1
|
Dupré A, Daldello EM, Nairn AC, Jessus C, Haccard O. Phosphorylation of ARPP19 by protein kinase A prevents meiosis resumption in Xenopus oocytes. Nat Commun 2015; 5:3318. [PMID: 24525567 PMCID: PMC4014304 DOI: 10.1038/ncomms4318] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 01/24/2014] [Indexed: 11/13/2022] Open
Abstract
During oogenesis, oocytes are arrested in prophase and resume meiosis by activating the kinase Cdk1 upon hormonal stimulation. In all vertebrates, release from prophase arrest relies on protein kinase A (PKA) downregulation and on the dephosphorylation of a long-sought but still unidentified substrate. Here we show that ARPP19 is the PKA substrate whose phosphorylation at serine 109 is necessary and sufficient for maintaining Xenopus oocytes arrested in prophase. By downregulating PKA, progesterone, the meiotic inducer in Xenopus, promotes partial dephosphorylation of ARPP19 that is required for the formation of a threshold level of active Cdk1. Active Cdk1 then initiates MPF autoamplification loop that occurs independently of both PKA and ARPP19 phosphorylation at serine 109 but requires the Greatwall-dependent phosphorylation of ARPP19 at serine 67. Therefore, ARPP19 stands at a crossroads in the meiotic M-phase control network by integrating differential effects of PKA and Greatwall, two essential kinases for meiosis resumption.
Collapse
Affiliation(s)
- Aude Dupré
- 1] Sorbonne Universités, UPMC Univ Paris 06, UMR7622-Biologie du Développement, Paris F-75005, France [2] CNRS, UMR7622-Biologie du Développement, Paris F-75005, France [3]
| | - Enrico M Daldello
- 1] Sorbonne Universités, UPMC Univ Paris 06, UMR7622-Biologie du Développement, Paris F-75005, France [2] CNRS, UMR7622-Biologie du Développement, Paris F-75005, France [3] Sorbonne Universités, UPMC Univ Paris 06, IFD, 4 Place Jussieu, cedex 05, Paris 75252, France [4]
| | - Angus C Nairn
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut 06508, USA
| | - Catherine Jessus
- 1] Sorbonne Universités, UPMC Univ Paris 06, UMR7622-Biologie du Développement, Paris F-75005, France [2] CNRS, UMR7622-Biologie du Développement, Paris F-75005, France
| | - Olivier Haccard
- 1] Sorbonne Universités, UPMC Univ Paris 06, UMR7622-Biologie du Développement, Paris F-75005, France [2] CNRS, UMR7622-Biologie du Développement, Paris F-75005, France
| |
Collapse
|
2
|
Celik O, Celik N, Gungor S, Haberal ET, Aydin S. Selective Regulation of Oocyte Meiotic Events Enhances Progress in Fertility Preservation Methods. BIOCHEMISTRY INSIGHTS 2015; 8:11-21. [PMID: 26417205 PMCID: PMC4577271 DOI: 10.4137/bci.s28596] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 08/23/2015] [Accepted: 08/24/2015] [Indexed: 11/15/2022]
Abstract
Following early embryonic germ cell migration, oocytes are surrounded by somatic cells and remain arrested at diplotene stage until luteinizing hormone (LH) surge. Strict regulation of both meiotic arrest and meiotic resumption during dormant stage are critical for future fertility. Inter-cellular signaling system between the somatic compartment and oocyte regulates these meiotic events and determines the follicle quality. As well as the collected number of eggs, their qualities are also important for in vitro fertilization (IVF) outcome. In spontaneous and IVF cycles, germinal vesicle (GV)–stage oocytes, premature GV breakdown, and persistence of first meiotic arrest limit the reproductive performance. Likewise, both women with premature ovarian aging and young cancer women are undergoing chemoradiotherapy under the risk of follicle loss because of unregulated meiotic events. Understanding of oocyte meiotic events is therefore critical for the prevention of functional ovarian reserve. High levels of cyclic guanosine monophophate (cGMP), cyclic adenosine monophophate (cAMP) and low phosphodiesterase (PDE) 3A enzyme activity inside the oocyte are responsible for maintaining of meiotic arrest before the LH surge. cGMP is produced in the somatic compartment, and natriuretic peptide precursor C (Nppc) and natriuretic peptide receptor 2 (Npr2) regulate its production. cGMP diffuses into the oocyte and reduces the PDE3A activity, which inhibits the conversion of cAMP to the 5′AMP, and cAMP levels are enhanced. In addition, oocyte itself has the ability to produce cAMP. Taken together, accumulation of cAMP inside the oocyte induces protein kinase activity, which leads to the inhibition of maturation-promoting factor and meiotic arrest also continues. By stimulating the expression of epidermal growth factor, LH inhibits the Nppc/Npr2 system, blocks cGMP synthesis, and initiates meiotic resumption. Oocytes lacking the functional of this pathway may lead to persistence of the GV oocyte, which reduces the number of good quality eggs. Selective regulation of somatic cell signals and oocyte meiotic events enhance progress in fertility preservation methods, which may give us the opportunity to prevent follicle loss in prematurely aging women and young women with cancer are undergoing chemoradiotherapy.
Collapse
Affiliation(s)
- Onder Celik
- Private Clinic, Obstetrics and Gynecology, Usak, Turkey
| | - Nilufer Celik
- Behçet Uz Children's Hospital, Department of Biochemistry, İzmir, Turkey
| | - Sami Gungor
- Private Medical Hospital, Obstetrics and Gynecology, Elazig, Turkey
| | - Esra Tustas Haberal
- Umraniye Education and Research Hospital, Obstetrics and Gynecology, İstanbul, Turkey
| | - Suleyman Aydin
- Department of Medical Biochemistry (Firat Hormone Research Group), School of Medicine, Firat University, Elazig, Turkey
| |
Collapse
|
3
|
Dupré A, Buffin E, Roustan C, Nairn AC, Jessus C, Haccard O. The phosphorylation of ARPP19 by Greatwall renders the auto-amplification of MPF independently of PKA in Xenopus oocytes. J Cell Sci 2013; 126:3916-26. [PMID: 23781026 DOI: 10.1242/jcs.126599] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Entry into mitosis or meiosis relies on the coordinated action of kinases and phosphatases that ultimately leads to the activation of Cyclin-B-Cdk1, also known as MPF for M-phase promoting factor. Vertebrate oocytes are blocked in prophase of the first meiotic division, an arrest that is tightly controlled by high PKA activity. Re-entry into meiosis depends on activation of Cdk1, which obeys a two-step mechanism: a catalytic amount of Cdk1 is generated in a PKA and protein-synthesis-dependent manner; then a regulatory network known as the MPF auto-amplification loop is initiated. This second step is independent of PKA and protein synthesis. However, none of the molecular components of the auto-amplification loop identified so far act independently of PKA. Therefore, the protein rendering this process independent of PKA in oocytes remains unknown. Using a physiologically intact cell system, the Xenopus oocyte, we show that the phosphorylation of ARPP19 at S67 by the Greatwall kinase promotes its binding to the PP2A-B55δ phosphatase, thus inhibiting its activity. This process is controlled by Cdk1 and has an essential role within the Cdk1 auto-amplification loop for entry into the first meiotic division. Moreover, once phosphorylated by Greatwall, ARPP19 escapes the negative regulation exerted by PKA. It also promotes activation of MPF independently of protein synthesis, provided that a small amount of Mos is present. Taken together, these findings reveal that PP2A-B55δ, Greatwall and ARPP19 are not only required for entry into meiotic divisions, but are also pivotal effectors within the Cdk1 auto-regulatory loop responsible for its independence with respect to the PKA-negative control.
Collapse
Affiliation(s)
- Aude Dupré
- UPMC Université Paris 06, UMR7622-Biologie du Développement, 9 quai Saint Bernard, 75005, Paris, France
| | | | | | | | | | | |
Collapse
|
4
|
Ariu F, Fois S, Bebbere D, Ledda S, Rosati I, Zedda MT, Pau S, Bogliolo L. The effect of okadaic acid on meiotic maturation of canine oocytes of different size. Theriogenology 2012; 77:46-52. [DOI: 10.1016/j.theriogenology.2011.07.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Revised: 07/06/2011] [Accepted: 07/06/2011] [Indexed: 10/17/2022]
|
5
|
Participation of MAPK, PKA and PP2A in the regulation of MPF activity in Bufo arenarum oocytes. ZYGOTE 2010; 19:181-9. [DOI: 10.1017/s0967199410000456] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
SummaryThe objectives of the present paper were to study the involvement and possible interactions of both cAMP-PKA and protein phosphatases in Bufo arenarum oocyte maturation and to determine if these pathways are independent or not of the MAP kinase (MAPK) cascade. Our results indicated that the inhibition of PKA by treatment with H-89, an inhibitor of the catalytic subunit of PKA, was capable of inducing GVBD in a dose-dependent manner by a pathway in which Cdc25 phosphatase but not the MAPK cascade is involved. The injection of 50 nl of H-89 10 μM produced GVBD percentages similar to those obtained with treatment with progesterone. In addition, the assays with okadaic acid (OA), a PP2A inhibitor, significantly enhanced the percentage of oocytes that resumed meiosis by a signal transducing pathway in which the activation of the MEK–MAPK pathway is necessary, but in which Cdc25 phosphatase was not involved. Treatment with H-89, was able to overcome the inhibitory effect of PKA on GVBD; however, the inhibition of Cdc25 activity with NaVO3 was able to overcome the induction of GVBD by H-89. Although the connections between PKA and other signalling molecules that regulate oocytes maturation are still unclear, our results suggest that phosphatase Cdc25 may be the direct substrate of PKA. In Xenopus oocytes it was proposed that PP2A, a major Ser/Thr phosphatase present, is a negative regulator of Cdc2 activation. However, in Bufo arenarum oocytes, inhibition of Cdc25 with NaVO3 did not inhibit OA-induced maturation, suggesting that the target of PP2A was not the Cdc25 phosphatase. MAPK activation has been reported to be essential in Xenopus oocytes GVBD. In B. arenarum oocytes we demonstrated that the inhibition of MAPK by PD 98059 prevented the activation of MPF induced by OA, suggesting that the activation of the MAPK cascade produced an inhibition of Myt1 and, in consequence, the activation of MPF without participation of the Cdc25 phosphatase. Our results suggest that in incompetent oocytes of B. arenarum two signal transduction pathways may be involved in the control of MPF activation: (1) the inhibition of phosphatase 2A that through the MEK–MAPK pathway regulates the activity of the Myt1; and (2) the inhibition of AMPc–PKA, which affects the activity of the Cdc25 phosphatase.
