1
|
Nakhaee S, Farrokhfall K, Miri-Moghaddam E, Askari M, Amirabadizadeh A, Foadoddini M, Mehrpour O. Effects of naloxone and diazepam on blood glucose levels in tramadol overdose using generalized estimating equation (GEE) model; (an experimental study). BMC Endocr Disord 2021; 21:180. [PMID: 34488743 PMCID: PMC8422785 DOI: 10.1186/s12902-021-00847-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 08/24/2021] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Tramadol is a synthetic opioid and poisoning is increasing around the world day by day. Various treatments are applied for tramadol poisoning. Due to the unknown effects of tramadol poisoning and some of its treatments on blood glucose levels, this study was conducted to investigate the overdose of tramadol and its common treatments (naloxone, diazepam), and their combination on blood glucose levels in male rats. METHODS This study was conducted in 45 male Wistar rats. The animals were randomly divided into five groups of 9. They received a 75 mg/kg dose of tramadol alone with naloxone, diazepam, and a combination of both of these two drugs. On the last day, animals' tail vein blood glucose levels (BGL) were measured using a glucometer at different times, including before the tramadol injection (baseline) and 1 hour, 3 hours, and 6 hours after wards. The rats were anesthetized and sacrificed 24 h after the last injection. Blood samples were then taken, and the serum obtained was used to verify the fasting glucose concentration. Data were analyzed using SPSS software at a significance level of 0.05 using a one-way analysis of variance (ANOVA) and a generalized estimating equation (GEE). RESULTS According to the GEE model results, the diazepam-tramadol and naloxone-diazepam-tramadol groups showed blood glucose levels five units higher than the tramadol group (p < 0.05). The diazepam-tramadol group had significantly higher blood glucose levels than the naloxone-tramadol group (p < 0.05). The mean blood glucose levels before the intervention, 3 hours and 6 hours after the injection of tramadol did not differ between the groups, but the blood glucose levels 1 hour after the injection of tramadol in the group of naloxone-tramadol were significantly lower than in the control group (p < 0.05). Blood glucose levels did not differ between the groups 24 h after injection of tramadol. CONCLUSION The results of the present study showed tramadol overdose does not affect blood glucose levels. The diazepam-tramadol combination and the diazepam-naloxone-tramadol combination caused an increase in blood glucose levels.
Collapse
Affiliation(s)
- Samaneh Nakhaee
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences (BUMS), Birjand, Iran
| | - Khadijeh Farrokhfall
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences (BUMS), Birjand, Iran
| | - Ebrahim Miri-Moghaddam
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Masoumeh Askari
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences (BUMS), Birjand, Iran
| | - Alireza Amirabadizadeh
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences (BUMS), Birjand, Iran
| | - Mohsen Foadoddini
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Omid Mehrpour
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences (BUMS), Birjand, Iran.
- Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
2
|
Slupe AM, Kirsch JR. Effects of anesthesia on cerebral blood flow, metabolism, and neuroprotection. J Cereb Blood Flow Metab 2018; 38:2192-2208. [PMID: 30009645 PMCID: PMC6282215 DOI: 10.1177/0271678x18789273] [Citation(s) in RCA: 175] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 06/11/2018] [Accepted: 06/25/2018] [Indexed: 12/12/2022]
Abstract
Administration of anesthetic agents fundamentally shifts the responsibility for maintenance of homeostasis from the patient and their intrinsic physiological regulatory mechanisms to the anesthesiologist. Continuous delivery of oxygen and nutrients to the brain is necessary to prevent irreversible injury and arises from a complex series of regulatory mechanisms that ensure uninterrupted cerebral blood flow. Our understanding of these regulatory mechanisms and the effects of anesthetics on them has been driven by the tireless work of pioneers in the field. It is of paramount importance that the anesthesiologist shares this understanding. Herein, we will review the physiological determinants of cerebral blood flow and how delivery of anesthesia impacts these processes.
