1
|
Pastor V, Antonelli MC, Pallarés ME. Unravelling the Link Between Prenatal Stress, Dopamine and Substance Use Disorder. Neurotox Res 2016; 31:169-186. [DOI: 10.1007/s12640-016-9674-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 09/19/2016] [Accepted: 09/23/2016] [Indexed: 12/21/2022]
|
2
|
Bleckert A, Photowala H, Alford S. Dual pools of actin at presynaptic terminals. J Neurophysiol 2012; 107:3479-92. [PMID: 22457456 DOI: 10.1152/jn.00789.2011] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We investigated actin's function in vesicle recycling and exocytosis at lamprey synapses and show that FM1-43 puncta and phalloidin-labeled filamentous actin (F-actin) structures are colocalized, yet recycling vesicles are not contained within F-actin clusters. Additionally, phalloidin also labels a plasma membrane-associated cortical actin. Injection of fluorescent G-actin revealed activity-independent dynamic actin incorporation into presynaptic synaptic vesicle clusters but not into cortical actin. Latrunculin-A, which sequesters G-actin, dispersed vesicle-associated actin structures and prevented subsequent labeled G-actin and phalloidin accumulation at presynaptic puncta, yet cortical phalloidin labeling persisted. Dispersal of presynaptic F-actin structures by latrunculin-A did not disrupt vesicle clustering or recycling or alter the amplitude or kinetics of excitatory postsynaptic currents (EPSCs). However, it slightly enhanced release during repetitive stimulation. While dispersal of presynaptic actin puncta with latrunculin-A failed to disperse synaptic vesicles or inhibit synaptic transmission, presynaptic phalloidin injection blocked exocytosis and reduced endocytosis measured by action potential-evoked FM1-43 staining. Furthermore, phalloidin stabilization of only cortical actin following pretreatment with latrunculin-A was sufficient to inhibit synaptic transmission. Conversely, treatment of axons with jasplakinolide, which induces F-actin accumulation but disrupts F-actin structures in vivo, resulted in increased synaptic transmission accompanied by a loss of phalloidin labeling of cortical actin but no loss of actin labeling within vesicle clusters. Marked synaptic deficits seen with phalloidin stabilization of cortical F-actin, in contrast to the minimal effects of disruption of a synaptic vesicle-associated F-actin, led us to conclude that two structurally and functionally distinct pools of actin exist at presynaptic sites.
Collapse
Affiliation(s)
- Adam Bleckert
- Dept. of Biological Sciences, Univ. of Illinois at Chicago, Chicago, IL 60607, USA
| | | | | |
Collapse
|
3
|
Baier CJ, Katunar MR, Adrover E, Pallarés ME, Antonelli MC. Gestational restraint stress and the developing dopaminergic system: an overview. Neurotox Res 2012; 22:16-32. [PMID: 22215534 DOI: 10.1007/s12640-011-9305-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 12/15/2011] [Accepted: 12/20/2011] [Indexed: 12/22/2022]
Abstract
Prenatal stress exerts a strong impact on fetal brain development in rats impairing adaptation to stressful conditions, subsequent vulnerability to anxiety, altered sexual function, and enhanced propensity to self-administer drugs. Most of these alterations have been attributed to changes in the neurotransmitter dopamine (DA). In humans; dysfunction of dopaminergic system is associated with development of several neurological disorders, such as Parkinson disease, schizophrenia, attention-deficit hyperactivity disorder, and depression. Evidences provided by animal research, as well as retrospective studies in humans, pointed out that exposure to adverse events in early life can alter adult behaviors and neurochemical indicators of midbrain DA activity, suggesting that the development of the DA system is sensitive to disruption by exposure to early stressors. The purpose of this article is to provide a general overview of published studies and our own study related to the effect of prenatal insults on the development of DA metabolism and biology, focusing mainly in articles involving prenatal-restraint stress protocols in rats. We will also attempt to make a correlation between theses alterations and DA-related pathological processes in humans.
Collapse
Affiliation(s)
- Carlos J Baier
- Instituto de Química y Fisicoquímica Biológicas (UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, C1113AAD, Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
4
|
Guillot TS, Miller GW. Protective actions of the vesicular monoamine transporter 2 (VMAT2) in monoaminergic neurons. Mol Neurobiol 2009; 39:149-70. [PMID: 19259829 DOI: 10.1007/s12035-009-8059-y] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Accepted: 02/18/2009] [Indexed: 12/13/2022]
Abstract
Vesicular monoamine transporters (VMATs) are responsible for the packaging of neurotransmitters such as dopamine, serotonin, norepinephrine, and epinephrine into synaptic vesicles. These proteins evolved from precursors in the major facilitator superfamily of transporters and are among the members of the toxin extruding antiporter family. While the primary function of VMATs is to sequester neurotransmitters within vesicles, they can also translocate toxicants away from cytosolic sites of action. In the case of dopamine, this dual role of VMAT2 is combined-dopamine is more readily oxidized in the cytosol where it can cause oxidative stress so packaging into vesicles serves two purposes: neurotransmission and neuroprotection. Furthermore, the deleterious effects of exogenous toxicants on dopamine neurons, such as MPTP, can be attenuated by VMAT2 activity. The active metabolite of MPTP can be kept within vesicles and prevented from disrupting mitochondrial function thereby sparing the dopamine neuron. The highly addictive drug methamphetamine is also neurotoxic to dopamine neurons by using dopamine itself to destroy the axon terminals. Methamphetamine interferes with vesicular sequestration and increases the production of dopamine, escalating the amount in the cytosol and leading to oxidative damage of terminal components. Vesicular transport seems to resist this process by sequestering much of the excess dopamine, which is illustrated by the enhanced methamphetamine neurotoxicity in VMAT2-deficient mice. It is increasingly evident that VMAT2 provides neuroprotection from both endogenous and exogenous toxicants and that while VMAT2 has been adapted by eukaryotes for synaptic transmission, it is derived from phylogenetically ancient proteins that originally evolved for the purpose of cellular protection.
