1
|
Huang R, Ding X, Fu H, Cai Q. Potential mechanisms of sleeve gastrectomy for reducing weight and improving metabolism in patients with obesity. Surg Obes Relat Dis 2019; 15:1861-1871. [DOI: 10.1016/j.soard.2019.06.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/18/2019] [Accepted: 06/19/2019] [Indexed: 02/07/2023]
|
2
|
Troger J, Theurl M, Kirchmair R, Pasqua T, Tota B, Angelone T, Cerra MC, Nowosielski Y, Mätzler R, Troger J, Gayen JR, Trudeau V, Corti A, Helle KB. Granin-derived peptides. Prog Neurobiol 2017; 154:37-61. [PMID: 28442394 DOI: 10.1016/j.pneurobio.2017.04.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 04/10/2017] [Accepted: 04/16/2017] [Indexed: 12/14/2022]
Abstract
The granin family comprises altogether 7 different proteins originating from the diffuse neuroendocrine system and elements of the central and peripheral nervous systems. The family is dominated by three uniquely acidic members, namely chromogranin A (CgA), chromogranin B (CgB) and secretogranin II (SgII). Since the late 1980s it has become evident that these proteins are proteolytically processed, intragranularly and/or extracellularly into a range of biologically active peptides; a number of them with regulatory properties of physiological and/or pathophysiological significance. The aim of this comprehensive overview is to provide an up-to-date insight into the distribution and properties of the well established granin-derived peptides and their putative roles in homeostatic regulations. Hence, focus is directed to peptides derived from the three main granins, e.g. to the chromogranin A derived vasostatins, betagranins, pancreastatin and catestatins, the chromogranin B-derived secretolytin and the secretogranin II-derived secretoneurin (SN). In addition, the distribution and properties of the chromogranin A-derived peptides prochromacin, chromofungin, WE14, parastatin, GE-25 and serpinins, the CgB-peptide PE-11 and the SgII-peptides EM66 and manserin will also be commented on. Finally, the opposing effects of the CgA-derived vasostatin-I and catestatin and the SgII-derived peptide SN on the integrity of the vasculature, myocardial contractility, angiogenesis in wound healing, inflammatory conditions and tumors will be discussed.
Collapse
Affiliation(s)
- Josef Troger
- Department of Ophthalmology, Medical University of Innsbruck, Innsbruck, Austria.
| | - Markus Theurl
- Department of Internal Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Rudolf Kirchmair
- Department of Internal Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Teresa Pasqua
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Arcavacata di Rende, Italy
| | - Bruno Tota
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Arcavacata di Rende, Italy
| | - Tommaso Angelone
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Arcavacata di Rende, Italy
| | - Maria C Cerra
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Arcavacata di Rende, Italy
| | - Yvonne Nowosielski
- Department of Ophthalmology, Medical University of Innsbruck, Innsbruck, Austria
| | - Raphaela Mätzler
- Department of Ophthalmology, Medical University of Innsbruck, Innsbruck, Austria
| | - Jasmin Troger
- Department of Ophthalmology, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Vance Trudeau
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Angelo Corti
- Vita-Salute San Raffaele University and Division of Experimental Oncology, San Raffaele Scientific Institute, Milan, Italy
| | - Karen B Helle
- Department of Biomedicine, University of Bergen, Norway
| |
Collapse
|
3
|
Allu PKR, Chirasani VR, Ghosh D, Mani A, Bera AK, Maji SK, Senapati S, Mullasari AS, Mahapatra NR. Naturally occurring variants of the dysglycemic peptide pancreastatin: differential potencies for multiple cellular functions and structure-function correlation. J Biol Chem 2014; 289:4455-69. [PMID: 24338022 PMCID: PMC3924307 DOI: 10.1074/jbc.m113.520916] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 12/08/2013] [Indexed: 12/16/2022] Open
Abstract
Pancreastatin (PST), a chromogranin A-derived peptide, is a potent physiological inhibitor of glucose-induced insulin secretion. PST also triggers glycogenolysis in liver and reduces glucose uptake in adipocytes and hepatocytes. Here, we probed for genetic variations in PST sequence and identified two variants within its functionally important carboxyl terminus domain: E287K and G297S. To understand functional implications of these amino acid substitutions, we tested the effects of wild-type (PST-WT), PST-287K, and PST-297S peptides on various cellular processes/events. The rank order of efficacy to inhibit insulin-stimulated glucose uptake was: PST-297S > PST-287K > PST-WT. The PST peptides also displayed the same order of efficacy for enhancing intracellular nitric oxide and Ca(2+) levels in various cell types. In addition, PST peptides activated gluconeogenic genes in the following order: PST-297S ≈ PST-287K > PST-WT. Consistent with these in vitro results, the common PST variant allele Ser-297 was associated with significantly higher (by ∼17 mg/dl, as compared with the wild-type Gly-297 allele) plasma glucose level in our study population (n = 410). Molecular modeling and molecular dynamics simulations predicted the following rank order of α-helical content: PST-297S > PST-287K > PST-WT. Corroboratively, circular dichroism analysis of PST peptides revealed significant differences in global structures (e.g. the order of propensity to form α-helix was: PST-297S ≈ PST-287K > PST-WT). This study provides a molecular basis for enhanced potencies/efficacies of human PST variants (likely to occur in ∼300 million people worldwide) and has quantitative implications for inter-individual variations in glucose/insulin homeostasis.
