1
|
Hahn A, Hung GCC, Ahier A, Dai CY, Kirmes I, Forde BM, Campbell D, Lee RSY, Sucic J, Onraet T, Zuryn S. Misregulation of mitochondrial 6mA promotes the propagation of mutant mtDNA and causes aging in C. elegans. Cell Metab 2024:S1550-4131(24)00291-2. [PMID: 39173633 DOI: 10.1016/j.cmet.2024.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 03/21/2024] [Accepted: 07/26/2024] [Indexed: 08/24/2024]
Abstract
In virtually all eukaryotes, the mitochondrial DNA (mtDNA) encodes proteins necessary for oxidative phosphorylation (OXPHOS) and RNAs required for their synthesis. The mechanisms of regulation of mtDNA copy number and expression are not completely understood but crucially ensure the correct stoichiometric assembly of OXPHOS complexes from nuclear- and mtDNA-encoded subunits. Here, we detect adenosine N6-methylation (6mA) on the mtDNA of diverse animal and plant species. This modification is regulated in C. elegans by the DNA methyltransferase DAMT-1 and demethylase ALKB-1. Misregulation of mtDNA 6mA through targeted modulation of these activities inappropriately alters mtDNA copy number and transcript levels, impairing OXPHOS function, elevating oxidative stress, and shortening lifespan. Compounding these defects, mtDNA 6mA hypomethylation promotes the cross-generational propagation of a deleterious mtDNA. Together, these results reveal that mtDNA 6mA is highly conserved among eukaryotes and regulates lifespan by influencing mtDNA copy number, expression, and heritable mutation levels in vivo.
Collapse
Affiliation(s)
- Anne Hahn
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Grace Ching Ching Hung
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Arnaud Ahier
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Chuan-Yang Dai
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Ina Kirmes
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Brian M Forde
- UQ Centre for Clinical Research, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Daniel Campbell
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Rachel Shin Yie Lee
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Josiah Sucic
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Tessa Onraet
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Steven Zuryn
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
2
|
Chen PX, Zhang L, Chen D, Tian Y. Mitochondrial stress and aging: Lessons from C. elegans. Semin Cell Dev Biol 2024; 154:69-76. [PMID: 36863917 DOI: 10.1016/j.semcdb.2023.02.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 03/04/2023]
Abstract
Aging is accompanied by a progressive decline in mitochondrial function, which in turn contributes to a variety of age-related diseases. Counterintuitively, a growing number of studies have found that disruption of mitochondrial function often leads to increased lifespan. This seemingly contradictory observation has inspired extensive research into genetic pathways underlying the mitochondrial basis of aging, particularly within the model organism Caenorhabditis elegans. The complex and antagonistic roles of mitochondria in the aging process have altered the view of mitochondria, which not only serve as simple bioenergetic factories but also as signaling platforms for the maintenance of cellular homeostasis and organismal health. Here, we review the contributions of C. elegans to our understanding of mitochondrial function in the aging process over the past decades. In addition, we explore how these insights may promote future research of mitochondrial-targeted strategies in higher organisms to potentially slow aging and delay age-related disease progression.
Collapse
Affiliation(s)
- Peng X Chen
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100093, China
| | - Leyuan Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100093, China
| | - Di Chen
- MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center of Medical School, Nanjing University, 12 Xuefu Rd, Pukou, Nanjing, Jiangsu 210061, China.
| | - Ye Tian
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100093, China.
| |
Collapse
|
3
|
Meisel JD, Miranda M, Skinner OS, Wiesenthal PP, Wellner SM, Jourdain AA, Ruvkun G, Mootha VK. Hypoxia and intra-complex genetic suppressors rescue complex I mutants by a shared mechanism. Cell 2024; 187:659-675.e18. [PMID: 38215760 PMCID: PMC10919891 DOI: 10.1016/j.cell.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 09/09/2023] [Accepted: 12/05/2023] [Indexed: 01/14/2024]
Abstract
The electron transport chain (ETC) of mitochondria, bacteria, and archaea couples electron flow to proton pumping and is adapted to diverse oxygen environments. Remarkably, in mice, neurological disease due to ETC complex I dysfunction is rescued by hypoxia through unknown mechanisms. Here, we show that hypoxia rescue and hyperoxia sensitivity of complex I deficiency are evolutionarily conserved to C. elegans and are specific to mutants that compromise the electron-conducting matrix arm. We show that hypoxia rescue does not involve the hypoxia-inducible factor pathway or attenuation of reactive oxygen species. To discover the mechanism, we use C. elegans genetic screens to identify suppressor mutations in the complex I accessory subunit NDUFA6/nuo-3 that phenocopy hypoxia rescue. We show that NDUFA6/nuo-3(G60D) or hypoxia directly restores complex I forward activity, with downstream rescue of ETC flux and, in some cases, complex I levels. Additional screens identify residues within the ubiquinone binding pocket as being required for the rescue by NDUFA6/nuo-3(G60D) or hypoxia. This reveals oxygen-sensitive coupling between an accessory subunit and the quinone binding pocket of complex I that can restore forward activity in the same manner as hypoxia.
Collapse
Affiliation(s)
- Joshua D Meisel
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA; Broad Institute, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Maria Miranda
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA; Broad Institute, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Owen S Skinner
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA; Broad Institute, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Presli P Wiesenthal
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Sandra M Wellner
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA; Broad Institute, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Alexis A Jourdain
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA; Broad Institute, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Gary Ruvkun
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA.
| | - Vamsi K Mootha
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA; Broad Institute, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, MA 02114, USA.
| |
Collapse
|
4
|
Woodhouse RM, Frolows N, Wang G, Hawdon A, Wong EHK, Dansereau LC, Su Y, Adair LD, New EJ, Philp AM, Tan WK, Philp A, Ashe A. Mitochondrial succinate dehydrogenase function is essential for sperm motility and male fertility. iScience 2022; 25:105573. [PMID: 36465130 PMCID: PMC9709242 DOI: 10.1016/j.isci.2022.105573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 10/07/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Mitochondrial health is crucial to sperm quality and male fertility, but the precise role of mitochondria in sperm function remains unclear. SDHA is a component of the succinate dehydrogenase (SDH) complex and plays a critical role in mitochondria. In humans, SDH activity is positively correlated with sperm quality, and mutations in SDHA are associated with Leigh Syndrome. Here we report that the C. elegans SDHA orthologue SDHA-2 is essential for male fertility: sdha-2 mutants produce dramatically fewer offspring due to defective sperm activation and motility, have hyperfused sperm mitochondria, and disrupted redox balance. Similar sperm motility defects in sdha-1 and icl-1 mutant animals suggest an imbalance in metabolites may underlie the fertility defect. Our results demonstrate a role for SDHA-2 in sperm motility and male reproductive health and establish an animal model of SDH deficiency-associated infertility.
Collapse
Affiliation(s)
- Rachel M. Woodhouse
- The University of Sydney, School of Life and Environmental Sciences, Sydney, NSW 2006, Australia
- Division of Genome Science and Cancer, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia
| | - Natalya Frolows
- The University of Sydney, School of Life and Environmental Sciences, Sydney, NSW 2006, Australia
- CSIRO Health and Biosecurity, Sydney, NSW 2113, Australia
| | - Guoqiang Wang
- Department of Molecular Biology and Biochemistry, Nelson Biological Laboratories, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Azelle Hawdon
- The University of Sydney, School of Life and Environmental Sciences, Sydney, NSW 2006, Australia
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| | - Edmund Heng Kin Wong
- The University of Sydney, School of Life and Environmental Sciences, Sydney, NSW 2006, Australia
| | - Linda C. Dansereau
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
- St Vincent’s Clinical School, UNSW Medicine, University of NSW, Sydney, NSW 2010, Australia
| | - Yingying Su
- Sydney Microscopy and Microanalysis, The University of Sydney, Sydney, NSW 2006, Australia
| | - Liam D. Adair
- The University of Sydney, School of Chemistry, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Elizabeth J. New
- The University of Sydney, School of Chemistry, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Ashleigh M. Philp
- St Vincent’s Clinical School, UNSW Medicine, University of NSW, Sydney, NSW 2010, Australia
| | - Wei Kang Tan
- The University of Sydney, School of Life and Environmental Sciences, Sydney, NSW 2006, Australia
| | - Andrew Philp
- Centre for Healthy Ageing, Centenary Institute, Missenden Road, Sydney, NSW 2050, Australia
- Charles Perkins Centre, Faculty of Medicine and Health, University of Sydney, NSW 2006, Australia
| | - Alyson Ashe
- The University of Sydney, School of Life and Environmental Sciences, Sydney, NSW 2006, Australia
| |
Collapse
|
5
|
A mutation in SLC30A9, a zinc transporter, causes an increased sensitivity to oxidative stress in the nematode Caenorhabditis elegans. Biochem Biophys Res Commun 2022; 634:175-181. [DOI: 10.1016/j.bbrc.2022.09.107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 09/27/2022] [Indexed: 11/22/2022]
|
6
|
Takács-Vellai K, Farkas Z, Ősz F, Stewart GW. Model systems in SDHx-related pheochromocytoma/paraganglioma. Cancer Metastasis Rev 2021; 40:1177-1201. [PMID: 34957538 PMCID: PMC8825606 DOI: 10.1007/s10555-021-10009-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/04/2021] [Indexed: 11/17/2022]
Abstract
Pheochromocytoma (PHEO) and paraganglioma (PGL) (together PPGL) are tumors with poor outcomes that arise from neuroendocrine cells in the adrenal gland, and sympathetic and parasympathetic ganglia outside the adrenal gland, respectively. Many follow germline mutations in genes coding for subunits of succinate dehydrogenase (SDH), a tetrameric enzyme in the tricarboxylic acid (TCA) cycle that both converts succinate to fumarate and participates in electron transport. Germline SDH subunit B (SDHB) mutations have a high metastatic potential. Herein, we review the spectrum of model organisms that have contributed hugely to our understanding of SDH dysfunction. In Saccharomyces cerevisiae (yeast), succinate accumulation inhibits alpha-ketoglutarate-dependent dioxygenase enzymes leading to DNA demethylation. In the worm Caenorhabditis elegans, mutated SDH creates developmental abnormalities, metabolic rewiring, an energy deficit and oxygen hypersensitivity (the latter is also found in Drosophila melanogaster). In the zebrafish Danio rerio, sdhb mutants display a shorter lifespan with defective energy metabolism. Recently, SDHB-deficient pheochromocytoma has been cultivated in xenografts and has generated cell lines, which can be traced back to a heterozygous SDHB-deficient rat. We propose that a combination of such models can be efficiently and effectively used in both pathophysiological studies and drug-screening projects in order to find novel strategies in PPGL treatment.
Collapse
Affiliation(s)
| | - Zsolt Farkas
- Department of Biological Anthropology, Eötvös Loránd University, Budapest, Hungary
| | - Fanni Ősz
- Department of Biological Anthropology, Eötvös Loránd University, Budapest, Hungary
| | - Gordon W Stewart
- Division of Medicine, University College London, Gower Street, London, WC1E 6BT, UK
| |
Collapse
|
7
|
González-García P, Barriocanal-Casado E, Díaz-Casado ME, López-Herrador S, Hidalgo-Gutiérrez A, López LC. Animal Models of Coenzyme Q Deficiency: Mechanistic and Translational Learnings. Antioxidants (Basel) 2021; 10:antiox10111687. [PMID: 34829558 PMCID: PMC8614664 DOI: 10.3390/antiox10111687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/21/2021] [Accepted: 10/23/2021] [Indexed: 12/16/2022] Open
Abstract
Coenzyme Q (CoQ) is a vital lipophilic molecule that is endogenously synthesized in the mitochondria of each cell. The CoQ biosynthetic pathway is complex and not completely characterized, and it involves at least thirteen catalytic and regulatory proteins. Once it is synthesized, CoQ exerts a wide variety of mitochondrial and extramitochondrial functions thank to its redox capacity and its lipophilicity. Thus, low levels of CoQ cause diseases with heterogeneous clinical symptoms, which are not always understood. The decreased levels of CoQ may be primary caused by defects in the CoQ biosynthetic pathway or secondarily associated with other diseases. In both cases, the pathomechanisms are related to the CoQ functions, although further experimental evidence is required to establish this association. The conventional treatment for CoQ deficiencies is the high doses of oral CoQ10 supplementation, but this therapy is not effective for some specific clinical presentations, especially in those involving the nervous system. To better understand the CoQ biosynthetic pathway, the biological functions linked to CoQ and the pathomechanisms of CoQ deficiencies, and to improve the therapeutic outcomes of this syndrome, a variety of animal models have been generated and characterized in the last decade. In this review, we show all the animal models available, remarking on the most important outcomes that each model has provided. Finally, we also comment some gaps and future research directions related to CoQ metabolism and how the current and novel animal models may help in the development of future research studies.