Collapse
Affiliation(s)
- Thomas S Guillot
- Center for Neurodegenerative Disease, Emory University, Atlanta, GA, USA
| | | |
Collapse
|
5
|
Caudle WM, Colebrooke RE, Emson PC, Miller GW. Altered vesicular dopamine storage in Parkinson's disease: a premature demise. Trends Neurosci 2008; 31:303-8. [DOI: 10.1016/j.tins.2008.02.010] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Revised: 02/22/2008] [Accepted: 02/25/2008] [Indexed: 11/25/2022]
|
6
|
Myosin II activation and actin reorganization regulate the mode of quantal exocytosis in mouse adrenal chromaffin cells. J Neurosci 2008; 28:4470-8. [PMID: 18434525 DOI: 10.1523/jneurosci.0008-08.2008] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Chromaffin cells of the adrenal medulla are innervated by the sympathetic nervous system. Stimulation causes chromaffin cells to fire action potentials, leading to the exocytosis of various classes of transmitters into the circulation. Low-frequency electrical stimulation (action potentials delivered at 0.5 Hz) causes adrenal chromaffin cells to selectively release catecholamines through a kiss-and-run fusion event. Elevated electrical stimulation (action potentials at 15 Hz) evokes fusion pore dilation, full granule collapse, and additional release of the neuropeptide-containing proteinaceous granule core. Here we apply single-cell electrophysiological, electrochemical, and fluorescence measurements to investigate the cellular mechanism for this shift in exocytic behavior. We show that at low-frequency stimulation, a filamentous-actin cell cortex plays a key role in stabilizing the kiss-and-run fusion event. Increased stimulation disrupts the actin cortex, driving full granule collapse. We show that pharmacological perturbation of the actin cortex supersedes stimulus frequency in controlling exocytic mode. Finally, we show that nonmuscle myosin II activation contributes to the cytoskeleton-dependent control of the fusion event. Inhibition of myosin II or myosin light chain kinase under elevated stimulation frequencies inhibits fusion pore dilation and maintains the granule in a kiss-and-run mode of exocytosis. These results demonstrate an essential role for activity-evoked cytoskeletal rearrangement and the action of myosin II in the regulation of catecholamine and neuropeptide exocytosis and represent an essential element of the sympathetic stress response.
Collapse
|
7
|
Abstract
Embryonic development is initiated after the fertilizing spermatozoon enters the egg and triggers a series of events known as egg activation. Activation results in an increase in intracellular calcium concentration, cortical granule exocytosis (CGE), cell cycle resumption and recruitment of maternal mRNA. CGE is an evolutionary developed mechanism that causes modification of the zona pellucida to prevent penetration of additional spermatozoa, ensuring successful egg activation and embryo development. The egg CGE is a unique and convenient mammalian model for studying the different proteins participating at the membrane fusion cascade, which, unlike other secretory cells, occurs only once in the egg's lifespan. This article highlights a number of proteins, ascribed to participate in CGE and thus the block to polyspermy. CGE can be triggered either by a calcium dependent pathway, or via protein kinase C (PKC) activation that requires a very low calcium concentration. In a recent study, we suggested that the filamentous actin (F-actin) at the egg's cortex is a dynamic network. It can be maneuvered towards allowing CGE by activated actin associated proteins and/or by activated PKC and its down stream proteins, such as myristoylated alanine-rich C kinase substrate (MARCKS). MARCKS, a protein known to cross-link F-actin in other cell types, was found to be expressed and colocalized with actin in non-activated MII eggs. We further demonstrated MARCKS dissociation from actin after activation by ionomycin, a process that can lead to the breakdown of the actin network, thus allowing CGE. The more we know of the intricate process of CGE and of the proteins participating in it, the more the assisted reproductive procedures might benefit from that knowledge.
Collapse
Affiliation(s)
- Alina Tsaadon
- Department of Cell & Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | | | | | | |
Collapse
|
8
|
Feng HL, Hershlag A, Han YB, Zheng LJ. Localizations of intracellular calcium and Ca2+-ATPase in hamster spermatogenic cells and spermatozoa. Microsc Res Tech 2006; 69:618-23. [PMID: 16741976 DOI: 10.1002/jemt.20329] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Calcium plays a predominant role regulating many functional processes of spermatogenesis and fertilization. The purpose of the present study is to define the exact location of calcium as well as examine the role it plays during spermatogenesis and sperm capacitation. Testes and epididymides were obtained from adult healthy male hamsters. Spermatozoa were incubated with modified Tyrode's medium up to 4 h at 37 degrees Celsius for sperm capacitation in vitro. Samples of the testes and sperm cells were analyzed by cytochemical techniques to determine the location of calcium and Ca(2+)-ATPase and the percentage of acrosome reactions under light and electron microscopy. The data showed that (1) Sertoli cells exhibited numerous calcium precipitates as large, round, electron-dense bodies distributed throughout the cytoplasm and the mitochondrial matrix. Fine calcium precipitates existed in fewer numbers in the intracellular storage sites of spermatogonia and primary spermatocytes, in sharp distinction to secondary spermatocyte and spermatids, which showed an abundance of large and round calcium precipitates, especially in the mitochondrial matrix of spermatids. More calcium deposits were distributed in the plasma membrane (PM), acrosome membrane, and matrices of the acrosome and mitochondria following capacitation; (2) Ca(2+)-ATPase was found in the endoplasmic reticulum system and PM of noncapacitated spermatozoa as well as Sertoli cells. Capacitated spermatozoa showed a weak signal. These results suggest that the presence of calcium in spermatogenic cells might play a role in cell growth and differentiation during spermatogenesis. The Ca(2+)-ATPase function may be inhibited during capacitation, leading to an increase in acrosomal calcium level and triggering of acrosomal exocytosis.