Collapse
|
6
|
Wu YG, Zhou P, Lan GC, Gao D, Li Q, Wei DL, Wang HL, Tan JH. MPF governs the assembly and contraction of actomyosin rings by activating RhoA and MAPK during chemical-induced cytokinesis of goat oocytes. PLoS One 2010; 5:e12706. [PMID: 20856880 PMCID: PMC2938347 DOI: 10.1371/journal.pone.0012706] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Accepted: 08/19/2010] [Indexed: 01/09/2023] Open
Abstract
The interplay between maturation-promoting factor (MPF), mitogen-activated protein kinase (MAPK) and Rho GTPase during actin-myosin interactions has yet to be determined. The mechanism by which microtubule disrupters induce the formation of ooplasmic protrusion during chemical-assisted enucleation of mammalian oocytes is unknown. Moreover, a suitable model is urgently needed for the study of cytokinesis. We have established a model of chemical-induced cytokinesis and have studied the signaling events leading to cytokinesis using this model. The results suggested that microtubule inhibitors activated MPF, which induced actomyosin assembly (formation of ooplasmic protrusion) by activating RhoA and thus MAPK. While MAPK controlled actin recruitment on its own, MPF promoted myosin enrichment by activating RhoA and MAPK. A further chemical treatment of oocytes with protrusions induced constriction of the actomyosin ring by inactivating MPF while activating RhoA. In conclusion, the present data suggested that the assembly and contraction of the actomyosin ring were two separable steps: while an increase in MPF activity promoted the assembly through RhoA-mediated activation of MAPK, a decrease in MPF activity triggered contraction of the ring by activating RhoA.
Collapse
Affiliation(s)
- Yan-Guang Wu
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City, People's Republic of China
| | - Ping Zhou
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City, People's Republic of China
| | - Guo-Cheng Lan
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City, People's Republic of China
| | - Da Gao
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City, People's Republic of China
| | - Qing Li
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City, People's Republic of China
| | - De-Li Wei
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City, People's Republic of China
| | - Hui-Li Wang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City, People's Republic of China
| | - Jing-He Tan
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City, People's Republic of China
| |
Collapse
|
7
|
Impact of marine drugs on cytoskeleton-mediated reproductive events. Mar Drugs 2010; 8:881-915. [PMID: 20479959 PMCID: PMC2866467 DOI: 10.3390/md8040881] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Revised: 03/02/2010] [Accepted: 03/23/2010] [Indexed: 12/30/2022] Open
Abstract
Marine organisms represent an important source of novel bioactive compounds, often showing unique modes of action. Such drugs may be useful tools to study complex processes such as reproduction; which is characterized by many crucial steps that start at gamete maturation and activation and virtually end at the first developmental stages. During these processes cytoskeletal elements such as microfilaments and microtubules play a key-role. In this review we describe: (i) the involvement of such structures in both cellular and in vitro processes; (ii) the toxins that target the cytoskeletal elements and dynamics; (iii) the main steps of reproduction and the marine drugs that interfere with these cytoskeleton-mediated processes. We show that marine drugs, acting on microfilaments and microtubules, exert a wide range of impacts on reproductive events including sperm maturation and motility, oocyte maturation, fertilization, and early embryo development.
Collapse
|
8
|
Toranzo GS, Bonilla F, Zelarayán L, Oterino J, Bühler MI. Activation of maturation promoting factor in Bufo arenarum oocytes: injection of mature cytoplasm and germinal vesicle contents. ZYGOTE 2007; 14:305-16. [PMID: 17266789 DOI: 10.1017/s0967199406003820] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2005] [Accepted: 03/09/2005] [Indexed: 11/07/2022]
Abstract
Although progesterone is the established maturation inducer in amphibians, Bufo arenarum oocytes obtained during the reproductive period (spring-summer) resume meiosis with no need of an exogenous hormonal stimulus if deprived of their enveloping follicle cells, a phenomenon called spontaneous maturation. In this species it is possible to obtain oocytes competent and incompetent to undergo spontaneous maturation according to the seasonal period in which animals are captured. Reinitiation of meiosis is regulated by maturation promoting factor (MPF), a complex of the cyclin-dependent kinase p34cdc2 and cyclin B. Although the function and molecule of MPF are common among species, the formation and activation mechanisms of MPF differ according to species. This study was undertaken to evaluate the presence of pre-MPF in Bufo arenarum oocytes incompetent to mature spontaneously and the effect of the injection of mature cytoplasm or germinal vesicle contents on the resumption of meiosis. The results of our treatment of Bufo arenarum immature oocytes incompetent to mature spontaneously with sodium metavanadate (NaVO3) and dexamethasone (DEX) indicates that these oocytes have a pre-MPF, which activates and induces germinal vesicle breakdown (GVBD) by dephosphorylation on Thr-14/Tyr-15 by cdc25 phosphatase and without cyclin B synthesis. The injection of cytoplasm containing active MPF is sufficient to activate an amplification loop that requires the activation of cdc25 and protein kinase C, the decrease in cAMP levels, and is independent of protein synthesis. However, the injection of germinal vesicle content also induces GVBD in the immature receptor oocyte, a process dependent on protein synthesis but not on cdc25 phosphatase or PKC activity.
Collapse
Affiliation(s)
- G Sánchez Toranzo
- Departmento de Biología del Desarrollo, San Miguel de Tucumán, Argentina
| | | | | | | | | |
Collapse
|
9
|
Wang R, He G, Nelman-Gonzalez M, Ashorn CL, Gallick GE, Stukenberg PT, Kirschner MW, Kuang J. NEDD4-1 is a proto-oncogenic ubiquitin ligase for PTEN. Cell 2007; 128:1119-32. [PMID: 17382881 DOI: 10.1016/j.cell.2006.11.053] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2006] [Revised: 08/31/2006] [Accepted: 11/21/2006] [Indexed: 02/08/2023]
Abstract
The tumor suppressor PTEN, a critical regulator for multiple cellular processes, is mutated or deleted frequently in various human cancers. Subtle reductions in PTEN expression levels have profound impacts on carcinogenesis. Here we show that PTEN level is regulated by ubiquitin-mediated proteasomal degradation, and purified its ubiquitin ligase as HECT-domain protein NEDD4-1. In cells NEDD4-1 negatively regulates PTEN stability by catalyzing PTEN polyubiquitination. Consistent with the tumor-suppressive role of PTEN, overexpression of NEDD4-1 potentiated cellular transformation. Strikingly, in a mouse cancer model and multiple human cancer samples where the genetic background of PTEN was normal but its protein levels were low, NEDD4-1 was highly expressed, suggesting that aberrant upregulation of NEDD4-1 can posttranslationally suppress PTEN in cancers. Elimination of NEDD4-1 expression inhibited xenotransplanted tumor growth in a PTEN-dependent manner. Therefore, NEDD4-1 is a potential proto-oncogene that negatively regulates PTEN via ubiquitination, a paradigm analogous to that of Mdm2 and p53.