Collapse
Affiliation(s)
- Pilar González-García
- Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, 18016 Granada, Spain; (E.B.-C.); (M.E.D.-C.); (S.L.-H.); (A.H.-G.)
- Centro de Investigación Biomédica, Instituto de Biotecnología, Universidad de Granada, 18016 Granada, Spain
- Correspondence: (P.G.-G.); (L.C.L.)
| | - Eliana Barriocanal-Casado
- Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, 18016 Granada, Spain; (E.B.-C.); (M.E.D.-C.); (S.L.-H.); (A.H.-G.)
- Centro de Investigación Biomédica, Instituto de Biotecnología, Universidad de Granada, 18016 Granada, Spain
| | - María Elena Díaz-Casado
- Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, 18016 Granada, Spain; (E.B.-C.); (M.E.D.-C.); (S.L.-H.); (A.H.-G.)
- Centro de Investigación Biomédica, Instituto de Biotecnología, Universidad de Granada, 18016 Granada, Spain
| | - Sergio López-Herrador
- Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, 18016 Granada, Spain; (E.B.-C.); (M.E.D.-C.); (S.L.-H.); (A.H.-G.)
- Centro de Investigación Biomédica, Instituto de Biotecnología, Universidad de Granada, 18016 Granada, Spain
| | - Agustín Hidalgo-Gutiérrez
- Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, 18016 Granada, Spain; (E.B.-C.); (M.E.D.-C.); (S.L.-H.); (A.H.-G.)
- Centro de Investigación Biomédica, Instituto de Biotecnología, Universidad de Granada, 18016 Granada, Spain
| | - Luis C. López
- Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, 18016 Granada, Spain; (E.B.-C.); (M.E.D.-C.); (S.L.-H.); (A.H.-G.)
- Centro de Investigación Biomédica, Instituto de Biotecnología, Universidad de Granada, 18016 Granada, Spain
- Correspondence: (P.G.-G.); (L.C.L.)
| |
Collapse
|
8
|
Rajaei M, Saxena AS, Johnson LM, Snyder MC, Crombie TA, Tanny RE, Andersen EC, Joyner-Matos J, Baer CF. Mutability of mononucleotide repeats, not oxidative stress, explains the discrepancy between laboratory-accumulated mutations and the natural allele-frequency spectrum in C. elegans. Genome Res 2021; 31:1602-1613. [PMID: 34404692 PMCID: PMC8415377 DOI: 10.1101/gr.275372.121] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 07/12/2021] [Indexed: 11/24/2022]
Abstract
Important clues about natural selection can be gleaned from discrepancies between the properties of segregating genetic variants and of mutations accumulated experimentally under minimal selection, provided the mutational process is the same in the laboratory as in nature. The base-substitution spectrum differs between C. elegans laboratory mutation accumulation (MA) experiments and the standing site-frequency spectrum, which has been argued to be in part owing to increased oxidative stress in the laboratory environment. Using genome sequence data from C. elegans MA lines carrying a mutation (mev-1) that increases the cellular titer of reactive oxygen species (ROS), leading to increased oxidative stress, we find the base-substitution spectrum is similar between mev-1, its wild-type progenitor (N2), and another set of MA lines derived from a different wild strain (PB306). Conversely, the rate of short insertions is greater in mev-1, consistent with studies in other organisms in which environmental stress increased the rate of insertion–deletion mutations. Further, the mutational properties of mononucleotide repeats in all strains are different from those of nonmononucleotide sequence, both for indels and base-substitutions, and whereas the nonmononucleotide spectra are fairly similar between MA lines and wild isolates, the mononucleotide spectra are very different, with a greater frequency of A:T → T:A transversions and an increased proportion of ±1-bp indels. The discrepancy in mutational spectra between laboratory MA experiments and natural variation is likely owing to a consistent (but unknown) effect of the laboratory environment that manifests itself via different modes of mutability and/or repair at mononucleotide loci.
Collapse
Affiliation(s)
- Moein Rajaei
- Department of Biology, University of Florida, Gainesville, Florida 32611, USA
| | | | - Lindsay M Johnson
- Department of Biology, University of Florida, Gainesville, Florida 32611, USA
| | - Michael C Snyder
- Department of Biology, University of Florida, Gainesville, Florida 32611, USA
| | - Timothy A Crombie
- Department of Biology, University of Florida, Gainesville, Florida 32611, USA.,Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, USA
| | - Robyn E Tanny
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, USA
| | - Erik C Andersen
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, USA
| | - Joanna Joyner-Matos
- Department of Biology, Eastern Washington University, Cheney, Washington 99004, USA
| | - Charles F Baer
- Department of Biology, University of Florida, Gainesville, Florida 32611, USA.,University of Florida Genetics Institute, Gainesville, Florida 32608, USA
| |
Collapse
|
9
|
Jabeen A, Parween N, Sayrav K, Prasad B. Date (Phoenix dactylifera) seed and syringic acid exhibits antioxidative effect and lifespan extending properties in Caenorhabditis elegans. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.10.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
10
|
Goncalves J, Wan Y, Guo X, Rha K, LeBoeuf B, Zhang L, Estler K, Garcia LR. Succinate Dehydrogenase-Regulated Phosphoenolpyruvate Carboxykinase Sustains Copulation Fitness in Aging C. elegans Males. iScience 2020; 23:100990. [PMID: 32240955 PMCID: PMC7115159 DOI: 10.1016/j.isci.2020.100990] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 02/18/2020] [Accepted: 03/11/2020] [Indexed: 01/02/2023] Open
Abstract
Dysregulated metabolism accelerates reduced decision-making and locomotor ability during aging. To identify mechanisms for delaying behavioral decline, we investigated how C. elegans males sustain their copulatory behavior during early to mid-adulthood. We found that in mid-aged males, gluco-/glyceroneogenesis, promoted by phosphoenolpyruvate carboxykinase (PEPCK), sustains competitive reproductive behavior. C. elegans' PEPCK paralogs, pck-1 and pck-2, increase in expression during the first 2 days of adulthood. Insufficient PEPCK expression correlates with reduced egl-2-encoded ether-a-go-go K+ channel expression and premature hyper-excitability of copulatory circuits. For copulation, pck-1 is required in neurons, whereas pck-2 is required in the epidermis. However, PCK-2 is more essential, because we found that epidermal PCK-2 likely supplements the copulation circuitry with fuel. We identified the subunit A of succinate dehydrogenase SDHA-1 as a potent modulator of PEPCK expression. We postulate that during mid-adulthood, reduction in mitochondrial physiology signals the upregulation of cytosolic PEPCK to sustain the male's energy demands. C. elegans upregulates pck-1- and pck-2-encoded PEPCK during early adulthood Loss of PEPCK causes premature male copulatory behavior decline Epidermal PEPCK is required to sustain the copulatory fitness Subunit A of succinate dehydrogenase antagonizes PEPCK expression
Collapse
Affiliation(s)
- Jimmy Goncalves
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| | - Yufeng Wan
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| | - Xiaoyan Guo
- Institute for Neurodegenerative Diseases, University of California, San Francisco, CA 94158, USA
| | - Kyoungsun Rha
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| | - Brigitte LeBoeuf
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| | - Liusuo Zhang
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong 266071, China
| | - Kerolayne Estler
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| | - L René Garcia
- Department of Biology, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
11
|
Liberman N, O’Brown ZK, Earl AS, Boulias K, Gerashchenko MV, Wang SY, Fritsche C, Fady PE, Dong A, Gladyshev VN, Greer EL. N6-adenosine methylation of ribosomal RNA affects lipid oxidation and stress resistance. SCIENCE ADVANCES 2020; 6:eaaz4370. [PMID: 32494643 PMCID: PMC7176415 DOI: 10.1126/sciadv.aaz4370] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 01/27/2020] [Indexed: 05/26/2023]
Abstract
During stress, global translation is reduced, but specific transcripts are actively translated. How stress-responsive mRNAs are selectively translated is unknown. We show that METL-5 methylates adenosine 1717 on 18S ribosomal RNA in C. elegans, enhancing selective ribosomal binding and translation of specific mRNAs. One of these mRNAs, CYP-29A3, oxidizes the omega-3 polyunsaturated fatty acid eicosapentaenoic acid to eicosanoids, key stress signaling molecules. While metl-5-deficient animals grow normally under homeostatic conditions, they are resistant to a variety of stresses. metl-5 mutant worms also show reduced bioactive lipid eicosanoids and dietary supplementation of eicosanoid products of CYP-29A3 restores stress sensitivity of metl-5 mutant worms. Thus, methylation of a specific residue of 18S rRNA by METL-5 selectively enhances translation of cyp-29A3 to increase production of eicosanoids, and blocking this pathway increases stress resistance. This study suggests that ribosome methylation can facilitate selective translation, providing another layer of regulation of the stress response.
Collapse
Affiliation(s)
- Noa Liberman
- Division of Newborn Medicine, Boston Children’s Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Zach K. O’Brown
- Division of Newborn Medicine, Boston Children’s Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Andrew Scott Earl
- Division of Newborn Medicine, Boston Children’s Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Konstantinos Boulias
- Division of Newborn Medicine, Boston Children’s Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Maxim V. Gerashchenko
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Simon Yuan Wang
- Division of Newborn Medicine, Boston Children’s Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Colette Fritsche
- Division of Newborn Medicine, Boston Children’s Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Paul-Enguerrand Fady
- Division of Newborn Medicine, Boston Children’s Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Anna Dong
- Division of Newborn Medicine, Boston Children’s Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Vadim N. Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Eric Lieberman Greer
- Division of Newborn Medicine, Boston Children’s Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
12
|
Isolation of lactic acid bacteria capable of reducing environmental alkyl and fatty acid hydroperoxides, and the effect of their oral administration on oxidative-stressed nematodes and rats. PLoS One 2020; 15:e0215113. [PMID: 32107484 PMCID: PMC7046221 DOI: 10.1371/journal.pone.0215113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 02/03/2020] [Indexed: 12/27/2022] Open
Abstract
Reinforcement of the hydroperoxide-eliminating activity in the small and large intestines should prevent associated diseases. We previously isolated a lactic acid bacterium, Pediococcus pentosaceus Be1 that facilitates a 2-electron reduction of hydrogen peroxide to water. In this study, we successfully isolated an alternative lactic acid bacterium, Lactobacillus plantarum P1-2, that can efficiently reduce environmental alkyl hydroperoxides and fatty acid hydroperoxides to their corresponding hydroxyl derivatives through a 2-electron reduction. Each strain exhibited a wide concentration range with regard to the environmental reducing activity for each hydroperoxide. Given this, the two lactic acid bacteria were orally administered to an oxygen-sensitive short-lived nematode mutant, and this resulted in a significant expansion of its lifespan. This observation suggests that P. pentosaceus Be1 and L. plantarum P1-2 inhibit internal oxidative stress. To determine the specific organs involved in this response, we performed a similar experiment in rats, involving induced lipid peroxidation by iron-overloading. We observed that only L. plantarum P1-2 inhibited colonic mucosa lipid peroxidation in rats with induced oxidative stress.
Collapse
|
13
|
Kim S, Sieburth D. Sphingosine Kinase Activates the Mitochondrial Unfolded Protein Response and Is Targeted to Mitochondria by Stress. Cell Rep 2019; 24:2932-2945.e4. [PMID: 30208318 PMCID: PMC6206875 DOI: 10.1016/j.celrep.2018.08.037] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 07/17/2018] [Accepted: 08/13/2018] [Indexed: 11/22/2022] Open
Abstract
The mitochondrial unfolded protein response (UPRmt) is critical for maintaining mitochondrial protein homeostasis in response to mitochondrial stress, but early steps in UPRmt activation are not well understood. Here, we report a function for SPHK-1 sphingosine kinase in activating the UPRmt in C. elegans. Genetic deficiency of sphk-1 in the intestine inhibits UPRmt activation, whereas selective SPHK-1 intestinal overexpression is sufficient to activate the UPRmt. Acute mitochondrial stress leads to rapid, reversible localization of SPHK-1::GFP fusion proteins with mitochondrial membranes before UPRmt activation. SPHK-1 variants lacking kinase activity or mitochondrial targeting fail to rescue the stress-induced UPRmt activation defects of sphk-1 mutants. Activation of the UPRmt by the nervous system requires sphk-1 and elicits SPHK-1 mitochondrial association in the intestine. We propose that stress-regulated mitochondrial recruitment of SPHK-1 and subsequent S1P production are critical early events for both cell autonomous and cell non-autonomous UPRmt activation. The mitochondrial unfolded protein response (UPRmt) maintains mitochondrial protein homeostasis in response to stress. Kim and Sieburth identify SPHK-1/sphingosine kinase as a positive regulator of the UPRmt that promotes UPRmt activation in response to a variety of mitochondrial stressors. SPHK-1 associates with mitochondria and SPHK-1 mitochondrial association is stress dependent, reversible, and necessary for the UPRmt, indicating that SPHK-1 mitochondrial targeting is an early step in UPRmt activation.