Collapse
Affiliation(s)
- H L Feng
- Center for Human Reproduction, North Shore University Hospital, New York University School of Medicine, Manhasset, New York 11030, USA.
| | | | | | | |
Collapse
|
9
|
Hibbert JE, Butt RH, Coorssen JR. Actin is not an essential component in the mechanism of calcium-triggered vesicle fusion. Int J Biochem Cell Biol 2005; 38:461-71. [PMID: 16309945 DOI: 10.1016/j.biocel.2005.10.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2005] [Accepted: 10/17/2005] [Indexed: 10/25/2022]
Abstract
Actin has been suggested as an essential component in the membrane fusion stage of exocytosis. In some model systems disruption of the actin filament network associated with exocytotic membranes results in a decrease in secretion. Here we analyze the fast Ca2+-triggered membrane fusion steps of regulated exocytosis using a stage-specific preparation of native secretory vesicles (SV) to directly test whether actin plays an essential role in this mechanism. Although present on secretory vesicles, selective pharmacological inhibition of actin did not affect the Ca2+-sensitivity, extent, or kinetics of membrane fusion, nor did the addition of exogenous actin or an anti-actin antibody. There was also no discernable affect on inter-vesicle contact (docking). Overall, the results do not support a direct role for actin in the fast, Ca2+-triggered steps of regulated membrane fusion. It would appear that actin acts elsewhere within the exocytotic cycle.
Collapse
Affiliation(s)
- Julie E Hibbert
- Department of Physiology and Biophysics, Faculty of Medicine, University of Calgary, Calgary, Alta., Canada T2N 4N1
| | | | | |
Collapse
|
10
|
Li Q, Ho CS, Marinescu V, Bhatti H, Bokoch GM, Ernst SA, Holz RW, Stuenkel EL. Facilitation of Ca(2+)-dependent exocytosis by Rac1-GTPase in bovine chromaffin cells. J Physiol 2003; 550:431-45. [PMID: 12754309 PMCID: PMC2343055 DOI: 10.1113/jphysiol.2003.039073] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Rho family GTPases are primary mediators of cytoskeletal reorganization, although they have also been reported to regulate cell secretion. Yet, the extent to which Rho family GTPases are activated by secretory stimuli in neural and neuroendocrine cells remains unknown. In bovine adrenal chromaffin cells, we found Rac1, but not Cdc42, to be rapidly and selectively activated by secretory stimuli using an assay selective for the activated GTPases. To examine effects of activated Rac1 on secretion, constitutively active mutants of Rac1 (Rac1-V12, Rac1-L61) were transiently expressed in adrenal chromaffin cells. These mutants facilitated secretory responses elicited from populations of intact and digitonin-permeabilized cells as well as from cells under whole cell patch clamp. A dominant negative Rac1 mutant (Rac1-N17) produced no effect on secretion. Expression of RhoGDI, a negative regulator of Rac1, inhibited secretory responses while overexpression of effectors of Rac1, notably, p21-activated kinase (Pak1) and actin depolymerization factor (ADF) promoted evoked secretion. In addition, expression of effector domain mutants of Rac1-V12 that exhibit reduced activation of the cytoskeletal regulators Pak1 and Partner of Rac1 (POR1) resulted in a loss of Rac1-V12-mediated enhancement of evoked secretion. These findings suggest that Rac1, in part, functions to modulate secretion through actions on the cytoskeleton. Consistent with this hypothesis, the actin modifying drugs phalloidin and jasplakinolide enhanced secretion, while latrunculin-A inhibited secretion and eliminated the secretory effects of Rac1-V12. In summary, Rac1 was activated by secretory stimuli and modulated the secretory pathway downstream of Ca2+ influx, partly through regulation of cytoskeletal organization.
Collapse
Affiliation(s)
- Quanwen Li
- Department of Physiology, University of Michigan, Ann Arbor 48109, USA
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Fan HY, Tong C, Li MY, Lian L, Chen DY, Schatten H, Sun QY. Translocation of the classic protein kinase C isoforms in porcine oocytes: implications of protein kinase C involvement in the regulation of nuclear activity and cortical granule exocytosis. Exp Cell Res 2002; 277:183-91. [PMID: 12083800 DOI: 10.1006/excr.2002.5547] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Protein kinase C (PKC) is a family of Ser/Thr protein kinases categorized into three subfamilies: classical, novel, and atypical. The subcellular localization of classical PKCalpha, -betaI, and -gamma in the process of porcine oocyte maturation, fertilization, and parthenogenetic activation and their involvement in cortical granule (CG) exocytosis were investigated. The results of Western blot showed that PKCalpha, -betaI, and -gamma were expressed in the oocytes at the germinal vesicle (GV) and metaphase II (MII) stages. Confocal microscopy revealed that the three PKC isoforms were concentrated in the GV but evenly distributed in the cytoplasm of MII eggs. PKCalpha and -gamma were translocated to the plasma membrane soon after sperm penetration. cPKCs migrated into the pronucleus in fertilized eggs. Following treatment with a PKC activator, phorbol 12-myristate 13-acetate (PMA), CGs were released and PKCalpha and -gamma were translocated to the membrane. The CG exocytosis and PKC redistribution induced by PMA could be blocked by the PKC inhibitor staurosporine. Parthenogenetic stimulation with ionophore A23187 or electrical pulse also induced cPKC translocation and CG exocytosis. Eggs injected with PKCalpha isoform-specific antibody failed to undergo CG exocytosis after PMA treatment or fertilization. The results suggest that cPKCs, especially the alpha-isotype, regulate nuclear function and CG exocytosis in porcine eggs.