Collapse
Affiliation(s)
- Ruoning Wang
- Department of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Bui HT, Yamaoka E, Miyano T. Involvement of Histone H3 (Ser10) Phosphorylation in Chromosome Condensation Without Cdc2 Kinase and Mitogen-Activated Protein Kinase Activation in Pig Oocytes1. Biol Reprod 2004; 70:1843-51. [PMID: 14960481 DOI: 10.1095/biolreprod.103.026070] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
When oocytes resume meiosis, chromosomes start to condense and Cdc2 kinase becomes activated. However, recent findings show that the chromosome condensation does not always correlate with the Cdc2 kinase activity in pig oocytes. The objectives of this study were to examine 1) the correlation between chromosome condensation and histone H3 phosphorylation at serine 10 (Ser10) during the meiotic maturation of pig oocytes and 2) the effects of protein phosphatase 1/2A (PP1/ PP2A) inhibitors on the chromosome condensation and the involvement of Cdc2 kinase, MAP kinase, and histone H3 kinase in this process. The phosphorylation of histone H3 (Ser10) was first detected in the clump of condensed chromosomes at the diakinesis stage and was maintained until metaphase II. The kinase assay showed that histone H3 kinase activity was low in oocytes at the germinal vesicle stage (GV) and increased at the diakinesis stage and that high activity was maintained until metaphase II. Treatment of GV-oocytes with okadaic acid (OA) or calyculin-A (CL-A), the PP1/PP2A inhibitors, induced rapid chromosome condensation with histone H3 (Ser10) phosphorylation after 2 h. Both histone H3 kinase and MAP kinase were activated in the treated oocytes, although Cdc2 kinase was not activated. In the oocytes treated with CL-A and the MEK inhibitor U0126, neither Cdc2 kinase nor MAP kinase were activated and no oocytes underwent germinal vesicle breakdown (GVBD), although histone H3 kinase was still activated and the chromosomes condensed with histone H3 (Ser10) phosphorylation. These results suggest that the phosphorylation of histone H3 (Ser10) occurs in condensed chromosomes during maturation in pig oocytes. Furthermore, the chromosome condensation is correlated with histone H3 kinase activity but not with Cdc2 kinase and MAP kinase activities.
Collapse
Affiliation(s)
- Hong-Thuy Bui
- Department of Life Science, Graduate School of Science and Technology, Kobe University, Rokkodai-cho Nada-ku, Kobe 657-8501, Japan
| | | | | |
Collapse
|
11
|
Detivaud L, Pascreau G, Karaiskou A, Osborne HB, Kubiak JZ. Regulation of EDEN-dependent deadenylation of Aurora A/Eg2-derived mRNA via phosphorylation and dephosphorylation in Xenopus laevis egg extracts. J Cell Sci 2003; 116:2697-705. [PMID: 12746489 DOI: 10.1242/jcs.00477] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Deadenylation is an intimate part of the post-transcriptional regulation of maternal mRNAs in embryos. EDEN-BP is so far the only known member of a complex regulating the deadenylation of maternal mRNA in Xenopus laevis embryos in a manner that is dependent on the 3'-untranslated region called EDEN (embryo deadenylation element). In this report, we show that calcium activation of cell-free extracts triggers EDEN binding protein (EDEN-BP) dephosphorylation and concomitant deadenylation of a chimeric RNA bearing Aurora A/Eg2 EDEN sequence. Deadenylation of mRNA deprived of EDEN sequence (default deadenylation) does not change with egg activation. Kinase and phosphatase inhibitors downregulate EDEN-dependent deadenylation but they do not substantially influence default deadenylation. Using indestructible Delta90 cyclin B to revert interphase extracts to the M-phase, we show that modulation of EDEN-dependent deadenylation is independent of M-phase promoting factor (MPF) activity. These results suggest that the increase in EDEN-dependent deadenylation following egg activation is achieved, at least partially, via dephosphorylation and/or phosphorylation of regulatory proteins, including EDEN-BP dephosphorylation. This regulation proceeds in a manner independent from MPF inactivation.
Collapse
Affiliation(s)
- Lenaick Detivaud
- UMR 6061 CNRS, University of Rennes 1, Faculty of Medicine, 2 Ave. Prof. Léon Bernard, CS 34317, 35043 Rennes Cedex, France
| | | | | | | | | |
Collapse
|
12
|
Swain JE, Wang X, Saunders TL, Dunn R, Smith GD. Specific inhibition of mouse oocyte nuclear protein phosphatase-1 stimulates germinal vesicle breakdown. Mol Reprod Dev 2003; 65:96-103. [PMID: 12658638 DOI: 10.1002/mrd.10258] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Okadaic acid (OA)-induced germinal vesicle breakdown (GVBD) and localization of protein phosphatase-1 (PP1) in oocyte nuclei are suggestive of PP1's role in regulating oocyte GVBD. To explore this possibility, we microinjected protein phosphatase (PP) inhibitors OA, anti-PP1 antibody (anti-PP1), PP1 inhibitor I2, and anti-PP2A antibody (anti-PP2A) into nuclei of roscovitine (ROSC)-arrested mouse oocytes. Oocytes were also injected with recombinant PP1 in the absence of ROSC. Oocytes were assessed for GVBD and metaphase II (MII) development at 2 and 18 hr post-injection. Data were analyzed using Cochran-Mantel-Haenszel Statistics adjusted for time. Microinjection of OA significantly enhanced GVBD in comparison to controls at 2 and 18 hr (P < 0.01), yet had no effect on MII development. Similarly, microinjection of anti-PP1 resulted in significantly higher levels of GVBD compared to controls at 2 and 18 hr (P < 0.01). Interestingly, anti-PP1 microinjection also tended to enhance MII development at 18 hr in comparison to controls (P < 0.09). Microinjection of I2, anti-PP2A, and PP1 had no effect on GVBD or MII development. If reduction of PP1 activity was important for GVBD, one would anticipate an endogenous means of regulating PP1 activity at this developmental stage. In somatic cells, phosphorylation of PP1 at Thr320 causes PP1 inactivation. Germinal vesicle-intact oocytes did not contain phosphorylated PP1, as determined using a specific Thr320-Phospho-PP1 antibody, Western blot analysis, and confocal immunocytochemistry. At or around the time of GVBD, oocyte PP1 became phosphorylated at Thr320, which remained phosphorylated through MII development. These data indicate that inhibition of intra-nuclear PP1, through specific antibody neutralization, mimics OA-stimulated GVBD, providing the first direct evidence that nuclear PP1 is involved in regulation of oocyte nuclear membrane integrity. In addition, phosphorylation of PP1 occurs at/or around GVBD indicating that inactivation of PP1 is an important intracellular event in regulation of nuclear envelope dissolution at GVBD.
Collapse
Affiliation(s)
- Jason E Swain
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, USA
| | | | | | | | | |
Collapse
|
13
|
Sun QY, Wu GM, Lai L, Bonk A, Cabot R, Park KW, Day BN, Prather RS, Schatten H. Regulation of mitogen-activated protein kinase phosphorylation, microtubule organization, chromatin behavior, and cell cycle progression by protein phosphatases during pig oocyte maturation and fertilization in vitro. Biol Reprod 2002; 66:580-8. [PMID: 11870061 DOI: 10.1095/biolreprod66.3.580] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
We used okadaic acid (OA), a potent inhibitor of protein phosphatases 1 and 2A, to study the regulatory effects of protein phosphatases on mitogen-activated protein (MAP) kinase phosphorylation, morphological changes in the nucleus, and microtubule assembly during pig oocyte maturation and fertilization in vitro. When germinal vesicle (GV) stage oocytes were exposed to OA, MAP kinase phosphorylation was greatly accelerated, being fully activated at 10 min. However, MAP kinase was dephosphorylated by long-term (>20 h) exposure to OA. Correspondingly, premature chromosome condensation and GV breakdown were accelerated, whereas meiotic spindle assembly and meiotic progression beyond metaphase I stage were inhibited. OA also quickly reversed the inhibitory effects of butyrolactone I, a specific inhibitor of maturation-promoting factor (MPF), on MAP kinase phosphorylation and meiosis resumption. Treatment of metaphase II oocytes triggered metaphase II spindle elongation and disassembly as well as chromosome alignment disruption. OA treatment of fertilized eggs resulted in prompt phosphorylation of MAP kinase, disassembly of microtubules around the pronuclear area, chromatin condensation, and pronuclear membrane breakdown, but inhibited further cleavage. Our results suggest that inhibition of protein phosphatases promptly phosphorylates MAP kinase, induces premature chromosome condensation and meiosis resumption as well as pronucleus breakdown, but inhibits spindle organization and suppresses microtubule assembly by sperm centrosomes in pig oocytes and fertilized eggs.
Collapse
Affiliation(s)
- Qing-Yuan Sun
- Department of Veterinary Pathobiology, University of Missouri-Columbia, Columbia, Missouri 65211, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Palmer A, Nebreda AR. The activation of MAP kinase and p34cdc2/cyclin B during the meiotic maturation of Xenopus oocytes. PROGRESS IN CELL CYCLE RESEARCH 2000; 4:131-43. [PMID: 10740821 DOI: 10.1007/978-1-4615-4253-7_12] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
G2-arrested Xenopus oocytes are induced to enter M-phase of meiosis by progesterone stimulation. This process, known as meiotic maturation, requires the activation of p34cdc2/cyclin B complexes (pre-MPF) which is brought about by the prior translation of specific maternal mRNAs stored in the oocyte. One of these mRNAs encodes for the protein kinase Mos which has an essential role in oocyte maturation, most likely due to its ability to activate MAP kinase (MAPK). Here we review our current knowledge on the Mos/MAPK signalling pathway and a recently found connection between MAPK-activated p90rsk and the p34cdc2 inhibitory kinase Myt1. We also discuss a pathway that involves the protein kinase Plx1 and leads to the activation of the phosphatase Cdc25, as well as other regulators of p34cdc2/cyclin B activity which may have a role in oocyte maturation.
