (J.A.S.), Faculty of Medical and Health Sciences, The University of Auckland, New Zealand; Cancer Immunology Program (J.A.T.), Peter MacCallum Cancer Centre, Melbourne, Australia; Sir Peter MacCallum Department of Oncology (J.A.T.), The University of Melbourne, Parkville, Australia; Department of Neuroimmunology (J.B.), Center for Brain Research, Medical University of Vienna, Austria; and Department of Immunology (R.S.L., C.B.), Toulouse University Hospital, France
| |
Collapse
|
4
|
Kang M, Yadav MK, Mbanefo EC, Yu CR, Egwuagu CE. IL-27-containing exosomes secreted by innate B-1a cells suppress and ameliorate uveitis. Front Immunol 2023; 14:1071162. [PMID: 37334383 PMCID: PMC10272713 DOI: 10.3389/fimmu.2023.1071162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 05/18/2023] [Indexed: 06/20/2023] Open
Abstract
Introduction IL-27 is a heterodimeric cytokine composed of Ebi3 and IL-27p28 and can exert proinflammatory or immune suppressive effects depending on the physiological context. Ebi3 does not contain membrane-anchoring motifs, suggesting that it is a secreted protein while IL-27p28 is poorly secreted. How IL-27p28 and Ebi3 dimerize in-vivo to form biologically active IL-27 is unknown. Major impediment to clinical use of IL-27 derives from difficulty of determining exact amount of bioavailable heterodimeric IL-27 needed for therapy. Methods To understand how IL-27 mediates immune suppression, we characterized an innate IL-27-producing B-1a regulatory B cell population (i27-Breg) and mechanisms i27-Bregs utilize to suppress neuroinflammation in mouse model of uveitis. We also investigated biosynthesis of IL-27 and i27-Breg immunobiology by FACS, immunohistochemical and confocal microscopy. Results Contrary to prevailing view that IL-27 is a soluble cytokine, we show that i27-Bregs express membrane-bound IL-27. Immunohistochemical and confocal analyses co-localized expression of IL-27p28 at the plasma membrane in association with CD81 tetraspanin, a BCR-coreceptor protein and revealed that IL-27p28 is a transmembrane protein in B cells. Most surprising, we found that i27-Bregs secrete IL-27-containing exosomes (i27-exosomes) and adoptive transfer of i27-exosomes suppressed uveitis by antagonizing Th1/Th17 cells, up-regulating inhibitory-receptors associated with T-cell exhaustion while inducing Treg expansion. Discussion Use of i27-exosomes thus obviates the IL-27 dosing problem, making it possible to determine bioavailable heterodimeric IL-27 needed for therapy. Moreover, as exosomes readily cross the blood-retina-barrier and no adverse effects were observed in mice treated with i27-exosome, results of this study suggest that i27-exosomes might be a promising therapeutic approach for CNS autoimmune diseases.
Collapse
|
5
|
Saraswathy S, Rao NA. microRNA 146a ameliorates retinal damage in experimental autoimmune uveitis. FRONTIERS IN OPHTHALMOLOGY 2023; 3:1130202. [PMID: 38983073 PMCID: PMC11182178 DOI: 10.3389/fopht.2023.1130202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/08/2023] [Indexed: 07/11/2024]
Abstract
Introduction Uveitis and related intraocular inflammations are a major cause of blindness due to retinal damage caused by degeneration and loss of the photoreceptor cells. In mouse experimental autoimmune uveitis (EAU) previously we have shown mitochondrial oxidative stress with marked upregulation of αA crystallin in the inner segments of the photoreceptors. Furthermore, αA crystallin treatment prevented photoreceptor mitochondrial oxidative stress by suppressing innate and adaptive immunity in EAU. Methods Since these immune processes are modulated by microRNAs, in this study we investigated (a) modulation of microRNAs during development of EAU by αA crystallin administration and (b) microRNA therapeutic intervention. Results Few microRNAs were significantly upregulated in EAU mice with intravenous injection of αA crystallin and among these, computational bioinformatic analysis revealed that the upregulated microRNA 146a targets the innate and adaptive immune responses. In EAU, intravenous as well as intravitreal administration of this microRNA prevented inflammatory cell infiltration in uvea and retina and preserved photoreceptor cells. Discussion This protective function suggests that microRNA146a can be a novel therapeutic agent in preventing retinal damage in uveitis.
Collapse
Affiliation(s)
- Sindhu Saraswathy
- Department of Ophthalmology, Doheny Eye Institute, Los Angeles, CA, United States
| | - Narsing A. Rao
- Department of Opthalmology, USC-Roski Eye Institute, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
6
|
FTO-mediated m6A modification alleviates autoimmune uveitis by regulating microglia phenotypes via the GPC4/TLR4/NF-κB signaling axis. Genes Dis 2022. [PMID: 37492748 PMCID: PMC10363593 DOI: 10.1016/j.gendis.2022.09.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
Abstract
Uveitis, a vision-threatening inflammatory disease worldwide, is closely related to resident microglia. Retinal microglia are the main immune effector cells with strong plasticity, but their role in uveitis remains unclear. N6-methyladenosine (m6A) modification has been proven to be involved in the immune response. Therefore, we in this work aimed to identify the potentially crucial m6A regulators of microglia in uveitis. Through the single-cell sequencing (scRNA-seq) analysis and experimental verification, we found a significant decrease in the expression of fat mass and obesity-associated protein (FTO) in retinal microglia of uveitis mice and human microglia clone 3 (HMC3) cells with inflammation. Additionally, FTO knockdown was found to aggravate the secretion of inflammatory factors and the mobility/chemotaxis of microglia. Mechanistically, the RNA-seq data and rescue experiments showed that glypican 4 (GPC4) was the target of FTO, which regulated microglial inflammation mediated by the TLR4/NF-κB pathway. Moreover, RNA stability assays indicated that GPC4 upregulation was mainly regulated by the downregulation of the m6A "reader" YTH domain family protein 3 (YTHDF3). Finally, the FTO inhibitor FB23-2 further exacerbated experimental autoimmune uveitis (EAU) inflammation by promoting the GPC4/TLR4/NF-κB signaling axis, and this could be attenuated by the TLR4 inhibitor TAK-242. Collectively, a decreased FTO could facilitate microglial inflammation in EAU, suggesting that the restoration or activation of FTO function may be a potential therapeutic strategy for uveitis.
Collapse
|
7
|
Photoreceptor Cells Constitutively Express IL-35 and Promote Ocular Immune Privilege. Int J Mol Sci 2022; 23:ijms23158156. [PMID: 35897732 PMCID: PMC9351654 DOI: 10.3390/ijms23158156] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 12/10/2022] Open
Abstract
Interleukin-27 is constitutively secreted by microglia in the retina or brain, and upregulation of IL-27 during neuroinflammation suppresses encephalomyelitis and autoimmune uveitis. However, while IL-35 is structurally and functionally similar to IL-27, the intrinsic roles of IL-35 in CNS tissues are unknown. Thus, we generated IL-35/YFP-knock-in reporter mice (p35-KI) and demonstrated that photoreceptor neurons constitutively secrete IL-35, which might protect the retina from persistent low-grade inflammation that can impair photoreceptor functions. Furthermore, the p35-KI mouse, which is hemizygous at the il12a locus, develops more severe uveitis because of reduced IL-35 expression. Interestingly, onset and exacerbation of uveitis in p35-KI mice caused by extravasation of proinflammatory Th1/Th17 lymphocytes into the retina were preceded by a dramatic decrease of IL-35, attributable to massive death of photoreceptor cells. Thus, while inflammation-induced death of photoreceptors and loss of protective effects of IL-35 exacerbated uveitis, our data also suggest that constitutive production of IL-35 in the retina might have housekeeping functions that promote sterilization immunity in the neuroretina and maintain ocular immune privilege.
Collapse
|
8
|
Hu K, Lv L, Huang H, Yin G, Gao J, Liu J, Yang Y, Zeng W, Chen Y, Zhang N, Zhang F, Ma Y, Chen F. A Novel Tree Shrew Model of Chronic Experimental Autoimmune Uveitis and Its Disruptive Application. Front Immunol 2022; 13:889596. [PMID: 35711454 PMCID: PMC9196886 DOI: 10.3389/fimmu.2022.889596] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/29/2022] [Indexed: 11/27/2022] Open
Abstract
Background Previous studies have established several animal models for experimental autoimmune uveitis (EAU) in rodents without the fovea centralis in the human retina. This study aimed to develop and explore the application of a novel EAU model in tree shrews with a cone-dominated retina resembling the human fovea. Methods Tree shrews were clinically and pathologically evaluated for the development and characteristics of EAU immunized with six inter-photoreceptor retinoid-binding proteins (IRBPs). IRBP-specific T-cell proliferation and serum cytokine of tree shrews were evaluated to determine the immune responses. Differentially expressed genes (DEGs) were identified in the eyes of tree shrews with EAU by RNA-sequencing. The disruptive effects of the DEG RGS4 inhibitor CCG 203769 and dihydroartemisinin on the EAU were investigated to evaluate the potential application of tree shrew EAU. Results IRBP1197–1211 and R14 successfully induced chronic EAU with subretinal deposits and retinal damage in the tree shrews. The immunological characteristics presented the predominant infiltration of microglia/macrophages, dendritic cells, and CD4-T-cells into the uvea and retina and pathogenic T helper (Th) 1 and Th17 responses. The subretinal deposits positively expressed amyloid β-protein (Aβ), CD8, and P2Y purinoceptor 12 (P2RY12). The crucial DEGs in R14-induced EAU, such as P2RY2 and adenylate cyclase 4 (ADCY4), were enriched for several pathways, including inflammatory mediator regulation of transient receptor potential (TRP) channels. The upregulated RGS4 in IRBP-induced EAU was associated with mitogen-activated protein kinase (MAPK) activity. RGS4 inhibition and dihydroartemisinin could significantly alleviate the retinal pathological injuries of IRBP1197-1211-induced EAU by decreasing the expression of CD4 T-cells. Conclusion Our study provides a novel chronic EAU in tree shrews elicited by bovine R14 and tree shrew IRBP1197-1211 characterized by retinal degeneration, retinal damage with subretinal Aβ deposits and microglia/macrophage infiltration, and T-cell response, probably by altering important pathways and genes related to bacterial invasion, inflammatory pain, microglial phagocytosis, and lipid and glucose metabolism. The findings advance the knowledge of the pathogenesis and therapeutics of the fovea-involved visual disturbance in human uveitis.
Collapse
Affiliation(s)
- Kaijiao Hu
- Laboratory Animal Center, Chongqing Medical University, Chongqing, China.,Chongqing Engineering Research Center for Rodent Laboratory Animals, Chongqing, China
| | - Longbao Lv
- Laboratory Animal Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Hui Huang
- Laboratory Animal Center, Chongqing Medical University, Chongqing, China.,Chongqing Engineering Research Center for Rodent Laboratory Animals, Chongqing, China
| | - Guangnian Yin
- Laboratory Animal Center, Chongqing Medical University, Chongqing, China.,Chongqing Engineering Research Center for Rodent Laboratory Animals, Chongqing, China.,Department of Clinical Laboratory, the Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Jie Gao
- Laboratory Animal Center, Chongqing Medical University, Chongqing, China.,Chongqing Engineering Research Center for Rodent Laboratory Animals, Chongqing, China
| | - Jianping Liu
- Department of Pathology, Chongqing Medical University, Chongqing, China
| | - Yaying Yang
- Department of Pathology, Chongqing Medical University, Chongqing, China
| | - Wenxin Zeng
- Laboratory Animal Center, Chongqing Medical University, Chongqing, China.,Chongqing Engineering Research Center for Rodent Laboratory Animals, Chongqing, China
| | - Yan Chen
- Department of Pathology, Chongqing Medical University, Chongqing, China
| | - Ni Zhang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Eye Institute, Chongqing, China
| | - Feiyan Zhang
- Laboratory Animal Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Yuhua Ma
- Laboratory Animal Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Feilan Chen
- Laboratory Animal Center, Chongqing Medical University, Chongqing, China.,Chongqing Engineering Research Center for Rodent Laboratory Animals, Chongqing, China
| |
Collapse
|
9
|
Li D, Huang C, Han X, Sun J. Integrated Transcriptome Analysis of Iris Tissues in Experimental Autoimmune Uveitis. Front Genet 2022; 13:867492. [PMID: 35419028 PMCID: PMC8996140 DOI: 10.3389/fgene.2022.867492] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 02/23/2022] [Indexed: 12/13/2022] Open
Abstract
Uveitis is a severe ocular inflammatory disease that affects the uvea and frequently results in visual impairment, even irreversible blindness. The current treatments for uveitis have exhibited adverse side effects. To find novel targets of this disease, we perform comparative transcriptome analysis using normal (n = 4) and experimental autoimmune uveitis (EAU) (n = 4) rat iris samples. We mainly focus on the expression profiles of mRNAs and long non-coding RNAs, and identify NOD-like receptor signaling pathway as the one that plays a key role in the pathological changes of the EAU irises. Our work demonstrates that the EAU iris transcriptome can be mined to uncover novel targetable pathways for uveitis. The molecules in NOD-like receptor signaling pathway could be novel therapeutic targets for autoimmune uveitis.