Collapse
Affiliation(s)
- Heng-Yu Fan
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100080, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
12
|
D'Angelo E, Rossi P, Tanzi F, Taglietti V. Protein Kinase C Facilitation of Acetylcholine Release at the Rat Neuromuscular Junction. Eur J Neurosci 2002; 4:823-831. [PMID: 12106305 DOI: 10.1111/j.1460-9568.1992.tb00192.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Protein kinase C (PKC) is a Ca2+-dependent enzyme involved in synaptic transmission, which can be experimentally activated by the phorbol ester, phorbol 12-myristate-13-acetate (TPA). We studied the effects of TPA application on acetylcholine (ACh) release at the rat neuromuscular junction by means of the focal recording technique; possible effects of TPA at the postsynaptic site had been ruled out in preliminary studies. In extracellular solutions containing 2 mM Ca2+ and at the stimulation frequency of 0.1 Hz, TPA increased endplate current (EPC) amplitude. In non-stimulated preparations spontaneous current frequency was increased at a similar rate. The similar time course of TPA action on evoked and spontaneous currents suggests that an increased presynaptic Ca2+ efficacy can be considered to be the probable mechanism of action. The interactions of PKC with ACh release were further investigated. In 0.1 mM Ca2+ extracellular solutions, TPA enhanced evoked currents only at stimulation frequencies (e.g. 40 Hz) that were themselves capable of inducing facilitation. This facilitation is classically associated with presynaptic Ca2+ accumulation, indicating that PKC interacts synergistically with Ca2+ to facilitate ACh release. In particular, since mean quantum size and release probability remained almost unchanged during TPA facilitation, it was concluded that PKC acted by enlarging the immediately available store. Interestingly, TPA also increased the presynaptic currents that were observed to be largely brought about by Ca2+-dependent K+ currents: evidence was obtained to suggest that increases in these currents provide negative feedback against excess release activation rather than being an expression of enhanced Ca2+ influx.
Collapse
Affiliation(s)
- Egidio D'Angelo
- Istituto di Fisiologia Generale, Università di Pavia, Via Forlanini 6, 27100 Pavia, Italy
| | | | | | | |
Collapse
|
13
|
de Lourdes Muñoz M, Das P, Tovar R. Entamoeba histolytica trophozoites activated by collagen type I and Ca(2+) have a structured cytoskeleton during collagenase secretion. CELL MOTILITY AND THE CYTOSKELETON 2001; 50:45-54. [PMID: 11746671 DOI: 10.1002/cm.1040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A peculiar characteristic of Entamoeba histolytica trophozoites is their capacity to invade human tissues. One of the cellular determinants of invasion may include adhesion to extracellular matrix components such as collagen, induction, and secretion of electron-dense granules (EDG) and tissue digestion. The mechanism and receptors involved in this process are not well understood. Previous results suggested that cytoskeleton plays a very important role during EDG secretion. We present evidence suggesting that adhesion to collagen and activation of EDG secretion are integrin-dependent events, since beta1 subunits detected by antibodies are concentrated at membrane sites where collagen and actin were colocalized. Furthermore, the involvement of actin, vimentin, and tubulin in restructuring cytoskeleton during EDG secretion was evident, since cytoskeleton isolation was possible exclusively in activated cells. Studies of immunolocalization of tubulin, actin, and vimentin by immunofluorescence and transmission electron microscopy suggest a role for cytoskeleton in EDG secretion.
Collapse
Affiliation(s)
- M de Lourdes Muñoz
- Department of Genetics and Molecular Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Zacatenco, México.
| | | | | |
Collapse
|
14
|
Birkenfeld J, Kartmann B, Betz H, Roth D. Cofilin activation during Ca(2+)-triggered secretion from adrenal chromaffin cells. Biochem Biophys Res Commun 2001; 286:493-8. [PMID: 11511085 DOI: 10.1006/bbrc.2001.5435] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cofilin is one of the major actin depolymerizing proteins in eukaryotic cells and involved in many membrane modulating activities, such as cell growth and motility. Here we examined whether cofilin is activated upon Ca(2+) regulated noradrenalin secretion from bovine adrenal chromaffin cells. We found that triggering exocytosis by nicotine causes a dephosphorylation and thereby activation of cofilin. Furthermore, in permeabilized chromaffin cells the addition of Ca(2+) alone is sufficient to trigger both, regulated exocytosis and cofilin activation. This is consistent with cofilin activation being required for actin reorganization during exocytosis.
Collapse
Affiliation(s)
- J Birkenfeld
- Department of Neurochemistry, Max-Planck-Institute for Brain Research, Deutschordenstrasse 46, Frankfurt, 60528, Germany
| | | | | | | |
Collapse
|
15
|
Kingan TG, Cardullo RA, Adams ME. Signal transduction in eclosion hormone-induced secretion of ecdysis-triggering hormone. J Biol Chem 2001; 276:25136-42. [PMID: 11313360 DOI: 10.1074/jbc.m102421200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Inka cells of insect epitracheal glands (EGs) secrete preecdysis and ecdysis-triggering hormones (PETH and ETH) at the end of each developmental stage. Both peptides act in the central nervous system to evoke the ecdysis behavioral sequence, a stereotype behavior during which old cuticle is shed. Secretion of ETH is stimulated by a brain neuropeptide, eclosion hormone (EH). EH evokes accumulation of cGMP followed by release of ETH from Inka cells, and exogenous cGMP evokes secretion of ETH. The secretory responses to EH and cGMP are inhibited by the broad-spectrum kinase inhibitor staurosporine, and the response to EH is potentiated by the phosphatase inhibitor calyculin A. Staurosporine did not inhibit EH-evoked accumulation of cGMP. Changes in cytoplasmic Ca2+ in Inka cells during EH signaling were monitored via fluorescence ratioing with fura-2-loaded EGs. Cytoplasmic Ca2+ increases within 30-120 s after addition of EH to EGs, and it remains elevated for at least 10 min, corresponding with the time course of secretion. Secretion is increased in dose-dependent manner by the Ca2+-ATPase inhibitor thapsigargin, a treatment that does not elevate glandular cGMP above basal levels. The secretory response to EH is partially inhibited in glands loaded with EGTA, while cGMP levels are unaffected. These findings suggest that EH activates second messenger cascades leading to cGMP accumulation and Ca2+ mobilization and/or influx and that both pathways are required for a full secretory response. cGMP activates a staurosporine-inhibitable protein kinase. We propose that Ca2+ acts via a parallel cascade with a time course that is similar to that for cGMP activation of a cGMP-dependent protein kinase.