Collapse
Affiliation(s)
- Sungjin Kim
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Derek Sieburth
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| |
Collapse
|
14
|
Sammi SR, Foguth RM, Nieves CS, De Perre C, Wipf P, McMurray CT, Lee LS, Cannon JR. Perfluorooctane Sulfonate (PFOS) Produces Dopaminergic Neuropathology in Caenorhabditis elegans. Toxicol Sci 2019; 172:417-434. [PMID: 31428778 PMCID: PMC6876260 DOI: 10.1093/toxsci/kfz191] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Perfluorooctane sulfonate (PFOS) has been widely utilized in numerous industries. Due to long environmental and biological half-lives, PFOS is a major public health concern. Although the literature suggests that PFOS may induce neurotoxicity, neurotoxic mechanisms, and neuropathology are poorly understood. Thus, the primary goal of this study was to determine if PFOS is selectively neurotoxic and potentially relevant to specific neurological diseases. Nematodes (Caenorhabditis elegans) were exposed to PFOS or related per- and polyfluoroalkyl substances (PFAS) for 72 h and tested for evidence of neuropathology through examination of cholinergic, dopaminergic, gamma-amino butyric acid (GABA)ergic, and serotoninergic neuronal morphologies. Dopaminergic and cholinergic functional analyses were assessed through 1-nonanol and Aldicarb assay. Mechanistic studies assessed total reactive oxygen species, superoxide ions, and mitochondrial content. Finally, therapeutic approaches were utilized to further examine pathogenic mechanisms. Dopaminergic neuropathology occurred at lower exposure levels (25 ppm, approximately 50 µM) than required to produce neuropathology in GABAergic, serotonergic, and cholinergic neurons (100 ppm, approximately 200 µM). Further, PFOS exposure led to dopamine-dependent functional deficits, without altering acetylcholine-dependent paralysis. Mitochondrial content was affected by PFOS at far lower exposure level than required to induce pathology (≥1 ppm, approximately 2 µM). Perfluorooctane sulfonate exposure also enhanced oxidative stress. Further, mutation in mitochondrial superoxide dismutase rendered animals more vulnerable. Neuroprotective approaches such as antioxidants, PFAS-protein dissociation, and targeted (mitochondrial) radical and electron scavenging were neuroprotective, suggesting specific mechanisms of action. In general, other tested PFAS were less neurotoxic. The primary impact is to prompt research into potential adverse outcomes related to PFAS-induced dopaminergic neurotoxicity in humans.
Collapse
Affiliation(s)
- Shreesh Raj Sammi
- School of Health Sciences
- Purdue Institute for Integrative Neurosciences
| | - Rachel M Foguth
- School of Health Sciences
- Purdue Institute for Integrative Neurosciences
| | | | - Chloe De Perre
- Department of Agronomy, Purdue University, West Lafayette, Indiana 47907
| | - Peter Wipf
- Departments of Chemistry, Pharmaceutical Sciences, and Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Cynthia T McMurray
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Linda S Lee
- Department of Agronomy, Purdue University, West Lafayette, Indiana 47907
| | - Jason R Cannon
- School of Health Sciences
- Purdue Institute for Integrative Neurosciences
| |
Collapse
|
15
|
Trewin AJ, Bahr LL, Almast A, Berry BJ, Wei AY, Foster TH, Wojtovich AP. Mitochondrial Reactive Oxygen Species Generated at the Complex-II Matrix or Intermembrane Space Microdomain Have Distinct Effects on Redox Signaling and Stress Sensitivity in Caenorhabditis elegans. Antioxid Redox Signal 2019; 31:594-607. [PMID: 30887829 PMCID: PMC6657295 DOI: 10.1089/ars.2018.7681] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Aims: How mitochondrial reactive oxygen species (ROS) impact physiological function may depend on the quantity of ROS generated or removed, and the subcellular microdomain in which this occurs. However, pharmacological tools currently available to alter ROS production in vivo lack precise spatial and temporal control. Results: We used CRISPR/Cas9 to fuse the light-sensitive ROS-generating protein, SuperNova to the C-terminus of mitochondrial complex II succinate dehydrogenase subunits B (SDHB-1::SuperNova) and C (SDHC-1::SuperNova) in Caenorhabditis elegans to localize SuperNova to the matrix-side of the inner mitochondrial membrane, and to the intermembrane space (IMS), respectively. The presence of the SuperNova protein did not impact complex II activity, mitochondrial respiration, or C. elegans development rate under dark conditions. ROS production by SuperNova protein in vitro in the form of superoxide (O2˙-) was both specific and proportional to total light irradiance in the 540-590 nm spectra, and was unaffected by varying the buffer pH to resemble the mitochondrial matrix or IMS environments. We then determined using SuperNova whether stoichiometric ROS generation in the mitochondrial matrix or IMS had distinct effects on redox signaling in vivo. Phosphorylation of PMK-1 (a p38 MAPK homolog) and transcriptional activity of SKN-1 (an Nrf2 homolog) were each dependent on both the site and duration of ROS production, with matrix-generated ROS having more prominent effects. Furthermore, matrix- but not IMS-generated ROS attenuated susceptibility to simulated ischemia reperfusion injury in C. elegans. Innovation and Conclusion: Overall, these data demonstrate that the physiological output of ROS depends on the microdomain in which it is produced. Antioxid. Redox Signal. 31, 594-607.
Collapse
Affiliation(s)
- Adam J Trewin
- 1Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester, New York
| | - Laura L Bahr
- 1Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester, New York
| | - Anmol Almast
- 1Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester, New York
| | - Brandon J Berry
- 1Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester, New York.,2Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York
| | - Alicia Y Wei
- 1Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester, New York
| | - Thomas H Foster
- 3Department of Imaging Sciences, University of Rochester Medical Center, Rochester, New York
| | - Andrew P Wojtovich
- 1Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester, New York.,2Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York
| |
Collapse
|
16
|
Li Y, Zhang C, Wang H, Zhou F, Liu J, Tang Y, Jiang Z, Liu Z, Chen H. Synthesis and antiageing properties of antioxidant pseudopeptides designed based on the bioisostere principle. Arch Pharm (Weinheim) 2019; 352:e1800354. [PMID: 31081964 DOI: 10.1002/ardp.201800354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 03/26/2019] [Accepted: 03/31/2019] [Indexed: 12/20/2022]
Abstract
Nineteen antioxidant pseudopeptides were designed and synthesized. They were confirmed as mild antioxidants, in which L1-11 was the most active antioxidant with a cellular antioxidant activity (CAA) value of 5.65 ± 0.64 μmol QE/g, and L1-12 was the second most active one (5.58 ± 0.66 μmol QE/g). The existence of nonnatural amino acids in L1-12 increased its stability. Pretreatment with L1-12 dose-dependently extended the lifespan of Caenorhabditis elegans. L1-12 improved resistance against UVB irradiation, oxidative stress induced by paraquat, and thermal shock. It decreased the reactive oxygen species level and upregulated the superoxide dismutase activity inside C. elegans. This pseudopeptide sensitively enhanced the expressions of the Cat-1 and Nhr-8 genes to reduce oxidative damage, leading to an extension of the lifespan. All the evidence support that L1-12 may probably be a potential antiageing agent.
Collapse
Affiliation(s)
- Yanbing Li
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou, P. R. China
| | - Chao Zhang
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou, P. R. China
| | - Huailing Wang
- The Research Centre of Allergy & Immunology, School of Medicine, Shenzhen University, Shenzhen, P. R. China
| | - Fan Zhou
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou, P. R. China
| | - Jie Liu
- The Research Centre of Allergy & Immunology, School of Medicine, Shenzhen University, Shenzhen, P. R. China
| | - Yinying Tang
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou, P. R. China
| | - Zhenlei Jiang
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou, P. R. China
| | - Zhijun Liu
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou, P. R. China
| | - Heru Chen
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou, P. R. China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, P. R. China
| |
Collapse
|
17
|
Ng LF, Ng LT, van Breugel M, Halliwell B, Gruber J. Mitochondrial DNA Damage Does Not Determine C. elegans Lifespan. Front Genet 2019; 10:311. [PMID: 31031801 PMCID: PMC6473201 DOI: 10.3389/fgene.2019.00311] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 03/21/2019] [Indexed: 02/02/2023] Open
Abstract
The mitochondrial free radical theory of aging (mFRTA) proposes that accumulation of oxidative damage to macromolecules in mitochondria is a causative mechanism for aging. Accumulation of mitochondrial DNA (mtDNA) damage may be of particular interest in this context. While there is evidence for age-dependent accumulation of mtDNA damage, there have been only a limited number of investigations into mtDNA damage as a determinant of longevity. This lack of quantitative data regarding mtDNA damage is predominantly due to a lack of reliable assays to measure mtDNA damage. Here, we report adaptation of a quantitative real-time polymerase chain reaction (qRT-PCR) assay for the detection of sequence-specific mtDNA damage in C. elegans and apply this method to investigate the role of mtDNA damage in the aging of nematodes. We compare damage levels in old and young animals and also between wild-type animals and long-lived mutant strains or strains with modifications in ROS detoxification or production rates. We confirm an age-dependent increase in mtDNA damage levels in C. elegans but found that there is no simple relationship between mtDNA damage and lifespan. MtDNA damage levels were high in some mutants with long lifespan (and vice versa). We next investigated mtDNA damage, lifespan and healthspan effects in nematode subjected to exogenously elevated damage (UV- or γ-radiation induced). We, again, observed a complex relationship between damage and lifespan in such animals. Despite causing a significant elevation in mtDNA damage, γ-radiation did not shorten the lifespan of nematodes at any of the doses tested. When mtDNA damage levels were elevated significantly using UV-radiation, nematodes did suffer from shorter lifespan at the higher end of exposure tested. However, surprisingly, we also found hormetic lifespan and healthspan benefits in nematodes treated with intermediate doses of UV-radiation, despite the fact that mtDNA damage in these animals was also significantly elevated. Our results suggest that within a wide physiological range, the level of mtDNA damage does not control lifespan in C. elegans.
Collapse
Affiliation(s)
- Li Fang Ng
- Ageing Research Laboratory, Science Division, Yale-NUS College, Singapore, Singapore
| | - Li Theng Ng
- Ageing Research Laboratory, Science Division, Yale-NUS College, Singapore, Singapore.,Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Neurobiology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Michiel van Breugel
- Environmental Science Laboratory, Science Division, Yale-NUS College, Singapore, Singapore
| | - Barry Halliwell
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jan Gruber
- Ageing Research Laboratory, Science Division, Yale-NUS College, Singapore, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
18
|
Li J, Chotiko A, Chouljenko A, Gao C, Zheng J, Sathivel S. Delivery of alpha-tocopherol through soluble dietary fibre-based nanofibres for improving the life span of Caenorhabditis elegans. Int J Food Sci Nutr 2018; 70:172-181. [PMID: 30015538 DOI: 10.1080/09637486.2018.1489785] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The effect of alpha-tocopherol (α-TOC) delivered by soluble dietary fibre-based nanofibres (α-TOC-SDNF) on the life span of nematode Caenorhabditis elegans N2 (wild type) and TK22 (mev-1 mutants) with and without heat shock was investigated. Without heat shock, the wild-type and mev-1 mutants maintained in the 100 µg/mL of α-TOC-SDNF had longer life spans than their respective blank control groups. With heat shock, the wild-type N2 in the 200 µg/mL of α-TOC-SDNF had a survival rate of 5% at day 49, while no nematodes survived in the blank control group. An increased pharyngeal pumping rate was observed in the α-TOC-SDNF treated mev-1 mutants worms compared to the blank control group. Encapsulating α-TOC in SDNF yielded protective effects and the life span and pumping rate of C. elegans was increased with α-TOC delivered by SDNF.