Collapse
Affiliation(s)
- Dan Li
- Eye Institute, Eye & ENT Hospital of Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China.,NHC Key Laboratory of Myopia, Fudan University, Shanghai, China.,Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
| | - Chang Huang
- Eye Institute, Eye & ENT Hospital of Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China.,NHC Key Laboratory of Myopia, Fudan University, Shanghai, China.,Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
| | - Xiaoyan Han
- Eye Institute, Eye & ENT Hospital of Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China.,NHC Key Laboratory of Myopia, Fudan University, Shanghai, China.,Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
| | - Jianguo Sun
- Eye Institute, Eye & ENT Hospital of Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China.,NHC Key Laboratory of Myopia, Fudan University, Shanghai, China.,Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
| |
Collapse
|
10
|
DeDreu J, Pal-Ghosh S, Mattapallil MJ, Caspi RR, Stepp MA, Menko AS. Uveitis-mediated immune cell invasion through the extracellular matrix of the lens capsule. FASEB J 2021; 36:e21995. [PMID: 34874579 PMCID: PMC9300120 DOI: 10.1096/fj.202101098r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/20/2021] [Accepted: 10/04/2021] [Indexed: 12/05/2022]
Abstract
While the eye is considered an immune privileged site, its privilege is abrogated when immune cells are recruited from the surrounding vasculature in response to trauma, infection, aging, and autoimmune diseases like uveitis. Here, we investigate whether in uveitis immune cells become associated with the lens capsule and compromise its privilege in studies of C57BL/6J mice with experimental autoimmune uveitis. These studies show that at D14, the peak of uveitis in these mice, T cells, macrophages, and Ly6G/Ly6C+ immune cells associate with the lens basement membrane capsule, burrow into the capsule matrix, and remain integrated with the capsule as immune resolution is occurring at D26. 3D surface rendering image analytics of confocal z‐stacks and scanning electron microscopy imaging of the lens surface show the degradation of the lens capsule as these lens‐associated immune cells integrate with and invade the lens capsule, with a subset infiltrating both epithelial and fiber cell regions of lens tissue, abrogating its immune privilege. Those immune cells that remain on the surface often become entwined with a fibrillar net‐like structure. Immune cell invasion of the lens capsule in uveitis has not been described previously and may play a role in induction of lens and other eye pathologies associated with autoimmunity.
Collapse
Affiliation(s)
- JodiRae DeDreu
- Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Sonali Pal-Ghosh
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - Mary J Mattapallil
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Rachel R Caspi
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Mary Ann Stepp
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA.,Department of Ophthalmology, George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - A Sue Menko
- Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.,Department of Ophthalmology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
11
|
Aging weakens Th17 cell pathogenicity and ameliorates experimental autoimmune uveitis in mice. Protein Cell 2021; 13:422-445. [PMID: 34748200 PMCID: PMC9095810 DOI: 10.1007/s13238-021-00882-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/13/2021] [Indexed: 11/29/2022] Open
Abstract
Aging-induced changes in the immune system are associated with a higher incidence of infection and vaccination failure. Lymph nodes, which filter the lymph to identify and fight infections, play a central role in this process. However, careful characterization of the impact of aging on lymph nodes and associated autoimmune diseases is lacking. We combined single-cell RNA sequencing (scRNA-seq) with flow cytometry to delineate the immune cell atlas of cervical draining lymph nodes (CDLNs) of both young and old mice with or without experimental autoimmune uveitis (EAU). We found extensive and complicated changes in the cellular constituents of CDLNs during aging. When confronted with autoimmune challenges, old mice developed milder EAU compared to young mice. Within this EAU process, we highlighted that the pathogenicity of T helper 17 cells (Th17) was dampened, as shown by reduced GM-CSF secretion in old mice. The mitigated secretion of GM-CSF contributed to alleviation of IL-23 secretion by antigen-presenting cells (APCs) and may, in turn, weaken APCs’ effects on facilitating the pathogenicity of Th17 cells. Meanwhile, our study further unveiled that aging downregulated GM-CSF secretion through reducing both the transcript and protein levels of IL-23R in Th17 cells from CDLNs. Overall, aging altered immune cell responses, especially through toning down Th17 cells, counteracting EAU challenge in old mice.
Collapse
|
12
|
Mbanefo EC, Yan M, Kang M, Alhakeem SA, Jittayasothorn Y, Yu CR, Parihar A, Singh S, Egwuagu CE. STAT3-Specific Single Domain Nanobody Inhibits Expansion of Pathogenic Th17 Responses and Suppresses Uveitis in Mice. Front Immunol 2021; 12:724609. [PMID: 34603297 PMCID: PMC8479182 DOI: 10.3389/fimmu.2021.724609] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 08/23/2021] [Indexed: 01/03/2023] Open
Abstract
STAT3 activates transcription of genes that regulate cell growth, differentiation, and survival of mammalian cells. Genetic deletion of Stat3 in T cells has been shown to abrogate Th17 differentiation, suggesting that STAT3 is a potential therapeutic target for Th17-mediated diseases. However, a major impediment to therapeutic targeting of intracellular proteins such as STAT3 is the lack of efficient methods for delivering STAT3 inhibitors into cells. In this study, we developed a novel antibody (SBT-100) comprised of the variable (V) region of a STAT3-specific heavy chain molecule and demonstrate that this 15 kDa STAT3-specific nanobody enters human and mouse cells, and induced suppression of STAT3 activation and lymphocyte proliferation in a concentration-dependent manner. To investigate whether SBT-100 would be effective in suppressing inflammation in vivo, we induced experimental autoimmune uveitis (EAU) in C57BL/6J mice by active immunization with peptide from the ocular autoantigen, interphotoreceptor retinoid binding protein (IRBP651-670). Analysis of the retina by fundoscopy, histological examination, or optical coherence tomography showed that treatment of the mice with SBT-100 suppressed uveitis by inhibiting expansion of pathogenic Th17 cells that mediate EAU. Electroretinographic (ERG) recordings of dark and light adapted a- and b-waves showed that SBT-100 treatment rescued mice from developing significant visual impairment observed in untreated EAU mice. Adoptive transfer of activated IRBP-specific T cells from untreated EAU mice induced EAU, while EAU was significantly attenuated in mice that received IRBP-specific T cells from SBT-100 treated mice. Taken together, these results demonstrate efficacy of SBT-100 in mice and suggests its therapeutic potential for human autoimmune diseases.
Collapse
Affiliation(s)
- Evaristus C Mbanefo
- Molecular Immunology Section, Laboratory of Immunology, National Eye Institute (NEI), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Ming Yan
- Molecular Immunology Section, Laboratory of Immunology, National Eye Institute (NEI), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Minkyung Kang
- Molecular Immunology Section, Laboratory of Immunology, National Eye Institute (NEI), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Sahar A Alhakeem
- Molecular Immunology Section, Laboratory of Immunology, National Eye Institute (NEI), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Yingyos Jittayasothorn
- Immunoregulation Section, Laboratory of Immunology, NEI, NIH, Bethesda, MD, United States
| | - Cheng-Rong Yu
- Molecular Immunology Section, Laboratory of Immunology, National Eye Institute (NEI), National Institutes of Health (NIH), Bethesda, MD, United States
| | | | | | - Charles E Egwuagu
- Molecular Immunology Section, Laboratory of Immunology, National Eye Institute (NEI), National Institutes of Health (NIH), Bethesda, MD, United States
| |
Collapse
|
13
|
Induction of antigen-specific Treg cells in treating autoimmune uveitis via bystander suppressive pathways without compromising anti-tumor immunity. EBioMedicine 2021; 70:103496. [PMID: 34280776 PMCID: PMC8318874 DOI: 10.1016/j.ebiom.2021.103496] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 07/03/2021] [Accepted: 07/06/2021] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Induction of autoantigen-specific Treg cells that suppress tissue-specific autoimmunity without compromising beneficial immune responses is the holy-grail for immunotherapy to autoimmune diseases. METHODS In a model of experimental autoimmune uveitis (EAU) that mimics human uveitis, ocular inflammation was induced by immunization with retinal antigen interphotoreceptor retinoid-binding protein (IRBP). Mice were given intraperitoneal injection of αCD4 antibody (Ab) after the onset of disease, followed by administration of IRBP. EAU was evaluated clinically and functionally. Splenocytes, CD4+CD25- and CD4+CD25+ T cells were sorted and cultured with IRBP or αCD3 Ab. T cell proliferation and cytokine production were assessed. FINDINGS The experimental approach resulted in remission of ocular inflammation and rescue of visual function in mice with established EAU. Mechanistically, the therapeutic effect was mediated by induction of antigen-specific Treg cells that inhibited IRBP-driven Th17 response in TGF-β and IL-10 dependent fashion. Importantly, the Ab-mediated immune tolerance could be achieved in EAU mice by administration of retinal autoantigens, arrestin but not limited to IRBP only, in an antigen-nonspecific bystander manner. Further, these EAU-suppressed tolerized mice did not compromise their anti-tumor T immunity in melanoma model. INTERPRETATION We successfully addressed a specific immunotherapy of EAU by in vivo induction of autoantigen-specific Treg cells without compromising host overall T cell immunity, which should have potential implication for patients with autoimmune uveitis. FUNDING This study was supported by the Natural Science Foundation of Guangdong Province and the Fundamental Research Fund of the State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center.
Collapse
|
14
|
Wu S, Ma R, Zhong Y, Chen Z, Zhou H, Zhou M, Chong W, Chen J. Deficiency of IL-27 Signaling Exacerbates Experimental Autoimmune Uveitis with Elevated Uveitogenic Th1 and Th17 Responses. Int J Mol Sci 2021; 22:ijms22147517. [PMID: 34299138 PMCID: PMC8305313 DOI: 10.3390/ijms22147517] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/24/2021] [Accepted: 07/11/2021] [Indexed: 01/31/2023] Open
Abstract
Human uveitis is an autoimmune disease of the central nervous system that is characterized by ocular inflammation with the involvement of uveitogenic Th1 and Th17 responses. In experimental autoimmune uveitis (EAU), the animal model for human uveitis, both responses are proven to be critical in disease development. Therefore, targeting both Th1 and Th17 cells has therapeutic implication for disease resolution. IL-27 is a multifunctional cytokine that can either promote or inhibit T cell responses and is implicated in both autoimmune and infectious diseases. The aim of this study is to characterize the role of IL-27/IL-27R signaling in regulating uveitogenic Th1/Th17 responses in EAU. By immunizing IL-27Rα-/- mice and their wild-type (WT) littermates for EAU, we demonstrated that IL-27 signaling deficiency exacerbated EAU with severe ocular inflammation and impairment of visual function. Furthermore, there was a significant increase in the eye-infiltrating Th1 and Th17 cells in IL-27Rα-/- EAU mice compared to WT. Their retinal antigen-specific Th1 and Th17 responses were also significantly increased, as represented by the elevation of their signature cytokines, IFN-γ and IL-17A, respectively. We also observed the upregulation of another pathogenic cytokine, granulocyte-macrophage colony-stimulating factor (GM-CSF), from effector T cells in IL-27Rα-/- EAU mice. Mechanistic studies confirmed that IL-27 inhibited GM-CSF production from Th17 cells. In addition, the induction of IL-10 producing type 1 regulatory T (Tr1) cells was impaired in IL-27Rα-/- EAU mice. These results identified that IL-27 signaling plays a suppressive role in EAU by regulating multiple CD4+ cell subsets, including the effector Th1 and Th17 cells and the regulatory Tr1 cells. Our findings provide new insights for therapeutic potential in controlling uveitis by enhancing IL-27 signaling.
Collapse
|
15
|
Shome A, Mugisho OO, Niederer RL, Rupenthal ID. Blocking the inflammasome: A novel approach to treat uveitis. Drug Discov Today 2021; 26:2839-2857. [PMID: 34229084 DOI: 10.1016/j.drudis.2021.06.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/24/2021] [Accepted: 06/30/2021] [Indexed: 12/11/2022]
Abstract
Uveitis is a complex ocular inflammatory disease often accompanied by bacterial or viral infections (infectious uveitis) or underlying autoimmune diseases (non-infectious uveitis). Treatment of the underlying infection along with corticosteroid-mediated suppression of acute inflammation usually resolves infectious uveitis. However, to develop more effective therapies for non-infectious uveitis and to better address acute inflammation in infectious disease, an improved understanding of the underlying inflammatory pathways is needed. In this review, we discuss the disease aetiology, preclinical in vitro and in vivo uveitis models, the role of inflammatory pathways, as well as current and future therapies. In particular, we highlight the involvement of the inflammasome in the development of non-infectious uveitis and how it could be a future target for effective treatment of the disease.