Collapse
Affiliation(s)
- Andrew M Slupe
- Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, OR, USA
| | - Jeffrey R Kirsch
- Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|
3
|
Kumar A, Semah F, Chugani HT, Theodore WH. Epilepsy diagnosis: positron emission tomography. HANDBOOK OF CLINICAL NEUROLOGY 2012; 107:409-24. [PMID: 22938986 DOI: 10.1016/b978-0-444-52898-8.00026-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Ajay Kumar
- Department of Pediatrics & Neurology, Children's Hospital of Michigan, Detroit, MI, USA
| | | | | | | |
Collapse
|
4
|
Buch K, Blumenfeld H, Spencer S, Novotny E, Zubal IG. Evaluating the accuracy of perfusion/metabolism (SPET/PET) ratio in seizure localization. Eur J Nucl Med Mol Imaging 2007; 35:579-88. [PMID: 17938922 DOI: 10.1007/s00259-007-0550-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2006] [Accepted: 07/25/2007] [Indexed: 11/28/2022]
Abstract
UNLABELLED The uncoupling between brain perfusion and metabolism was evaluated as a potential tool for seizure localization by creating an interictal SPET divided by interictal PET functional ratio-image and by evaluating its sensitivity and specificity to areas subsequently surgically resected. The uncoupling between brain perfusion and metabolism was evaluated through the creation of a functional SPET/PET ratio-image relying on interictal single-photon emission computed tomography (SPET) and positron emission tomography (PET) scans in epilepsy patients. The uncoupling of these two physiological brain functions has been demonstrated to be a characteristic of epileptogenic tissue in temporal lobe epilepsy and could potentially serve as a diagnostic measure for localization of seizure onset areas in the brain. The accuracy of hemispheric localization, sensitivity, and specificity of perfusion to metabolism ratio-images were evaluated as compared to standard methods of PET reading. METHODS Interictal HMPAO-SPET and FDG-PET scans were obtained from 21 patients who then went on to remain seizure free for a minimum of 1 year post surgical resection. Using Statistical Parametric Mapping (SPM2), the SPET and PET scans were spatially registered and spatially normalized to a standard template (geometric warping). A functional image was created by calculating the ratio of perfusion to metabolism. Discrete areas of uncoupling in the ratio-images were selected, quantified, and compared to visually interpreted PET readings as well as the actual site of subsequent surgical resection. Localization was determined by comparing the hemispheric location of these areas to sites of surgical resection. Sensitivity and specificity of ratio-images and PET readings were calculated by dividing the brains into four sections per hemisphere. RESULTS When compared to known sites of successful surgical resection, the pre-surgical visually interpreted PET readings had a correct hemispheric localization in 69.6% of cases, while the regions of uncoupling selected in the pre-surgical ratio-images had a correct hemispheric localization of 82.6%. In addition, the regional sensitivity of visually interpreted PET readings was 63.0% with a specificity of 95.7%, while the sensitivity of the ratio-images was 68.0% with a specificity of 96.0%. CONCLUSION Compared to the PET readings, the ratio-images yielded similar sensitivity and specificity measures, but had an improved hemispheric localization. Hence, ratio-images may be a valuable diagnostic tool in the hemispheric localization, which could enhance the use of PET readings alone.
Collapse
Affiliation(s)
- K Buch
- Department of Diagnostic Radiology, Yale School of Medicine, New Haven, CT 06510, USA
| | | | | | | | | |
Collapse
|
5
|
Giovacchini G, Bonwetsch R, Herscovitch P, Carson RE, Theodore WH. Cerebral blood flow in temporal lobe epilepsy: a partial volume correction study. Eur J Nucl Med Mol Imaging 2007; 34:2066-72. [PMID: 17768621 DOI: 10.1007/s00259-007-0499-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2007] [Accepted: 05/25/2007] [Indexed: 11/27/2022]
Abstract
PURPOSE Previous studies in temporal lobe epilepsy (TLE) have shown that, owing to brain atrophy, positron emission tomography (PET) can overestimate deficits in measures of cerebral function such as glucose metabolism (CMR(glu)) and neuroreceptor binding. The magnitude of this effect on cerebral blood flow (CBF) is unexplored. The aim of this study was to assess CBF deficits in TLE before and after magnetic resonance imaging-based partial volume correction (PVC). METHODS Absolute values of CBF for 21 TLE patients and nine controls were computed before and after PVC. In TLE patients, quantitative CMR(glu) measurements also were obtained. RESULTS Before PVC, regional values of CBF were significantly (p<0.05) lower in TLE patients than in controls in all regions, except the fusiform gyrus contralateral to the epileptic focus. After PVC, statistical significance was maintained in only four regions: ipsilateral inferior temporal cortex, bilateral insula and contralateral amygdala. There was no significant difference between patients and controls in CBF asymmetry indices (AIs) in any region before or after PVC. In TLE patients, AIs for CBF were significantly smaller than for CMR(glu) in middle and inferior temporal cortex, fusiform gyrus and hippocampus both before and after PVC. A significant positive relationship between disease duration and AIs for CMR(glu), but not CBF, was detected in hippocampus and amygdala, before but not after PVC. CONCLUSION PVC should be used for PET CBF measurements in patients with TLE. Reduced blood flow, in contrast to glucose metabolism, is mainly due to structural changes.