Collapse
Affiliation(s)
- T G Kingan
- Department of Cell Biology/Neuroscience, University of California, Riverside, CA 92521, USA.
| | | | | |
Collapse
|
16
|
Tsuboi T, Kikuta T, Warashina A, Terakawa S. Protein kinase C-dependent supply of secretory granules to the plasma membrane. Biochem Biophys Res Commun 2001; 282:621-8. [PMID: 11401506 DOI: 10.1006/bbrc.2001.4603] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To elucidate the mechanism for supplying secretory granules to the cell membrane, chromaffin cells isolated from the bovine adrenal medulla were observed by the evanescent wave microscopy after staining their granules with acridine orange. The secretory granules showed only a very small fluctuation, indicating their docking to the plasma membrane. The rate and range of movement increased greatly by application of botulinum toxin A or C. The number of secretory granules docked to the plasma membrane significantly decreased by botulinum toxin C. Conversely, the number increased greatly by activation of protein kinase C with phorbol 12,13-dibutyrate (PDBu). In the presence of an anti-actin reagent cytochalasin D, no increasing effect of PDBu on the number of docked granules was observed. While in the presence of an anti-mitotic reagent, colchicine, a clear increasing effect of PDBu was observed. The final step for supplying granules to the plasma membrane in endocrine cells is concluded to be mediated by a phosphorylation-dependent and actin-based transport system.
Collapse
Affiliation(s)
- T Tsuboi
- Photon Medical Research Center, Hamamatsu University School of Medicine, 3600 Handa, Hamamatsu, 431-3192, Japan
| | | | | | | |
Collapse
|
17
|
Jahraus A, Egeberg M, Hinner B, Habermann A, Sackman E, Pralle A, Faulstich H, Rybin V, Defacque H, Griffiths G. ATP-dependent membrane assembly of F-actin facilitates membrane fusion. Mol Biol Cell 2001; 12:155-70. [PMID: 11160830 PMCID: PMC30575 DOI: 10.1091/mbc.12.1.155] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2000] [Revised: 10/12/2000] [Accepted: 11/08/2000] [Indexed: 11/11/2022] Open
Abstract
We recently established an in vitro assay that monitors the fusion between latex-bead phagosomes and endocytic organelles in the presence of J774 macrophage cytosol (). Here, we show that different reagents affecting the actin cytoskeleton can either inhibit or stimulate this fusion process. Because the membranes of purified phagosomes can assemble F-actin de novo from pure actin with ATP (), we focused here on the ability of membranes to nucleate actin in the presence of J774 cytosolic extracts. For this, we used F-actin sedimentation, pyrene actin assays, and torsional rheometry, a biophysical approach that could provide kinetic information on actin polymerization and gel formation. We make two major conclusions. First, under our standard in vitro conditions (4 mg/ml cytosol and 1 mM ATP), the presence of membranes actively catalyzed the assembly of cytosolic F-actin, which assembled into highly viscoelastic gels. A model is discussed that links these results to how the actin may facilitate fusion. Second, cytosolic actin paradoxically polymerized more under ATP depletion than under high-ATP conditions, even in the absence of membranes; we discuss these data in the context of the well described, large increases in F-actin seen in many cells during ischemia.
Collapse
Affiliation(s)
- A Jahraus
- European Molecular Biology Laboratory, Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Fujita-Yoshigaki J. Simulation of regulated exocytosis of amylase from salivary parotid acinar cells by a consecutive reaction model comprising two sequential first-order reactions. J Theor Biol 2000; 204:165-77. [PMID: 10887899 DOI: 10.1006/jtbi.2000.2009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Amylase secretion from parotid acinar cells results from stimulus-regulated fusion of apical membrane and secretory granules that contain amylase. The time course of amylase secretion induced by various secretagogues has been reported. Calcium-mobilizing agonists such as carbamylcholine and substance P induce rapid and transient secretion while cAMP-mobilizing agonists such as isoproterenol cause long-term secretion. Combination of these two types of agonists results in a rapid and high rate of secretion. To explain the various time courses of these stimulations, it was assumed that amylase secretion is a consecutive reaction that consists of two first-order reactions. It was postulated that secretory granules were classified into three states: (A) pre-docked, (B) docked, and (C) fusion. The simple simulation could explain the time course of amylase secretion induced by various secretagogues by simply changing the rate constants for docking (reaction A to B) and fusion (reaction B to C) steps. It was also found that calcium mainly enhances the last fusion step and that cAMP activates the docking step. The amount of docked granules is estimated to be quite small, which accounts for why amylase secretion is regulated mainly by cAMP. The effects of the two types of secretagogues were synergistic, meaning that their intracellular signaling pathways are independent. At the same time, this also suggests that basal and enhanced secretion induced by two types of agonists have the same exocytotic process and that two stimuli independently activate the same machinery that mediates docking or fusion. This simulation is useful in analysis of the effects of secretion modulators and the molecular mechanism of amylase secretion.
Collapse
Affiliation(s)
- J Fujita-Yoshigaki
- Department of Physiology, Nihon University School of Dentistry at Matsudo, Chiba, Japan.
| |
Collapse
|
19
|
Yadid G, Fitoussi N, Kinor N, Geffen R, Gispan I. Astrocyte line SVG-TH grafted in a rat model of Parkinson's disease. Prog Neurobiol 1999; 59:635-61. [PMID: 10845756 DOI: 10.1016/s0301-0082(99)00013-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The present review describes gene transfer into the brain using extraneuronal cells with an ex vivo approach. The mild immunological reactions in the central nervous system to grafts provided the rationale and empirical basis for brain-transplantation, to replace dying cells, of potential clinical relevance. Fetal human astrocytes were genetically engineered to express tyrosine hydroxylase, the rate-limiting enzyme for the synthesis of catecholamines. These cells were also found to produce constitutively and secrete GDNF and interleukins. Therefore, these cells may prove as a drug-delivery system for the treatment of neurological degenerative conditions such as Parkinson's disease (PD). The field of neuronal reconstruction has reached a critical threshold and there is a need to evaluate the variables that will become critical as the field matures. One of the needs is to characterize the neurochemical alterations in the microenvironment in the context of grafted-host connectivity. This review discusses the functional effects of the pharmacologically-active construct, which consists of astrocytes producing L-DOPA and GDNF. The striatum in PD that lacks the dopaminergic projection from the substantia nigra metabolizes and releases dopamine differently from normal tissue and may react to different factors released by the grafted cells. Moreover, neurochemicals of the host tissue may effect grafted cells as well. An understanding of the way in which these neurochemicals are abnormal in PD and their role in the grafted brain is critical to the improvement of reconstructive strategies using cellular therapeutic strategies.