Collapse
Affiliation(s)
- Avik Shome
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology, New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand
| | - Odunayo O Mugisho
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology, New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand
| | - Rachael L Niederer
- Department of Ophthalmology, New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand; Auckland District Health Board, Auckland, New Zealand
| | - Ilva D Rupenthal
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology, New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
16
|
Okunuki Y, Tabor SJ, Lee MY, Connor KM. CD47 Deficiency Ameliorates Ocular Autoimmune Inflammation. Front Immunol 2021; 12:680568. [PMID: 34093583 PMCID: PMC8174453 DOI: 10.3389/fimmu.2021.680568] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 04/29/2021] [Indexed: 12/20/2022] Open
Abstract
Autoimmune uveitis is a sight-threatening ocular inflammatory condition in which the retina and uveal tissues become a target of autoreactive immune cells. The CD47 is a ubiquitously expressed transmembrane protein which plays multiple roles in fundamental cellular functions including phagocytosis, proliferation, and adhesion. Signal regulatory protein alpha (SIRPα), one of the CD47 ligands, is predominantly expressed in myeloid lineage cells such as dendritic cells (DCs) or macrophages, and CD47-SIRPα signaling pathway is implicated in the development of autoimmune diseases. Our current study demonstrates how CD47 depletion is effective in the prevention of experimental autoimmune uveitis (EAU), an animal model of human autoimmune uveitis, in animals deficient of CD47 (CD47-/- ). Systemic suppression of SIRPα+ DCs in animals deficient in CD47 resulted in the inability of autoreactive CD4+ T cells to develop, which is crucial to induction of EAU. Of interest, retinal microglia, the resident immune cell of the retina, express SIRPα, however these cells were not operative in EAU suppression in response to CD47 depletion. These results identify CD47 as a significant regulator in the development of SIRPα+ DCs that is vital to disease induction in EAU.
Collapse
Affiliation(s)
| | | | | | - Kip M. Connor
- Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
17
|
Kang M, Lee HS, Choi JK, Yu CR, Egwuagu CE. Deletion of Irf4 in T Cells Suppressed Autoimmune Uveitis and Dysregulated Transcriptional Programs Linked to CD4 + T Cell Differentiation and Metabolism. Int J Mol Sci 2021; 22:ijms22052775. [PMID: 33803441 PMCID: PMC7967141 DOI: 10.3390/ijms22052775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/01/2021] [Accepted: 03/05/2021] [Indexed: 02/06/2023] Open
Abstract
Interferon regulatory factor-4 (IRF4) and IRF8 regulate differentiation, growth and functions of lymphoid and myeloid cells. Targeted deletion of irf8 in T cells (CD4-IRF8KO) has been shown to exacerbate colitis and experimental autoimmune uveitis (EAU), a mouse model of human uveitis. We therefore generated mice lacking irf4 in T cells (CD4-IRF4KO) and investigated whether expression of IRF4 by T cells is also required for regulating T cells that suppress autoimmune diseases. Surprisingly, we found that CD4-IRF4KO mice are resistant to EAU. Suppression of EAU derived in part from inhibiting pathogenic responses of Th17 cells while inducing expansion of regulatory lymphocytes that secrete IL-10 and/or IL-35 in the eye and peripheral lymphoid tissues. Furthermore, CD4-IRF4KO T cells exhibit alterations in cell metabolism and are defective in the expression of two Ikaros zinc-finger (IKZF) transcription factors (Ikaros, Aiolos) that are required for lymphocyte differentiation, metabolism and cell-fate decisions. Thus, synergistic effects of IRF4 and IkZFs might induce metabolic reprogramming of differentiating lymphocytes and thereby dynamically regulate relative abundance of T and B lymphocyte subsets that mediate immunopathogenic mechanisms during uveitis. Moreover, the diametrically opposite effects of IRF4 and IRF8 during EAU suggests that intrinsic function of IRF4 in T cells might be activating proinflammatory responses while IRF8 promotes expansion of immune-suppressive mechanisms.
Collapse
Affiliation(s)
- Minkyung Kang
- Molecular Immunology Section, Laboratory of Immunology, National Eye Institute (NEI), National Institute of Health, Bethesda, MD 20892, USA; (M.K.); (H.-S.L.); (J.K.C.); (C.-R.Y.)
| | - Hyun-Su Lee
- Molecular Immunology Section, Laboratory of Immunology, National Eye Institute (NEI), National Institute of Health, Bethesda, MD 20892, USA; (M.K.); (H.-S.L.); (J.K.C.); (C.-R.Y.)
| | - Jin Kyeong Choi
- Molecular Immunology Section, Laboratory of Immunology, National Eye Institute (NEI), National Institute of Health, Bethesda, MD 20892, USA; (M.K.); (H.-S.L.); (J.K.C.); (C.-R.Y.)
- Department of Immunology, Jeonbuk National University Medical School, Jeonju, Jeonbuk 54907, Korea
| | - Cheng-Rong Yu
- Molecular Immunology Section, Laboratory of Immunology, National Eye Institute (NEI), National Institute of Health, Bethesda, MD 20892, USA; (M.K.); (H.-S.L.); (J.K.C.); (C.-R.Y.)
| | - Charles E. Egwuagu
- Molecular Immunology Section, Laboratory of Immunology, National Eye Institute (NEI), National Institute of Health, Bethesda, MD 20892, USA; (M.K.); (H.-S.L.); (J.K.C.); (C.-R.Y.)
- Correspondence: ; Tel.: +301-496-0049; Fax: +301-480-3914
| |
Collapse
|
18
|
Oladipupo FO, Yu CR, Olumuyide E, Jittaysothorn Y, Choi JK, Egwuagu CE. STAT3 deficiency in B cells exacerbates uveitis by promoting expansion of pathogenic lymphocytes and suppressing regulatory B cells (Bregs) and Tregs. Sci Rep 2020; 10:16188. [PMID: 33004854 PMCID: PMC7529787 DOI: 10.1038/s41598-020-73093-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 08/28/2020] [Indexed: 12/20/2022] Open
Abstract
STAT3 transcription factor induces differentiation of naïve T cells into Th17 cells and loss of STAT3 in T cell prevents development of CNS autoimmune diseases. However, function of STAT3 in the B lymphocyte subset is not well understood. In this study, we have generated mice lacking STAT3 in CD19+ B cells (CD19-STAT3KO) and investigated intrinsic and extrinsic functions of STAT3 in B cells and its potential role in resistance or pathogenesis of organ-specific autoimmune diseases. We show that STAT3 regulates metabolic mechanisms in B cells with implications for bioenergetic and metabolic pathways that control cellular homeostasis in B cells. Thus, loss of STAT3 in CD19-STAT3KO cells perturbed growth and apoptosis by inducing rapid entry of B cells into the S-phase of the cell cycle, decreasing expression of cyclin-dependent kinase inhibitors and upregulating pro-apoptotic proteins. We further show that the CD19-STAT3KO mice develop severe experimental autoimmune uveitis (EAU), an animal model of human uveitis. Exacerbated uveitis in CD19-STAT3KO mice derived in part from enhanced expression of costimulatory molecules on B cells, marked increase of Th17 responses and increased recruitment of granulocytes into the neuroretina. The enhanced autoimmunity upon deletion of STAT3 in B cells is also recapitulated in experimental autoimmune encephalitis, a mouse model of multiple sclerosis and thus support our conclusion that STAT3 deletion in B cells enhanced inflammation and the effects observed are not model specific. Our data further indicate that STAT3 pathway modulates interactions between B and T cells during EAU resulting in alteration of lymphocyte repertoire by increasing levels of autoreactive pathogenic T cells while suppressing development and/or expansion of immune-suppressive lymphocytes (Bregs and Tregs). Taken together, STAT3 exerts diametrically opposite effects in lymphocytes, with loss of STAT3 in B cells exacerbating uveitis whereas Stat3 deletion in T cells confers protection.
Collapse
Affiliation(s)
- Favour O Oladipupo
- Molecular Immunology Section, Laboratory of Immunology, National Eye Institute (NEI), National Institutes of Health (NIH), Building 10, Room 10N248G, 10 Center Drive, Bethesda, MD, 20892-1857, USA
| | - Cheng-Rong Yu
- Molecular Immunology Section, Laboratory of Immunology, National Eye Institute (NEI), National Institutes of Health (NIH), Building 10, Room 10N248G, 10 Center Drive, Bethesda, MD, 20892-1857, USA
| | - Ezekiel Olumuyide
- Molecular Immunology Section, Laboratory of Immunology, National Eye Institute (NEI), National Institutes of Health (NIH), Building 10, Room 10N248G, 10 Center Drive, Bethesda, MD, 20892-1857, USA
| | | | - Jin Kyeong Choi
- Molecular Immunology Section, Laboratory of Immunology, National Eye Institute (NEI), National Institutes of Health (NIH), Building 10, Room 10N248G, 10 Center Drive, Bethesda, MD, 20892-1857, USA.,Department of Immunology, Jeonbuk National University Medical School, Jeonju, Jeonbuk, 54896, Republic of Korea
| | - Charles E Egwuagu
- Molecular Immunology Section, Laboratory of Immunology, National Eye Institute (NEI), National Institutes of Health (NIH), Building 10, Room 10N248G, 10 Center Drive, Bethesda, MD, 20892-1857, USA.
| |
Collapse
|
19
|
Interleukin 35 Regulatory B Cells. J Mol Biol 2020; 433:166607. [PMID: 32755620 DOI: 10.1016/j.jmb.2020.07.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/17/2020] [Accepted: 07/21/2020] [Indexed: 02/07/2023]
Abstract
B lymphocytes play a central role in host immunity. They orchestrate humoral immune responses that modulate activities of other immune cells and produce neutralizing antibodies that confer lasting immunity to infectious diseases including smallpox, measles and poliomyelitis. In addition to these traditional functions is the recent recognition that B cells also play critical role in maintaining peripheral tolerance and suppressing the development or severity of autoimmune diseases. Their immune suppressive function is attributed to relatively rare populations of regulatory B cells (Bregs) that produce anti-inflammatory cytokines including interleukin 10 (IL-10), IL-35 and transforming growth factor-β. The IL-35-producing B cell (i35-Breg) is the newest Breg subset described. i35-Bregs suppress central nervous system autoimmune diseases by inducing infectious tolerance whereby conventional B cells acquire regulatory functions that suppress pathogenic Th17 responses. In this review, we discuss immunobiology of i35-Breg cell, i35-Breg therapies for autoimmune diseases and potential therapeutic strategies for depleting i35-Bregs that suppress immune responses against pathogens and tumor cells.
Collapse
|
20
|
Xu L, Gao J, Pan Y, Tian N, He M, Jin L, Chen F. Anti-CD40 monoclonal antibody ameliorates experimental autoimmune uveoretinitis in mice. Vet Ophthalmol 2020; 23:797-805. [PMID: 32618114 DOI: 10.1111/vop.12799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 05/17/2020] [Accepted: 06/02/2020] [Indexed: 12/27/2022]
Abstract
OBJECTIVE To investigate the effects of CD40 on ocular inflammation in experimental autoimmune uveoretinitis (EAU) in B10.RIII mice. ANIMALS STUDIED EAU-susceptible B10.RIII mice were subcutaneously immunized with interphotoreceptor retinoid-binding protein (IRBP) 161-180 in complete Freund's adjuvant and evaluated clinically and pathologically on days 7, 14, 21, 28, and 35 postimmunization. Anti-CD40 antibody was intraperitoneally injected into mice every other day from days 7 to 14 postimmunization. Phosphate-buffered saline (PBS)-injected EAU mice were used as the controls. PROCEDURES The frequencies of CD11c+ CD40+ dendritic cells (DCs), CD11c+ MHC-II+ DCs, and CD11c+ CD40+ MHC-II+ DCs in splenocytes were evaluated by flow cytometry on days 0, 7, 14, and 21 after immunization. Tumor necrosis factor (TNF)-α and interleukin (IL)-6 production in CD11c+ DCs was assessed by ELISA. IRBP-specific lymphocyte proliferation was assessed using a modified MTT cell proliferation assay. RESULTS The number of CD11c+ CD40+ DCs, CD11c+ MHC-II+ DCs, and CD11c+ CD40+ MHC-II+ DCs increased at the onset of EAU, peaked at the height of disease severity, and was sustained at a high level until day 21. Treatment with anti-CD40 antibody significantly alleviated clinical and pathological activities related to EAU. Compared with the control mice, antibody-treated EAU mice showed few CD11c+ CD40+ DC and CD11c+ CD40+ MHC-II+ DC frequencies in splenocytes. The anti-CD40 antibody significantly suppressed IRBP-specific lymphocyte proliferation and TNF-α and IL-6 production by DCs in EAU mice. CONCLUSIONS The increased expression of CD40 and major histocompatibility complex (MHC) class II molecules in the splenocytes of EAU mice were correlated with inflammatory activity. Anti-CD40 treatment can significantly attenuate EAU activity by inhibiting systemic IRBP-specific immune responses.