Collapse
|
6
|
Dunn RT, Willis MW, Benson BE, Repella JD, Kimbrell TA, Ketter TA, Speer AM, Osuch EA, Post RM. Preliminary findings of uncoupling of flow and metabolism in unipolar compared with bipolar affective illness and normal controls. Psychiatry Res 2005; 140:181-98. [PMID: 16257515 DOI: 10.1016/j.pscychresns.2005.07.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2003] [Revised: 07/05/2005] [Accepted: 07/20/2005] [Indexed: 10/25/2022]
Abstract
Cerebral metabolism (CMR for glucose or oxygen) and blood flow (CBF) have been reported to be closely correlated in healthy controls. Altered relationships between CMR and CBF have been reported in some brain disease states, but not others. This study examined relationships between global and regional CMRglu vs. CBF in controls and medication-free primary affective disorder patients. Nine bipolars, eight unipolars, and nine healthy controls had [15O]-water positron emission tomography (PET) scans at rest, and [18F]-fluorodeoxyglucose PET scans during an auditory continuous performance task. Patients had [15O]-water and FDG PET scans in tandem the same day; controls had an average of 45+/-27 days between scans. Maps of regional coupling were constructed for each subject group. In controls and bipolars, global and virtually all regional correlation coefficients for CMRglu and CBF were positive, albeit more robustly so in controls. However, correlative relationships in unipolars were qualitatively different, such that global and most regional measures of flow and metabolism were not positively related. Unipolars had significantly fewer positive regional correlation coefficients than healthy controls and bipolars. These were significantly different from controls in orbital cortex, anterior cingulate, posterior cingulate, and posterior temporal cortex, and different from bipolars in pregenual anterior cingulate. In unipolars, the degree of flow-metabolism uncoupling was inversely correlated with Hamilton depression scores, indicating the severity of uncoupling was directly related to the severity of depression. These preliminary data suggest abnormal relationships between cerebral metabolism and blood flow globally and regionally in patients with unipolar depression that warrant replication and extension to potential pathophysiological implications.
Collapse
Affiliation(s)
- Robert T Dunn
- Biological Psychiatry Branch, National Institute of Mental Health, NIH, 10 Center Drive MSC 1272, Bethesda, MD 20892-1272, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Avery RA, Zubal IG, Studholme C, Slawski J, Corsi M, Spencer DD, Spencer SS. Interictal 99mTc-HMPAO SPECT in temporal lobe epilepsy: relation to clinical variables. Epilepsia 2001; 42:869-74. [PMID: 11488886 DOI: 10.1046/j.1528-1157.2001.042007869.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
PURPOSE Factors affecting blood flow observed by interictal single-photon emission computed tomography (SPECT) images in temporal lobe epilepsy (TLE) have not been systematically studied or consistently demonstrated. We evaluated interictal SPECT results with respect to many clinical variables in a large population of TLE patients, all of whom underwent temporal lobectomy. METHODS Interictal 99mTc-HMPAO SPECT scans from 61 TLE patients were obtained before an anterior temporal lobectomy. SPECT was analyzed using a region of interest analysis (ROI) in the cerebellum, anterior temporal lobe, lateral temporal lobe, mesial temporal lobe, whole temporal lobe, and inferior frontal lobe. Asymmetry indices (AIs) were calculated. Correlative analysis of AIs and clinical variables was performed. RESULTS The AIs from TLE patients differed significantly from those of controls in the anterior temporal (p < 0.01), lateral temporal (p < 0.001), and whole temporal (p < 0.01) regions. No consistent overall correlation between the AIs and clinical variables existed. In right TLE (RTLE) only, AIs in the lateral and whole temporal lobe were positively correlated with age of onset (r = 0.470, p < 0.05; r = 0.548, p < 0.01, respectively). Similarly, in RTLE only, duration of epilepsy was negatively correlated with the anterior (r = -0.395, p < 0.05) and mesial (r = -0.45, p < 0.05) temporal lobe AI. No correlations were found between clinical variables and AIs in left TLE (LTLE) patients. CONCLUSIONS Significant correlation of age at onset and duration of epilepsy with AIs in RTLE but not LTLE suggests physiologic processes may be determined in part by laterality of TLE. Clinical applications are problematic.