Collapse
Affiliation(s)
- Juan Li
- a School of Nutrition and Food Sciences , Louisiana State University Agricultural Center , Baton Rouge , LA , USA
| | - Arranee Chotiko
- b Faculty of Science and Technology , Rajamangala University of Technology Thanyaburi , Pathum Thani , Thailand
| | - Alexander Chouljenko
- a School of Nutrition and Food Sciences , Louisiana State University Agricultural Center , Baton Rouge , LA , USA
| | - Chenfei Gao
- a School of Nutrition and Food Sciences , Louisiana State University Agricultural Center , Baton Rouge , LA , USA
| | - Jolene Zheng
- c Bioactive Screening Lab Pennington Biomedical Research Center, LSU System , Baton Rouge , LA , USA
| | - Subramaniam Sathivel
- a School of Nutrition and Food Sciences , Louisiana State University Agricultural Center , Baton Rouge , LA , USA.,d Department of Biological and Agricultural Engineering , Louisiana State University Agricultural Center , Baton Rouge , LA , USA
| |
Collapse
|
19
|
van der Bliek AM, Sedensky MM, Morgan PG. Cell Biology of the Mitochondrion. Genetics 2017; 207:843-871. [PMID: 29097398 PMCID: PMC5676242 DOI: 10.1534/genetics.117.300262] [Citation(s) in RCA: 245] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 09/05/2017] [Indexed: 01/19/2023] Open
Abstract
Mitochondria are best known for harboring pathways involved in ATP synthesis through the tricarboxylic acid cycle and oxidative phosphorylation. Major advances in understanding these roles were made with Caenorhabditiselegans mutants affecting key components of the metabolic pathways. These mutants have not only helped elucidate some of the intricacies of metabolism pathways, but they have also served as jumping off points for pharmacology, toxicology, and aging studies. The field of mitochondria research has also undergone a renaissance, with the increased appreciation of the role of mitochondria in cell processes other than energy production. Here, we focus on discoveries that were made using C. elegans, with a few excursions into areas that were studied more thoroughly in other organisms, like mitochondrial protein import in yeast. Advances in mitochondrial biogenesis and membrane dynamics were made through the discoveries of novel functions in mitochondrial fission and fusion proteins. Some of these functions were only apparent through the use of diverse model systems, such as C. elegans Studies of stress responses, exemplified by mitophagy and the mitochondrial unfolded protein response, have also benefitted greatly from the use of model organisms. Recent developments include the discoveries in C. elegans of cell autonomous and nonautonomous pathways controlling the mitochondrial unfolded protein response, as well as mechanisms for degradation of paternal mitochondria after fertilization. The evolutionary conservation of many, if not all, of these pathways ensures that results obtained with C. elegans are equally applicable to studies of human mitochondria in health and disease.
Collapse
Affiliation(s)
- Alexander M van der Bliek
- Department of Biological Chemistry, Jonsson Comprehensive Cancer Center and Molecular Biology Institute, David Geffen School of Medicine at UCLA, Los Angeles, California 90024
| | - Margaret M Sedensky
- Department of Anesthesiology and Pain Medicine, University of Washington and Center for Developmental Therapeutics, Seattle Children's Research Institute, Washington 98101
| | - Phil G Morgan
- Department of Anesthesiology and Pain Medicine, University of Washington and Center for Developmental Therapeutics, Seattle Children's Research Institute, Washington 98101
| |
Collapse
|
20
|
Mitochondrial form, function and signalling in aging. Biochem J 2017; 473:3421-3449. [PMID: 27729586 DOI: 10.1042/bcj20160451] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 06/17/2016] [Indexed: 02/07/2023]
Abstract
Aging is often accompanied by a decline in mitochondrial mass and function in different tissues. Additionally, cell resistance to stress is frequently found to be prevented by higher mitochondrial respiratory capacity. These correlations strongly suggest mitochondria are key players in aging and senescence, acting by regulating energy homeostasis, redox balance and signalling pathways central in these processes. However, mitochondria display a wide array of functions and signalling properties, and the roles of these different characteristics are still widely unexplored. Furthermore, differences in mitochondrial properties and responses between tissues and cell types, and how these affect whole body metabolism are also still poorly understood. This review uncovers aspects of mitochondrial biology that have an impact upon aging in model organisms and selected mammalian cells and tissues.
Collapse
|
21
|
Rollins JA, Howard AC, Dobbins SK, Washburn EH, Rogers AN. Assessing Health Span in Caenorhabditis elegans: Lessons From Short-Lived Mutants. J Gerontol A Biol Sci Med Sci 2017; 72:473-480. [PMID: 28158466 DOI: 10.1093/gerona/glw248] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 11/21/2016] [Indexed: 11/14/2022] Open
Abstract
Genetic changes resulting in increased life span are often positively associated with enhanced stress resistance and somatic maintenance. A recent study found that certain long-lived Caenorhabditis elegans mutants spent a decreased proportion of total life in a healthy state compared with controls, raising concerns about how the relationship between health and longevity is assessed. We evaluated seven markers of health and two health-span models for their suitability in assessing age-associated health in invertebrates using C elegans strains not expected to outperform wild-type animals. Additionally, we used an empirical method to determine the transition point into failing health based on the greatest rate of change with age for each marker. As expected, animals with mutations causing sickness or accelerated aging had reduced health span when compared chronologically to wild-type animals. Physiological health span, the proportion of total life spent healthy, was reduced for locomotion markers in chronically ill mutants, but, surprisingly, was extended for thermotolerance. In contrast, all short-lived mutants had reduced "quality-of-life" in another model recently employed for assessing invertebrate health. Results suggest that the interpretation of physiological health span is not straightforward, possibly because it factors out time and thus does not account for the added cost of extrinsic forces on longer-lived strains.
Collapse
Affiliation(s)
- Jarod A Rollins
- Davis Center for Regenerative Biology and Medicine, Mount Desert Island Biological Laboratory, Bar Harbor, Maine
| | - Amber C Howard
- College of Arts and Sciences, University of Maine at Augusta
| | | | - Elsie H Washburn
- College of Math and Science, California Polytechnic University, San Luis Obispo
| | - Aric N Rogers
- Davis Center for Regenerative Biology and Medicine, Mount Desert Island Biological Laboratory, Bar Harbor, Maine
| |
Collapse
|
22
|
Ishii T, Takanashi Y, Sugita K, Miyazawa M, Yanagihara R, Yasuda K, Onouchi H, Kawabe N, Nakata M, Yamamoto Y, Hartman PS, Ishii N. Endogenous reactive oxygen species cause astrocyte defects and neuronal dysfunctions in the hippocampus: a new model for aging brain. Aging Cell 2017; 16:39-51. [PMID: 27623715 PMCID: PMC5242301 DOI: 10.1111/acel.12523] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2016] [Indexed: 11/28/2022] Open
Abstract
The etiology of astrocyte dysfunction is not well understood even though neuronal defects have been extensively studied in a variety of neuronal degenerative diseases. Astrocyte defects could be triggered by the oxidative stress that occurs during physiological aging. Here, we provide evidence that intracellular or mitochondrial reactive oxygen species (ROS) at physiological levels can cause hippocampal (neuronal) dysfunctions. Specifically, we demonstrate that astrocyte defects occur in the hippocampal area of middle‐aged Tet‐mev‐1 mice with the SDHCV69E mutation. These mice are characterized by chronic oxidative stress. Even though both young adult and middle‐aged Tet‐mev‐1 mice overproduced MitoSOX Red‐detectable mitochondrial ROS compared to age‐matched wild‐type C57BL/6J mice, only young adult Tet‐mev‐1 mice upregulated manganese and copper/zinc superoxide dismutase (Mn‐ and Cu/Zn‐SODs) activities to eliminate the MitoSOX Red‐detectable mitochondrial ROS. In contrast, middle‐aged Tet‐mev‐1 mice accumulated both MitoSOX Red‐detectable mitochondrial ROS and CM‐H2DCFDA‐detectable intracellular ROS. These ROS levels appeared to be in the physiological range as shown by normal thiol and glutathione disulfide/glutathione concentrations in both young adult and middle‐aged Tet‐mev‐1 mice relative to age‐matched wild‐type C57BL/6J mice. Furthermore, only middle‐aged Tet‐mev‐1 mice showed JNK/SAPK activation and Ca2+ overload, particularly in astrocytes. This led to decreasing levels of glial fibrillary acidic protein and S100β in the hippocampal area. Significantly, there were no pathological features such as apoptosis, amyloidosis, and lactic acidosis in neurons and astrocytes. Our findings suggest that the age‐dependent physiologically relevant chronic oxidative stress caused astrocyte defects in mice with impaired mitochondrial electron transport chain functionality.
Collapse
Affiliation(s)
- Takamasa Ishii
- Department of Molecular Life Science; Tokai University School of Medicine; 143 Shimokasuya Isehara Kanagawa 259-1193 Japan
- Institute of Medical Sciences; Tokai University; 143 Shimokasuya Isehara Kanagawa 259-1193 Japan
| | - Yumi Takanashi
- Department of Molecular Life Science; Tokai University School of Medicine; 143 Shimokasuya Isehara Kanagawa 259-1193 Japan
| | - Koichi Sugita
- Department of Molecular Life Science; Tokai University School of Medicine; 143 Shimokasuya Isehara Kanagawa 259-1193 Japan
- School of Bioscience and Biotechnology; Tokyo University of Technology; 1404-1 Katakuramachi Hachioji Tokyo 192-0982 Japan
| | - Masaki Miyazawa
- Department of Molecular Life Science; Tokai University School of Medicine; 143 Shimokasuya Isehara Kanagawa 259-1193 Japan
| | - Rintaro Yanagihara
- Department of Molecular Life Science; Tokai University School of Medicine; 143 Shimokasuya Isehara Kanagawa 259-1193 Japan
| | - Kayo Yasuda
- Department of Molecular Life Science; Tokai University School of Medicine; 143 Shimokasuya Isehara Kanagawa 259-1193 Japan
- Support Center for Medical Research and Education; Tokai University; 143 Shimokasuya Isehara Kanagawa 259-1193 Japan
| | - Hiromi Onouchi
- Department of Ophthalmology; Tokai University School of Medicine; 143 Shimokasuya Isehara Kanagawa 259-1193 Japan
| | - Noboru Kawabe
- Support Center for Medical Research and Education; Tokai University; 143 Shimokasuya Isehara Kanagawa 259-1193 Japan
| | - Munehiro Nakata
- Department of Applied Biochemistry; Tokai University School of Engineering; 4-1-1 Kitakaname Hiratsuka Kanagawa 259-1292 Japan
| | - Yorihiro Yamamoto
- School of Bioscience and Biotechnology; Tokyo University of Technology; 1404-1 Katakuramachi Hachioji Tokyo 192-0982 Japan
| | - Phil S. Hartman
- Department of Biology; Texas Christian University; Fort Worth TX 76129 USA
| | - Naoaki Ishii
- Department of Molecular Life Science; Tokai University School of Medicine; 143 Shimokasuya Isehara Kanagawa 259-1193 Japan
| |
Collapse
|
23
|
Wojtovich AP, Wei AY, Sherman TA, Foster TH, Nehrke K. Chromophore-Assisted Light Inactivation of Mitochondrial Electron Transport Chain Complex II in Caenorhabditis elegans. Sci Rep 2016; 6:29695. [PMID: 27440050 PMCID: PMC4954975 DOI: 10.1038/srep29695] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 06/21/2016] [Indexed: 01/20/2023] Open
Abstract
Mitochondria play critical roles in meeting cellular energy demand, in cell death, and in reactive oxygen species (ROS) and stress signaling. Most Caenorhabditis elegans loss-of-function (lf) mutants in nuclear-encoded components of the respiratory chain are non-viable, emphasizing the importance of respiratory function. Chromophore-Assisted Light Inactivation (CALI) using genetically-encoded photosensitizers provides an opportunity to determine how individual respiratory chain components contribute to physiology following acute lf. As proof-of-concept, we expressed the ‘singlet oxygen generator’ miniSOG as a fusion with the SDHC subunit of respiratory complex II, encoded by mev-1 in C. elegans, using Mos1-mediated Single Copy Insertion. The resulting mev-1::miniSOG transgene complemented mev-1 mutant phenotypes in kn1 missense and tm1081(lf) deletion mutants. Complex II activity was inactivated by blue light in mitochondria from strains expressing active miniSOG fusions, but not those from inactive fusions. Moreover, light-inducible phenotypes in vivo demonstrated that complex II activity is important under conditions of high energy demand, and that specific cell types are uniquely susceptible to loss of complex II. In conclusion, miniSOG-mediated CALI is a novel genetic platform for acute inactivation of respiratory chain components. Spatio-temporally controlled ROS generation will expand our understanding of how the respiratory chain and mitochondrial ROS influence whole organism physiology.