Collapse
Affiliation(s)
- Lei Xu
- Chongqing Medical University, Chongqing, P. R. China
| | - Jie Gao
- Chongqing Medical University, Chongqing, P. R. China
| | - Yongquan Pan
- Chongqing Medical University, Chongqing, P. R. China
| | - Na Tian
- Chongqing Medical University, Chongqing, P. R. China
| | - Mingzhong He
- Chongqing Medical University, Chongqing, P. R. China
| | - Lei Jin
- The Third People's Hospital of Dalian, Liaoning, P. R. China
| | - Feilan Chen
- Chongqing Medical University, Chongqing, P. R. China
| |
Collapse
|
21
|
Kang M, Choi JK, Jittayasothorn Y, Egwuagu CE. Interleukin 35-Producing Exosomes Suppress Neuroinflammation and Autoimmune Uveitis. Front Immunol 2020; 11:1051. [PMID: 32547555 PMCID: PMC7272665 DOI: 10.3389/fimmu.2020.01051] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 04/30/2020] [Indexed: 12/13/2022] Open
Abstract
Corticosteroids are effective therapy for autoimmune diseases but serious adverse effects preclude their prolonged use. However, immune-suppressive biologics that inhibit lymphoid proliferation are now in use as corticosteroid sparing-agents but with variable success; thus, the need to develop alternative immune-suppressive approaches including cell-based therapies. Efficacy of ex-vivo-generated IL-35-producing regulatory B-cells (i35-Bregs) in suppressing/ameliorating encephalomyelitis or uveitis in mouse models of multiple sclerosis or uveitis, respectively, is therefore a promising therapeutic approach for CNS autoimmune diseases. However, i35-Breg therapy in human uveitis would require producing autologous Bregs from each patient to avoid immune-rejection. Because exosomes exhibit minimal toxicity and immunogenicity, we investigated whether i35-Bregs release exosomes that can be exploited therapeutically. Here, we demonstrate that i35-Bregs release exosomes that contain IL-35 (i35-Exosomes). In this proof-of-concept study, we induced experimental autoimmune uveitis (EAU), monitored EAU progression by fundoscopy, histology, optical coherence tomography and electroretinography, and investigated whether i35-Exosomes treatment would suppress uveitis. Mice treated with i35-Exosomes developed mild EAU with low EAU scores and disease protection correlated with expansion of IL-10 and IL-35 secreting Treg cells with concomitant suppression of Th17 responses. In contrast, significant increase of Th17 cells in vitreous and retina of control mouse eyes was accompanied by severe choroiditis, massive retinal-folds, and photoreceptor cell damage. These hallmark features of severe uveitis were absent in exosome-treated mice and visual impairment detected by ERG was modest compared to control mice. Absence of toxicity or alloreactivity associated with exosomes thus makes i35-Exosomes attractive therapeutic option for delivering IL-35 into CNS tissues.
Collapse
Affiliation(s)
- Minkyung Kang
- Molecular Immunology Section, Laboratory of Immunology, National Eye Institute (NEI), National Institute of Health, Bethesda, MD, United States
| | - Jin Kyeong Choi
- Molecular Immunology Section, Laboratory of Immunology, National Eye Institute (NEI), National Institute of Health, Bethesda, MD, United States.,Department of Immunology, Jeonbuk National University Medical School, Jeonju, Jeonbuk, South Korea
| | - Yingyos Jittayasothorn
- Immunoregulation Section, Laboratory of Immunology, National Eye Institute (NEI), National Institute of Health, Bethesda, MD, United States
| | - Charles E Egwuagu
- Molecular Immunology Section, Laboratory of Immunology, National Eye Institute (NEI), National Institute of Health, Bethesda, MD, United States
| |
Collapse
|
22
|
Sato Y, Keino H, Nakayama M, Kano M, Okada AA. Effect of In Vivo Expansion of Regulatory T Cells with IL-2/anti-IL-2 Antibody Complex Plus Rapamycin on Experimental Autoimmune Uveoretinitis. Ocul Immunol Inflamm 2020; 29:1520-1529. [PMID: 32459545 DOI: 10.1080/09273948.2020.1757119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Purpose: To determine the effect of injection of IL-2/anti-IL-2 antibody (IL-2 complex) together with rapamycin on the development of experimental autoimmune uveoretinitis (EAU).Methods: C57BL/6J mice were immunized with human interphotoreceptor retinoid-binding protein peptide. The immunized mice were injected intraperitoneally with PBS, IL-2 complex, rapamycin, or IL-2 complex/rapamycin on days 1, 2, 3, and 4 (induction phase) or days 10, 11, 12, and 13 (effector phase) after immunization.Results: Expansion of CD4+Foxp3+ regulatory T cells in draining lymph nodes was observed in IL-2 complex and IL-2 complex/rapamycin-treated mice. Although injection of IL-2 complex alone was not capable of decreasing the clinical score of EAU, injection of IL-2 complex/rapamycin significantly delayed the onset of EAU. In contrast, the treatment with IL-2 complex alone or IL-2 complex/rapamycin during effector phase failed to suppress EAU.Conclusions: These findings suggest the potential limitations of IL-2 complex or IL-2 complex/rapamycin during EAU.
Collapse
Affiliation(s)
- Yasuhiko Sato
- Department of Ophthalmology, Kyorin University School of Medicine, Mitaka, Tokyo, Japan.,Division of Radioisotope Research, Kyorin University School of Medicine, Tokyo, Japan
| | - Hiroshi Keino
- Department of Ophthalmology, Kyorin University School of Medicine, Mitaka, Tokyo, Japan
| | - Makiko Nakayama
- Department of Ophthalmology, Kyorin University School of Medicine, Mitaka, Tokyo, Japan
| | - Mirai Kano
- Department of Ophthalmology, Kyorin University School of Medicine, Mitaka, Tokyo, Japan
| | - Annabelle A Okada
- Department of Ophthalmology, Kyorin University School of Medicine, Mitaka, Tokyo, Japan
| |
Collapse
|
23
|
He X, Liu R, Fan T, Huang X, Wu C, Su W, Wang T, Ruan Q. Treating Autoimmune Diseases by Targeting IL-23 with Gene-Silencing Pyrrole-Imidazole Polyamide. THE JOURNAL OF IMMUNOLOGY 2020; 204:2053-2063. [PMID: 32169850 DOI: 10.4049/jimmunol.1901215] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 01/27/2020] [Indexed: 12/28/2022]
Abstract
Autoimmune diseases are a physiological state that immune responses are directed against and damage the body's own tissues. Numerous studies have demonstrated promising therapeutic effects in certain autoimmune diseases by targeting IL-23/IL-17 axis, mostly through using Abs against IL-23 or IL-17A. Pyrrole-imidazole polyamides are nuclease-resistant compounds that inhibit gene expression through binding to the minor groove of DNA. To develop a novel gene-silencing agent that targets IL-23/IL-17 axis, we designed polyamide that specifically binds to the transcription factor c-Rel-binding site located in the promoter of IL-23p19 subunit. Our study showed that this polyamide is capable of entering into nucleus with high efficiency in dendritic cells and macrophage. In addition, it prevented the binding of c-Rel to the promoter of IL-23p19 in vivo and specifically inhibited the expression of IL-23. More importantly, we demonstrated that this polyamide is therapeutically effective using both the imiquimod-induced psoriasis and experimental autoimmune uveitis mouse models. Taken together, these results indicate that pyrrole-imidazole polyamide targeting IL-23p19 could be a novel and feasible therapeutic strategy for patients with autoimmune diseases.
Collapse
Affiliation(s)
- Xiaozhen He
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Qingdao 266071, People's Republic of China
| | - Ruiling Liu
- Center for Antibody Drug, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China; and
| | - Tingting Fan
- Center for Antibody Drug, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| | - Xiaowen Huang
- Center for Antibody Drug, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China; and
| | - Chunlei Wu
- Guangdong Key Laboratory of Nanomedicine, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| | - Wu Su
- Guangdong Key Laboratory of Nanomedicine, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| | - Ting Wang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Qingdao 266071, People's Republic of China;
| | - Qingguo Ruan
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Qingdao 266071, People's Republic of China; .,Center for Antibody Drug, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| |
Collapse
|
24
|
I-a lowCD11b high DC Regulates the Immune Response in the Eyes of Experimental Autoimmune Uveitis. Mediators Inflamm 2020; 2020:6947482. [PMID: 32256194 PMCID: PMC7085850 DOI: 10.1155/2020/6947482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 12/30/2019] [Indexed: 12/23/2022] Open
Abstract
Regulatory dendritic cells (DCreg) have been reported to be a negative regulator in the immune response. These cells are widely distributed in the liver, spleen, and lung. However, the status and function of DCreg in the eyes and disease are still not very clear. Herein, we found that the number of I-alowCD11bhigh DC increased in the eye and spleen at the recovery stage of experimental autoimmune uveitis (EAU), which is a mouse model for autoimmune uveitis. These cells expressed lower levels of CD80, CD86, and CD54 than the mature DCs and expressed interleukin 10 (IL-10), indoleamine 2,3-dioxygenase (IDO), and transforming growth factor beta (TGF-β) as well. Moreover, these DCreg can regulate the development of EAU by promoting CD4+CD25+Foxp3+ regulatory T cells. The increased interferon-gamma (IFN-γ) in the aqueous humor of EAU participates in inducing DCreg to alleviate the symptom of EAU. Furthermore, DCreg was found to exist in the eyes of normal mice. Aqueous humor, containing a certain concentration of IL-10, TGF-β, prostaglandin E2 (PGE2), IDO, and nitric oxide (NO), induced the tolerance of DCreg in normal eyes. It can be concluded that DCreg exists in the eyes and plays a protective role in inflamed eyes. These DCreg induced by IFN-γ might be used as a strategy to develop therapy for EAU management.
Collapse
|
25
|
Charles J, Castellino FJ, Ploplis VA. Past and Present Behçet's Disease Animal Models. Curr Drug Targets 2020; 21:1652-1663. [PMID: 32682369 PMCID: PMC7746599 DOI: 10.2174/1389450121666200719010425] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/23/2020] [Accepted: 06/29/2020] [Indexed: 12/12/2022]
Abstract
Behçet's disease (BD) is presumably an autoinflammatory disease of unknown etiology for which several animal models have been described over the years. Agents and methods used for the development of these models have ranged from the herpes simplex type one virus (hsv-1) pathogen to the use of transgenic mice. Other models have also been used to investigate a possible autoimmune component. Each model possesses its own unique set of benefits and shortcomings, with no one model fully being able to recapitulate the disease phenotype. Here, we review the proposed models and provide commentary on their effectiveness and usefulness in studying the disease.
Collapse
Affiliation(s)
- Jermilia Charles
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Francis J. Castellino
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, USA
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Victoria A. Ploplis
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, USA
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
26
|
Liu R, He X, Geng W, Wang T, Ruan Q. Loss of TIPE2 Has Opposing Effects on the Pathogenesis of Autoimmune Diseases. Front Immunol 2019; 10:2284. [PMID: 31616442 PMCID: PMC6769042 DOI: 10.3389/fimmu.2019.02284] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 09/10/2019] [Indexed: 11/13/2022] Open
Abstract
Autoimmune diseases are a physiological state wherein immune responses are directed against and damage the body's own tissues. Cytokines secreted by infiltrated inflammatory cells contribute to the pathogenesis of autoimmune diseases. TIPE2, one of the four family members of Tumor necrosis factor-α induced protein-8 (TNFAIP8), is a negative regulator of innate and adaptive immunity and plays essential roles in the maintenance of immune tolerance. However, studies on the role of TIPE2 during the development of autoimmune diseases have generated contradictory results. In the current study, we sought to determine the role of TIPE2 during the development of IMQ-induced psoriasis and Experimental Autoimmune Uveitis (EAU) in mice. Our study revealed that, while TIPE2-deficiency alleviates psoriasis, it exacerbates the development of EAU. Further studies demonstrated that, although TIPE2-deficient T cells produced more IL-17A, they do not migrate efficiently to the local inflammatory site, i.e., the skin. This in turn led to the decreased IL-17A production in the skin and consequently reduced the severity of psoriasis in TIPE2-deficient mice. However, although TIPE2-deficient T cells still produced more IL-17A in EAU model, they migrate into the inflamed eye as efficient as TIPE2-sufficient T cells, and consequently exacerbates the development of EAU in TIPE2-deficient mice. Taken together, these results indicate that TIPE2 may either promote or suppress autoimmunity depending on the specific inflammatory microenvironment in different types of autoimmune diseases.
Collapse
Affiliation(s)
- Ruiling Liu
- Center for Antibody Drug, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiaozhen He
- School of Medicine and Life Sciences, University of Jinan, Shandong Academy of Medical Sciences, Jinan, China
| | - Wenwen Geng
- School of Medicine and Life Sciences, University of Jinan, Shandong Academy of Medical Sciences, Jinan, China
| | - Ting Wang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Qingguo Ruan
- Center for Antibody Drug, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| |
Collapse
|
27
|
Abstract
Autoimmune uveitis is a sight-threatening ocular inflammatory condition in which the retina and uveal tissues become a target of autoreactive immune cells. While microglia have been studied extensively in autoimmune uveitis, their exact function remains uncertain. The objective of the current study was to determine whether resident microglia are necessary and sufficient to initiate and amplify retinal inflammation in autoimmune uveitis. In this study, we clearly demonstrate that microglia are essential for initiating infiltration of immune cells utilizing a murine model of experimental autoimmune uveoretinitis (EAU) and the recently identified microglia-specific marker P2ry12. Initiating disease is the primary function of microglia in EAU, since eliminating microglia during the later stages of EAU had little effect, indicating that the function of circulating leukocytes is to amplify and sustain destructive inflammation once microglia have triggered disease. In the absence of microglia, uveitis does not develop, since leukocytes cannot gain entry through the blood-retinal barrier, illustrating that microglia play a critical role in regulating infiltration of inflammatory cells into the retina.