Collapse
Affiliation(s)
- A Palmer
- European Molecular Biology Laboratory, Heidelberg, Germany
| | | |
Collapse
|
15
|
Frank-Vaillant M, Jessus C, Ozon R, Maller JL, Haccard O. Two distinct mechanisms control the accumulation of cyclin B1 and Mos in Xenopus oocytes in response to progesterone. Mol Biol Cell 1999; 10:3279-88. [PMID: 10512866 PMCID: PMC25591 DOI: 10.1091/mbc.10.10.3279] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Progesterone-induced meiotic maturation of Xenopus oocytes requires the synthesis of new proteins, such as Mos and cyclin B. Synthesis of Mos is thought to be necessary and sufficient for meiotic maturation; however, it has recently been proposed that newly synthesized proteins binding to p34(cdc2) could be involved in a signaling pathway that triggers the activation of maturation-promoting factor. We focused our attention on cyclin B proteins because they are synthesized in response to progesterone, they bind to p34(cdc2), and their microinjection into resting oocytes induces meiotic maturation. We investigated cyclin B accumulation in response to progesterone in the absence of maturation-promoting factor-induced feedback. We report here that the cdk inhibitor p21(cip1), when microinjected into immature Xenopus oocytes, blocks germinal vesicle breakdown induced by progesterone, by maturation-promoting factor transfer, or by injection of okadaic acid. After microinjection of p21(cip1), progesterone fails to induce the activation of MAPK or p34(cdc2), and Mos does not accumulate. In contrast, the level of cyclin B1 increases normally in a manner dependent on down-regulation of cAMP-dependent protein kinase but independent of cap-ribose methylation of mRNA.
Collapse
Affiliation(s)
- M Frank-Vaillant
- Laboratoire de Physiologie de la Reproduction, Centre National de la Recherche Scientifique, Université Pierre et Marie Curie, Paris 05, France
| | | | | | | | | |
Collapse
|
16
|
Nogami A, Mineyuki Y. Loosening of a Preprophase Band of Microtubules in Onion (Allium cepa L.) Root Tip Cells by Kinase Inhibitors. Cell Struct Funct 1999; 24:419-24. [PMID: 15216900 DOI: 10.1247/csf.24.419] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Effects of kinase inhibitors on the preprophase band of microtubules in onion (Allium cepa L.) root tip cells were examined. Bundled microtubules in preprophase bands were dispersed on the cell cortex when onion seedlings were incubated with 2.5-5.0 mM 6-dimethylaminopurine. Fifteen min was enough for the bundled microtubules to disappear. Although many preprophase bands remained when the seedlings were incubated with 60 microM staurosporin, these preprophase band microtubules were loosened and the width of the band became broad. These results sugget that some kinases are involved in the microtubule bundling in the preprophase band development.
Collapse
Affiliation(s)
- A Nogami
- Department of Biological Science, Faculty of Science, Hiroshima University, Kagamiyama 1-3-1, Higashi-Hiroshima 739-8526, Japan
| | | |
Collapse
|
17
|
|
18
|
Abstract
Okadaic acid (OA) enhances the resumption of meiosis in mouse oocytes, indicating that serine/threonine protein phosphatase-1 (PP1) and/or PP2A is involved. However, specific identification of PP1 and/or PP2A in mouse oocytes has not been reported. Here we demonstrate that fully grown germinal vesicle-intact (GVI) mouse oocytes contain mRNA corresponding to two isotypes of PP1, PP1alpha and PP1gamma. In addition, the transcript for PP2A was also present. At the protein level only PP1alpha and PP2A were recognized in fully grown GVI oocytes by Western blot analysis. Neither of the PP1gamma spliced variant proteins, PP1gamma1 and PP1gamma2, was detectable. Immunohistochemical analysis of ovarian tissue from gonadotropin-stimulated adult mice resulted in subcellular localization of both PP1alpha and PP2A, but not PP1gamma, in oocytes from all stages of folliculogenesis. In primordial oocytes, PP1alpha and PP2A were present in the cytoplasm. In more advanced stages of oogenesis, PP1alpha, although still present in the cytoplasm, was highly concentrated in the nucleus, whereas PP2A was predominantly cytoplasmic with a distinct reduction in the nuclear area. Both PP1alpha and PP2A were immunodetectable in oocytes during the prepubertal period. Eleven-day-old mouse oocytes, considered OA-insensitive and germinal vesicle breakdown (GVB)-incompetent, displayed both PP1alpha and PP2A predominantly in the cytoplasm. By 15 days of age mouse oocytes, which are beginning to acquire OA sensitivity and GVB competence, showed a relocation of PP1alpha into the nucleoplasm while PP2A remained predominantly cytoplasmic. This is the first specific identification of PP1alpha and PP2A in mouse oocytes. The differential localization of PP1alpha and PP2A, in addition to the relocation of PP1alpha during the acquisition of meiotic competence, suggests that these PPs have distinct regulatory roles during the resumption of meiosis.
Collapse
Affiliation(s)
- G D Smith
- Department of Obstetrics and Gynecology, The University of Chicago, Chicago, Illinois, 60637, USA.
| | | | | | | |
Collapse
|
19
|
Karaïskou A, Cayla X, Haccard O, Jessus C, Ozon R. MPF amplification in Xenopus oocyte extracts depends on a two-step activation of cdc25 phosphatase. Exp Cell Res 1998; 244:491-500. [PMID: 9806800 DOI: 10.1006/excr.1998.4220] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The activation of Cdc2 kinase induces the entry into M-phase of all eukaryotic cells. We have developed a cell-free system prepared from prophase-arrested Xenopus oocytes to analyze the mechanism initiating the all-or-none activation of Cdc2 kinase. Inhibition of phosphatase 2A, the major okadaic acid-sensitive Ser/Thr phosphatase, in these extracts, provokes Cdc2 kinase amplification and concomitant hyperphosphorylation of Cdc25 phosphatase, with a lag of about 1 h. Polo-like kinase (Plx1 kinase) is activated slightly after Cdc2. All these events are totally inhibited by the cdk inhibitor p21(Cip1), demonstrating that Plx1 kinase activation depends on Cdc2 kinase activity. Addition of a threshold level of recombinant Cdc25 induces a linear activation of Cdc2 and Plx1 kinases and a partial phosphorylation of Cdc25. We propose that the Cdc2 positive feedback loop involves two successive phosphorylation steps of Cdc25 phosphatase: the first one is catalyzed by Cdc2 kinase and/or Plx1 kinase but it does not modify Cdc25 enzymatic activity, the second one requires a new kinase counteracted by phosphatase 2A. Furthermore we demonstrate that, under our conditions, Cdc2 amplification and MAP kinase activation are two independent events.
Collapse
Affiliation(s)
- A Karaïskou
- Laboratoire de Physiologie de la Reproduction, INRA/URA-CNRS 1449, Université Pierre et Marie Curie, Boîte 13, 4 place Jussieu, Paris cedex 05, 75252, France
| | | | | | | | | |
Collapse
|
20
|
Tatemoto H, Terada T. Involvement of cumulus cells stimulated by FSH in chromatin condensation and the activation of maturation-promoting factor in bovine oocytes. Theriogenology 1998; 49:1007-20. [PMID: 10732108 DOI: 10.1016/s0093-691x(98)00049-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
The effects of FSH-stimulated cumulus cells on the regulatory mechanisms of chromatin condensation and maturation-promoting factor (MPF) activation around the time of germinal vesicle breakdown (GVBD) in bovine oocytes were examined. Chromatin condensation occurred in oocytes arrested at the germinal vesicle (GV) stage by protein synthesis inhibitor, cycloheximide, but this condensation was blocked by FSH-stimulated cumulus cells. However, treatment with cyclic AMP (cAMP)-dependent protein kinase inhibitor, H-8, dramatically increased the proportion of oocytes possessing GVs with condensed bivalents. Under the condition of inhibited protein synthesis, the phosphorylation form of p34cdc2 kinase was not changed due to chromatin condensation, although the activity of histone H1 kinase was significantly increased compared with that of oocytes possessing GVs with filamentous bivalents. The cycloheximide-dependent GVBD block was overcome by okadaic acid (OA) in 48 and 13% of the oocytes in the absence and presence of FSH, respectively. An initial 6-h culture period critical for protein synthesis was necessary for OA to counteract the inhibitory effect exerted by cycloheximide on the induction of GVBD and activation of histone H1 kinase in the absence of FSH, whereas this first culture period was prolonged for 2 h in the presence of FSH. Furthermore, even in FSH-stimulated oocytes, H-8 facilitated an OA-counteracted overcome of the cycloheximide-dependent GVBD block after 2 h of initial culture for protein synthesis. From these results, it is concluded that cAMP-dependent protein kinase activity regulated by cumulus cells following FSH-stimulation requests plays a role in the complex mechanism of chromatin condensation and MPF activation leading to meiotic resumption in bovine oocytes.