Collapse
Affiliation(s)
- R A Avery
- Department of Diagnostic Radiology, Yale University School of Medicine, New Haven, Connecticut 06520-8018, USA
| | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
PURPOSE Interictal measurements of cerebral blood flow are less helpful in localizing epileptic foci than are measurements of brain metabolism. This may be related to an uncoupling of blood flow and metabolism. In this study, brain metabolism and blood flow were compared in an acute experimental model of focal interictal epilepsy. METHODS Interictal epileptic foci were induced by an epicortical application of penicillin in rats. After 1 h, stereotyped interictal activity was initiated, lasting until the end of the experiment. Brain metabolism was determined with [14C]deoxyglucose, and cerebral blood flow with [14C]iodoan-tipyrine autoradiography. RESULTS In control experiments, metabolism and blood flow were coupled. In animals with focal interictal epileptic activity, the metabolism was strongly increased in the focus and reduced in areas lateral to the focus. In contralateral brain areas, blood flow and metabolism varied in a parallel fashion. Ipsilateral to the focus, however, blood flow and metabolism were altered disproportionately. In the focus, the increase of blood flow was less marked than the increase of metabolism, and the area with increased blood flow was larger than the area with increased metabolism. Lateral to the focus, in the area with a hypometabolism, blood flow was not concomitantly reduced. CONCLUSIONS The experiments show that blood flow and metabolism in focal epilepsy may be uncoupled in widespread regions. This is due neither to structural abnormalities nor to the duration or discharge pattern of epileptic activity. The results explain why interictal metabolic investigations have a higher predictive value in presurgical epilepsy evaluation than do interictal measurements of blood flow.
Collapse
Affiliation(s)
- C Bruehl
- Department of Neurology, Heinrich-Heine-University, Duesseldorf, Germany
| | | | | |
Collapse
|
9
|
Cornford EM, Gee MN, Swartz BE, Mandelkern MA, Blahd WH, Landaw EM, Delgado-Escueta AV. Dynamic [18F]fluorodeoxyglucose positron emission tomography and hypometabolic zones in seizures: reduced capillary influx. Ann Neurol 1998; 43:801-8. [PMID: 9629850 DOI: 10.1002/ana.410430615] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We performed dynamic [18F]fluorodeoxyglucose ([18F]FDG) positron emission tomographic (PET) analyses in 8 patients. Rate constants of influx (K1*), efflux (k2*), phosphorylation (k3*), and dephosphorylation (k4*) were derived for the regions of interest (ROIs), which included (1) the hypometabolic epileptogenic regions and (2) the homologous regions in the contralateral hemispheres. In addition, the four constants were determined from at least one clearly defined (control) ROI from the same plane and its homologous contralateral ROI. Influx (K1*) in the epileptogenic region was reduced in comparison with the contralateral ROI. Reductions in influx (K1*), which averaged 18 +/- 13% (mean +/- SD), [18F]FDG phosphorylation (k3*) (25 +/- 20%), and brain glucose utilization rates (26 +/- 10%) were observed in the epileptogenic region. Reductions in efflux were not statistically significant (k2* = 13 +/- 28%) but were comparable in magnitude to the average reduction in K1*. No ipsilateral versus contralateral differences were seen for any rate constants measured outside the epileptogenic region. Influx correlated highly with phosphorylation in the epileptogenic region. Our data suggest that the hypometabolic epileptogenic focus seen in [18F]FDG-PET studies is also a region of reduced blood-brain barrier glucose transporter activity and that reductions in phosphorylation are proportional to reductions in [18]FDG influx.