Collapse
|
28
|
Fu Q, Man X, Wang X, Song N, Li Y, Xue J, Sun Y, Lin W. CD83 + CCR7 + NK cells induced by interleukin 18 by dendritic cells promote experimental autoimmune uveitis. J Cell Mol Med 2019; 23:1827-1839. [PMID: 30548211 PMCID: PMC6378215 DOI: 10.1111/jcmm.14081] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 11/01/2018] [Accepted: 11/16/2018] [Indexed: 12/14/2022] Open
Abstract
Natural killer (NK) cells have been reported to play a pathological role in autoimmune uveitis. However, the mechanisms regarding NK cells in uveitis and factors that affect NK-cell activation in this condition remain unclear. Here, we report that the number of CD3- NK1.1+ CD83+ CCR7+ cells is increased in the inflamed eyes within a mouse model of experimental autoimmune uveitis (EAU), and these cells express elevated levels of NKG2D, CD69 and IFN-γ. Adoptively transferring CD83+ CCR7+ NK cells aggravates EAU symptoms and increases the number of CD4+ IFN-γ+ T cells and dendritic cells (DCs) within the eye. These CD83+ CCR7+ NK cells then promote the maturation of DCs and IFN-γ expression within T cells as demonstrated in vitro. Furthermore, IL-18, as primarily secreted by DCs in the eyes, is detected to induce CD83+ CCR7+ NK cells. In EAU mice, anti-IL-18R antibody treatment also decreases retinal tissue damage, as well as the number of infiltrating CD83+ CCR7+ NK cells, T cells and DCs in the inflamed eyes and spleens of EAU mice. These results suggest that CD83+ CCR7+ NK cells, as induced by IL-18 that primarily secreted by DCs, play a critical pathological role in EAU. Anti-IL-18R antibody might serve as a potential therapeutic agent for uveitis through its capacity to inhibit CD83+ CCR7+ NK cells infiltration.
Collapse
Affiliation(s)
- Qiang Fu
- Department of ImmunologyBinzhou Medical UniversityYantaiChina
| | - Xuejing Man
- Department of OphthalmologyYuhuangding HospitalYantaiChina
| | - Xin Wang
- Department of Clinical LaboratoryQilu Hospital of Shandong UniversityJinanChina
| | - Nannan Song
- Institute of Basic medicineShandong Academy of medical SciencesJinanChina
| | - Yuanbin Li
- Department of OphthalmologyYuhuangding HospitalYantaiChina
| | - Jiangnan Xue
- Department of ImmunologyBinzhou Medical UniversityYantaiChina
| | - Yufei Sun
- Department of ImmunologyBinzhou Medical UniversityYantaiChina
| | - Wei Lin
- Institute of Basic medicineShandong Academy of medical SciencesJinanChina
| |
Collapse
|
29
|
Controlled release of corticosteroid with biodegradable nanoparticles for treating experimental autoimmune uveitis. J Control Release 2019; 296:68-80. [PMID: 30660629 DOI: 10.1016/j.jconrel.2019.01.018] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/07/2019] [Accepted: 01/15/2019] [Indexed: 12/30/2022]
Abstract
Noninfectious uveitis is a potentially blinding ocular condition that often requires treatment with corticosteroids to prevent inflammation-related ocular complications. Severe forms of uveitis such as panuveitis that affects the whole eye often require a combination of topical and either regional or systemic corticosteroid. Regional corticosteroids are currently delivered inside the eye by intravitreal injection (e.g. Ozurdex®, an intravitreal dexamethasone implant). Intravitreal injection is associated with rare but potentially serious side effects, including endophthalmitis, retinal and vitreous hemorrhage, and retinal detachment. Subconjunctival (SCT) injection is a less invasive option that is a common route used for post-surgical drug administration and treatment of infection and severe inflammation. However, it is the water soluble form of dexamethasone, dexamethasone sodium phosphate (DSP), that has been demonstrated to achieve high intraocular penetration with subconjunctival injection. It is difficult to load highly water soluble drugs, such as DSP, and achieve sustained drug release using conventional encapsulation methods. We found that use of carboxyl-terminated poly(lactic-co-glycolic acid) (PLGA) allowed encapsulation of DSP into biodegradable nanoparticles (NP) with relatively high drug content (6% w/w) if divalent zinc ions were used as an ionic "bridge" between the PLGA and DSP. DSP-Zn-NP had an average diameter of 210 nm, narrow particle size distribution (polydispersity index ~0.1), and near neutral surface charge (-9 mV). DSP-Zn-NP administered by SCT injection provided detectable DSP levels in both the anterior chamber and vitreous chamber of the eye for at least 3 weeks. In a rat model of experimental autoimmune uveitis (EAU), inflammation was significantly reduced in both the front and back of the eye in animals that received a single SCT injection of DSP-Zn-NP as compared to animals that received either aqueous DSP solution or phosphate buffered saline (PBS). DSP-Zn-NP efficacy was evidenced by a reduced clinical disease score, decreased expression of various inflammatory cytokines, and preserved retinal structure and function. Furthermore, SCT DSP-Zn-NP significantly reduced microglia cell density in the retina, a hallmark of EAU in rats. DSP-Zn-NP hold promise as a new strategy to treat noninfectious uveitis and potentially other ocular inflammatory disorders.
Collapse
|
30
|
Yu CR, Choi JK, Uche AN, Egwuagu CE. Production of IL-35 by Bregs is mediated through binding of BATF-IRF-4-IRF-8 complex to il12a and ebi3 promoter elements. J Leukoc Biol 2018; 104:1147-1157. [PMID: 30117603 PMCID: PMC11290588 DOI: 10.1002/jlb.3a0218-071rrr] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 07/04/2018] [Accepted: 07/04/2018] [Indexed: 12/29/2022] Open
Abstract
IL-10 and IL-35 suppress excessive immune responses and therapeutic strategies are being developed to increase their levels in autoimmune diseases. In this study, we sought to identify major cell types that produce both cytokines in-vivo and to characterize mechanisms that regulate their production. Experimental autoimmune uveitis (EAU) is a CNS autoimmune disease that serves as model of human uveitis. We induced EAU in C57BL/6J mice and investigated whether T cells, B lymphocytes, or myeloid cells are the major producers of IL-10 or IL-35 in blood, lymph nodes (LNs), spleen, and at the site of ocular inflammation, the neuroretina. Analysis of these tissues identified B cells as the major producers of IL-10 and IL-35 in-vivo. Compared to regulatory T cells (Tregs), IL-10- or IL-35-producing regulatory B cells (Bregs) are substantially expanded in blood, LNs, spleen, and retina of mice with EAU. We performed EMSA and chromatin immunoprecipitation (ChIP) assays on activated B cells stimulated with IL-35 or TLR agonists. We found that BATF, IFN regulatory factor (IRF)-4, and IRF-8 transcription factors were recruited and bound to AP1-IRF-composite elements (AICEs) of il12a, ebi3, and/or il10 loci, suggesting their involvement in regulating IL-10 and IL-35 transcriptional programs of B cells. Showing that B cells are major source of IL-10 and IL-35 in-vivo and identifying transcription factors that contribute to IL-10 and IL-35 expression in the activated B-cell, suggest that the BATF/IRF-4/IRF-8 axis can be exploited therapeutically to regulate physiological levels of IL-10/IL-35-Bregs and that adoptive transfer of autologous Bregs might be an effective therapy for autoimmune and neurodegenerative diseases.
Collapse
Affiliation(s)
- Cheng-Rong Yu
- Molecular Immunology Section, Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Jin Kyeong Choi
- Molecular Immunology Section, Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Anita N Uche
- Molecular Immunology Section, Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Charles E Egwuagu
- Molecular Immunology Section, Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
31
|
Yu FPS, Sajdak BS, Sikora J, Salmon AE, Nagree MS, Gurka J, Kassem IS, Lipinski DM, Carroll J, Medin JA. Acid Ceramidase Deficiency in Mice Leads to Severe Ocular Pathology and Visual Impairment. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 189:320-338. [PMID: 30472209 DOI: 10.1016/j.ajpath.2018.10.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 10/19/2018] [Accepted: 10/23/2018] [Indexed: 01/09/2023]
Abstract
Farber disease (FD) is a debilitating lysosomal storage disorder characterized by severe inflammation and neurodegeneration. FD is caused by mutations in the ASAH1 gene, resulting in deficient acid ceramidase (ACDase) activity. Patients with ACDase deficiency exhibit a broad clinical spectrum. In classic cases, patients develop hepatosplenomegaly, nervous system involvement, and childhood mortality. Ocular manifestations include decreased vision, a grayish appearance to the retina with a cherry red spot, and nystagmus. That said, the full effect of ACDase deficiency on the visual system has not been studied in detail. We previously developed a mouse model that is orthologous for a known patient mutation in Asah1 that recapitulates human FD. Herein, we report evidence of a severe ocular pathology in Asah1P361R/P361R mice. Asah1P361R/P361R mice exhibit progressive retinal and optic nerve pathology. Through noninvasive ocular imaging and histopathological analyses of these Asah1P361R/P361R animals, we revealed progressive inflammation, the presence of retinal dysplasia, and significant storage pathology in various cell types in both the retina and optic nerves. Lipidomic analyses of retinal tissues revealed an abnormal accumulation of ceramides and other sphingolipids. Electroretinograms and behavioral tests showed decreased retinal and visual responses. Taken together, these data suggest that ACDase deficiency leads to sphingolipid imbalance, inflammation, dysmorphic retinal and optic nerve pathology, and severe visual impairment.
Collapse
Affiliation(s)
- Fabian P S Yu
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Benjamin S Sajdak
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Jakub Sikora
- Rare Diseases Research Unit, Department of Pediatrics and Adolescent Medicine, 1st Faculty of Medicine, Charles University, Prague, Czech Republic; Institute of Pathology, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Alexander E Salmon
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Murtaza S Nagree
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Jiří Gurka
- Department of Cardiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Iris S Kassem
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Daniel M Lipinski
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin; Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford, United Kingdom
| | - Joseph Carroll
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Jeffrey A Medin
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada; Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin; University Health Network, Toronto, Ontario, Canada.
| |
Collapse
|
32
|
Mugisho OO, Rupenthal ID, Squirrell DM, Bould SJ, Danesh-Meyer HV, Zhang J, Green CR, Acosta ML. Intravitreal pro-inflammatory cytokines in non-obese diabetic mice: Modelling signs of diabetic retinopathy. PLoS One 2018; 13:e0202156. [PMID: 30133488 PMCID: PMC6105000 DOI: 10.1371/journal.pone.0202156] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 07/27/2018] [Indexed: 12/22/2022] Open
Abstract
Diabetic retinopathy is a vascular disease of the retina characterised by hyperglycaemic and inflammatory processes. Most animal models of diabetic retinopathy are hyperglycaemia-only models that do not account for the significant role that inflammation plays in the development of the disease. In the present study, we present data on the establishment of a new animal model of diabetic retinopathy that incorporates both hyperglycaemia and inflammation. We hypothesized that inflammation may trigger and worsen the development of diabetic retinopathy in a hyperglycaemic environment. Pro-inflammatory cytokines, IL-1β and TNF-α, were therefore injected into the vitreous of non-obese diabetic (NOD) mice. CD1 mice were used as same genetic background controls. Fundus and optical coherence tomography images were obtained before (day 0) as well as on days 2 and 7 after intravitreal cytokine injection to assess vessel dilation and beading, retinal and vitreous hyper-reflective foci and retinal thickness. Astrogliosis and microgliosis were assessed using immunohistochemistry. Results showed that intravitreal cytokines induced vessel dilation, beading, severe vitreous hyper-reflective foci, retinal oedema, increased astrogliosis and microglia upregulation in diabetic NOD mice. Intravitreal injection of inflammatory cytokines into the eyes of diabetic mice therefore appears to provide a new model of diabetic retinopathy that could be used for the study of disease progression and treatment strategies.