Collapse
Affiliation(s)
- H Tatemoto
- Department of Bioresources, Hiroshima Prefectural University, Shobara, Japan
| | | |
Collapse
|
21
|
Sawai T. Effect of protein phosphatase inhibitors on cleavage furrow formation in newt eggs: inhibition of normal furrow formation and concomitant induction of furrow-like dents. Dev Growth Differ 1997; 39:235-42. [PMID: 9108337 DOI: 10.1046/j.1440-169x.1997.t01-1-00012.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The effects of three protein phosphatase inhibitors, okadaic acid, calyculin A and tautomycin, on the formation of cleavage furrows and the induction of furrow-like dents in the egg of the newt, Cynops pyrrhogaster, were examined. Solutions of the individual compound were injected into the animal hemisphere of one of the two presumptive blastomere regions of the embryo during the first cleavage. Injection of a solution containing any of the chemicals often disturbed the formation of a normal furrow in the injected blastomere at second cleavage. Injection with okadaic acid or calyculin A often induced furrow-like dents on the surface of the injected blastomere at the same time as second cleavage in control embryos, while that with tautomycin usually did not induce them. In an injected blastomere, formation of dents started in the animal half and moved towards the vegetal half as the furrow in its counterpart blastomere extended from the animal half towards the vegetal. Dents gradually became slightly deeper and formed cytoplasmic projections that later degenerated, leaving a surface scar. Cytological observations on blastomeres injected with calyculin A revealed that nuclear division occurred normally.
Collapse
Affiliation(s)
- T Sawai
- Department of Biology, Faculty of Science, Yamagata University, Japan
| |
Collapse
|
22
|
Grocholová R, Petr J, Rozinek J, Jílek F. The protein phosphatase inhibitor okadaic acid inhibits exit from metaphase II in parthenogenetically activated pig oocytes. ACTA ACUST UNITED AC 1997. [DOI: 10.1002/(sici)1097-010x(19970101)277:1<49::aid-jez5>3.0.co;2-b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
23
|
Tatemoto H, Terada T. Involvement of cyclic AMP-dependent protein kinase in chromatin condensation before germinal vesicle breakdown in bovine oocytes. Anim Reprod Sci 1996. [DOI: 10.1016/0378-4320(96)01541-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
24
|
Tatemoto H, Terada T. Activation of p34cdc2 kinase around the meiotic resumption in bovine oocytes cultured in vitro. Theriogenology 1996; 45:427-37. [PMID: 16727806 DOI: 10.1016/0093-691x(95)00379-m] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/1995] [Accepted: 08/08/1995] [Indexed: 11/13/2022]
Abstract
The p34(cdc2) kinase has been identified as a protein factor that is a regulator of meiotic maturation in mammalian oocytes. To investigate the regulatory function of the meiotic resumption in bovine oocytes cultured in vitro, the changes in the phosphorylation states of p34(cdc2) kinase and the histone H1 kinase activity were examined around germinal vesicle breakdown (GVBD). All bovine oocytes just after isolation from their follicles were arrested at the germinal vesicle (GV) stage, and these extracts exhibited two (upper and lower) bands of p34(cdc2) kinase on SDS-PAGE followed by immunoblotting with an antibody against C-terminal peptide of p34(cdc2). When these oocytes were cultured for 24 h in a medium supplemented with 100 microg/ml genistein, tyrosine phosphorylation inhibitor, GVBD was induced in 85% of oocytes, indicating that the upper band of p34(cdc2) kinase in bovine oocytes at the GV stage was already fully phosphorylated tyrosine residue prior to culture. Another (middle) band of p34(cdc2) kinase between the upper and lower bands appeared in the extracts of the oocytes cultured for 4 h, and significant activation of the histone H1 kinase was found in these oocytes (67 +/- 18 fmol/h/oocyte) as compared to that in oocytes cultured for 0 h (46 +/- 11 fmol/h/oocyte). The staining intensity of the middle band and the activity of the histone H1 kinase were further increased after the initiation of GVBD at 6 h of culture, but the quantitative changes of upper and lower bands were not detected throughout the 12 h of culture. Thus, it is concluded that the dephosphorylation of p34(cdc2) kinase followed by activation of the histone H1 kinase after the onset of culture plays a key role in the resumption of meiosis in bovine oocytes.
Collapse
Affiliation(s)
- H Tatemoto
- Department of Bioresources, Hiroshima Prefectural University Shobara, Hiroshima 727, Japan
| | | |
Collapse
|
25
|
Tatemoto H, Horiuchi T. Requirement for protein synthesis during the onset of meiosis in bovine oocytes and its involvement in the autocatalytic amplification of maturation-promoting factor. Mol Reprod Dev 1995; 41:47-53. [PMID: 7619505 DOI: 10.1002/mrd.1080410108] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The present study was carried out using the method of electrofusion, or treatment with okadaic acid (OA), to determine whether protein synthesis at the onset of culture was required for the meiotic resumption of bovine follicular oocytes. Germinal vesicle breakdown (GVBD) occurred in bovine oocytes at 6 hr after separation from their follicles in vitro. Following this, immature germinal vesicle (GV) oocytes, preincubated for 0, 2, 4, and 6 hr, were fused to mature oocytes. When immature oocytes, preincubated for 0 hr, were fused to mature oocytes and then cultured for 3 hr in basic medium, GVBD was observed in all fused cells, whereas in the case of cultivation in medium supplemented with the protein synthesis inhibitor (25 micrograms/ml cycloheximide; CX), 39% of the fused cells possessed an intact GV within their cytoplasm. In immature oocytes preincubated for 4 or 6 hr, however, this proportion was significantly reduced to 7% and 4%, respectively, without protein synthesis after fusion. In addition, the CX-dependent block of GVBD could be overcome in only 13% of bovine follicular oocytes by the addition of 2 microM OA, although 51% of oocytes which synthesized the protein during the first 6 hr of culture induced GVBD in subsequent culture with CX plus OA. Thus, we conclude that the initiation of GVBD in bovine oocytes requires protein synthesized at the onset of meiosis, which is related to the autocatalytic amplification of the maturation-promoting factor.
Collapse
Affiliation(s)
- H Tatemoto
- Department of Bioresources, Hiroshima Prefectural University, Japan
| | | |
Collapse
|
26
|
Giese G, Wiegers W, Kubbies M, Scherbarth A, Traub P. Okadaic acid Co-induces vimentin expression and cell cycle arrest in MPC-11 mouse plasmacytoma cells. J Cell Physiol 1995; 163:145-54. [PMID: 7896891 DOI: 10.1002/jcp.1041630117] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The effect of the tumor promoter okadaic acid on cell cycle progression and on vimentin expression in MPC-11 mouse plasmacytoma cells was compared with that of the tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA). Cell cycle progression of asynchronously grown MPC-11 cells was inhibited by both agents, but, in contrast to the G1 phase arrest caused by TPA, okadaic acid gave rise to G2/M phase and S phase arrest. This effect of okadaic acid was delayed significantly compared to the TPA-caused arrest. Furthermore, okadaic acid was able to induce vimentin expression to an extent comparable to the TPA response. However, vimentin expression was markedly delayed in okadaic acid-treated relative to TPA-treated cells. Another protein phosphatase inhibitor, calyculin A, also induced cell cycle changes and vimentin expression at concentrations at or above 1 x 10(-9) M. Based on these observations, we suggest an involvement of protein phosphatase 1 (possibly also phosphatase 2A and/or other phosphatases) in both the G2/M cell cycle block and the induction of vimentin expression in MPC-11 cells by okadaic acid.