Collapse
Affiliation(s)
- G Yadid
- Faculty of Life Sciences, Neuropharmacology Section, Bar-Ilan University, Ramat-Gan, Israel
| | | | | | | | | |
Collapse
|
20
|
Trifaró JM. Scinderin and cortical F-actin are components of the secretory machinery. Can J Physiol Pharmacol 1999. [DOI: 10.1139/y99-074] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Secretory vesicle exocytosis is the mechanism of release of neurotransmitters and neuropeptides. Secretory vesicles are localized in at least two morphologically and functionally distinct compartments: the reserve pool and the release-ready pool. Filamentous actin networks play an important role in this compartmentalization and in the trafficking of vesicles between these compartments. The cortical F-actin network constitutes a barrier (negative clamp) to the movement of secretory vesicles to release sites, and it must be locally disassembled to allow translocation of secretory vesicles in preparation for exocytosis. The disassembly of the cortical F-actin network is controlled by scinderin (a Ca2+-dependent F-actin severing protein) upon activation by Ca2+ entering the cells during stimulation. There are several factors that regulate scinderin activation (i.e., Ca2+ levels, phosphatidylinositol 4,5-bisphosphate (PIP2), etc.). The results suggest that scinderin and the cortical F-actin network are components of the secretory machinery.Key words: F-actin, scinderin, exocytosis, cytoskeleton, chromaffin cell.
Collapse
|
21
|
Amlal H, Goel A, Soleimani M. Activation of H+-ATPase by hypotonicity: a novel regulatory mechanism for H+ secretion in IMCD cells. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:F487-501. [PMID: 9755120 DOI: 10.1152/ajprenal.1998.275.4.f487] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The effect of hypotonicity on H+-ATPase activity was examined in cultured inner medullary collecting duct (mIMCD-3) cells. mIMCD-3 cells were grown to confluence, loaded with 2', 7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein (BCECF), and assayed for H+-ATPase activity measured as the Na+- and K+-independent intracellular pH (pHi) recovery following an acid load. Exposure of mIMCD-3 cells to a hypotonic solution (150 mosmol/kgH2O) increased pHi recovery by approximately 350% (P < 0.0001). This effect was inhibited by diethylstilbestrol (an inhibitor of H+-ATPase) and was not dependent on external K+, indicating lack of involvement of H+-K+-ATPase. H+-ATPase activation was acute, independent of cell calcium, and was not secondary to Cl- channel activation. The magnitude of H+-ATPase upregulation was dependent on the osmolarity of the media, with maximum stimulation at 150 mosmol/kgH2O. H+-ATPase upregulation in hypotonicity was significantly blocked in the presence of staurosporine or calphostin C or in cells pretreated with phorbol 12-myristate 13-acetate (PMA), indicating involvement of protein kinase C. Hypotonicity inhibited the Na+/H+ exchanger activity in mIMCD-3 cells, indicating that its stimulatory effect is specific to H+-ATPase. In conclusion, a novel regulatory mechanism of H+-ATPase by hypotonicity is described. The increased H+-ATPase activity in hypotonicity may be responsible for increased HCO-3 reabsorption and maintained acid-base homeostasis in hyposmolar states.
Collapse
Affiliation(s)
- H Amlal
- Department of Medicine, University of Cincinnati School of Medicine, and Veterans Affairs Medical Center, Cincinnati, Ohio 45267-0585, USA
| | | | | |
Collapse
|
22
|
Scott CE, Abdullah LH, Davis CW. Ca2+ and protein kinase C activation of mucin granule exocytosis in permeabilized SPOC1 cells. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:C285-92. [PMID: 9688860 DOI: 10.1152/ajpcell.1998.275.1.c285] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Mucin secretion by airway goblet cells is under the control of apical P2Y2, phospholipase C-coupled purinergic receptors. In SPOC1 cells, the mobilization of intracellular Ca2+ by ionomycin or the activation of protein kinase C (PKC) by phorbol 12-myristate 13-acetate (PMA) stimulates mucin secretion in a fully additive fashion [L. H. Abdullah, J. D. Conway, J. A. Cohn, and C. W. Davis. Am. J. Physiol. 273 (Lung Cell. Mol. Physiol. 17): L201-L210, 1997]. This apparent independence between PKC and Ca2+ in the stimulation of mucin secretion was tested in streptolysin O-permeabilized SPOC1 cells. These cells were fully competent to secrete mucin when Ca2+ was elevated from 100 nM to 3.1 microM for 2 min following permeabilization; the Ca2+ EC50 was 2.29 +/- 0.07 microM. Permeabilized SPOC1 cells were exposed to PMA or 4alpha-phorbol at Ca2+ activities ranging from 10 nM to 10 microM. PMA, but not 4alpha-phorbol, increased mucin release at all Ca2+ activities tested: at 10 nM Ca2+ mucin release was 2.1-fold greater than control and at 4.7 microM Ca2+ mucin release was maximal (3.6-fold increase). PMA stimulated 27% more mucin release at 4.7 microM than at 10 nM Ca2+. Hence, SPOC1 cells possess Ca2+-insensitive, PKC-dependent, and Ca2+-dependent PKC-potentiated pathways for mucin granule exocytosis.