Collapse
Affiliation(s)
- Prasanna K. R. Allu
- From the Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036
| | - Venkat R. Chirasani
- From the Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036
| | - Dhiman Ghosh
- the Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, and
| | - Anitha Mani
- From the Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036
| | - Amal K. Bera
- From the Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036
| | - Samir K. Maji
- the Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, and
| | - Sanjib Senapati
- From the Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036
| | - Ajit S. Mullasari
- the Institute of Cardiovascular Diseases, Madras Medical Mission, Chennai 600037, India
| | - Nitish R. Mahapatra
- From the Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036
| |
Collapse
|
4
|
Valicherla GR, Hossain Z, Mahata SK, Gayen JR. Pancreastatin is an endogenous peptide that regulates glucose homeostasis. Physiol Genomics 2013; 45:1060-71. [PMID: 24064537 DOI: 10.1152/physiolgenomics.00131.2013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Pancreastatin (PST) is a regulatory peptide containing 49 amino acids, first isolated from porcine pancreas. Intracellular and extracellular processing of the prohormone Chromogranin A (Chga) results various bioactive peptides of which PST has dysglycemic activity. PST regulates glucose, lipid, and protein metabolism in liver and adipose tissues. It also regulates the secretion of leptin and expression of leptin and uncoupling protein 2 in adipose tissue. In Chga knockout mice, PST induces gluconeogenesis in the liver. PST reduces glucose uptake in mice hepatocytes and adipocytes. In rat hepatocytes, PST induces glycogenolysis and glycolysis and inhibits glycogen synthesis. In rat adipocytes, PST inhibits lactate production and lipogenesis. These metabolic effects are confirmed in humans. In the dual signaling mechanism of PST receptor, mostly PST activates Gαq/11 protein leads to the activation of phospholipase C β3-isoform, therefore increasing cytoplasmic free calcium and stimulating protein kinase C. PST inhibits the cell growth in rat HTC hepatoma cells, mediated by nitric oxide and cyclic GMP production. Elevated levels of PST correlating with catecholamines have been found in gestational diabetes and essential hypertension. Rise in the blood PST level in Type 2 diabetes suggests that PST is a negative regulator of insulin sensitivity and glucose homeostasis.
Collapse
Affiliation(s)
- Guru Raghavendra Valicherla
- Pharmacokinetics and Metabolism Division, Council of Scientific and Industrial Research-Central Drug Research Institute, Lucknow, India
| | | | | | | |
Collapse
|
5
|
Sánchez-Margalet V, González-Yanes C, Najib S, Santos-Álvarez J. Reprint of: Metabolic effects and mechanism of action of the chromogranin A-derived peptide pancreastatin. ACTA ACUST UNITED AC 2010; 165:71-7. [PMID: 20934461 DOI: 10.1016/j.regpep.2010.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Revised: 02/09/2010] [Accepted: 02/11/2010] [Indexed: 01/12/2023]
Abstract
Pancreastatin is one of the regulatory peptides derived from intracellular and/or extracellular processing of chromogranin A, the soluble acidic protein present in the secretory granules of the neuroendocrine system. While the intracellular functions of chromogranin A include formation and maturation of the secretory granule, the major extracellular functions are generation of biologically active peptides with demonstrated autocrine, paracrine or endocrine activities. In this review, we will focus on the metabolic function of one of these peptides, pancreastatin, and the mechanisms underlying its effects. Many different reported effects have implicated PST in the modulation of energy metabolism, with a general counterregulatory effect to that of insulin. Pancreastatin induces glycogenolysis in liver and lipolysis in adipocytes. Metabolic effects have been confirmed in humans. Moreover, naturally occurring human variants have been found, one of which (Gly297Ser) occurs in the functionally important carboxy-terminus of the peptide, and substantially increases the peptide's potency to inhibit cellular glucose uptake. Thus, qualitative hereditary alterations in pancreastatin's primary structure may give rise to interindividual differences in glucose and lipid metabolism. Pancreastatin activates a receptor signaling system that belongs to the seven-spanning transmembrane receptor coupled to a Gq-PLCβ-calcium-PKC signaling pathway. Increased pancreastatin plasma levels, correlating with catecholamines levels, have been found in insulin resistance states, such as gestational diabetes or essential hypertension. Pancreastatin plays important physiological role in potentiating the metabolic effects of catecholamines, and may also play a pathophysiological role in insulin resistance states with increased sympathetic activity.