Collapse
Affiliation(s)
- G Giese
- Max-Planck-Institut für Zellbiologie, Ladenburg, Germany
| | | | | | | | | |
Collapse
|
27
|
Jacquet P, de Saint-Georges L, Barrio S, Baugnet-Mahieu L. Morphological effects of caffeine, okadaic acid and genistein in one-cell mouse embryos blocked in G2 by X-irradiation. Int J Radiat Biol 1995; 67:347-58. [PMID: 7897283 DOI: 10.1080/09553009514550401] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
One-cell mouse embryos of the Balb/c strain normally divide at 18.5 h p.c. (post conception), but they suffer an extremely long G2 arrest when irradiated with 2 Gy X-rays 8 h p.c. at the early pronuclear stage. This could be an indirect effect of radiation on tyrosine dephosphorylation of the p34cdc2 subunit of a maturation or mitosis promoting factor (MPF), which normally occurs at the end of G2. This, in turn, would maintain MPF in an inactivated form and block entry into mitosis. Preliminary studies were undertaken at the morphological level to assess indirectly the validity of this hypothesis. For this purpose, irradiated and control embryos were exposed to different compounds, which are known to interfere, directly or indirectly, with the state of phosphorylation/dephosphorylation of p34cdc2. Caffeine (CAF; 2 mM) did not affect the time of first division of control embryos, but it completely suppressed the radiation-induced G2 arrest of embryos exposed to this compound from 17 h p.c., i.e. 1.5 h before the normal time of first cleavage. Under the same conditions, okadaic acid (OA; 3 microM), a specific inhibitor of phosphatases I and IIA, induced a rapid pronuclear membrane breakdown and a block of all control and irradiated embryos at metaphase. Genistein (GEN; 92 or 185 microM). A potent inhibitor of tyrosine kinases, increased the radiation-induced G2 arrest and even induced a dose-dependent G2 arrest in the control embryos. Embryos were exposed at different times following irradiation to a mixture of either CAF (2 or 5 mM) or OA (3 or 10 microM), and cycloheximide (CH; 5 micrograms/ml), a potent protein synthesis inhibitor. Reversion of G2-arrest by CAF was still seen in embryos exposed to CAF+CH from 17 h p.c. However, the proportion of irradiated embryos eventually able to cleave was lower than that obtained under the conditions of exposure to CAF alone. Embryos exposed to CAF+CH before 17 h p.c. were not able to cleave, regardless of the concentration of CAF used. Nuclear envelope breakdown still occurred in 100% control and irradiated embryos, following exposure to 3 microM OA+CH from 10 h p.c., or to 10 microM OA+CH from 8.5 p.c.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- P Jacquet
- Laboratory of Radiobiology, Department of Radioprotection, Mol, Belgium
| | | | | | | |
Collapse
|
28
|
Hampl A, Eppig JJ. Translational regulation of the gradual increase in histone H1 kinase activity in maturing mouse oocytes. Mol Reprod Dev 1995; 40:9-15. [PMID: 7702874 DOI: 10.1002/mrd.1080400103] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In maturing mouse oocytes, p34cdc2-associated histone H1 kinase activity gradually increases until it reaches its maximum at metaphase I (Choi et al., 1991: Development 113:789-795). In this study, treatment of oocytes with cycloheximide resulted in a failure to increase the level of histone H1 activity above that detected at approximately the time of germinal vesicle breakdown (GVB), which is approximately 20-30% of the level normally achieved at metaphase I. Cyclin B was detected in GV-stage oocytes, but there was a 2-2.5-fold increase in the amount of cyclin B in maturing oocytes from GV-stage to metaphase I and a burst of cyclin B synthesis during the first 3 hr of maturation. Okadaic acid-treatment of mouse oocytes did not accelerate activation of histone H1 kinase but rather arrested its activity at the same level observed in cycloheximide-treated oocytes. Thus the components of the p34cdc2 kinase activating system in mouse oocytes are apparently not present in GV-stage oocytes in an amount or configuration that would allow maximum kinase activation when meiosis is reinitiated by okadaic acid. Importantly, okadaic acid-treatment dramatically inhibited protein synthesis. Therefore, the inhibition of protein synthesis by okadaic acid probably abrogates the possibility of de novo synthesis of the regulators of p34cdc2 kinase required to drive its activity to the maximum level normally achieved by metaphase I. It is concluded that there is a critical point in driving the continued activation of histone H1 kinase that occurs at approximately the time of GVB. Progression beyond this point requires de novo protein synthesis.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- A Hampl
- Jackson Laboratory, Bar Harbor, ME 04609
| | | |
Collapse
|
29
|
Abstract
Growing pig oocytes (< or = 90 microns in diameter) are unable to resume meiosis in vitro. The objective of our present experiments has been to identify the reasons for meiotic competence in these cells. By comparing histone H1 kinase activity in growing and fully grown oocytes we demonstrate that incompetence is associated with an inability to activate H1 kinase in growing oocytes. Immunoblotting was used to determine whether this kinase inactivity resulted from a lack of either p34cdc2 protein or B-type cyclin. The results established that each of these cell cycle molecules are present in comparable amounts in both growing and fully grown oocytes. In the third series of studies experiments were carried out in an attempt to induce p34cdc2 activation during growth. Treatment with okadaic acid, an inhibitor of phosphatase 1 and 2A known to stimulate and accelerate the transition into M-phase of the meiotic cycle in a number of different species, was able to induce p34cdc2 kinase activity and facilitated the G2- to M-phase in growing oocytes. We conclude that although growing oocytes in pigs have sufficient key cell cycle components for the G2 to M transition, they remain incapable of converting these components to active maturation-promoting factor (MPF) until growth is virtually completed. Inhibition of phosphatase 1 or 2A induces the formation of active MPF during growth by an as yet unidentified pathway.
Collapse
Affiliation(s)
- L Christmann
- Department of Development and Signalling, AFRC Babraham Institute, Cambridge, England
| | | | | |
Collapse
|
30
|
de Vantéry C, Schorderet-Slatkine S, Droin A. A Xenopus maternal effect mutant gene affects oocyte meiotic reinitiation and fertilization. THE JOURNAL OF EXPERIMENTAL ZOOLOGY 1994; 268:410-9. [PMID: 8158102 DOI: 10.1002/jez.1402680510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
No cleavage (nc) is a maternal effect mutant gene, recessive and sex limited. It affects the eggs laid by homozygous mutant females, independently of the male genotype. Contrary to normal oocytes, following germinal vesicle breakdown (GVBD) during maturation, the transient microtubular array (TMA) is not formed, nor are the meiotic spindles. Cytoplasmic asters with condensed chromosomes are present in the majority of oocytes, as well as microtubular bundles and sometimes cytoplasmic spindle-like asters. These mature oocytes exhibit a disturbance in yolk platelet arrangements. The white spot is rather irregular, and the maturation period is longer than normal. Transfers of cytoplasm from nc mature oocytes into normal stage VI oocytes resulted in abnormal maturation of the normal oocytes. Reciprocal transfers (cytoplasm from normal mature oocytes into nc stage VI oocytes) induce the formation of spindles, usually cytoplasmic; this indicates that the deficiency can be partly rescued. Following fertilization, the nc eggs show neither contraction nor rotation; polyspermy is present in the majority of cases. Even in the same egg, simultaneous spindles and nuclei can be observed, revealing a disturbance in the spatial localization of regulators of the cell cycle. Cytokinesis never occurs. Polyspermy results from the absence of cortical reaction following sperm entry. However, when mature nc oocytes are treated with PMA, they show cortical granule exocytosis and the formation of an altered vitelline envelope. The different factors possibly involved in these anomalies are discussed in relation to cytoarchitectural disorganization of the cell and abnormal cell cycle regulation.
Collapse
Affiliation(s)
- C de Vantéry
- Département de Gynécologie et d'Obstétrique, Hôpital Cantonal Universitaire de Genève, Switzerland
| | | | | |
Collapse
|
31
|
Paulson JR, Ciesielski WA, Schram BR, Mesner PW. Okadaic acid induces dephosphorylation of histone H1 in metaphase-arrested HeLa cells. J Cell Sci 1994; 107 ( Pt 1):267-73. [PMID: 8175913 DOI: 10.1242/jcs.107.1.267] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It is shown here that treatment of metaphase-arrested HeLa cells with okadaic acid (0.15-2.5 microM) leads to dephosphorylation of histone H1. This effect is presumably due to the specific ability of okadaic acid to inhibit protein phosphatases 1 and/or 2A, because okadaic acid tetraacetate, which is not a phosphatase inhibitor, has no effect. Dephosphorylation of H1 does not occur if okadaic acid-treated cells are simultaneously treated with 20 nM calyculin A, or if the okadaic acid concentration is 5.0 microM or greater. The mechanism behind this phenomenon is not known. However, the results suggest that the chain of events leading to histone dephosphorylation may be negatively controlled by a protein phosphatase 2A, while the phosphatase which actually dephosphorylates H1 could be a protein phosphatase 1. It remains to be determined whether the phosphatase involved here is the same enzyme as that which dephosphorylates H1 at the end of normal mitosis.
Collapse
Affiliation(s)
- J R Paulson
- Department of Chemistry, University of Wisconsin-Oshkosh 54901
| | | | | | | |
Collapse
|
32
|
St-Pierre J, Vincent M, Dufresne L. Effects of 6-dimethylaminopurine on the length of the cell cycle and on the state of phosphorylation of putative intermediate filament proteins in sea urchin embryos. CELL MOTILITY AND THE CYTOSKELETON 1994; 29:131-40. [PMID: 7820863 DOI: 10.1002/cm.970290205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The effects of 6-dimethylaminopurine (6-DMAP) on the length of the cell cycle and on the state of phosphorylation of a putative intermediate filament protein, p117, have been studied in sea urchin embryos. Embryos were transferred into sea water containing 600 microM 6-DMAP at 0.5, 2 or 5 min after insemination, and incubated for 30 or 90 min. The effects of 6-DMAP on cell cycle length were studied by determining the time required for completion of mitosis upon return of the embryos in normal sea water. In all instances, except for the embryos transferred 0.5 min after insemination (AI) and incubated for 30 min, the duration of the M phase was shortened compared to controls, being faster in the embryos incubated for 90 minutes compared to the 30 min incubation period. However, embryos transferred 0.5 min AI have a longer M-phase than those transferred 2 minutes or later after fertilization, suggesting that between 0.5 and 2 min after fertilization, critical phosphorylating events occur which affect the commitment of the cells to enter M-phase. To study the pattern of p117 phosphorylation during the cell cycle, the eggs were transferred 2 minutes after fertilization in presence of 600 microM 6-DMAP and with 200 microCi/ml of 32P-orthophosphate. Analyses of 32P-labelled proteins after exposure of SDS-PAGE gels and their corresponding blots suggested that phosphorylation of p117 greatly increases at the time of pronuclear fusion, and then declines slightly at prophase-metaphase. This decrease is markedly enhanced when the cells are treated with 6-DMAP during metaphase in order to induce a premature breakdown of the mitotic apparatus. A causal link is suggested between the level of phosphorylation of p117 and its state of assembly.