Collapse
Affiliation(s)
- Odunayo O. Mugisho
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology and the New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand
- Department of Ophthalmology and the New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand
| | - Ilva D. Rupenthal
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology and the New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand
- Department of Ophthalmology and the New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand
| | - David M. Squirrell
- Department of Ophthalmology and the New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand
| | - Sarah J. Bould
- Department of Ophthalmology and the New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand
| | - Helen V. Danesh-Meyer
- Department of Ophthalmology and the New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand
| | - Jie Zhang
- Department of Ophthalmology and the New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand
| | - Colin R. Green
- Department of Ophthalmology and the New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand
| | - Monica L. Acosta
- School of Optometry and Vision Science and the New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand
- * E-mail:
| |
Collapse
|
33
|
Liu YH, Corbett C, Klaska IP, Makinen K, Nickerson JM, Cornall RJ, Kuffova L, Forrester JV. Partial retinal photoreceptor loss in a transgenic mouse model associated with reduced levels of interphotoreceptor retinol binding protein (IRBP, RBP3). Exp Eye Res 2018; 172:54-65. [PMID: 29571629 DOI: 10.1016/j.exer.2018.03.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 03/09/2018] [Accepted: 03/19/2018] [Indexed: 10/17/2022]
Abstract
Organ-specific transgenic membrane expression of hen egg lysozyme (HEL) as a "neo-self antigen" has been used in several models to study immunological tolerance. In this study we report the changes which occur in the B10.BR mouse retina when membrane-bound HEL is expressed in photoreceptors under the control of the promoter for interphotoreceptor retinoid binding protein (IRBP, RBP3). On direct clinical examination of the single transgenic (sTg-IRBP:HEL) mouse fundus, a low-level increase in retinal degeneration compared to non-transgenic controls was observed, presenting as drusenoid deposits and occasional small patches of atrophy. On histological examination, there was an overall shortening of outer segments and loss of photoreceptor nuclei in sTg-IRBP:HEL mice, which was more pronounced in the retinal periphery, particularly inferiorly. The fundoscopically observed lesions did not correlate with the photoreceptor shortening/loss but appeared to be located at the level of the retinal pigment epithelium/choriocapillaris layer and were an exaggeration in size and number of similar age-related changes found in wild type (WT) mice. In addition, neither the atrophic lesions nor the photoreceptor shortening were associated with common retinal degeneration genes, nor were they caused by exposure to light damage since mice housed at both high and low ambient light levels had similar degrees of retinal degeneration. Instead, sTg-IRBP:HEL mice expressed reduced levels of soluble retinal IRBP compared to WT mice which were present from postnatal day16 (P16) and preceded development of photoreceptor shortening (onset P21). We propose that insertion of the HEL transgene in the photoreceptor membrane disrupted normal photoreceptor function and led to reduced levels of soluble IRBP and retinal thinning. A similar phenotype has been observed in IRBP deficient mice. Despite the retinal thinning, the amount of HEL expressed in the retina was sufficient to act as an autoantigenic target when the mice were crossed to the HEL T cell receptor Tg mouse, since double transgenic (dTg-IRBP:HEL) mice spontaneously developed a severe uveoretinitis with onset at weaning. We suggest that, although membrane expression of foreign transgene products is likely to modify the structure and function of tissues and cells, the technology provides useful models to investigate mechanisms of antigen-specific immunological tolerance.
Collapse
Affiliation(s)
- Yi-Hsia Liu
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Clare Corbett
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK; School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Izabela P Klaska
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK; Institute of Ophthalmology, University College London, London, UK
| | - Kimmo Makinen
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK; Human Health, Novozymes A/S, Bagsvaerd, Denmark
| | | | | | - Lucia Kuffova
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK; Department of Ophthalmology, NHS Grampian, Aberdeen, UK
| | - John V Forrester
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK; University of Western Australia, Lions Eye Institute, Perth, Western Australia, Australia.
| |
Collapse
|
34
|
Kumar B, Cashman SM, Kumar-Singh R. Complement-Mediated Activation of the NLRP3 Inflammasome and Its Inhibition by AAV-Mediated Delivery of CD59 in a Model of Uveitis. Mol Ther 2018; 26:1568-1580. [PMID: 29678656 DOI: 10.1016/j.ymthe.2018.03.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 03/01/2018] [Accepted: 03/15/2018] [Indexed: 12/21/2022] Open
Abstract
Uveitis is an inflammatory disorder of the eye responsible for approximately 10%-15% of blindness in the US. In this study, we examined the role of the complement membrane attack complex (MAC) and the NLRP3 inflammasome in the pathogenesis of experimental autoimmune uveitis (EAU) in normal and C9-/- mice that are incapable of assembling the MAC. We discovered that the MAC and the NLRP3 inflammasome and associated production of IL-1β are elevated in EAU mice and that MAC may be involved in regulation of Th1 and Th17 cell differentiation. In contrast, MAC and the NLRP3 inflammasome were not elevated in C9-/- mice. However, EAU-associated pathophysiology including retinal structure and function were not rescued in C9-/- mice. Unexpectedly, AAV-mediated delivery of sCD59, an inhibitor of C9 incorporation into the MAC, successfully attenuated activation of the NLRP3 inflammasome and EAU pathology as well as MAC. Our studies provide an improved understanding of the role of the MAC and the NLRP3 inflammasome in EAU as well as suggest a novel approach for the treatment of uveitis.
Collapse
Affiliation(s)
- Binit Kumar
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Siobhan M Cashman
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Rajendra Kumar-Singh
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA.
| |
Collapse
|
35
|
You Y, Graham EC, Shen T, Yiannikas C, Parratt J, Gupta V, Barton J, Dwyer M, Barnett MH, Fraser CL, Graham SL, Klistorner A. Progressive inner nuclear layer dysfunction in non-optic neuritis eyes in MS. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2018; 5:e427. [PMID: 29259999 PMCID: PMC5732006 DOI: 10.1212/nxi.0000000000000427] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 10/09/2017] [Indexed: 01/08/2023]
Abstract
OBJECTIVE To investigate primary retinal functional changes in non-optic neuritis (ON) eyes of patients with MS by full-field electroretinography (ERG). METHODS Seventy-seven patients with relapsing-remitting MS with no history of clinical ON in at least 1 eye and 30 healthy controls were recruited in the cohort study. Full-field ERGs were recorded, and retinal optical coherence tomography scans were performed to assess the thicknesses of peripapillary retinal nerve fiber layer (RNFL) and retinal ganglion cell layer-inner plexiform layer (GCL-IPL). Annual MRI scans were also carried out to evaluate the disease activity in the brain. Patients were followed up for 3 years. RESULTS At baseline, a delayed b-wave peak time was observed in the cone response (p < 0.001), which was associated with the thicknesses of RNFL and GCL-IPL. The peak time of the delayed b-wave also correlated with the Expanded Disability Status Scale, T2 lesion volume, and disease duration. During the 3-year follow-up, progressive ERG amplitude reduction was observed (both a- and b-waves, p < 0.05). There was a correlation between the b-wave amplitude reduction and longitudinal RNFL loss (p = 0.001). However, no correlation was found between longitudinal ERG changes and disease activity in the brain. CONCLUSIONS This study demonstrated progressive inner nuclear layer dysfunction in MS. The borderline a-wave changes suggested some outer retinal dysfunction as well. The correlation between full-field ERG changes and retinal ganglion cell loss suggested that there might be subclinical retinal pathology in MS affecting both outer and inner retinal layers.
Collapse
Affiliation(s)
- Yuyi You
- Save Sight Institute (Y.Y., E.C.G., C.L.F., A.K.), The University of Sydney; Department of Health and Medical Sciences (Y.Y., T.S., V.G., S.L.G., A.K.), Macquarie University; Department of Neurology (C.Y., J.P.), Royal North Shore Hospital; Brain and Mind Center (J.B., M.H.B.), The University of Sydney; Sydney Neuroimaging Analysis Center (M.H.B., A.K.), New South Wales, Australia; and Buffalo Neuroimaging Analysis Center (M.D.), University at Buffalo, NY
| | - Elizabeth C Graham
- Save Sight Institute (Y.Y., E.C.G., C.L.F., A.K.), The University of Sydney; Department of Health and Medical Sciences (Y.Y., T.S., V.G., S.L.G., A.K.), Macquarie University; Department of Neurology (C.Y., J.P.), Royal North Shore Hospital; Brain and Mind Center (J.B., M.H.B.), The University of Sydney; Sydney Neuroimaging Analysis Center (M.H.B., A.K.), New South Wales, Australia; and Buffalo Neuroimaging Analysis Center (M.D.), University at Buffalo, NY
| | - Ting Shen
- Save Sight Institute (Y.Y., E.C.G., C.L.F., A.K.), The University of Sydney; Department of Health and Medical Sciences (Y.Y., T.S., V.G., S.L.G., A.K.), Macquarie University; Department of Neurology (C.Y., J.P.), Royal North Shore Hospital; Brain and Mind Center (J.B., M.H.B.), The University of Sydney; Sydney Neuroimaging Analysis Center (M.H.B., A.K.), New South Wales, Australia; and Buffalo Neuroimaging Analysis Center (M.D.), University at Buffalo, NY
| | - Con Yiannikas
- Save Sight Institute (Y.Y., E.C.G., C.L.F., A.K.), The University of Sydney; Department of Health and Medical Sciences (Y.Y., T.S., V.G., S.L.G., A.K.), Macquarie University; Department of Neurology (C.Y., J.P.), Royal North Shore Hospital; Brain and Mind Center (J.B., M.H.B.), The University of Sydney; Sydney Neuroimaging Analysis Center (M.H.B., A.K.), New South Wales, Australia; and Buffalo Neuroimaging Analysis Center (M.D.), University at Buffalo, NY
| | - John Parratt
- Save Sight Institute (Y.Y., E.C.G., C.L.F., A.K.), The University of Sydney; Department of Health and Medical Sciences (Y.Y., T.S., V.G., S.L.G., A.K.), Macquarie University; Department of Neurology (C.Y., J.P.), Royal North Shore Hospital; Brain and Mind Center (J.B., M.H.B.), The University of Sydney; Sydney Neuroimaging Analysis Center (M.H.B., A.K.), New South Wales, Australia; and Buffalo Neuroimaging Analysis Center (M.D.), University at Buffalo, NY
| | - Vivek Gupta
- Save Sight Institute (Y.Y., E.C.G., C.L.F., A.K.), The University of Sydney; Department of Health and Medical Sciences (Y.Y., T.S., V.G., S.L.G., A.K.), Macquarie University; Department of Neurology (C.Y., J.P.), Royal North Shore Hospital; Brain and Mind Center (J.B., M.H.B.), The University of Sydney; Sydney Neuroimaging Analysis Center (M.H.B., A.K.), New South Wales, Australia; and Buffalo Neuroimaging Analysis Center (M.D.), University at Buffalo, NY
| | - Joshua Barton
- Save Sight Institute (Y.Y., E.C.G., C.L.F., A.K.), The University of Sydney; Department of Health and Medical Sciences (Y.Y., T.S., V.G., S.L.G., A.K.), Macquarie University; Department of Neurology (C.Y., J.P.), Royal North Shore Hospital; Brain and Mind Center (J.B., M.H.B.), The University of Sydney; Sydney Neuroimaging Analysis Center (M.H.B., A.K.), New South Wales, Australia; and Buffalo Neuroimaging Analysis Center (M.D.), University at Buffalo, NY
| | - Michael Dwyer
- Save Sight Institute (Y.Y., E.C.G., C.L.F., A.K.), The University of Sydney; Department of Health and Medical Sciences (Y.Y., T.S., V.G., S.L.G., A.K.), Macquarie University; Department of Neurology (C.Y., J.P.), Royal North Shore Hospital; Brain and Mind Center (J.B., M.H.B.), The University of Sydney; Sydney Neuroimaging Analysis Center (M.H.B., A.K.), New South Wales, Australia; and Buffalo Neuroimaging Analysis Center (M.D.), University at Buffalo, NY
| | - Michael H Barnett
- Save Sight Institute (Y.Y., E.C.G., C.L.F., A.K.), The University of Sydney; Department of Health and Medical Sciences (Y.Y., T.S., V.G., S.L.G., A.K.), Macquarie University; Department of Neurology (C.Y., J.P.), Royal North Shore Hospital; Brain and Mind Center (J.B., M.H.B.), The University of Sydney; Sydney Neuroimaging Analysis Center (M.H.B., A.K.), New South Wales, Australia; and Buffalo Neuroimaging Analysis Center (M.D.), University at Buffalo, NY
| | - Clare L Fraser
- Save Sight Institute (Y.Y., E.C.G., C.L.F., A.K.), The University of Sydney; Department of Health and Medical Sciences (Y.Y., T.S., V.G., S.L.G., A.K.), Macquarie University; Department of Neurology (C.Y., J.P.), Royal North Shore Hospital; Brain and Mind Center (J.B., M.H.B.), The University of Sydney; Sydney Neuroimaging Analysis Center (M.H.B., A.K.), New South Wales, Australia; and Buffalo Neuroimaging Analysis Center (M.D.), University at Buffalo, NY
| | - Stuart L Graham
- Save Sight Institute (Y.Y., E.C.G., C.L.F., A.K.), The University of Sydney; Department of Health and Medical Sciences (Y.Y., T.S., V.G., S.L.G., A.K.), Macquarie University; Department of Neurology (C.Y., J.P.), Royal North Shore Hospital; Brain and Mind Center (J.B., M.H.B.), The University of Sydney; Sydney Neuroimaging Analysis Center (M.H.B., A.K.), New South Wales, Australia; and Buffalo Neuroimaging Analysis Center (M.D.), University at Buffalo, NY
| | - Alexander Klistorner
- Save Sight Institute (Y.Y., E.C.G., C.L.F., A.K.), The University of Sydney; Department of Health and Medical Sciences (Y.Y., T.S., V.G., S.L.G., A.K.), Macquarie University; Department of Neurology (C.Y., J.P.), Royal North Shore Hospital; Brain and Mind Center (J.B., M.H.B.), The University of Sydney; Sydney Neuroimaging Analysis Center (M.H.B., A.K.), New South Wales, Australia; and Buffalo Neuroimaging Analysis Center (M.D.), University at Buffalo, NY
| |
Collapse
|
36
|
IL-12p35 induces expansion of IL-10 and IL-35-expressing regulatory B cells and ameliorates autoimmune disease. Nat Commun 2017; 8:719. [PMID: 28959012 PMCID: PMC5620058 DOI: 10.1038/s41467-017-00838-4] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 07/31/2017] [Indexed: 12/27/2022] Open
Abstract
Interleukin 35 (IL-35) is a heterodimeric cytokine composed of IL-12p35 and Ebi3 subunits. IL-35 suppresses autoimmune diseases while preventing host defense to infection and promoting tumor growth and metastasis by converting resting B and T cells into IL-10-producing and IL-35-producing regulatory B (Breg) and T (Treg) cells. Despite sharing the IL-12p35 subunit, IL-12 (IL-12p35/IL-12p40) promotes inflammatory responses whereas IL-35 (IL-12p35/Ebi3) induces regulatory responses, suggesting that IL-12p35 may have unknown intrinsic immune-regulatory functions regulated by its heterodimeric partner. Here we show that the IL-12p35 subunit has immunoregulatory functions hitherto attributed to IL-35. IL-12p35 suppresses lymphocyte proliferation, induces expansion of IL-10-expressing and IL-35-expressing B cells and ameliorates autoimmune uveitis in mice by antagonizing pathogenic Th17 responses. Recapitulation of essential immunosuppressive activities of IL-35 indicates that IL-12p35 may be utilized for in vivo expansion of Breg cells and autologous Breg cell immunotherapy. Furthermore, our uveitis data suggest that intrinsic immunoregulatory activities of other single chain IL-12 subunits might be exploited to treat other autoimmune diseases. IL-12p35 is common to IL-35 and IL-12, which have opposing effects on inflammation. Here the authors show that the IL-12p35 subunit induces regulatory B cells and can be used therapeutically to limit autoimmune uveitis in mice.