Collapse
Affiliation(s)
- Andrew P Wojtovich
- University of Rochester Medical Center, Department of Anesthesiology, Rochester, 14642, United States of America.,University of Rochester Medical Center, Department of Pharmacology and Physiology, Rochester, 14642, United States of America
| | - Alicia Y Wei
- University of Rochester Medical Center, Department of Anesthesiology, Rochester, 14642, United States of America
| | - Teresa A Sherman
- University of Rochester Medical Center, Department of Medicine, Rochester, 14642, United States of America
| | - Thomas H Foster
- University of Rochester Medical Center, Department of Imaging Sciences, Rochester, 14642, United States of America
| | - Keith Nehrke
- University of Rochester Medical Center, Department of Pharmacology and Physiology, Rochester, 14642, United States of America.,University of Rochester Medical Center, Department of Medicine, Rochester, 14642, United States of America
| |
Collapse
|
24
|
Ishii T, Yasuda K, Miyazawa M, Mitsushita J, Johnson TE, Hartman PS, Ishii N. Infertility and recurrent miscarriage with complex II deficiency-dependent mitochondrial oxidative stress in animal models. Mech Ageing Dev 2016; 155:22-35. [DOI: 10.1016/j.mad.2016.02.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 02/16/2016] [Accepted: 02/28/2016] [Indexed: 12/22/2022]
|
25
|
Morgan PG, Higdon R, Kolker N, Bauman AT, Ilkayeva O, Newgard CB, Kolker E, Steele LM, Sedensky MM. Comparison of proteomic and metabolomic profiles of mutants of the mitochondrial respiratory chain in Caenorhabditis elegans. Mitochondrion 2014; 20:95-102. [PMID: 25530493 DOI: 10.1016/j.mito.2014.12.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 09/10/2014] [Accepted: 12/10/2014] [Indexed: 01/06/2023]
Abstract
Single-gene mutations that disrupt mitochondrial respiratory chain function in Caenorhabditis elegans change patterns of protein expression and metabolites. Our goal was to develop useful molecular fingerprints employing adaptable techniques to recognize mitochondrial defects in the electron transport chain. We analyzed mutations affecting complex I, complex II, or ubiquinone synthesis and discovered overarching patterns in the response of C. elegans to mitochondrial dysfunction across all of the mutations studied. These patterns are in KEGG pathways conserved from C. elegans to mammals, verifying that the nematode can serve as a model for mammalian disease. In addition, specific differences exist between mutants that may be useful in diagnosing specific mitochondrial diseases in patients.
Collapse
Affiliation(s)
- P G Morgan
- Department of Anesthesiology and Pain Medicine, University of Washington, USA; Center for Developmental Therapeutics, Seattle Children's Research Institute, USA.
| | - R Higdon
- Bioinformatics and High-throughput Analysis Laboratory, USA; High-throughput Analysis Core, Seattle Children's Research Institute, USA; Data-Enabled Life Sciences Alliance (DELSA Global), USA
| | - N Kolker
- High-throughput Analysis Core, Seattle Children's Research Institute, USA; Data-Enabled Life Sciences Alliance (DELSA Global), USA
| | - A T Bauman
- Bioinformatics and High-throughput Analysis Laboratory, USA
| | - O Ilkayeva
- Sarah W. Stedman Nutrition and Metabolism Center & Duke Molecular Physiology Institute, Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA; Sarah W. Stedman Nutrition and Metabolism Center & Duke Molecular Physiology Institute, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - C B Newgard
- Sarah W. Stedman Nutrition and Metabolism Center & Duke Molecular Physiology Institute, Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA; Sarah W. Stedman Nutrition and Metabolism Center & Duke Molecular Physiology Institute, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - E Kolker
- Bioinformatics and High-throughput Analysis Laboratory, USA; High-throughput Analysis Core, Seattle Children's Research Institute, USA; Data-Enabled Life Sciences Alliance (DELSA Global), USA; Department of Biomedical Informatics & Medical Education, University of Washington, Seattle, WA, USA; Department of Pediatrics, University of Washington, Seattle, WA, USA; Department of Chemistry and Chemical Biology, College of Science, Northeastern University, Boston, MA 02115, USA
| | - L M Steele
- Center for Developmental Therapeutics, Seattle Children's Research Institute, USA
| | - M M Sedensky
- Department of Anesthesiology and Pain Medicine, University of Washington, USA; Center for Developmental Therapeutics, Seattle Children's Research Institute, USA
| |
Collapse
|
26
|
Guanine nucleotide exchange factor OSG-1 confers functional aging via dysregulated Rho signaling in Caenorhabditis elegans neurons. Genetics 2014; 199:487-96. [PMID: 25527286 DOI: 10.1534/genetics.114.173500] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Rho signaling regulates a variety of biological processes, but whether it is implicated in aging remains an open question. Here we show that a guanine nucleotide exchange factor of the Dbl family, OSG-1, confers functional aging by dysregulating Rho GTPases activities in C. elegans. Thus, gene reporter analysis revealed widespread OSG-1 expression in muscle and neurons. Loss of OSG-1 gene function was not associated with developmental defects. In contrast, suppression of OSG-1 lessened loss of function (chemotaxis) in ASE sensory neurons subjected to conditions of oxidative stress generated during natural aging, by oxidative challenges, or by genetic mutations. RNAi analysis showed that OSG-1 was specific toward activation of RHO-1 GTPase signaling. RNAi further implicated actin-binding proteins ARX-3 and ARX-5, thus the actin cytoskeleton, as one of the targets of OSG-1/RHO-1 signaling. Taken together these data suggest that OSG-1 is recruited under conditions of oxidative stress, a hallmark of aging, and contributes to promote loss of neuronal function by affecting the actin cytoskeleton via altered RHO-1 activity.
Collapse
|
27
|
Gatsi R, Schulze B, Rodríguez-Palero MJ, Hernando-Rodríguez B, Baumeister R, Artal-Sanz M. Prohibitin-mediated lifespan and mitochondrial stress implicate SGK-1, insulin/IGF and mTORC2 in C. elegans. PLoS One 2014; 9:e107671. [PMID: 25265021 PMCID: PMC4180437 DOI: 10.1371/journal.pone.0107671] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 08/13/2014] [Indexed: 12/29/2022] Open
Abstract
Lifespan regulation by mitochondrial proteins has been well described, however, the mechanism of this regulation is not fully understood. Amongst the mitochondrial proteins profoundly affecting ageing are prohibitins (PHB-1 and PHB-2). Paradoxically, in C. elegans prohibitin depletion shortens the lifespan of wild type animals while dramatically extending that of metabolically compromised animals, such as daf-2-insulin-receptor mutants. Here we show that amongst the three kinases known to act downstream of daf-2, only loss of function of sgk-1 recapitulates the ageing phenotype observed in daf-2 mutants upon prohibitin depletion. Interestingly, signalling through SGK-1 receives input from an additional pathway, parallel to DAF-2, for the prohibitin-mediated lifespan phenotype. We investigated the effect of prohibitin depletion on the mitochondrial unfolded protein response (UPRmt). Remarkably, the lifespan extension upon prohibitin elimination, of both daf-2 and sgk-1 mutants, is accompanied by suppression of the UPRmt induced by lack of prohibitin. On the contrary, gain of function of SGK-1 results in further shortening of lifespan and a further increase of the UPRmt in prohibitin depleted animals. Moreover, SGK-1 interacts with RICT-1 for the regulation of the UPRmt in a parallel pathway to DAF-2. Interestingly, prohibitin depletion in rict-1 loss of function mutant animals also causes lifespan extension. Finally, we reveal an unprecedented role for mTORC2-SGK-1 in the regulation of mitochodrial homeostasis. Together, these results give further insight into the mechanism of lifespan regulation by mitochondrial function and reveal a cross-talk of mitochondria with two key pathways, Insulin/IGF and mTORC2, for the regulation of ageing and stress response.
Collapse
Affiliation(s)
- Roxani Gatsi
- CABD, Centro Andaluz de Biología del Desarrollo, CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Sevilla, Spain
| | - Bettina Schulze
- Centre for Biological Signalling Studies (BIOSS), Albert-Ludwigs-University of Freiburg, Freiburg, Germany
- Laboratory for Bioinformatics and Molecular Genetics, Faculty of Biology, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - María Jesús Rodríguez-Palero
- CABD, Centro Andaluz de Biología del Desarrollo, CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Sevilla, Spain
| | - Blanca Hernando-Rodríguez
- CABD, Centro Andaluz de Biología del Desarrollo, CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Sevilla, Spain
| | - Ralf Baumeister
- Centre for Biological Signalling Studies (BIOSS), Albert-Ludwigs-University of Freiburg, Freiburg, Germany
- Laboratory for Bioinformatics and Molecular Genetics, Faculty of Biology, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
- Center for Biochemistry and Molecular Cell Research, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Marta Artal-Sanz
- CABD, Centro Andaluz de Biología del Desarrollo, CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Sevilla, Spain
- Centre for Biological Signalling Studies (BIOSS), Albert-Ludwigs-University of Freiburg, Freiburg, Germany
- Laboratory for Bioinformatics and Molecular Genetics, Faculty of Biology, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
- * E-mail:
| |
Collapse
|
28
|
Effects of the mitochondrial respiratory chain on longevity in C. elegans. Exp Gerontol 2014; 56:245-55. [DOI: 10.1016/j.exger.2014.03.028] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 03/27/2014] [Accepted: 03/28/2014] [Indexed: 12/21/2022]
|
29
|
Munkácsy E, Rea SL. The paradox of mitochondrial dysfunction and extended longevity. Exp Gerontol 2014; 56:221-33. [PMID: 24699406 PMCID: PMC4104296 DOI: 10.1016/j.exger.2014.03.016] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 03/02/2014] [Accepted: 03/07/2014] [Indexed: 01/01/2023]
Abstract
Mitochondria play numerous, essential roles in the life of eukaryotes. Disruption of mitochondrial function in humans is often pathological or even lethal. Surprisingly, in some organisms mitochondrial dysfunction can result in life extension. This paradox has been studied most extensively in the long-lived Mit mutants of the nematode Caenorhabditis elegans. In this review, we explore the major responses that are activated following mitochondrial dysfunction in these animals and how these responses potentially act to extend their life. We focus our attention on five broad areas of current research--reactive oxygen species signaling, the mitochondrial unfolded protein response, autophagy, metabolic adaptation, and the roles played by various transcription factors. Lastly, we also examine why disruption of complexes I and II differ in their ability to induce the Mit phenotype and extend lifespan.
Collapse
Affiliation(s)
- Erin Munkácsy
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78245-3207, USA; Department of Cell and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78245-3207, USA
| | - Shane L Rea
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78245-3207, USA; Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78245-3207, USA.
| |
Collapse
|
30
|
Smith SW, Latta LC, Denver DR, Estes S. Endogenous ROS levels in C. elegans under exogenous stress support revision of oxidative stress theory of life-history tradeoffs. BMC Evol Biol 2014; 14:161. [PMID: 25056725 PMCID: PMC4222818 DOI: 10.1186/s12862-014-0161-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 07/14/2014] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The oxidative stress theory of life-history tradeoffs states that oxidative stress caused by damaging free radicals directly underpins tradeoffs between reproduction and longevity by altering the allocation of energetic resources between these tasks. We test this theory by characterizing the effects of exogenous oxidative insult and its interaction with thermal stress and diet quality on a suite of life-history traits and correlations in Caenorhabditis elegans nematodes. We also quantify demographic aging rates and endogenous reactive oxygen species (ROS) levels in live animals. RESULTS Our findings indicate a tradeoff between investment in reproduction and antioxidant defense (somatic maintenance) consistent with theoretical predictions, but correlations between standard life-history traits yield little evidence that oxidative stress generates strict tradeoffs. Increasing oxidative insult, however, shows a strong tendency to uncouple positive phenotypic correlations and, in particular, to reduce the correlation between reproduction and lifespan. We also found that mild oxidative insult results in lower levels of endogenous ROS accompanied by hormetic changes in lifespan, demographic aging, and reproduction that disappear in combined-stress treatments--consistent with the oxidative stress theory of aging. CONCLUSIONS Our findings demonstrate that oxidative stress is a direct contributor to life-history trait variation and that traditional tradeoffs are not necessary to invoke oxidative stress as a mediator of relationships between life-history traits, supporting previous calls for revisions to theory.