Collapse
Affiliation(s)
- Víctor Sánchez-Margalet
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Virgen Macarena University Hospital, University of Seville, Spain.
| | | | | | | |
Collapse
|
6
|
Sánchez-Margalet V, González-Yanes C, Najib S, Santos-Alvarez J. Metabolic effects and mechanism of action of the chromogranin A-derived peptide pancreastatin. ACTA ACUST UNITED AC 2010; 161:8-14. [PMID: 20184923 DOI: 10.1016/j.regpep.2010.02.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Revised: 02/09/2010] [Accepted: 02/11/2010] [Indexed: 12/20/2022]
Abstract
Pancreastatin is one of the regulatory peptides derived from intracellular and/or extracellular processing of chromogranin A, the soluble acidic protein present in the secretory granules of the neuroendocrine system. While the intracellular functions of chromogranin A include formation and maturation of the secretory granule, the major extracellular functions are generation of biologically active peptides with demonstrated autocrine, paracrine or endocrine activities. In this review, we will focus on the metabolic function of one of these peptides, pancreastatin, and the mechanisms underlying its effects. Many different reported effects have implicated PST in the modulation of energy metabolism, with a general counterregulatory effect to that of insulin. Pancreastatin induces glycogenolysis in liver and lipolysis in adipocytes. Metabolic effects have been confirmed in humans. Moreover, naturally occurring human variants have been found, one of which (Gly297Ser) occurs in the functionally important carboxy-terminus of the peptide, and substantially increases the peptide's potency to inhibit cellular glucose uptake. Thus, qualitative hereditary alterations in pancreastatin's primary structure may give rise to interindividual differences in glucose and lipid metabolism. Pancreastatin activates a receptor signaling system that belongs to the seven-spanning transmembrane receptor coupled to a Gq-PLCbeta-calcium-PKC signaling pathway. Increased pancreastatin plasma levels, correlating with catecholamines levels, have been found in insulin resistance states, such as gestational diabetes or essential hypertension. Pancreastatin plays important physiological role in potentiating the metabolic effects of catecholamines, and may also play a pathophysiological role in insulin resistance states with increased sympathetic activity.
Collapse
Affiliation(s)
- Víctor Sánchez-Margalet
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Virgen Macarena University Hospital, University of Seville, Spain.
| | | | | | | |
Collapse
|
7
|
Díaz-Troya S, Najib S, Sánchez-Margalet V. eNOS, nNOS, cGMP and protein kinase G mediate the inhibitory effect of pancreastatin, a chromogranin A-derived peptide, on growth and proliferation of hepatoma cells. ACTA ACUST UNITED AC 2005; 125:41-6. [PMID: 15582712 DOI: 10.1016/j.regpep.2004.07.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2004] [Revised: 06/21/2004] [Accepted: 07/23/2004] [Indexed: 10/26/2022]
Abstract
Pancreastatin (PST), a chromogranin A-derived peptide, has an anti-insulin metabolic effect and inhibits growth and proliferation by producing nitric oxide (NO) in HTC rat hepatoma cells. When NO production is blocked, a proliferative effect prevails due to the activation a Galphaq/11-phospholipase C-beta (PLC-beta) pathway, which leads to an increase in [Ca2+]i, protein kinase C (PKC) and mitogen-activated protein kinase (MAPK) activation. The aim of the present study was to investigate the NO synthase (NOS) isoform that mediates these effects of PST on HTC hepatoma cells and the possible roles of cyclic GMP (cGMP) and cGMP-dependent protein kinase. DNA and protein synthesis in response to PST were measured as [3H]-thymidine and [3H]-leucine incorporation in the presence of various pharmacological inhibitors: N-monomethyl-L-arginine (NMLA, nonspecific NOS inhibitor), L-NIO (endothelial nitric oxide synthase (eNOS) inhibitor), espermidine (neuronal nitric oxide synthase (nNOS) inhibitor), LY83583 (guanylyl cyclase inhibitor), and KT5823 (protein kinase G inhibitor, (PKG)). L-NIO, similarly to NMLA, reverted the inhibitory effect of PST on hepatoma cell into a stimulatory effect on growth and proliferation. Nevertheless, espermidine also prevented the inhibitory effect of PST, but there was no stimulation of growth and proliferation. When guanylyl cyclase activity was blocked, there was again a reversion of the inhibitory effect into a stimulatory action, suggesting that the effect of NO was mediated by the production of cGMP. PKG inhibition prevented the inhibitory effect of PST, but there was no stimulatory effect. Therefore, the inhibitory effect of PST on growth and proliferation of hepatoma cells may be mainly mediated by eNOS activation. In turn, the effect of NO may be mediated by cGMP, whereas other pathways in addition to PKG activation seem to mediate the inhibition of DNA and protein synthesis by PST in HTC hepatoma cells.