Collapse
|
33
|
Dyban AP, De Sutter P, Verlinsky Y. Okadaic acid induces premature chromosome condensation reflecting the cell cycle progression in one-cell stage mouse embryos. Mol Reprod Dev 1993; 34:402-15. [PMID: 8385966 DOI: 10.1002/mrd.1080340409] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Haploid parthenogenetic embryos as well as fertilized mouse eggs were treated in vitro with 1-10 microM okadaic acid (OA) at the one-cell stage. Cytogenetic analysis detected that OA induces nuclear envelope breakdown (NEBD) and premature condensation of interphase chromosomes in pronuclei as well as in 2nd polar body (PB) nuclei. G1-, S-, and G2-type prematurely condensed chromosomes (PCC) were found in pronuclei of embryos of different age, which reflects their progression through the first cell cycle. In nuclei from 2nd PBs only G1- and S-type PCC were observed. Using the types of PCC as a criterion of different phases of the cell cycle, it was possible to estimate that in haploid parthenogenetic embryos G1-phase lasts until 5.5 hr post activation (hpa), S-phase takes from 4.5 to 9.5 hpa, and from 8.5 hpa G2-phase had started. Second PBs were found to be in G1-phase until 6.5 hpa and S-phase started in some as early as 5.5 hpa, but in most not before 7.5 hpa. Treatment with OA visualizes G1-chromosomes in pronuclei as well as in 2nd PBs, and it is easy to count the number of these chromosomes and recognize a T6 marker chromosome. The possibility to apply cytogenetic analysis of G1-chromosomes from 2nd PBs for a more accurate detection of maternal meiotic nondisjunction is discussed.
Collapse
Affiliation(s)
- A P Dyban
- Reproductive Genetics Institute, Illinois Masonic Medical Center, Chicago 60657
| | | | | |
Collapse
|
34
|
Affiliation(s)
- D Wickramasinghe
- Department of Anatomy and Cellular Biology, Tufts University Schools of Medicine, Boston, Massachusetts 02111
| | | |
Collapse
|
35
|
Plancha CE, Albertini DF. Protein synthesis requirements during resumption of meiosis in the hamster oocyte: early nuclear and microtubule configurations. Mol Reprod Dev 1992; 33:324-32. [PMID: 1449799 DOI: 10.1002/mrd.1080330314] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The organization of chromatin and cytoplasmic microtubules changes abruptly at M-phase entry in both mitotic and meiotic cell cycles. To determine whether the early nuclear and cytoplasmic events associated with meiotic resumption are dependent on protein synthesis, cumulus-enclosed hamster oocytes were cultured in the presence of 100 micrograms/ml puromycin or cycloheximide for 5 hr. Both control (untreated) and treated oocytes were analyzed by fluorescence microscopy after staining with Hoechst 33258 and tubulin antibodies. Freshly isolated oocytes exhibit prominent nucleoli and diffuse chromatin within the germinal vesicle as well as an interphase network of cytoplasmic microtubules. After 4-4.5 hr in culture, most oocytes were in prometaphase I of meiosis as characterized by a prominent spindle with fully condensed chromosomes and numerous cytoplasmic asters. After 5-5.5 hr in culture, microtubule asters are no longer detected in most cells, and the spindle is the only tubulin-positive structure. Incubation for 5 hr in the presence of inhibitors does not impair germinal vesicle breakdown, chromatin condensation, kinetochore microtubule assembly, or cytoplasmic aster formation in the majority of oocytes examined; however, under these conditions, a population of oocytes retains a germinal vesicle, exhibiting variable degrees of chromatin condensation and cytoplasmic aster formation. Meiotic spindle formation is inhibited in all oocytes. These effects are fully reversible upon culture of treated oocytes in drug-free medium for 5 hr. The data indicate that meiotic spindle assembly is dependent on ongoing protein synthesis in the cumulus-enclosed hamster oocyte; in contrast, chromatin condensation and aster formation are not as sensitive to protein synthesis inhibitors during meiotic resumption.
Collapse
Affiliation(s)
- C E Plancha
- Department of Anatomy and Cellular Biology, Tufts University Health Science Schools, Boston, Massachusetts
| | | |
Collapse
|
36
|
Ghosh S, Paweletz N, Schroeter D. Failure of kinetochore development and mitotic spindle formation in okadaic acid-induced premature mitosis in HeLa cells. Exp Cell Res 1992; 201:535-40. [PMID: 1639147 DOI: 10.1016/0014-4827(92)90307-t] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The mitotic events associated with okadaic acid (OA)-induced premature chromosome condensation (PCC) in S-phase-blocked HeLa cells were studied at the light microscope, immunofluorescence, and electron microscope level. The development of PCC in these cells has been compared with that in multinucleate cells and also in uninucleate hamster cells induced by caffeine. In OA-induced PCC, the nuclear envelope breaks down and chromosomes condense, but the mitotic spindle and trilaminar kinetochores fail to develop. In S-phase PCC in multinucleate cells, only the mitotic spindle does not develop, whereas in caffeine-induced PCC, all these events are found to be associated. The possible difference in their pathways of induction and, in this connection, the dissociability of the early mitotic events have been discussed.
Collapse
Affiliation(s)
- S Ghosh
- Institute of Cell and Tumor Biology, German Cancer Research Center, Heidelberg
| | | | | |
Collapse
|
37
|
Downs SM, Buccione R, Eppig JJ. Modulation of meiotic arrest in mouse oocytes by guanyl nucleotides and modifiers of G-proteins. THE JOURNAL OF EXPERIMENTAL ZOOLOGY 1992; 262:391-404. [PMID: 1320658 DOI: 10.1002/jez.1402620405] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Guanyl nucleotide binding-proteins, or G-proteins, are ubiquitous molecules that are involved in cellular signal transduction mechanisms. Because a role has been established for cAMP in meiosis and G-proteins participate in cAMP-generating systems by stimulating or inhibiting adenylate cyclase, the present study was conducted to examine the possible involvement of G-proteins in the resumption of meiotic maturation. Cumulus cell-free mouse oocytes (denuded oocytes) were maintained in meiotic arrest in a transient and dose-dependent manner when microinjected with the nonhydrolyzable GTP analog, GTP gamma S. This effect was specific for GTP gamma S, because GppNHp, GTP, and ATP gamma S were without effect. Three compounds, known to interact with G-proteins, were tested for their ability to modulate meiotic maturation: pertussis toxin, cholera toxin, and aluminum fluoride (AlF4-). Pertussis toxin had little effect on maturation in either cumulus cell-enclosed oocytes or denuded oocytes when meiotic arrest was maintained with dibutyryl cAMP (dbcAMP) or hypoxanthine. Cholera toxin stimulated germinal vesicle breakdown (GVB) in cumulus cell-enclosed oocytes during long-term culture, but its action was inhibitory in denuded oocytes. AlF4- stimulated GVB in both cumulus cell-enclosed oocytes and denuded oocytes when meiotic arrest was maintained with hypoxanthine but was much less effective in dbcAMP-arrested oocytes. In addition, AlF4- abrogated the inhibitory action of cholera toxin in denuded oocytes and also that of follicle-stimulating hormone (FSH) in cumulus cell-enclosed oocytes. Cholera toxin or FSH alone each stimulated the synthesis of cAMP in oocyte-cumulus cell complexes, whereas pertussis toxin or AlF4- alone were without effect. Both cholera toxin and AlF4- augmented the stimulatory action of FSH on cAMP. These data suggest the involvement of guanyl nucleotides and G-proteins in the regulation of GVB, although different G-proteins and mediators may be involved at the oocyte and cumulus cell levels. Cholera toxin most likely acts by ADP ribosylation of the alpha subunit of Gs and increased generation of cAMP, whereas AlF4- appears to act by antagonizing a cAMP-dependent step.