Collapse
Affiliation(s)
- Samson W Smith
- Department of Biology, Portland State University, Portland, 97201, OR, USA
- Current address: Department of Biology and Microbiology, South Dakota State University, Brookings, 57007, SD, USA
| | - Leigh C Latta
- Biology Department, Reed College, Portland, 97202, OR, USA
| | - Dee R Denver
- Department of Zoology, Oregon State University, Corvallis, 97331, OR, USA
| | - Suzanne Estes
- Department of Biology, Portland State University, Portland, 97201, OR, USA
| |
Collapse
|
31
|
Sanada Y, Asai S, Ikemoto A, Moriwaki T, Nakamura N, Miyaji M, Zhang-Akiyama QM. Oxidation resistance 1 is essential for protection against oxidative stress and participates in the regulation of aging in Caenorhabditis elegans. Free Radic Res 2014; 48:919-28. [PMID: 24865925 DOI: 10.3109/10715762.2014.927063] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Human oxidation resistance 1 (OXR1) functions in protection against oxidative damage and its homologs are highly conserved in eukaryotes examined so far, but its function still remains uncertain. In this study, we identified a homolog (LMD-3) of human OXR1 in the nematode Caenorhabditis elegans (C. elegans). The expressed LMD-3 was able to suppress the mutator phenotypes of E. coli mutMmutY and mutT mutants. Purified LMD-3 did not have enzymatic activity against 8-oxoG, superoxide dismutase (SOD), or catalase activities. Interestingly, the expression of LMD-3 was able to suppress the methyl viologen or menadione sodium bisulfite-induced expression of soxS and sodA genes in E. coli. The sensitivity of the C. elegans lmd-3 mutant to oxidative and heat stress was markedly higher than that of the wild-type strain N2. These results suggest that LMD-3 protects cells against oxidative stress. Furthermore, we found that the lifespan of the C. elegans lmd-3 mutant was significantly reduced compared with that of the N2, which was resulted from the acceleration of aging. We further examined the effects of deletions in other oxidative defense genes on the properties of the lmd-3 mutant. The deletion of sod-2 and sod-3, which are mitochondrial SODs, extended the lifespan of the lmd-3 mutant. These results indicate that, in cooperation with mitochondrial SODs, LMD-3 contributes to the protection against oxidative stress and aging in C. elegans.
Collapse
Affiliation(s)
- Y Sanada
- Department of Zoology, Graduate School of Science, Kyoto University , Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto , Japan
| | | | | | | | | | | | | |
Collapse
|
32
|
Ishii T, Miyazawa M, Takanashi Y, Tanigawa M, Yasuda K, Onouchi H, Kawabe N, Mitsushita J, Hartman PS, Ishii N. Genetically induced oxidative stress in mice causes thrombocytosis, splenomegaly and placental angiodysplasia that leads to recurrent abortion. Redox Biol 2014; 2:679-85. [PMID: 24936442 PMCID: PMC4052530 DOI: 10.1016/j.redox.2014.05.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 05/07/2014] [Accepted: 05/09/2014] [Indexed: 02/02/2023] Open
Abstract
Historical data in the 1950s suggests that 7%, 11%, 33%, and 87% of couples were infertile by ages 30, 35, 40 and 45, respectively. Up to 22.3% of infertile couples have unexplained infertility. Oxidative stress is associated with male and female infertility. However, there is insufficient evidence relating to the influence of oxidative stress on the maintenance of a viable pregnancy, including pregnancy complications and fetal development. Recently, we have established Tet-mev-1 conditional transgenic mice, which can express the doxycycline-induced mutant SDHCV69E transgene and experience mitochondrial respiratory chain dysfunction leading to intracellular oxidative stress. In this report, we demonstrate that this kind of abnormal mitochondrial respiratory chain-induced chronic oxidative stress affects fertility, pregnancy and delivery rates as well as causes recurrent abortions, occasionally resulting in maternal death. Despite this, spermatogenesis and early embryogenesis are completely normal, indicating the mutation's effects to be rather subtle. Female Tet-mev-1 mice exhibit thrombocytosis and splenomegaly in both non-pregnant and pregnant mice as well as placental angiodysplasia with reduced Flt-1 protein leading to hypoxic conditions, which could contribute to placental inflammation and fetal abnormal angiogenesis. Collectively these data strongly suggest that chronic oxidative stress caused by mitochondrial mutations provokes spontaneous abortions and recurrent miscarriage resulting in age-related female infertility. SDHC mutation induces oxidative stress in the female reproductive organs. Early development is completely normal in Tet-mev-1 mice. Non-pregnant and pregnant Tet-mev-1 mice exhibit thrombocytosis and splenomegaly. Pregnant mice have placental angiodysplasia with decreased Flt-1/ VEGFR-1. Habitual abortion is frequently caused with occasional maternal death in Tet-mev-1 mice.
Collapse
Affiliation(s)
- Takamasa Ishii
- Department of Molecular Life Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan
| | - Masaki Miyazawa
- Department of Molecular Life Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan
| | - Yumi Takanashi
- Department of Molecular Life Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan
| | - Maya Tanigawa
- Department of Molecular Life Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan
| | - Kayo Yasuda
- Department of Molecular Life Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan ; Education and Research Support Center, Tokai University, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan
| | - Hiromi Onouchi
- Department of Ophthalmology, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan
| | - Noboru Kawabe
- Education and Research Support Center, Tokai University, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan
| | - Junji Mitsushita
- Department of Obstetrics and Gynecology, Saitama Medical Center, Jichi Medical University, 1-847 Amanuma-cho, Omiya, Saitama 330-8503, Japan
| | - Phil S Hartman
- Department of Biology, Texas Christian University, Fort Worth, TX 76129, USA
| | - Naoaki Ishii
- Department of Molecular Life Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan
| |
Collapse
|
33
|
Runkel ED, Baumeister R, Schulze E. Mitochondrial stress: balancing friend and foe. Exp Gerontol 2014; 56:194-201. [PMID: 24603155 DOI: 10.1016/j.exger.2014.02.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Revised: 02/21/2014] [Accepted: 02/22/2014] [Indexed: 12/15/2022]
Abstract
Mitochondria are vital organelles of the aerobic eukaryotic cell. Their dysfunction associates with aging and widespread age-related diseases. To sustain mitochondrial integrity, the cell executes a distinct set of stress-induced protective responses. The mitochondrial unfolded protein response (UPR(mt)) is a response of the cell to mitochondrial damage. The transcription factor ATFS-1 triggers UPR(mt) effector gene expression in the nucleus. The selective exclusion of ATFS-1 from mitochondrial import by stress-induced alterations of the mitochondrial membrane potential is currently discussed as key activation mechanism. Surprisingly, UPR(mt) activation often coincides with a lifespan extension in Caenorhabditis elegans and the same has recently been reported for mammalian cells. This review summarizes the current model of the UPR(mt), its inducers, and its crosstalk with other cellular stress responses. It focuses on the role of mitochondrial function as a regulator of aging and longevity.
Collapse
Affiliation(s)
- Eva Diana Runkel
- Faculty of Biology, Institute of Biology III, Germany; BIOSS Centre for Biological Signalling Studies, Germany; Spemann Graduate School of Biology and Medicine, Germany
| | - Ralf Baumeister
- Faculty of Biology, Institute of Biology III, Germany; Faculty of Medicine, ZBMZ Center of Biochemistry and Molecular Cell Research, Germany; BIOSS Centre for Biological Signalling Studies, Germany; Spemann Graduate School of Biology and Medicine, Germany
| | - Ekkehard Schulze
- Faculty of Biology, Institute of Biology III, Germany; BIOSS Centre for Biological Signalling Studies, Germany.
| |
Collapse
|
34
|
Fitzenberger E, Deusing DJ, Marx C, Boll M, Lüersen K, Wenzel U. The polyphenol quercetin protects the mev-1 mutant of Caenorhabditis elegans from glucose-induced reduction of survival under heat-stress depending on SIR-2.1, DAF-12, and proteasomal activity. Mol Nutr Food Res 2014; 58:984-94. [PMID: 24407905 DOI: 10.1002/mnfr.201300718] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 11/19/2013] [Accepted: 11/21/2013] [Indexed: 11/05/2022]
Abstract
SCOPE Hyperglycemia is a hallmark of diabetes mellitus but slighter increases of blood glucose levels are observed also during ageing. Using the Caenorhabditis elegans mev-1 mutant, we identified molecular mechanisms underlying the protection from glucose toxicity by the polyphenol quercetin. METHODS AND RESULTS We fed C. elegans mev-1 mutants on a liquid medium supplemented with 10 mM glucose, which resulted in a reduced survival at 37°C. The polyphenol quercetin (1 μM) was able to prevent glucose-induced lifespan reduction completely. RNA interference revealed that the sirtuin SIR-2.1, the nuclear hormone receptor DAF-12, and its putative co-activator MDT-15 were critical for the quercetin effects. Moreover, RNA interference for key factors of proteostasis reduced survival, which was not further affected by glucose or quercetin, suggesting that those proteins are a target for both substances. Besides unfolded protein response, proper functionality of the proteasome was shown to be crucial for the survival enhancing effects of quercetin and the polyphenol was finally demonstrated to activate proteasomal degradation. CONCLUSION Our studies demonstrate that lowest concentrations of quercetin prevent a glucose-induced reduction of survival. SIR-2.1, DAF-12, and MDT-15 were identified as targets that activate unfolded protein response and proteasomal degradation to limit the accumulation of functionally restricted proteins.
Collapse
Affiliation(s)
- Elena Fitzenberger
- Molecular Nutrition Research, Interdisciplinary Research Centre, Justus-Liebig-University of Giessen, Giessen, Germany
| | | | | | | | | | | |
Collapse
|
35
|
Chakraborty S, Bornhorst J, Nguyen TT, Aschner M. Oxidative stress mechanisms underlying Parkinson's disease-associated neurodegeneration in C. elegans. Int J Mol Sci 2013; 14:23103-28. [PMID: 24284401 PMCID: PMC3856108 DOI: 10.3390/ijms141123103] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 10/08/2013] [Accepted: 10/16/2013] [Indexed: 12/11/2022] Open
Abstract
Oxidative stress is thought to play a significant role in the development and progression of neurodegenerative diseases. Although it is currently considered a hallmark of such processes, the interweaving of a multitude of signaling cascades hinders complete understanding of the direct role of oxidative stress in neurodegeneration. In addition to its extensive use as an aging model, some researchers have turned to the invertebrate model Caenorhabditis elegans (C. elegans) in order to further investigate molecular mediators that either exacerbate or protect against reactive oxygen species (ROS)-mediated neurodegeneration. Due to their fully characterized genome and short life cycle, rapid generation of C. elegans genetic models can be useful to study upstream markers of oxidative stress within interconnected signaling pathways. This report will focus on the roles of C. elegans homologs for the oxidative stress-associated transcription factor Nrf2, as well as the autosomal recessive, early-onset Parkinson’s disease (PD)-associated proteins Parkin, DJ-1, and PINK1, in neurodegenerative processes.