Collapse
Affiliation(s)
- Sandra Díaz-Troya
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Investigation Unit, University Hospital Virgen Macarena, Av. Sanchez Pizjuan 4, Seville 41009, Spain
| | | | | |
Collapse
|
8
|
Feldman SA, Eiden LE. The chromogranins: their roles in secretion from neuroendocrine cells and as markers for neuroendocrine neoplasia. Endocr Pathol 2003; 14:3-23. [PMID: 12746559 DOI: 10.1385/ep:14:1:3] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Chromogranins are the major components of the secretory granules of most neuroendocrine cells. Within the secretory pathway, chromogranins are involved in granulogenesis, and in sorting and processing of secretory protein cargo prior to secretion. Once secreted, they have hormonal, autocrine, and paracrine activities. The chromogranin family includes chromogranins A (CgA) and B (CgB) and secretogranin II (SgII, once called chromogranin C). The related "granins" NESP55, 7B2, secretogranin III/1B 1075 (SgIII), and secretogranin IV/HISL-19 antigen (SgIV), are also sometimes included when considering the chromogranins. While it is useful to consider the granin proteins as a family with many common features, it is also necessary to examine the distinct features and properties of individual members of the granin family to understand fully their functions, employ them efficiently as tissue, serum, and urinary markers for neuroendocrine neoplasia, and develop an evolutionary-biologic perspective on their contribution to mammalian physiology. Recent advances in chromogranin research include establishing the role of CgA in granulogenesis and the role of CgB in nuclear transcription; new biologic activities for CgA-, CgB-, and SgII-derived peptides; and new marker functions for granins and their proteolytically processed products in endocrine neoplasias.
Collapse
Affiliation(s)
- Steven A Feldman
- Section on Molecular Virology, Laboratory of Cellular and Molecular Regulation, National Institutes of Health, Bethesda MD 20892-4090, USA
| | | |
Collapse
|
9
|
Sánchez-Margalet V, González-Yanes C, Najib S. Pancreastatin, a chromogranin A-derived peptide, inhibits DNA and protein synthesis by producing nitric oxide in HTC rat hepatoma cells. J Hepatol 2001; 35:80-5. [PMID: 11495046 DOI: 10.1016/s0168-8278(01)00071-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND/AIMS Pancreastatin, a chromogranin A-derived peptide, has a counter-regulatory effect on insulin action. We have previously characterized pancreastatin receptor and signalling in rat liver and HTC hepatoma cells. A G alpha(q/11)-PLC-beta pathway leads to an increase in [Ca2+]i, PKC and mitogen activated protein kinase (MAPK) activation. These data suggested that pancreastatin might have a role in growth and proliferation, similar to other calcium-mobilizing hormones. METHODS DNA and protein synthesis were measured as [3H]-thymidine and [3H]-leucine incorporation. Nitric oxide (NO) was determined by the Griess method and cGMP production was quantified by enzyme-linked immunoassay. RESULTS Contrary to the expected results, we have found that pancreastatin inhibits protein and DNA synthesis in HTC hepatoma cells. On the other hand, when the activity of NO synthase was inhibited by N-monomethyl-L-arginine (NMLA), the inhibitory effect of pancreastatin on DNA and protein synthesis was not only reverted, but a dose-dependent stimulatory effect was observed, probably due to MAPK activation, since it was prevented by PD98059. These data strongly suggested the role of NO in the inhibitory effect of pancreastatin on protein and DNA synthesis, which is overcoming the effect on MAPK activation. Moreover, pancreastatin dose-dependently increased NO production in parallel to cyclic guanosine monophosphate (cGMP). Both effects were prevented by NMLA. Finally, an indirect effect of pancreastatin through the induction of apoptosis was ruled out. CONCLUSIONS Therefore, the NO and the cGMP produced by the NO-activated guanylate cyclase may mediate the dose-dependent inhibitory effect of pancreastatin on growth and proliferation in HTC hepatoma cells.
Collapse
Affiliation(s)
- V Sánchez-Margalet
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, University Hospital Virgen Macarena, Seville, Spain.
| | | | | |
Collapse
|
10
|
Aunis D, Metz-Boutigue MH. Chromogranins: current concepts. Structural and functional aspects. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2001; 482:21-38. [PMID: 11192582 DOI: 10.1007/0-306-46837-9_2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Affiliation(s)
- D Aunis
- Unité Biologie de la Communication Cullulaire, INSERM U-338 Centre de Neurochimie, 67084 Strasbourg, France
| | | |
Collapse
|
11
|
Sánchez-Margalet V, González-Yanes C, Santos-Alvarez J, Najib S. Pancreastatin. Biological effects and mechanisms of action. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2001; 482:247-62. [PMID: 11192586 DOI: 10.1007/0-306-46837-9_20] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- V Sánchez-Margalet
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, and Investigation Unit, University Hospital Virgen Macarena, Seville, Spain
| | | | | | | |
Collapse
|
12
|
González-Yanes C, Santos-Alvarez J, Sánchez-Margalet V. Pancreastatin, a chromogranin A-derived peptide, activates Galpha(16) and phospholipase C-beta(2) by interacting with specific receptors in rat heart membranes. Cell Signal 2001; 13:43-9. [PMID: 11257446 DOI: 10.1016/s0898-6568(00)00127-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Pancreastatin (PST) is one of the chromogranin A (CGA)-derived peptides with known biological activity. It has a general inhibitory effect on secretion in many exocrine and endocrine systems including the heart atrium. Besides, a role of PST as a counter-regulatory peptide of insulin action has been proposed in the light of its effects on glucose and lipid metabolism in the liver and adipose tissue, where receptors and signaling have been described. Galpha(q/11) pathway seems to mediate PST action. Since PST has been shown to function as a typical calcium-dependent hormone, and increased plasma levels have been found in essential hypertension correlating with catecholamines, we sought to study its possible interaction and signaling in heart membranes. Here, we are characterizing specific PST binding sites and signaling in rat heart membranes. We have found that PST receptor has a K(d) of 0.5 nM and a B(max) of 34 fmol/mg of protein. The PST binding is inhibited by guanine nucleotides, suggesting the functional coupling of the receptor with GTP binding proteins (G proteins). Moreover, PST dose-dependently increases GTP binding to rat heart membranes. Finally, we have studied PST signaling-effector system by measuring phospholipase C (PLC) activity using blocking antibodies against different G proteins and PLC isoforms. We have found that PST stimulates PLCbeta(2)>PLCbeta(1)>PLCbeta(3) by activating Galpha(16) in rat heart membranes. These data suggest that PST may modulate the cardiac function.