Collapse
Affiliation(s)
- E M Cornford
- Department of Neurology, Brain Research Institute, UCLA School of Medicine, Veterans Affairs West Los Angeles Medical Center, CA 90073, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
Epilepsy research using positron emission tomography (PET) has provided considerable new information about ictal and interictal dysfunctions in human epilepsy. Neuroreceptor mapping with PET ligands has revealed altered central benzodiazepine receptor and opiate receptor densities in partial epilepsies interictally, and regional increases in endogenous opioid peptide concentrations during absence seizures. Imaging of perfusion and glucose metabolism during cognitive processing has shown interictal abnormalities of regional activation in partial and generalized epilepsies. The diagnostically robust patterns of interictal glucose hypometabolism are not adequately explained by macrostructural and microstructural alterations in temporal lobe epilepsy. Current investigations of the pathophysiology of interictal hypometabolism must address ultrastructural and neurochemical factors. Clinical PET in presurgical evaluation of medically refractory epilepsies remains an active area of research, but remarkably little antiepileptic drug research has exploited PET techniques.
Collapse
MESH Headings
- Anticonvulsants/pharmacokinetics
- Anticonvulsants/pharmacology
- Brain/diagnostic imaging
- Brain/metabolism
- Brain/physiopathology
- Cerebrovascular Circulation
- Deoxyglucose/analogs & derivatives
- Epilepsy/diagnostic imaging
- Epilepsy/metabolism
- Epilepsy/physiopathology
- Epilepsy, Temporal Lobe/diagnostic imaging
- Epilepsy, Temporal Lobe/metabolism
- Epilepsy, Temporal Lobe/physiopathology
- Flumazenil/metabolism
- Fluorodeoxyglucose F18
- Glucose/metabolism
- Humans
- Oxygen Radioisotopes/metabolism
- Receptors, GABA-A/metabolism
- Receptors, GABA-A/physiology
- Receptors, Muscarinic/metabolism
- Receptors, Muscarinic/physiology
- Receptors, Opioid/metabolism
- Receptors, Opioid/physiology
- Tomography, Emission-Computed
- Water
Collapse
Affiliation(s)
- T R Henry
- Department of Neurology, Entory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
11
|
Mohr E, Feldman H, Gauthier S. Canadian guidelines for the development of antidementia therapies: a conceptual summary. Neurol Sci 1995; 22:62-71. [PMID: 7750079 DOI: 10.1017/s0317167100040543] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The magnitude of the problems faced by Canadian society as a result of an aging population has been identified. Perhaps the most important concern related to this greying of Canada is the increasing incidence of dementia and Alzheimer's disease. Therapeutic options for these disorders have been limited to date. Advances in biotechnology and molecular biology will offer novel approaches to treatment. These and the expansion of more traditional therapeutic avenues require guidelines with the aim of optimizing their development.
Collapse
Affiliation(s)
- E Mohr
- Institute of Mental Health Research, University of Ottawa/Royal Ottawa Hospital, Ontario, Canada
| | | | | |
Collapse
|
12
|
Abstract
This paper is the sixteenth installment of our annual review of research concerning the opiate system. It is restricted to papers published during 1993 that concern the behavioral effects of the endogenous opiate peptides, and does not include papers dealing only with their analgesic properties. The specific topics this year include stress; tolerance and dependence; eating; drinking; gastrointestinal, renal, and hepatic function; mental illness and mood; learning, memory, and reward; cardiovascular responses; respiration and thermoregulation; seizures and other neurological disorders; electrical-related activity; general activity and locomotion; development; immunological responses; and other behaviors.
Collapse
Affiliation(s)
- G A Olson
- Department of Psychology, University of New Orleans, LA 70148
| | | | | |
Collapse
|