Collapse
Affiliation(s)
- Sudipta Chakraborty
- Neuroscience Graduate Program, Vanderbilt University Medical Center, Nashville, TN 37232, USA; E-Mail:
- Center in Molecular Toxicology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; E-Mail:
| | - Julia Bornhorst
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA; E-Mail:
| | - Thuy T. Nguyen
- Center in Molecular Toxicology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; E-Mail:
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Michael Aschner
- Center in Molecular Toxicology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; E-Mail:
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA; E-Mail:
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-718-430-2317
| |
Collapse
|
36
|
Ma X, Li W, Yu H, Yang Y, Li M, Xue L, Xu T. Bendless modulates JNK-mediated cell death and migration in Drosophila. Cell Death Differ 2013; 21:407-15. [PMID: 24162658 DOI: 10.1038/cdd.2013.154] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Revised: 09/15/2013] [Accepted: 09/25/2013] [Indexed: 01/21/2023] Open
Abstract
The TNF-JNK pathway is a highly conserved signaling pathway that regulates a wide spectrum of biological processes including cell death and migration. To further delineate this pathway, we carried out a genetic screen for dominant modifiers of the cell death phenotype triggered by ectopic expression of Eiger (Egr), the Drosophila TNF ortholog. Here we show that Bendless (Ben), an E2 ubiquitin-conjugating enzyme, modulates Egr-induced JNK activation and cell death through dTRAF2. Furthermore, Ben physically interacts with dTRAF2 and regulates Egr-induced dTRAF2 polyubiquitination. Finally, Ben is required for JNK-dependent tumor progression, cell migration, oxidative stress resistance and longevity. Our results indicate that Ben constitutes an essential component of the evolutionarily conserved TNF-JNK pathway that modulates cell death and invasion, tumor progression, stress response and lifespan in metazoans.
Collapse
Affiliation(s)
- X Ma
- Department of Interventional Radiology, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, Shanghai, China
| | - W Li
- Department of Interventional Radiology, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, Shanghai, China
| | - H Yu
- Department of Interventional Radiology, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Y Yang
- Department of Interventional Radiology, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, Shanghai, China
| | - M Li
- Department of Interventional Radiology, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, Shanghai, China
| | - L Xue
- 1] Department of Interventional Radiology, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, Shanghai, China [2] Howard Hughes Medical Institute, Department of Genetics, Yale University School of Medicine, New Haven, CT 06519, USA
| | - T Xu
- 1] Howard Hughes Medical Institute, Department of Genetics, Yale University School of Medicine, New Haven, CT 06519, USA [2] Institute of Developmental Biology and Molecular Medicine, Fudan-Yale Center for Biomedical Research, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
37
|
Merksamer PI, Liu Y, He W, Hirschey MD, Chen D, Verdin E. The sirtuins, oxidative stress and aging: an emerging link. Aging (Albany NY) 2013; 5:144-50. [PMID: 23474711 PMCID: PMC3629286 DOI: 10.18632/aging.100544] [Citation(s) in RCA: 181] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Reactive oxygen species (ROS) are a family of compounds that can oxidatively damage cellular macromolecules and may influence lifespan. Sirtuins are a conserved family of nicotinamide adenine dinucleotide (NAD+)-dependent protein deacetylases that regulate lifespan in many model organisms including yeast and mice. Recent work suggests that sirtuins can modulate ROS levels notably during a dietary regimen known as calorie restriction which enhances lifespan for several organisms. Although both sirtuins and ROS have been implicated in the aging process, their precise roles remain unknown. In this review, we summarize current thinking about the oxidative stress theory of aging, discuss some of the compelling data linking the sirtuins to ROS and aging, and propose a conceptual model placing the sirtuins into an ROS-driven mitochondria-mediated hormetic response.
Collapse
Affiliation(s)
- Philip I Merksamer
- Gladstone Institute of Virology and Immunology, University of California, San Francisco, CA 94158, USA
| | | | | | | | | | | |
Collapse
|
38
|
Turner EA, Kroeger GL, Arnold MC, Thornton BL, Di Giulio RT, Meyer JN. Assessing different mechanisms of toxicity in mountaintop removal/valley fill coal mining-affected watershed samples using Caenorhabditis elegans. PLoS One 2013; 8:e75329. [PMID: 24066176 PMCID: PMC3774817 DOI: 10.1371/journal.pone.0075329] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 08/13/2013] [Indexed: 12/03/2022] Open
Abstract
Mountaintop removal-valley fill coal mining has been associated with a variety of impacts on ecosystem and human health, in particular reductions in the biodiversity of receiving streams. However, effluents emerging from valley fills contain a complex mixture of chemicals including metals, metalloids, and salts, and it is not clear which of these are the most important drivers of toxicity. We found that streamwater and sediment samples collected from mine-impacted streams of the Upper Mud River in West Virginia inhibited the growth of the nematode Caenorhabditis elegans. Next, we took advantage of genetic and transgenic tools available in this model organism to test the hypotheses that the toxicity could be attributed to metals, selenium, oxidative stress, or osmotic stress. Our results indicate that in general, the toxicity of streamwater to C. elegans was attributable to osmotic stress, while the toxicity of sediments resulted mostly from metals or metalloids.
Collapse
Affiliation(s)
- Elena A Turner
- Nicholas School of the Environment, Duke University, Durham, North Carolina, United States of America
| | | | | | | | | | | |
Collapse
|
39
|
Vayndorf EM, Lee SS, Liu RH. Whole apple extracts increase lifespan, healthspan and resistance to stress in Caenorhabditis elegans.. J Funct Foods 2013; 5:1236-1243. [PMID: 23878618 DOI: 10.1016/j.jff.2013.04.006] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Regular consumption of fruits and vegetables is associated with reduced risk of age-related functional decline and chronic diseases such as cancer and cardiovascular disease. These effects are primarily attributed to phytochemicals, plant compounds with a wide range of biological activities and health benefits. Apples, the top contributor of fruit phenolics in American diets, have high antioxidant, antiproliferative and chemopreventive activity in vitro and in vivo. However, little is known about their effects on aging. The objectives of this study were to determine the effects of whole apple phytochemical extracts on lifespan, healthspan and resistance to various stresses in vivo using C. elegans as a model. The mean and maximum lifespan of animals treated with 2.5, 5 and 10 mg/ml whole apple extracts increased significantly in a dose-dependent manner by up to 39 and 25%, respectively. Healthspan also significantly improved as indicated by improved motility and reduced lipofuscin accumulation. Animals pre-treated with whole apple extracts were more resistant to stresses such as heat, UV radiation, paraquat-induced oxidative stress, and pathogenic infection, suggesting that cellular defense and immune system functions also improved. Our findings indicate that, in C. elegans, whole apple extracts slow aging, extend lifespan, improve healthspan, and enhance resistance to stress.
Collapse
Affiliation(s)
- Elena M Vayndorf
- Institute of Comparative and Environmental Toxicology, Cornell University, Ithaca, NY
| | | | | |
Collapse
|
40
|
Chew YL, Fan X, Götz J, Nicholas HR. Aging in the nervous system of Caenorhabditis elegans. Commun Integr Biol 2013; 6:e25288. [PMID: 24255742 PMCID: PMC3829903 DOI: 10.4161/cib.25288] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 06/04/2013] [Accepted: 06/05/2013] [Indexed: 11/28/2022] Open
Abstract
It has recently been described that aging in C. elegans is accompanied by the progressive development of morphological changes in the nervous system. These include novel outgrowths from the cell body or axonal process, as well as blebbing and beading along the length of the axon. The formation of these structures is regulated by numerous molecular players including members of the well-conserved insulin/insulin growth factor-like (IGF)-1 signaling and mitogen-activated protein (MAP) kinase pathways. This review summarizes the recent literature on neuronal aging in C. elegans, including our own findings, which indicate a role for protein with tau-like repeats (PTL-1), the homolog of mammalian tau and MAP2/4, in maintaining neuronal integrity during aging.
Collapse
Affiliation(s)
- Yee Lian Chew
- School of Molecular Bioscience; University of Sydney; Sydney, NSW Australia
| | | | | | | |
Collapse
|
41
|
Joyner-Matos J, Hicks KA, Cousins D, Keller M, Denver DR, Baer CF, Estes S. Evolution of a higher intracellular oxidizing environment in Caenorhabditis elegans under relaxed selection. PLoS One 2013; 8:e65604. [PMID: 23776511 PMCID: PMC3679170 DOI: 10.1371/journal.pone.0065604] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 04/29/2013] [Indexed: 01/22/2023] Open
Abstract
We explored the relationship between relaxed selection, oxidative stress, and spontaneous mutation in a set of mutation-accumulation (MA) lines of the nematode Caenorhabditis elegans and in their common ancestor. We measured steady-state levels of free radicals and oxidatively damaged guanosine nucleosides in the somatic tissues of five MA lines for which nuclear genome base substitution and GC-TA transversion frequencies are known. The two markers of oxidative stress are highly correlated and are elevated in the MA lines relative to the ancestor; point estimates of the per-generation rate of mutational decay (ΔM) of these measures of oxidative stress are similar to those reported for fitness-related traits. Conversely, there is no significant relationship between either marker of oxidative stress and the per-generation frequencies of base substitution or GC-TA transversion. Although these results provide no direct evidence for a causative relationship between oxidative damage and base substitution mutations, to the extent that oxidative damage may be weakly mutagenic in the germline, the case for condition-dependent mutation is advanced.
Collapse
Affiliation(s)
- Joanna Joyner-Matos
- Department of Biology, Eastern Washington University, Cheney, Washington, United States of America.
| | | | | | | | | | | | | |
Collapse
|
42
|
Maxwell S, Harding J, Brabin C, Appleford PJ, Brown R, Delaney C, Brown G, Woollard A. The SFT-1 and OXA-1 respiratory chain complex assembly factors influence lifespan by distinct mechanisms in C. elegans. LONGEVITY & HEALTHSPAN 2013; 2:9. [PMID: 24472117 PMCID: PMC3922957 DOI: 10.1186/2046-2395-2-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 03/25/2013] [Indexed: 01/09/2023]
Abstract
Background C. elegans mitochondrial (Mit) mutants have disrupted mitochondrial electron transport chain function, yet, surprisingly, they are often long-lived, a property that has offered unique insights into the molecular mechanisms of aging. In this study, we examine the phenotypic consequences of reducing the expression of the respiratory chain complex assembly factors sft-1 (homologous to human SURF1) and oxa-1 (homologous to human OXA1) by RNA interference (RNAi). Mutations in human SURF1 are associated with Leigh syndrome, a neurodegenerative condition of the brain caused by cytochrome oxidase (COX) deficiency. Both SURF1 and OXA1 are integral proteins of the inner mitochondrial membrane, functioning in the COX assembly pathway. Results RNAi of both of these genes in C. elegans is associated with increased longevity, but the mechanism by which lifespan is extended is different in each case. sft-1(RNAi) animals display lifespan extension that is dependent on the daf-16 insulin-like signaling pathway, and associated with sensitivity to oxidative stress. oxa-1(RNAi) animals, in contrast, exhibit increased longevity that is at least partially independent of daf-16, and associated with a reduced developmental rate and increased resistance to oxidative stress. Conclusions This study further delineates the consequences of mitochondrial dysfunction within a whole organism that will ultimately help provide new models for human mitochondrial-associated diseases. The difference in phenotype observed upon down-regulation of these two COX assembly factors, as well as phenotypic differences between these factors and other respiratory chain components analyzed thus far, illustrates the complex inter-relationships that exist among energy metabolism, reproduction and aging even in this simplest of metazoan model organisms.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Alison Woollard
- Biochemistry Department, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK.
| |
Collapse
|
43
|
Braeckman BP, Houthoofd K, Vanfleteren JR. Patterns of metabolic activity during aging of the wild type and longevity mutants of Caenorhabditis elegans. J Am Aging Assoc 2013; 23:55-73. [PMID: 23604840 DOI: 10.1007/s11357-000-0007-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
At least three mechanisms determine life span in Caenorhabditis elegans. An insulin-like signaling pathway regulates dauer diapause, reproduction and longevity. Reduction-or loss-of-function mutations in this pathway can extend longevity substantially, suggesting that the wild-type alleles shorten life span. The mutations extend life span by activating components of a dauer longevity assurance program in adult life, resulting in altered metabolism and enhanced stress resistance. The Clock (Clk) genes regulate many temporal processes, including life span. Mutation in the Clk genes clk-1 and gro-1 mildly affect energy production, but repress energy consumption dramatically, thereby reducing the rate of anabolic metabolism and lengthening life span. Dietary restriction, either imposed by mutation or by the culture medium increases longevity and uncovers a third mechanism of life span determination. Dietary restriction likely elicits the longevity assurance program. There is still uncertainty as to whether these pathways converge on daf-16 to activate downstream longevity effector genes such as ctl-1 and sod-3. There is overwhelming evidence that the interplay between reactive oxygen species (ROS) and the capacity to resist oxidative stress controls the aging process and longevity. It is as yet not clear whether metabolic homeostasis collapses with age as a direct result of ROS-derived damage or is selectively repressed by longevity-determining genes. The dramatic decline of protein turnover during senescence results in the accumulation of altered enzymes and in a gradual decline of metabolic performance eventually followed by fatal failure of the system.