Collapse
Affiliation(s)
- C González-Yanes
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, University Hospital Virgen Macarena, Av. Sanchez Pizjuan 4, 41009, Seville, Spain
| | | | | |
Collapse
|
13
|
Sánchez-Margalet V, González-Yanes C, Santos-Alvarez J, Najib S. Characterization of pancreastatin receptor and signaling in rat HTC hepatoma cells. Eur J Pharmacol 2000; 397:229-35. [PMID: 10844119 DOI: 10.1016/s0014-2999(00)00253-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pancreastatin, a chromogranin A-derived peptide widely distributed throughout the neuroendocrine system, has a general inhibitory effect on endocrine secretion and a counterregulatory effect on insulin action. We have recently described the cross-talk of pancreastatin with insulin signaling in rat hepatoma cells (HTC), where it inhibits insulin action and signaling through the serine phosphorylation of the insulin receptor, thereby impairing tyrosine kinase activity. Here, we have characterized pancreastatin receptors and signaling in HTC cells. The pancreastatin effector systems were studied by determining phospholipase C activity in HTC membranes and mitogen-activated protein kinase (MAPK) phosphorylation activity in HTC cells. Binding studies with radiolabeled pancreastatin showed a population of high affinity binding sites, with a B(max) of 8 fmol/mg protein and a K(d) of 0.6 nM. Moreover, we assessed the coupling of the receptor with a G protein system by inhibiting the binding with guanine nucleotide and by measuring the GTP binding to HTC membranes. We found that pancreastatin receptor was coupled with a G alpha(q/11) protein which activates phospholipase C-beta(1) and phospholipase C-beta(3), in addition to MAPK via both beta gamma and alpha(q/11).
Collapse
Affiliation(s)
- V Sánchez-Margalet
- Departamento de Bioquímica Médica y Biología Molecular, Facultad de Medicina, Unidad de Investigación, Hospital Universitario Virgen Macarena, Universidad de Sevilla, Av. Sánchez Pizjuan 4, 41009, Sevilla, Spain.
| | | | | | | |
Collapse
|
14
|
Santos-Alvarez J, Sánchez-Margalet V. Affinity purification of pancreastatin receptor-Gq/11 protein complex from rat liver membranes. Arch Biochem Biophys 2000; 378:151-6. [PMID: 10871055 DOI: 10.1006/abbi.2000.1789] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pancreastatin, a chromogranin A derived peptide, exerts a glycogenolytic effect on the hepatocyte. This effect is initiated by binding to membrane receptors which are coupled to pertussis toxin insensitive G proteins belonging to the Gq/11 family. We have recently solubilized active pancreastatin receptors from rat liver membranes still functionally coupled to G proteins. Here, we have purified pancreastatin receptors by a two-step procedure. First, pancreastatin receptors with their associated Gq/11 regulatory proteins were purified from liver membranes by lectin absorption chromatography on wheat germ agglutinin immobilized on agarose. A biotinylated rat pancreastatin analog was tested for binding to liver membranes before using it for affinity purification. Unlabeled biotinylated rat pancreastatin competed for 125I-labeled [Tyr0]PST binding to solubilized receptors with a Kd = 0.27 nM, comparable to that of native pancreastatin. The biotinylated analog was immobilized on streptavidin-coated Sepharose beads and used to further affinity purify wheat germ agglutinin eluted receptor material. Specific elution at low pH showed that the receptor protein was purified as an 80-kDa protein in association with a G protein of the q/11 family, as demonstrated by specific immunoblot analysis. The specificity of the receptor band was assessed by chemical cross-linking of the purified material followed by SDS-PAGE and autoradiography. In conclusion, we have purified pancreastatin receptor as a glycoprotein of 80 kDa physically associated with a Gq/11 protein.