Collapse
Affiliation(s)
- S M Downs
- Biology Department, Marquette University, Milwaukee, Wisconsin 53233
| | | | | |
Collapse
|
38
|
Agostinis P, Derua R, Sarno S, Goris J, Merlevede W. Specificity of the polycation-stimulated (type-2A) and ATP,Mg-dependent (type-1) protein phosphatases toward substrates phosphorylated by P34cdc2 kinase. EUROPEAN JOURNAL OF BIOCHEMISTRY 1992; 205:241-8. [PMID: 1313364 DOI: 10.1111/j.1432-1033.1992.tb16774.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
p34cdc2 kinase, a critical regulator of the cell cycle, has been shown to recognize the consensus sequence S/TP in proteins such as histone H1, the retinoblastoma gene product RB and the carboxyl-terminal domain of eukaryotic RNA polymerase II. Using phosphorylated synthetic peptides, representing the p34cdc2 phosphorylation sites in these proteins and histone H1 protein as substrates, we investigated the substrate specificity of the different oligomeric forms of the polycation-stimulated (PCS/type-2A) protein phosphatase and the active catalytic subunit of the ATP,Mg-dependent (AMDc/type 1) protein phosphatase. The results show that the oligomeric structure of the PCS phosphatases is an important determinant for efficient dephosphorylation. The trimeric PCSH1 and PCSM phosphatases are about 10-20-fold-better histone H1 phosphatases than the dimeric PCSH2 and PCSL phosphatases and about 100-fold better than the catalytic subunit (PCSC), suggesting a regulatory role for the 72-kDa, 65-kDa and 55-kDa subunits. The RB peptide = INGS(P)PRT(P)PRRGQNR, is preferred over phosphorylase a (8-fold) by the PCSH1 phosphatase and is about a 40-fold and 95-fold-better substrate for the PCSH1 phosphatase than for the PCSM and PCSL phosphatases, respectively. The primary structure surrounding the S/T(P)P motif, by itself a strong negative determinant for dephosphorylation, can harbour positive features which relieve the constraint imposed by the carboxyl-terminal proline. Thus, the RB peptide INGS(P)PRT(P)PRRGQNR, in which the T(P)P configuration is preferred over the S(P)P sequence, is an extremely good and specific substrate for the PCSH1 phosphatase (Km = 10 microM, Vmax = 3882 nmol.min-1.mg-1). The AMDC phosphatase is a poor phosphatase for all the phosphopeptides tested, unless Mn2+ is added. Its histone H1 phosphatase activity is much less sensitive than its phosphorylase a and phosphopeptide phosphatase activity to inhibition by the modulator or inhibitor-1. The results strongly suggest a role for the trimeric PCSH1 phosphatase in reversing the p34cdc2 phosphorylations.
Collapse
Affiliation(s)
- P Agostinis
- Afdeling Biochemie, Faculteit Geneeskunde, Katholieke Universiteit te Leuven, Belgium
| | | | | | | | | |
Collapse
|
39
|
Ishida Y, Furukawa Y, Decaprio JA, Saito M, Griffin JD. Treatment of myeloid leukemic cells with the phosphatase inhibitor okadaic acid induces cell cycle arrest at either G1/S or G2/M depending on dose. J Cell Physiol 1992; 150:484-92. [PMID: 1311329 DOI: 10.1002/jcp.1041500308] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The phosphatase inhibitor okadaic acid was found to induce cell cycle arrest of human myeloid leukemic cell lines HL-60 and U937 in a concentration- and time-dependent manner. Exposure to low concentrations of okadaic acid (2-8nM) for 24-48 hr caused greater than 70% of cells to arrest at G2/M, with up to 40% of the cells arrested in early mitosis. Cell viability decreased rapidly after 48 hr of treatment, and morphological and DNA structure analysis indicated that this was primarily due to the induction of apoptosis. The cells arrested in mitosis by 8 nM okadaic acid could be highly enriched by density gradient centrifugation and underwent apoptosis when further cultured either with or without okadaic acid, indicating that the effects of okadaic acid were irreversible. In contrast to the effects of low concentrations of okadaic acid, high concentrations (500 nM), inhibited proliferation in less than 3 hr. Remarkably, the majority of cells also entered a mitosis-like state characterized by dissolution of the nuclear membrane and condensation and partial separation of chromosomes. However, these cells had a diploid content of DNA, indicating that the cell cycle arrest occurred at G1/S with premature chromosome condensation (PCC), rather than at G2/M. If cells were first blocked at G1/S with hydroxyurea and then treated with okadaic acid, greater than 90% developed PCC in less than 3 hr without replicating their DNA. Caffeine was not able to induce PCC in these cells, either with or without prior inhibition of DNA synthesis.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- Y Ishida
- Dana-Farber Cancer Institute, Boston, Massachusetts
| | | | | | | | | |
Collapse
|
40
|
Cormier P, Osborne HB, Bassez T, Poulhe R, Bellé R, Mulner-Lorillon O. Protein phosphatase 2A from Xenopus oocytes. Characterization during meiotic cell division. FEBS Lett 1991; 295:185-8. [PMID: 1662645 DOI: 10.1016/0014-5793(91)81414-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A polyclonal antibody was raised against bacterially produced catalytic alpha subunit of protein phosphatase 2A (PP2AC) cloned from Xenopus ovarian library. The amount of PP2AC in Xenopus oocytes determined by Western blot analysis was 1 ng/microgram of cytosolic protein. The antibody depleted PP2AC from oocyte extracts in association with 6 components (40, 62, 65, 80, 85 and 90 kDa). Prophase- and metaphase-arrested oocytes contained identical amounts of PP2AC. Metaphase oocytes showed one specific change in the 62 kDa protein associated with PP2AC.
Collapse
Affiliation(s)
- P Cormier
- Laboratoire de Physiologie de la Reproduction, INRA, URA CNRS 1449, Université Pierre et Marie Curie, Paris, France
| | | | | | | | | | | |
Collapse
|
41
|
Schwartz DA, Schultz RM. Stimulatory effect of okadaic acid, an inhibitor of protein phosphatases, on nuclear envelope breakdown and protein phosphorylation in mouse oocytes and one-cell embryos. Dev Biol 1991; 145:119-27. [PMID: 1850367 DOI: 10.1016/0012-1606(91)90218-r] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Treatment of one-cell mouse embryos with okadaic acid (OA), which is an inhibitor of protein phosphatases 1 and 2A, induces a concentration-dependent precocious nuclear envelope breakdown (NEBD) of the pronuclei; at 10 microM okadaic acid, NEBD starts to occur after 1 hr and the embryos become committed to NEBD after about 45 min. Correlated with NEBD is the conversion of a protein of Mr 32,000 (p32) to more highly phosphorylated forms. One-cell embryos cultured continuously in OA-containing medium do not cleave, whereas one-cell embryos incubated for 15-60 min prior to transfer to OA-free medium reveal a time-dependent inhibition in their ability to cleave. OA treatment of oocytes that are arrested from resuming spontaneous maturation by either a phosphodiesterase inhibitor or biologically active phorbol diester results in germinal vesicle breakdown and the maturation-associated changes in the pattern of protein phosphorylation, which include the apparent phosphorylation of p32. Results of these experiments implicate protein phosphatases in the G2 to M transition of the cell cycle in both meiotic and mitotic cells.
Collapse
Affiliation(s)
- D A Schwartz
- Department of Biology, University of Pennsylvania, Philadelphia 19104-6018
| | | |
Collapse
|
42
|
Freeman RS, Donoghue DJ. Protein kinases and protooncogenes: biochemical regulators of the eukaryotic cell cycle. Biochemistry 1991; 30:2293-302. [PMID: 2001361 DOI: 10.1021/bi00223a001] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- R S Freeman
- Department of Chemistry, University of California, San Diego, La Jolla 92093-0322
| | | |
Collapse
|
43
|
Gavin AC, Tsukitani Y, Schorderet-Slatkine S. Induction of M-phase entry of prophase-blocked mouse oocytes through microinjection of okadaic acid, a specific phosphatase inhibitor. Exp Cell Res 1991; 192:75-81. [PMID: 1701730 DOI: 10.1016/0014-4827(91)90159-r] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We report that a specific inhibitor of types 1 and 2A phosphatases, okadaic acid (OA), induces germinal vesicle break down (GVBD) and chromosome condensation when microinjected into denuded mouse oocytes maintained in prophase block by analogs of cAMP, inhibitors of phosphodiesterase, or a tumor-promoting phorbol ester. GVBD and chromosome condensation are also observed when incompetent oocytes are similarly injected with OA, this effect being dependent on the oocyte diameter. Marked changes in cell shape, cytoskeletal organization, and chromosome condensation with abnormal or abortive spindle formation are associated with such injections. The polar body is not formed. These results led to the conclusions that in mouse oocytes, OA acts distal to both the cAMP-modulated pathway involved in meiotic arrest and the inhibitory action exerted by tumor-promoting phorbol esters.
Collapse
Affiliation(s)
- A C Gavin
- Department of Obstetrics and Gynaecology, Hôpital Cantonal Universitaire, Geneva, Switzerland
| | | | | |
Collapse
|
44
|
Rime H, Ozon R. Protein phosphatases are involved in the in vivo activation of histone H1 kinase in mouse oocyte. Dev Biol 1990; 141:115-22. [PMID: 2167856 DOI: 10.1016/0012-1606(90)90106-s] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Histone H1 kinase and protein phosphorylation have been studied in mouse oocyte. Histone H1 kinase activity increases when the oocyte enters M-phase at the time of GVBD and is paralleled with a burst of protein phosphorylation. This activity dramatically drops after parthenogenetic activation induced by puromycin. Okadic acid (OA), a potent inhibitor of protein phosphatases, induces GVBD when oocytes are arrested in the first meiotic prophase by dbc-AMP; the continuous presence of the phosphatase inhibitor, however, inhibits the polymerization of metaphase microtubules. Following activation of metaphase II-arrested mouse eggs by puromycin, OA can induce the breakdown of the nuclear envelope and the activation of histone H1 kinase. This indicates that in the absence of protein synthesis, and therefore of cyclin synthesis, inhibition of protein phosphatases may be sufficient to induce the entry into M-phase during the first cell cycle of the mouse parthenogenetic activated oocyte.
Collapse
Affiliation(s)
- H Rime
- Laboratoire de physiologie de la Reproduction, INRA-CNRS, UA 555, Université Pierre et Marie Curie, France
| | | |
Collapse
|