Collapse
Affiliation(s)
- B P Braeckman
- Department of Biology, University of Gent, Ledeganckstraat 35, B-9000 Gent, Belgium
| | | | | |
Collapse
|
44
|
Lucanic M, Lithgow GJ, Alavez S. Pharmacological lifespan extension of invertebrates. Ageing Res Rev 2013; 12:445-58. [PMID: 22771382 DOI: 10.1016/j.arr.2012.06.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 06/28/2012] [Accepted: 06/29/2012] [Indexed: 01/11/2023]
Abstract
There is considerable interest in identifying small, drug-like compounds that slow aging in multiple species, particularly in mammals. Such compounds may prove to be useful in treating and retarding age-related disease in humans. Just as invertebrate models have been essential in helping us understand the genetic pathways that control aging, these model organisms are also proving valuable in discovering chemical compounds that influence longevity. The nematode Caenorhabditis elegans has numerous advantages for such studies including its short lifespan and has been exploited by a number of investigators to find compounds that impact aging. Here, we summarize the progress being made in identifying compounds that extend the lifespan of invertebrates, and introduce the challenges we face in translating this research into human therapies.
Collapse
|
45
|
Model animals for the study of oxidative stress from complex II. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1827:588-97. [PMID: 23142169 DOI: 10.1016/j.bbabio.2012.10.016] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 10/25/2012] [Accepted: 10/27/2012] [Indexed: 01/01/2023]
Abstract
Mitochondria play a role of energy production and produce intracellular reactive oxygen species (ROS), especially superoxide anion (O2(-)) as a byproduct of energy metabolism at the same time. O2(-) is converted from oxygen and is overproduced by excessive electron leakage from the mitochondrial respiratory chain. It is well known that mitochondrial complexes I and III in the electron transport system are the major endogenous ROS sources. We have previously demonstrated that mutations in complex II can result in excessive ROS (specifically in SDHC: G71E in Caenorhabditis elegans, I71E in Drosophila and V69E in mouse). Moreover, this results in premature death in C. elegans and Drosophila as well as tumorigenesis in mouse embryonic fibroblast cells. In humans, it has been reported that mutations in SDHB, SDHC or SDHD, which are the subunits of mitochondrial complex II, often result in inherited head and neck paragangliomas (PGLs). Recently, we established Tet-mev-1 conditional transgenic mice using our uniquely developed Tet-On/Off system, which can induce the mutated SDHC gene to be equally and competitively expressed compared to the endogenous wild-type SDHC gene. These mice experienced mitochondrial respiratory chain dysfunction that resulted in oxidative stress. The mitochondrial oxidative stress caused excessive apoptosis in several tissues leading to low-birth-weight infants and growth retardation during neonatal developmental phase in Tet-mev-1 mice. Tet-mev-1 mice also displayed precocious age-dependent corneal physiological changes, delayed corneal epithelialization, decreased corneal endothelial cells, thickened Descemet's membrane and thinning of parenchyma with corneal pathological dysfunctions such as keratitis, Fuchs' corneal dystrophy (FCD) and probably keratoconus after the normal development and growth phase. Here, we review the relationships between mitochondrial oxidative stress and phenomena in mev-1 animal models with mitochondrial complex II SDHC mutations. This article is part of a Special Issue entitled: Respiratory complex II: Role in cellular physiology and disease.
Collapse
|
46
|
Li W, Bandyopadhyay J, Hwaang HS, Park BJ, Cho JH, Lee JI, Ahnn J, Lee SK. Two thioredoxin reductases, trxr-1 and trxr-2, have differential physiological roles in Caenorhabditis elegans. Mol Cells 2012; 34:209-18. [PMID: 22836943 PMCID: PMC3887811 DOI: 10.1007/s10059-012-0155-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 07/03/2012] [Accepted: 07/04/2012] [Indexed: 10/28/2022] Open
Abstract
Thioredoxin reductase (TrxR) is a member of the pyridine nucleotide-disulfide reductase family, which mainly functions in the thioredoxin system. TrxR is found in all living organisms and exists in two major ubiquitous isoenzymes in higher eukaryotic cells; One is cytosolic and the other mitochondrial. Mitochondrial TrxR functions to protect mitochondria from oxidative stress, where reactive oxidative species are mainly generated, while cytosolic TrxR plays a role to maintain optimal oxido-reductive status in cytosol. In this study, we report differential physiological functions of these two TrxRs in C. elegans. trxr-1, the cytosolic TrxR, is highly expressed in pharynx, vulva and intestine, whereas trxr-2, the mitochondrial TrxR, is mainly expressed in pharyngeal and body wall muscles. Deficiency of the non-selenoprotein trxr-2 caused defects in longevity and delayed development under stress conditions, while deletion mutation of the selenoprotein trxr-1 resulted in interference in acidification of lysosomal compartment in intestine. Interestingly, the acidification defect of trxr-1(jh143) deletion mutant was rescued, not only by selenocystein-containing wild type TRXR-1, but also cysteine-substituted mutant TRXR-1. Both trxr-1 and trxr-2 were up-regulated when worms were challenged by environmental stress such as heat shock. These results suggest that trxr-1 and trxr-2 function differently at organismal level presumably by their differential sub-cellular localization in C. elegans.
Collapse
Affiliation(s)
- Weixun Li
- Department of Life Science, Hanyang University, Seoul 133-791,
Korea
- Brain Korea 21 Life Science for Global Warming Team, Hanyang University, Seoul 133-791,
Korea
| | - Jaya Bandyopadhyay
- Department of Biotechnology, West Bengal University of Technology, Kolkata 700-064,
India
| | - Hyun Sook Hwaang
- Department of Bioengineering, Hanyang University, Seoul 133-791,
Korea
- Department of Chemistry, Hanyang University, Seoul 133-791,
Korea
| | - Byung-Jae Park
- Department of Life Science, Hallym University, Chunchon 200-702,
Korea
| | - Jeong Hoon Cho
- Division of Biology Education, College of Education, Chosun University, Gwangju 501-759,
Korea
| | - Jin Il Lee
- Fred Hutchinson Cancer Research Center, Basic Sciences Division, 1100 Fairview Ave. N. Seattle, WA 98109,
USA
| | - Joohong Ahnn
- Department of Life Science, Hanyang University, Seoul 133-791,
Korea
- Brain Korea 21 Life Science for Global Warming Team, Hanyang University, Seoul 133-791,
Korea
- The Research Institute for Natural Sciences, Hanyang University, Seoul 133-791,
Korea
| | - Sun-Kyung Lee
- Department of Life Science, Hanyang University, Seoul 133-791,
Korea
- The Research Institute for Natural Sciences, Hanyang University, Seoul 133-791,
Korea
| |
Collapse
|
47
|
Caito S, Fretham S, Martinez-Finley E, Chakraborty S, Avila D, Chen P, Aschner M. Genome-Wide Analyses of Metal Responsive Genes in Caenorhabditis elegans. Front Genet 2012; 3:52. [PMID: 22514555 PMCID: PMC3322339 DOI: 10.3389/fgene.2012.00052] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Accepted: 03/20/2012] [Indexed: 11/22/2022] Open
Abstract
Metals are major contaminants that influence human health. Many metals have physiologic roles, but excessive levels can be harmful. Advances in technology have made toxicogenomic analyses possible to characterize the effects of metal exposure on the entire genome. Much of what is known about cellular responses to metals has come from mammalian systems; however the use of non-mammalian species is gaining wider attention. Caenorhabditis elegans is a small round worm whose genome has been fully sequenced and its development from egg to adult is well characterized. It is an attractive model for high throughput screens due to its short lifespan, ease of genetic mutability, low cost, and high homology with humans. Research performed in C. elegans has led to insights in apoptosis, gene expression, and neurodegeneration, all of which can be altered by metal exposure. Additionally, by using worms one can potentially study mechanisms that underline differential responses to metals in nematodes and humans, allowing for identification of novel pathways and therapeutic targets. In this review, toxicogenomic studies performed in C. elegans exposed to various metals will be discussed, highlighting how this non-mammalian system can be utilized to study cellular processes and pathways induced by metals. Recent work focusing on neurodegeneration in Parkinson’s disease will be discussed as an example of the usefulness of genetic screens in C. elegans and the novel findings that can be produced.
Collapse
Affiliation(s)
- Samuel Caito
- Division of Clinical Pharmacology and Pediatric Toxicology, Department of Pediatrics, Vanderbilt University Medical Center Nashville, TN, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Yang X, Gondikas AP, Marinakos SM, Auffan M, Liu J, Hsu-Kim H, Meyer JN. Mechanism of silver nanoparticle toxicity is dependent on dissolved silver and surface coating in Caenorhabditis elegans. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:1119-27. [PMID: 22148238 DOI: 10.1021/es202417t] [Citation(s) in RCA: 378] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The rapidly increasing use of silver nanoparticles (Ag NPs) in consumer products and medical applications has raised ecological and human health concerns. A key question for addressing these concerns is whether Ag NP toxicity is mechanistically unique to nanoparticulate silver, or if it is a result of the release of silver ions. Furthermore, since Ag NPs are produced in a large variety of monomer sizes and coatings, and since their physicochemical behavior depends on the media composition, it is important to understand how these variables modulate toxicity. We found that a lower ionic strength medium resulted in greater toxicity (measured as growth inhibition) of all tested Ag NPs to Caenorhabditis elegans and that both dissolved silver and coating influenced Ag NP toxicity. We found a linear correlation between Ag NP toxicity and dissolved silver, but no correlation between size and toxicity. We used three independent and complementary approaches to investigate the mechanisms of toxicity of differentially coated and sized Ag NPs: pharmacological (rescue with trolox and N-acetylcysteine), genetic (analysis of metal-sensitive and oxidative stress-sensitive mutants), and physicochemical (including analysis of dissolution of Ag NPs). Oxidative dissolution was limited in our experimental conditions (maximally 15% in 24 h) yet was key to the toxicity of most Ag NPs, highlighting a critical role for dissolved silver complexed with thiols in the toxicity of all tested Ag NPs. Some Ag NPs (typically less soluble due to size or coating) also acted via oxidative stress, an effect specific to nanoparticulate silver. However, in no case studied here was the toxicity of a Ag NP greater than would be predicted by complete dissolution of the same mass of silver as silver ions.
Collapse
Affiliation(s)
- Xinyu Yang
- Nicholas School of the Environment and Center for the Environmental Implications of Nanotechnology, Duke University, Durham, North Carolina 27708-0328, United States
| | | | | | | | | | | | | |
Collapse
|
49
|
IBE S, FUJII Y, OTOBE K. Evaluation of the In Vivo Antioxidant Activity of Mucuna pruriens DC. var. utilis by Using Caenorhabditis elegans. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2012. [DOI: 10.3136/fstr.18.227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
50
|
Structural features and bioavailability of four flavonoids and their implications for lifespan-extending and antioxidant actions in C. elegans. Mech Ageing Dev 2011; 133:1-10. [PMID: 22155175 DOI: 10.1016/j.mad.2011.11.005] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 11/11/2011] [Accepted: 11/19/2011] [Indexed: 01/18/2023]
Abstract
Various studies have demonstrated longevity effects of flavonoids, a major sub-group of plant polyphenolic compounds, in Caenorhabditis elegans. To better understand their structure-activity relationship in vivo we have used a comparative approach by exposing C. elegans to the structurally related flavonoids myricetin, quercetin, kaempferol and naringenin, and assessed their impact on lifespan and on putative modes of action. The bioavailability of the tested flavonoids was demonstrated by high-performance liquid chromatography with diode-array detection (HPLC/DAD) and a 2-aminoethyl diphenyl borate-based in vivo approach. While all flavonols increased lifespan in wild-type, only myricetin elongated the mev-1(kn1) lifespan, suggesting that the flavonols antioxidant action alone is not sufficient for longevity. Structural prerequisites of high antioxidant action in vitro were also essential to reduce the reactive oxygen species (ROS) load in vivo in C. elegans and were tested in isolated mouse muscle mitochondria. Since the insulin/IGF-like signaling (IIS) cascade is a key regulator of lifespan, all compounds were tested for the ability to cause nuclear translocation of the FOXO transcription factor DAF-16 and changes in target gene expression. An increased DAF-16 translocation and sod-3 promoter activity were observed with all flavonoids but was independent of their ROS scavenging capability and their effects on lifespan.
Collapse
|