Collapse
Affiliation(s)
- J Santos-Alvarez
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Virgen Macarena University Hospital, Seville, Spain
| | | |
Collapse
|
15
|
Bestervelt L, Barr B, Dethloff L. Divergent proliferative responses to a gastrin receptor ligand in synchronized and unsynchronized rat pancreatic AR42J tumour cells. Cell Signal 2000; 12:53-61. [PMID: 10676848 DOI: 10.1016/s0898-6568(99)00067-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Depending upon experimental model, the CCK-B/gastrin receptor ligand CI-988 exhibits either agonist or antagonist activity. To confirm that CI-988 behaves as an antagonist toward gastrin-stimulated growth, its effects on cell proliferation were investigated in unsynchronized and synchronized AR42J rat pancreatic tumour cells. In unsynchronized cultures CI-988 alone had no effect, but inhibited gastrin-stimulated cell proliferation. In contrast, in synchronized cultures, CI-988 stimulated cell proliferation. Similarly, CI-988 inhibited gastrin-stimulated cAMP production in unsynchronized cells, but stimulated cAMP formation in synchronized cultures. Therefore, CI-988 stimulation of cAMP production and proliferation in AR42J cell cultures appears to be cell cycle-dependent. CI-988 inhibited gastrin-stimulated intracellular calcium ([Ca2+]i) mobilization in both populations and thus acted as an antagonist toward this pathway. Because CCK receptor densities and affinities were similar in both cell populations, the data suggest that CI-988's divergent effects on cell proliferation are governed by postreceptor signalling events which vary with cell cycle.
Collapse
Affiliation(s)
- L Bestervelt
- Department of Pathology and Experimental Toxicology, Parke-Davis Pharmaceutical Research, Ann Arbor, MI 48105, USA
| | | | | |
Collapse
|
16
|
González-Yanes C, Santos-Alvarez J, Sánchez-Margalet V. Characterization of pancreastatin receptors and signaling in adipocyte membranes. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1451:153-62. [PMID: 10446397 DOI: 10.1016/s0167-4889(99)00084-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Pancreastatin (PST), a chromogranin A derived peptide with an array of effects in different tissues, has a role as a counterregulatory hormone of insulin action in hepatocytes and adipocytes, regulating glucose, lipid and protein metabolism. We have previously characterized PST receptors and signaling in rat hepatocytes, in which PST functions as a calcium-mobilizing hormone. In the present work we have studied PST receptors as well as the signal transduction pathways generated upon PST binding in adipocyte membranes. First, we have characterized PST receptors using radiolabeled PST as a ligand. Analysis of binding data indicated the existence of one class of binding sites, with a B(max) of 5 fmol/mg of protein and a K(d) of 1 nM. In addition, we have studied the G protein system that couples the PST receptor by gamma-(35)S-GTP binding studies. We have found that two G protein systems are involved, pertussis toxin-sensitive and -insensitive respectively. Specific anti-G protein alpha subtype sera were used to block the effect of pancreastatin receptor activation. Galpha(q/11) and to a lesser extent Galpha(i1,2) are activated by PST in rat adipocyte membranes. On the other hand, adenylate cyclase activity was not affected by PST. Finally, we have studied the specific phospholipase C isoform that is activated in response to PST. We have found that PST receptor is coupled to PLC-beta(3) via Galpha(q/11) activation in adipocyte membranes.
Collapse
Affiliation(s)
- C González-Yanes
- Departamento de Bioquímica Médica y Biología Molecular, Facultad de Medicina, Unidad de Investigación del Hospital Universitario Virgen Macarena, Av. Sánchez Pizjuan 4, Sevilla 41009, Spain
| | | | | |
Collapse
|
17
|
Santos-Alvarez J, Sánchez-Margalet V. G protein G alpha q/11 and G alpha i1,2 are activated by pancreastatin receptors in rat liver: studies with GTP-gamma 35S and azido-GTP-alpha-32P. J Cell Biochem 1999; 73:469-77. [PMID: 10733341 DOI: 10.1002/(sici)1097-4644(19990615)73:4<469::aid-jcb5>3.0.co;2-u] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In the liver, pancreastatin exerts a glycogenolytic effect through interaction with specific receptors, followed by activation of phospholipase C and guanylate cyclase. Pancreastatin receptor seems to be coupled to two different G protein systems: a pertussis toxin-insensitive G protein that mediates activation of phospholipase C, and a pertussis toxin sensitive G protein that mediates the cyclic GMP production. The aim of this study was to identify the specific G protein subtypes coupling pancreastatin receptors in rat liver membranes. GTP binding was determined by using gamma-35S-GTP; specific anti-G protein alpha subtype sera were used to block the effect of pancreastatin receptor activation. Activation of G proteins was demonstrated by the incorporation of the photoreactive GTP analogue 8-azido-alpha-32P-GTP into liver membranes and into specific immunoprecipitates of different Galpha subunits from soluble rat liver membranes. Pancreastatin stimulation of rat liver membranes increases the binding of gamma-35S-GTP in a time- and dose-dependent manner. Activation of the soluble receptors still led to the pancreastatin dose-dependent stimulation of gamma-35S-GTP binding. Besides, WGA semipurified receptors also stimulates GTP binding. The binding was inhibited by treatment with anti-Galphaq/11 (85%) and anti-Galphai1,2 (15%) sera, whereas anti-Galphao,i3 serum failed to affect the binding. Finally, pancreastatin stimulates GTP photolabeling of particulate membranes. Moreover, it specifically increased the incorporation of 8-azido-alpha-32P-GTP into Galphaq/11 and Galpha, but not into Galphao,i3 from soluble rat liver membranes. In conclusion, pancreastatin stimulation of rat liver membranes led to the activation of Galphaq/11 and Galphai1,2 proteins. These results suggest that Galphaq/11 and Galphai1,2 may play a functional role in the signaling of pancreastatin receptor by mediating the production of IP3 and cGMP respectively.