Collapse
Affiliation(s)
- C E Scott
- Cystic Fibrosis/Pulmonary Research and Treatment Center and the Department of Physiology, University of North Carolina, Chapel Hill, North Carolina 27599-7248, USA
| | | | | |
Collapse
|
23
|
Kim NH, Do J, Song H, Koo D, Kim J, Lee H, Chung K. Involvement of adrenergic system on the cortical granule exocytosis and polyspermic penetration during in vitro fertilization of porcine oocytes. Theriogenology 1997. [DOI: 10.1016/s0093-691x(97)00376-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
24
|
Gasman S, Chasserot-Golaz S, Popoff MR, Aunis D, Bader MF. Trimeric G proteins control exocytosis in chromaffin cells. Go regulates the peripheral actin network and catecholamine secretion by a mechanism involving the small GTP-binding protein Rho. J Biol Chem 1997; 272:20564-71. [PMID: 9252370 DOI: 10.1074/jbc.272.33.20564] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Besides having a role in signal transduction, heterotrimeric G proteins may be involved in membrane trafficking events. In chromaffin cells, Go is associated with secretory organelles and its activation by mastoparan inhibits the ATP-dependent priming of exocytosis. The effectors by which Go controls exocytosis are currently unknown. The subplasmalemmal actin network is one candidate, since it modulates secretion by controlling the movement of secretory granules to the plasma membrane. In streptolysin-O-permeabilized chromaffin cells, activation of exocytosis produces disassembly of cortical actin filaments. Mastoparan blocks the calcium-evoked disruption of cortical actin, and this effect is specifically inhibited by antibodies against Galphao and by a synthetic peptide corresponding to the COOH-terminal domain of Galphao. Disruption of actin filaments with cytochalasin E and Clostridium perfringens iota toxin partially reverses the mastoparan-induced inhibition of secretion. Furthermore, the effects of mastoparan on cortical actin and exocytosis are greatly reduced in cells treated with Clostridium botulinum C3 exoenzyme, which specifically inactivates the small G protein Rho. We propose that the control exerted by the granule-associated Go on exocytosis may be related to effects on the cortical actin network through a sequence of events which eventually involves the participation of Rho.
Collapse
Affiliation(s)
- S Gasman
- Institut National de la Santé et de la Recherche Médicale, U-338 Biologie de la Communication Cellulaire, 5 rue Blaise Pascal, 67084 Strasbourg Cedex, France
| | | | | | | | | |
Collapse
|
25
|
De Potter WP, Partoens P, Strecker S. Noradrenaline storing vesicles in sympathetic neurons and their role in neurotransmitter release: an historical overview of controversial issues. Neurochem Res 1997; 22:911-9. [PMID: 9239746 DOI: 10.1023/a:1022458322406] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
More than 25 years have passed since the original demonstration that proteins such as chromogranin A and dopamine-beta-hydroxylase, which are co-stored together with noradrenaline in large dense cored vesicles in adrenergic nerves, are released by exocytosis. Despite much evidence in favour, it was for a long time thought that large dense cored vesicles were not eminently involved in the release of noradrenaline. The present review attempts to demonstrate, making use of evidence from different approaches, that the release of noradrenaline from sympathetic neurons occurs ultimately from large dense cored vesicles. A model of the secretory cycle is proposed.
Collapse
Affiliation(s)
- W P De Potter
- Department of Medicine, University of Antwerp (UIA), Wilrijk-Antwerp, Belgium.
| | | | | |
Collapse
|
26
|
Trifaró JM, Glavinovic M, Rosé SD. Secretory vesicle pools and rate and kinetics of single vesicle exocytosis in neurosecretory cells. Neurochem Res 1997; 22:831-41. [PMID: 9232636 DOI: 10.1023/a:1022087910902] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Secretory vesicles are localized in specific compartments within neurosecretory cells. Morphometric, cytochemical and electrophysiological techniques have allowed the definition of secretory vesicle compartments. These are different pools in which vesicles are in various states of releasability. The transit of vesicles between compartments is not random, but an event controlled and regulated by Ca2+ and the cortical F-actin network. Cortical F-actin disassembly, a Ca(2+)-dependent event, controls the transit of secretory vesicles from the reserve compartment to the release-ready vesicle pool. Furthermore, the recent development of new technical approaches (patch-clamp membrane capacitance, electrochemical detection of amines with carbon-fibre microelectrodes) has now permitted us to understand the kinetics of single vesicle exocytosis.
Collapse
Affiliation(s)
- J M Trifaró
- Department of Pharmacology, University of Ottawa, Ontario, Canada
| | | | | |
Collapse
|
27
|
León G, Fiori C, Das P, Moreno M, Tovar R, Sánchez-Salas JL, Muñoz ML. Electron probe analysis and biochemical characterization of electron-dense granules secreted by Entamoeba histolytica. Mol Biochem Parasitol 1997; 85:233-42. [PMID: 9106196 DOI: 10.1016/s0166-6851(97)02833-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The interaction of Entamoeba histolytica with collagen induces the intracellular formation and release of electron-dense granules (EDGs) containing collagenase activity which are important in the pathogenicity of this parasite. Purified EDGs contain at least 25 polypeptides with acidic pIs, nine gelatinase activities, small molecules, including inorganic phosphate (Pi), pyrophosphate (PP) and other elements, including Na, Mg, S, Cl, K, Ca and Fe as measured by scanning transmission electron microscopy. Six of these polypeptides with apparent molecular weights of 108, 106, 104, 97, 68 and 59 kDa and two protease activities with apparent molecular weights of 40 and 85 kDa were detected exclusively in the EDGs and were not observed in total trophozoite extracts. Actin was also detected in the EDGs. Therefore, EDGs are a complex of mainly cationic proteins, which contains numerous proteolytic activities, actin and small molecules such as P(i), PP and cations.