Collapse
|
37
|
Umazume A, Kezuka T, Matsuda R, Usui Y, Takahashi H, Yamakawa N, Yashiro T, Nishiyama C, Goto H. Role of PU.1 Expression as an Inflammatory Marker in Experimental Autoimmune Uveoretinitis. Ocul Immunol Inflamm 2017; 26:951-963. [PMID: 28448751 DOI: 10.1080/09273948.2017.1299867] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE PU.1 is an Ets family transcription factor, which is essential for the development of immune system through generation of myeloid and lymphoid lineages. In this study, we investigated PU.1 expression in the retina of mice with experimental autoimmune uveoretinitis (EAU) and the association between PU.1 expression level and inflammation in EAU. METHODS IRBP 1-20 peptide-immunized mice were used. Quantitative PCR, ELISA analysis, cytometric bead array (CBA), assay and immunostaining were conducted using ocular tissues and lymph nodes. RESULTS Quantitative PCR showed significant increases in mRNA levels of PU.1 in the retina at the peak of inflammation. Immunostaining of retina flat mounts revealed that most PU.1-positive cells were co-stained with anti-CD11c and anti-F4/80 antibodies. PU.1 knockdown in lymph node cells significantly suppressed IRBP-stimulated IFN-γ production measured by ELISA and IL-2 production measured by CBA. CONCLUSION PU.1 may play crucial roles in the development and progression of inflammation in EAU.
Collapse
Affiliation(s)
- Akihiko Umazume
- a Department of Ophthalmology , Tokyo Medical University , Shinjuku-ku , Tokyo , Japan.,b Department of Biological Science and Technology , Faculty of Industrial Science and Technology, Tokyo University of Science , Katsushika-ku , Tokyo , Japan
| | - Takeshi Kezuka
- a Department of Ophthalmology , Tokyo Medical University , Shinjuku-ku , Tokyo , Japan
| | - Ryusaku Matsuda
- a Department of Ophthalmology , Tokyo Medical University , Shinjuku-ku , Tokyo , Japan
| | - Yoshihiko Usui
- a Department of Ophthalmology , Tokyo Medical University , Shinjuku-ku , Tokyo , Japan
| | - Hiroki Takahashi
- a Department of Ophthalmology , Tokyo Medical University , Shinjuku-ku , Tokyo , Japan
| | - Naoyuki Yamakawa
- a Department of Ophthalmology , Tokyo Medical University , Shinjuku-ku , Tokyo , Japan
| | - Takuya Yashiro
- b Department of Biological Science and Technology , Faculty of Industrial Science and Technology, Tokyo University of Science , Katsushika-ku , Tokyo , Japan
| | - Chiharu Nishiyama
- b Department of Biological Science and Technology , Faculty of Industrial Science and Technology, Tokyo University of Science , Katsushika-ku , Tokyo , Japan
| | - Hiroshi Goto
- a Department of Ophthalmology , Tokyo Medical University , Shinjuku-ku , Tokyo , Japan
| |
Collapse
|
38
|
Bansal S, Barathi VA, Iwata D, Agrawal R. Experimental autoimmune uveitis and other animal models of uveitis: An update. Indian J Ophthalmol 2016; 63:211-8. [PMID: 25971165 PMCID: PMC4448233 DOI: 10.4103/0301-4738.156914] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Over the past several decades, animal models of autoimmune uveitis directed at eye-specific antigens (Ags) have been developed. These have allowed researchers to understand the basic mechanisms that lead to these diseases and also recently helped the researchers in translational research for therapeutic interventions. Experimental autoimmune uveitis (EAU) is an animal disease model of human endogenous uveitis and can be induced in susceptible animals by immunization with retinal Ags. Ever since the first description of EAU in mice in 1988, several animal models of uveitis has been described by researchers. Disease-specific model for cytomegalovirus retinitis and tubercular uveitis has evolved our understanding of these complex entities. Endotoxin induced uveitis is another useful model for anterior uveitis, which is not an autoimmune process and is triggered by injection of bacterial endotoxin (lipopolysaccharides) resulting in a rapid short lasting uveitis. The current article will give an insight into the various EAU animal models and their current implications in translational research. The article will also highlight the different grading systems for EAU in the animal model.
Collapse
Affiliation(s)
| | | | | | - Rupesh Agrawal
- National Healthcare Group Eye Institute, Tan Tock Seng Hospital, Singapore; Singapore Eye Research Institute, Singapore; Institute of Ophthalmology, University College London, London,
| |
Collapse
|
39
|
Sakoda Y, Nagai T, Murata S, Mizuno Y, Kurosawa H, Shoda H, Morishige N, Yanai R, Sonoda KH, Tamada K. Pathogenic Function of Herpesvirus Entry Mediator in Experimental Autoimmune Uveitis by Induction of Th1- and Th17-Type T Cell Responses. THE JOURNAL OF IMMUNOLOGY 2016; 196:2947-54. [PMID: 26912321 DOI: 10.4049/jimmunol.1501742] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 01/20/2016] [Indexed: 01/23/2023]
Abstract
Herpesvirus entry mediator (HVEM), a member of the TNFR superfamily, serves as a unique molecular switch to mediate both stimulatory and inhibitory cosignals, depending on its functions as a receptor or ligand interacting with multiple binding partners. In this study, we explored the cosignaling functions of HVEM in experimental autoimmune uveitis (EAU), a mouse model resembling human autoimmune uveitis conditions such as ocular sarcoidosis and Behcet disease. Our studies revealed that EAU severity significantly decreased in HVEM-knockout mice compared with wild-type mice, suggesting that stimulatory cosignals from the HVEM receptor are predominant in EAU. Further studies elucidated that the HVEM cosignal plays an important role in the induction of both Th1- and Th17-type pathogenic T cells in EAU, including differentiation of IL-17-producing αβ(+)γδ(-) conventional CD4(+) T cells. Mice lacking lymphotoxin-like, inducible expression, competes with herpes simplex virus glycoprotein D for HVEM, a receptor expressed by T lymphocytes : LIGHT), B- and T-lymphocyte attenuator (BTLA) or both LIGHT and BTLA are also less susceptible to EAU, indicating that LIGHT-HVEM and BTLA-HVEM interactions, two major molecular pathways mediating HVEM functions, are both important in determining EAU pathogenesis. Finally, blocking HVEM cosignals by antagonistic anti-HVEM Abs ameliorated EAU. Taken together, our studies revealed a novel function of the HVEM cosignaling molecule and its ligands in EAU pathogenesis through the induction of Th1- and Th17-type T cell responses and suggested that HVEM-related molecular pathways can be therapeutic targets in autoimmune uveitis.
Collapse
Affiliation(s)
- Yukimi Sakoda
- Department of Immunology, Yamaguchi University Graduate School of Medicine, Ube City, Yamaguchi 755-8505, Japan; and
| | - Tomohiko Nagai
- Department of Immunology, Yamaguchi University Graduate School of Medicine, Ube City, Yamaguchi 755-8505, Japan; and Department of Ophthalmology, Yamaguchi University Graduate School of Medicine, Ube City, Yamaguchi 755-8505, Japan
| | - Sizuka Murata
- Department of Ophthalmology, Yamaguchi University Graduate School of Medicine, Ube City, Yamaguchi 755-8505, Japan
| | - Yukari Mizuno
- Department of Ophthalmology, Yamaguchi University Graduate School of Medicine, Ube City, Yamaguchi 755-8505, Japan
| | - Hiromi Kurosawa
- Department of Immunology, Yamaguchi University Graduate School of Medicine, Ube City, Yamaguchi 755-8505, Japan; and
| | - Hiromi Shoda
- Department of Ophthalmology, Yamaguchi University Graduate School of Medicine, Ube City, Yamaguchi 755-8505, Japan
| | - Naoyuki Morishige
- Department of Ophthalmology, Yamaguchi University Graduate School of Medicine, Ube City, Yamaguchi 755-8505, Japan
| | - Ryoji Yanai
- Department of Ophthalmology, Yamaguchi University Graduate School of Medicine, Ube City, Yamaguchi 755-8505, Japan
| | - Koh-Hei Sonoda
- Department of Ophthalmology, Yamaguchi University Graduate School of Medicine, Ube City, Yamaguchi 755-8505, Japan
| | - Koji Tamada
- Department of Immunology, Yamaguchi University Graduate School of Medicine, Ube City, Yamaguchi 755-8505, Japan; and
| |
Collapse
|
40
|
Involvement of B cells in non-infectious uveitis. Clin Transl Immunology 2016; 5:e63. [PMID: 26962453 PMCID: PMC4771944 DOI: 10.1038/cti.2016.2] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Revised: 01/04/2016] [Accepted: 01/04/2016] [Indexed: 12/14/2022] Open
Abstract
Non-infectious uveitis-or intraocular inflammatory disease-causes substantial visual morbidity and reduced quality of life amongst affected individuals. To date, research of pathogenic mechanisms has largely been focused on processes involving T lymphocyte and/or myeloid leukocyte populations. Involvement of B lymphocytes has received relatively little attention. In contrast, B-cell pathobiology is a major field within general immunological research, and large clinical trials have showed that treatments targeting B cells are highly effective for multiple systemic inflammatory diseases. B cells, including the terminally differentiated plasma cell that produces antibody, are found in the human eye in different forms of non-infectious uveitis; in some cases, these cells outnumber other leukocyte subsets. Recent case reports and small case series suggest that B-cell blockade may be therapeutic for patients with non-infectious uveitis. As well as secretion of antibody, B cells may promote intraocular inflammation by presentation of antigen to T cells, production of multiple inflammatory cytokines and support of T-cell survival. B cells may also perform various immunomodulatory activities within the eye. This translational review summarizes the evidence for B-cell involvement in non-infectious uveitis, and considers the potential contributions of B cells to the development and control of the disease. Manipulations of B cells and/or their products are promising new approaches to the treatment of non-infectious uveitis.