Collapse
Affiliation(s)
- J Santos-Alvarez
- Departamento de Bioquímica Médica y Biología Molecular, Facultad de Medicina, Hospital Universitario Virgen Macarena, Sevilla, Spain
| | | |
Collapse
|
18
|
Sánchez-Margalet V, González-Yanes C. Pancreastatin inhibits insulin action in rat adipocytes. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:E1055-60. [PMID: 9843749 DOI: 10.1152/ajpendo.1998.275.6.e1055] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pancreastatin (PST), a regulatory peptide with a general inhibitory effect on secretion, is derived from chromogranin A, a glycoprotein present throughout the neuroendocrine system. We have previously demonstrated the counterregulatory role of PST on insulin action in rat hepatocytes. Here, we are reporting the PST effects on rat adipocytes. PST dose dependently inhibits basal and insulin-stimulated glucose transport, lactate production, and lipogenesis, impairing the main metabolic actions of insulin in adipocytes. These effects were observed in a wide range of insulin concentrations, leading to a shift to the right in the dose-response curve. Maximal effect was observed at 10 nM PST, and the IC50 value was approximately 1 nM. Moreover, PST has a lipolytic effect in rat adipocytes (ED50 0.1 nM), although it was completely inhibited by insulin. In contrast, PST dose dependently stimulated protein synthesis and enhanced insulin-stimulated protein synthesis. In summary, these data show the lipokinetic effect of PST and the inhibitory effect of PST on insulin metabolic action within a range of physiological concentrations. Therefore, these results give new pathophysiological basis for the association of PST with insulin resistance.
Collapse
Affiliation(s)
- V Sánchez-Margalet
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Investigation Unit of the University Hospital Virgen Macarena, Seville 41009, Spain
| | | |
Collapse
|
19
|
Santos-Alvarez J, Sánchez-Margalet V. Pancreastatin activates beta3 isoform of phospholipase C via G(alpha)11 protein stimulation in rat liver membranes. Mol Cell Endocrinol 1998; 143:101-6. [PMID: 9806354 DOI: 10.1016/s0303-7207(98)00137-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pancreastatin (PST) receptors have been recently shown to mediate activation of phospholipase C (PLC) in rat liver membranes. There is evidence that the G protein that links pancreastatin receptor with PLC-beta is pertussis toxin-insensitive and belongs to the G(alpha)q family. Here, we have employed blocking antisera to sort out the specific PLC-beta isoform as well as the specific G(alpha) subunit activated by PST receptor in rat liver membranes. The presence of different PLC-beta isoforms was checked by immunoblot analysis. Only PLC-beta4 was not detected, whereas PLC-beta1, beta2 and beta3 were abundant in rat liver membranes. However, only anti-PLC-beta3 serum was able to block the PST receptor response. We also checked the expression of G(alpha)q and Galpha11 in rat liver membranes by immunoblot. Even though both isoforms were present. only anti-Galpha11 serum was able to block the PST receptor response. In order to check the specificity of the blocking antisera, we employed them to block the effect of ADP and thrombin stimulating PLC activity in platelet membranes, a system lacking Galpha11. Anti-G(alpha)q but not anti-Galpha11 sera were able to block the agonist stimulated PLC activity. These data suggest that PST receptor response is mediated by the activation of the beta3 isoform of PLC via Galpha11 protein stimulation in rat liver membranes.
Collapse
Affiliation(s)
- J Santos-Alvarez
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Investigation Unit of the Virgen Macarena University Hospital, Seville, Spain
| | | |
Collapse
|
20
|
Santos-Alvarez J, González-Yanes C, Sánchez-Margalet V. Pancreastatin receptor is coupled to a guanosine triphosphate-binding protein of the G(q/11)alpha family in rat liver membranes. Hepatology 1998; 27:608-14. [PMID: 9462664 DOI: 10.1002/hep.510270240] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Pancreastatin (PST), a recently discovered regulatory peptide derived from chromogranin A, has been shown to have a glycogenolytic effect in the hepatocyte that is mediated by increasing intracellular calcium. Our previous studies on pancreastatin signaling suggested that PST receptor is coupled to some G proteins in the plasma membrane of the hepatocyte. The nature of this interaction was investigated using antisera against G(q/11)alpha by different approaches. Indirect evidence of a pertussis toxin (PT)-insensitive G protein of the family of G(q/11)alpha was obtained by measuring high-affinity guanosine triphosphatase (GTPase) activity in soluble rat liver membranes. PST increased GTPase activity in a dose-dependent manner. This effect was only slightly inhibited by PT pretreatment of the membranes, whereas anti-G(q/11)alpha antisera blocked most of the PST-stimulated GTPase activity. The selective association of the PST receptor with this G protein was further studied by the coelution in wheat germ agglutinin semipurification of the receptor and by immunoprecipitation of the G protein-PST receptor complexes using G-protein-specific antisera. A G protein of the family of G(q/11)alpha was found to be associated with the semipurified PST receptor. Moreover, anti-G(q/11)alpha antisera immunoprecipitated most PST-binding activity (95%), bringing down most of the specific G protein, whereas anti-G(il,2)alpha and -G(o,i3)alpha failed to immunoprecipitate the PST-binding activity. Finally, the coupling of the PST receptor with the effector phospholipase C was disrupted by blocking with G(q/11)alpha antisera, suggesting that a G protein of the family of G(q/11)alpha is a signal mediator from PST receptors to phospholipase C activation in rat liver membranes.
Collapse
Affiliation(s)
- J Santos-Alvarez
- Departamento de Bioquímica Médica y Biología Molecular, Facultad de Medicina, Unidad de Investigación Hospital Universitario Virgen Macarena, Universidad de Sevilla, Spain
| | | | | |
Collapse
|
21
|
Dethloff LA, Patmore SJ, Tierney BM, Bestervelt LL, Zandee JC. Gastric effects of the CCK-B/gastrin receptor ligand CI-988 in cynomolgus monkeys. Food Chem Toxicol 1998; 36:61-71. [PMID: 9487364 DOI: 10.1016/s0278-6915(97)00115-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We have previously demonstrated that the CCK-B/gastrin receptor ligand CI-988 induces gastric gland degeneration and atrophy in cynomolgus monkeys, an effect consistent with gastrin receptor antagonism and inhibition of gastrin's trophic effects on oxyntic mucosa. However, gastrin receptor ligands of the dipeptoid chemical series to which CI-988 belongs have been reported to act as agonists or antagonists towards gastrin-related events, depending on the animal model and the functional endpoint examined. To investigate further these apparently conflicting data, basal gastric acid secretion was monitored acutely in conscious monkeys given CI-988 orally at 10 mg/kg or intravenously at 0.01 mumol/kg/hr and histological changes in gastric mucosa were evaluated in monkeys given CI-988 orally at 5, 25 or 75 mg/kg/day for 4 weeks. Degeneration and atrophy of gastric glands occurred at 25 and 75 mg/kg with statistically significant decrements in gastric mucosal height at 75 mg/kg. In addition, CI-988 stimulated gastric acid secretion when given either orally or intravenously. Co-administration of the structurally unrelated CCK-B/gastrin antagonist L-365,260 completely blocked CI-988-stimulated acid secretion, confirming that CI-988's agonist effect on acid secretion is mediated by the gastrin receptor. Assuming that gastric mucosal degeneration is the result of inhibition of gastrin's trophic activity, CI-988 appears to induce paradoxical agonist and antagonist gastrin-receptor mediated effects.
Collapse
Affiliation(s)
- L A Dethloff
- Department of Pathology and Experimental Toxicology, Parke-Davis Pharmaceutical Research, Division of Warner-Lambert Company, Ann Arbor, MI 48105, USA
| | | | | | | | | |
Collapse
|
22
|
Sánchez-Margalet V, Santos-Alvarez J. Solubilization and molecular characterization of active pancreastatin receptors from rat liver membranes. Endocrinology 1997; 138:1712-8. [PMID: 9075735 DOI: 10.1210/endo.138.4.5075] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Pancreastatin receptors were solubilized from rat liver membranes with the nonionic detergent Triton X-100. Binding of a iodinated analog of rat pancreastatin ([125I-Tyr0]pancreastatin) to the soluble fraction was time dependent, saturable, and reversible. Scatchard analysis of binding under equilibrium conditions indicated that the soluble extracts contained a single class of pancreastatin-binding sites, with a binding capacity of 14 fmol/mg protein and a Kd of 0.3 nM. As observed with membrane-bound receptors, binding of [125I]pancreastatin to soluble extracts was inhibited by guanine nucleotides with the following rank order of potency: guanyl-5'-yl-imidodiphosphate > GTP > GDP > GMP, indicating that the soluble receptors are functionally linked to G proteins. Molecular analysis of the soluble pancreastatin receptor by covalent cross-linking to [125I]pancreastatin using disuccinimidyl suberate and further identification on SDS-PAGE indicated a single band of 85,000 Mr. Gel filtration of soluble extracts on Sephacryl S-300 revealed two molecular components with binding abilities (Mr 80,000 and 170,000). The higher molecular mass component was more sensitive to guanine nucleotides, and covalent cross-linking of both components to [125I]pancreastatin and further SDS-PAGE analysis revealed again a single band of 85,000 Mr, suggesting an association of the receptor with a G protein. Moreover, direct evidence that a Gq was present in the same chromatographic fraction was obtained by specific immunodetection. The soluble receptor is a glycoprotein that can be specifically bound to the wheat-germ agglutinin lectin. We conclude that we solubilized active pancreastatin receptors from rat liver membranes, and these results support the conclusion that the liver pancreastatin receptor consists of a 80,000 Mr glycoprotein associated with G proteins.
Collapse
Affiliation(s)
- V Sánchez-Margalet
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, University of Seville, Spain.
| | | |
Collapse
|