Collapse
|
41
|
Iwahashi C, Fujimoto M, Nomura S, Serada S, Nakai K, Ohguro N, Nishida K, Naka T. CTLA4-Ig suppresses development of experimental autoimmune uveitis in the induction and effector phases: Comparison with blockade of interleukin-6. Exp Eye Res 2015; 140:53-64. [DOI: 10.1016/j.exer.2015.08.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 07/04/2015] [Accepted: 08/17/2015] [Indexed: 12/14/2022]
|
42
|
Chen X, Kezic JM, Forrester JV, Goldberg GL, Wicks IP, Bernard CC, McMenamin PG. In vivo multi-modal imaging of experimental autoimmune uveoretinitis in transgenic reporter mice reveals the dynamic nature of inflammatory changes during disease progression. J Neuroinflammation 2015; 12:17. [PMID: 25623142 PMCID: PMC4336748 DOI: 10.1186/s12974-015-0235-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 01/05/2015] [Indexed: 12/22/2022] Open
Abstract
Background Experimental autoimmune uveoretinitis (EAU) is a widely used experimental animal model of human endogenous posterior uveoretinitis. In the present study, we performed in vivo imaging of the retina in transgenic reporter mice to investigate dynamic changes in exogenous inflammatory cells and endogenous immune cells during the disease process. Methods Transgenic mice (C57Bl/6 J Cx3cr1GFP/+, C57Bl/6 N CD11c-eYFP, and C57Bl/6 J LysM-eGFP) were used to visualize the dynamic changes of myeloid-derived cells, putative dendritic cells and neutrophils during EAU. Transgenic mice were monitored with multi-modal fundus imaging camera over five time points following disease induction with the retinal auto-antigen, interphotoreceptor retinoid binding protein (IRBP1–20). Disease severity was quantified with both clinical and histopathological grading. Results In the normal C57Bl/6 J Cx3cr1GFP/+ mouse Cx3cr1-expressing microglia were evenly distributed in the retina. In C57Bl/6 N CD11c-eYFP mice clusters of CD11c-expressing cells were noted in the retina and in C57Bl/6 J LysM-eGFP mice very low numbers of LysM-expressing neutrophils were observed in the fundus. Following immunization with IRBP1–20, fundus examination revealed accumulations of Cx3cr1-GFP+ myeloid cells, CD11c-eYFP+ cells and LysM-eGFP+ myelomonocytic cells around the optic nerve head and along retinal vessels as early as day 14 post-immunization. CD11c-eYFP+ cells appear to resolve marginally earlier (day 21 post-immunization) than Cx3cr1-GFP+ and LysM-eGFP+ cells. The clinical grading of EAU in transgenic mice correlated closely with histopathological grading. Conclusions These results illustrate that in vivo fundus imaging of transgenic reporter mice allows direct visualization of various exogenously and endogenously derived leukocyte types during EAU progression. This approach acts as a valuable adjunct to other methods of studying the clinical course of EAU. Electronic supplementary material The online version of this article (doi:10.1186/s12974-015-0235-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiangting Chen
- Department of Anatomy and Developmental Biology, School of Biomedical Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia.
| | - Jelena M Kezic
- Department of Anatomy and Developmental Biology, School of Biomedical Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia.
| | - John V Forrester
- Section of Immunology and Infection, Division of Applied Medicine, School of Medicine and Dentistry, Institute of Medical Science, Foresterhill, University of Aberdeen, Scotland, UK. .,Ocular Immunology Program, Centre for Ophthalmology and Visual Science, The University of Western Australia, Crawley, Western Australia, Australia. .,Centre for Experimental Immunology, Lions Eye Institute, Nedlands, Crawley, Western Australia, Australia.
| | - Gabrielle L Goldberg
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.
| | - Ian P Wicks
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.
| | - Claude C Bernard
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia.
| | - Paul G McMenamin
- Department of Anatomy and Developmental Biology, School of Biomedical Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
43
|
Interleukin-28A enhances autoimmune disease in a retinal autoimmunity model. Cytokine 2014; 70:179-84. [PMID: 25138017 DOI: 10.1016/j.cyto.2014.07.252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 07/04/2014] [Accepted: 07/24/2014] [Indexed: 11/20/2022]
Abstract
Interleukin-28A (IL-28A), a member of type III interferons (IFN-λs), promotes antiviral, antitumor and immune responses. However, its ability to regulate autoimmune diseases is poorly understood. In this study, we examined the effect of IL-28A on retinal antigen-induced experimental autoimmune uveoretinitis (EAU), a mouse model of human T-cell-mediated autoimmune eye disease. We found that administration of IL-28A enhanced EAU scores and autoimmune response parameters including delayed-type hypersensitivity (DTH), Ag-specific T cell proliferation and the production of Ag-specific IL-17 and IFN-γ in the priming phase. The effect of IL-28A was abrogated by administration of a neutralizing antibody against IL-28A. Our results suggest that IL-28A is capable of exacerbating a T-cell-mediated autoimmune disease. Thus, targeting IL-28A may provide a new therapeutic approach to T cell-mediated autoimmune diseases such as uveitis.
Collapse
|
44
|
Zhao R, Zhou H, Zhang J, Liu X, Su SB. Interleukin-1β promotes the induction of retinal autoimmune disease. Int Immunopharmacol 2014; 22:285-92. [PMID: 25017970 DOI: 10.1016/j.intimp.2014.06.041] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 06/23/2014] [Accepted: 06/30/2014] [Indexed: 12/13/2022]
Abstract
Interleukin-1β (IL-1β) is a potent proinflammatory cytokine that plays a critical role in initiating immunoinflammatory responses. In this study, we generated recombinant mouse IL-1β and anti-mouse IL-1β polyclonal antibodies to examine the effect of IL-1β on experimental autoimmune uveoretinitis (EAU), a mouse model for T cell-mediated eye autoimmune disease. Administration of mouse IL-1β by i.p. in the priming phase, but not in the effector phase, of immune response of EAU enhanced disease scores and its related immune responses including DTH, Ag-specific T cell proliferation and the production of IL-17 and IFN-γ. Furthermore, administration of anti-IL-1β antibody in the priming phase reduced EAU scores. These results suggest that IL-1β is an important mediator in the pathogenesis of autoimmune diseases such as uveitis.
Collapse
Affiliation(s)
- Ruijuan Zhao
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Hongyan Zhou
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Jing Zhang
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Xialin Liu
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Shao Bo Su
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China.
| |
Collapse
|
45
|
Montalvo V, Quigley L, Vistica BP, Boelte KC, Nugent LF, Takai T, McVicar DW, Gery I. Environmental factors determine DAP12 deficiency to either enhance or suppress immunopathogenic processes. Immunology 2014; 140:475-82. [PMID: 23906311 DOI: 10.1111/imm.12158] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 06/28/2013] [Accepted: 07/29/2013] [Indexed: 12/30/2022] Open
Abstract
DNAX-activation protein 12 (DAP12), a transmembrane adapter, plays a major role in transducing activation signals in natural killer cells and various myeloid cells. Quantitative RT-PCR detected in normal mouse eyes considerable levels of DAP12 and multiple DAP12-coupled receptors, in particular TREM-1, Clec5a and SIRPb1. The role of DAP12 and its receptors in experimental autoimmune diseases has been controversial. Here, we analysed the effect of DAP12 deficiency on the capacity of mice to mount immunopathogenic cellular responses to the uveitogenic ocular antigen and interphotoreceptor retinoid-binding protein (IRBP), and to develop experimental autoimmune uveitis (EAU). Surprisingly, sequential analysis of EAU in mice deficient in DAP12 in two different animal facilities at first revealed enhanced disease as compared with wild-type mice, but when these mice were re-derived into a second, cleaner, animal facility, the response of control mice was essentially unchanged, whereas the DAP12 null mice were markedly hyporesponsive relative to controls in the new facility. Accordingly, when stimulated in vitro with IRBP, lymphocytes from the DAP12-deficient mice housed in the two facilities proliferated and produced opposite profiles of pro-inflammatory and anti-inflammatory cytokines, compared with their controls. These findings therefore demonstrate that the effects of DAP12 deficiency on development of autoimmune disease are dramatically affected by environmental factors.
Collapse
Affiliation(s)
- Vanessa Montalvo
- Laboratory of Immunology, National Eye Institute, NIH, Bethesda, MD, USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Interleukin-35 induces regulatory B cells that suppress autoimmune disease. Nat Med 2014; 20:633-41. [PMID: 24743305 PMCID: PMC4048323 DOI: 10.1038/nm.3554] [Citation(s) in RCA: 561] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 04/10/2014] [Indexed: 02/08/2023]
Abstract
Interleukin 10-producing regulatory B-cells (Breg-cells) suppress autoimmune diseases while aberrant elevation of Breg-cells prevents sterilizing immunity, promotes carcinogenesis and cancer metastasis by converting resting CD4+ T-cells to regulatory T-cells (Tregs). It is therefore of interest to discover factors that induce Breg-cells. Here we show that IL-35 induces Breg-cells in-vivo and promotes their conversion to a unique Breg subset that produces IL-35 (IL-35+Breg). Treatment of mice with IL-35 conferred protection from uveitis and mice lacking IL-35 or defective in IL-35-signaling produced less Breg-cells and developed severe uveitis. Ex-vivo generated Breg-cells also suppressed uveitis by inhibiting pathogenic Th17/Th1 while promoting Tregs expansion. We further show that IL-35 induced the conversion of human B-cells into Breg-cells and suppressed uveitis by activating STAT1/STAT3 through IL-35-Receptor comprising IL-12Rβ2/IL-27Rα subunits. Discovery that IL-35 converts human B-cells into Breg-cells, allows ex-vivo production of autologous Breg-cells for immunotherapy and investigating Breg/IL-35+Breg cells roles in autoimmune diseases and cancer.
Collapse
|
47
|
Reiff A, Kadayifcilar S, Özen S. Rheumatic Inflammatory Eye Diseases of Childhood. Rheum Dis Clin North Am 2013; 39:801-32. [DOI: 10.1016/j.rdc.2013.05.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
48
|
Peroxisome proliferator-activated receptor-γ agonist pioglitazone suppresses experimental autoimmune uveitis. Exp Eye Res 2013; 116:291-7. [DOI: 10.1016/j.exer.2013.09.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 09/11/2013] [Accepted: 09/27/2013] [Indexed: 12/31/2022]
|
49
|
Effects of Japanese herbal medicine Sairei-to on murine experimental autoimmune uveitis. Graefes Arch Clin Exp Ophthalmol 2013; 251:2733-9. [PMID: 24126677 DOI: 10.1007/s00417-013-2473-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 08/28/2013] [Accepted: 09/23/2013] [Indexed: 10/26/2022] Open
Abstract
PURPOSE It has been suggested thatSairei-to (TJ114), a traditional Japanese herbal medicine, has immunomodulatory activities. To evaluate the effects of TJ114 on uveitis, we examined the effectiveness of oral administration in a murine model of experimental autoimmune uveitis (EAU). METHODS Murine EAU was induced by subcutaneous injection of human inter-photoreceptor retinoid-binding protein (IRBP) peptide mixed with complete Freund's adjuvant. In the TJ114-treated group, 2 g/kg was administrated orally from 0 to 20 days after immunization. Clinical scoring, histopathological scoring of EAU, cell proliferation, cytokine assessment, and adoptive transfer experiment of splenic T cells into naïve mice were performed. RESULTS EAU development occurred in 32 of 38 mice (86 %) in the untreated group and 12 of 33 (36 %) in the TJ114-treated group. The clinical scores for EAU in the vehicle-treated and TJ114-treated groups were 1.56 ± 1.65 and 0.59 ± 0.63 respectively, at 14 days after immunization (p < 0.01, Mann-Whitney U-test), and 2.26 ± 1.56 and 0.75 ± 1.31 respectively at 21 days (p < 0.001, Mann-Whitney U-test), while the histopathological scores at 21 days were 1.47 ± 1.42 and 0.54 ± 0.84 respectively (p < 0.01, Mann-Whitney U-test). Interferon (IFN)-γ and tumor necrosis factor (TNF)-α production by cervical lymph node cells obtained from the TJ114-treated group were significantly reduced as compared with those from the vehicle-treated group (p < 0.01, Student's unpaired t-test). Moreover, the levels of C-C motif chemokine 2 (CCL2) and IFN-γ were significantly reduced in splenocytes of TJ114-treated mice as compared with the vehicle-treated group (p < 0.01, Student's unpaired t-test). Mice that received adoptive transfer of splenic T cells from TJ114-treated EAU mice caused significantly lower severity of EAU compared to those that received from vehicle-treated EAU mice. CONCLUSION Oral administration of TJ114 has an inhibitory effect on a murine model of EAU, possibly via reduction in cytokine production by helper type-1 T cells.
Collapse
|
50
|
Read RW, Vogt SD, Barnum SR. The complement anaphylatoxin receptors are not required for the development of experimental autoimmune uveitis. J Neuroimmunol 2013; 264:127-9. [PMID: 24035596 DOI: 10.1016/j.jneuroim.2013.08.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 08/19/2013] [Accepted: 08/21/2013] [Indexed: 02/06/2023]
Abstract
To determine if complement anaphylatoxin-mediated inflammation contributes to the development and progression of experimental autoimmune uveitis (EAU), we induced disease in wild type and complement anaphylatoxin receptor-deficient mice (C3a receptor(-/-), C5a receptor(-/-) and C3aR(-/-)/C5aR(-/-)) and evaluated the eyes three weeks post-induction. No differences in disease severity or in disease incidence were seen between wild type controls and anaphylatoxin receptor-deficient mice. Our data indicate that C3a and C5a-mediated functions are not critical to the development of EAU.
Collapse
Affiliation(s)
- Russell W Read
- Department of Ophthalmology, The University of Alabama at Birmingham, 1530 3rd Avenue South, Birmingham, AL 35294-1150, USA; Department of Pathology, The University of Alabama at Birmingham, 1530 3rd Avenue South, Birmingham, AL 35294-1150, USA; Department of Microbiology, The University of Alabama at Birmingham, 1530 3rd Avenue South, Birmingham, AL 35294-1150, USA.
| | | | | |
Collapse
|