Collapse
Affiliation(s)
- G León
- Department of Genetics and Molecular Biology, Avanzados del Instituto Politécnico Nacional, D.F., México
| | | | | | | | | | | | | |
Collapse
|
28
|
Ducibella T, LeFevre L. Study of protein kinase C antagonists on cortical granule exocytosis and cell-cycle resumption in fertilized mouse eggs. Mol Reprod Dev 1997; 46:216-26. [PMID: 9021753 DOI: 10.1002/(sici)1098-2795(199702)46:2<216::aid-mrd12>3.0.co;2-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Although pharmacological agonists of protein kinase C (PKC) stimulate some events of mammalian egg activation, including cortical granule (CG) exocytosis, it is not known if these events are dependent on PKC activation during the normal process of fertilization. In order to examine the potential role of PKC in CG exocytosis, this study investigated whether PKC agonists faithfully mimic CG release and whether PKC antagonists block fertilization-induced CG release in mature mouse eggs. Phorbol ester (TPA, 2.5 ng/ml) treatment resulted in an atypical pattern of CG release in which there was a greater net loss of CGs in the equatorial region of the egg than in the region opposite the spindle. This pattern also was in contrast to that during fertilization, in which CG release occurred randomly throughout the cortex. Fertilization experiments utilized two different PKC inhibitors, bisindolylmaleimide (5 microM) and chelerytherine (0.8 microM), targeted to both the "conserved" substrate and ATP binding domains of PKC. Simultaneous use of both inhibitors at maximal concentrations (compatible with fertilization and above their IC50S) resulted in no detectable inhibition of CG release in treated fertilized eggs compared to controls. In addition no inhibition of anaphase onset was observed in treated fertilized eggs. Activity of the inhibitors was verified by demonstrating that they blocked the induction of CG loss by TPA. Moreover, 1 microM staurosporine, a potent but less specific antagonist of PKC, also did not block CG loss whereas the metaphase-anaphase transition was temporarily inhibited. The results indicate that TPA does not faithfully mimic CG release in fertilized eggs, that a role for PKC in CG release at fertilization remains to be established, and that other calcium-dependent effectors may be involved in CG exocytosis.
Collapse
Affiliation(s)
- T Ducibella
- Department of Obstetrics and Gynecology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | |
Collapse
|
29
|
Linial M, Parnas D. Deciphering neuronal secretion: tools of the trade. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1286:117-52. [PMID: 8652611 DOI: 10.1016/0304-4157(96)00007-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- M Linial
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University, Jerusalem, Israel.
| | | |
Collapse
|
30
|
Heijmen PS, Kalmeijer D, Peters RC. Vincristine disturbs spontaneous firing of the afferent nerve fibre in ampullary electroreceptor organs. Neuroscience 1996; 72:585-91. [PMID: 8737427 DOI: 10.1016/0306-4522(95)00555-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Ampullary electroreceptor organs of the catfish were apically exposed to 0.3 mM vincristine in order to investigate the part played by the microtubular system in stimulus transduction. The main effects were repetitive firing of the afferent fibre, a reduction of the mean spontaneous activity and a reduction of the spike amplitude two to four days after exposure to vincristine. The mean sensitivity was less susceptible to vincristine than the spontaneous activity. Since the shape of the frequency curves remained unchanged and similar effects as described above were also observed after denervation, we conclude that vincristine most likely does not affect electroreceptor cell functioning, but causes degeneration of the afferent fibre.
Collapse
Affiliation(s)
- P S Heijmen
- Department of Comparative Physiology, Utrecht University, The Netherlands
| | | | | |
Collapse
|
31
|
Walker A, Glavinović MI, Trifaró JM. Time course of release of content of single vesicles in bovine chromaffin cells. Pflugers Arch 1996; 431:729-35. [PMID: 8596723 DOI: 10.1007/bf02253836] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The time course of the spontaneous current spikes produced by release of the catecholamine contents of individual vesicles was examined in bovine chromaffin cells using carbon filament electrodes. The rate of spontaneous release was enhanced by adding either LaCl3 (0.01-0.5 mM) or BaCl2 (2 mM) to the extracellular solution. A paucity of events of very short duration was evident from the frequency histograms of the rise and the decay times. In the scatterograms of the rise and of the decay times the regression lines are invariably positive (i.e. the longer the duration of the rise times the longer the duration of the decay times). However, the regression lines never go through the origin but intercept the ordinate (the axis of the decay times) at (+/- SD) 16.1 +/- 6.4 ms (n = 11). On the other hand, the regression lines of paired rise and decay times for the time courses of diffusion are both linear and go through the origin. This relationship holds irrespective of whether the diffusion from an instantaneous point source was assumed to occur in an infinite plane or in an infinite volume. Therefore our experimental findings are incompatible with the model(s) assuming that diffusional broadening determines entirely the time course of current spikes. However, they can be explained, although only partially, by the possible slow speed of the electrode. They thus suggest that in chromaffin cells the duration of exocytosis of individual vesicles is much longer than in synapses.
Collapse
Affiliation(s)
- A Walker
- Department of Anaesthesia Research, McGill University, 3655 Drummond Street, Montreal PQ H3G 1Y6 Canada
| | | | | |
Collapse
|
32
|
De Loof A, Vanden J, Janssen I. Hormones and the cytoskeleton of animals and plants. INTERNATIONAL REVIEW OF CYTOLOGY 1996; 166:1-58. [PMID: 8881772 DOI: 10.1016/s0074-7696(08)62505-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
It is often overlooked that a cell can exert its specific functions only after it has acquired a specific morphology: function follows form. The cytoskeleton plays an important role in establishing this form, and a variety of hormones can influence it. The cytoskeletal framework has also been shown to function in a variety of cellular processes, such as cell motility (important for behavior), migration (important for the interrelationship between the endocrine and immune systems, e.g., chemotaxis), intracellular transport of particles, mitosis and meiosis, maintenance of cellular morphology, spatial distribution of cell organelles (e.g., nucleus and Golgi system), cellular responses to membrane events (e.g., endocytosis and exocytosis), intracellular communication including conductance of electrical signals, localization of mRNA, protein synthesis, and--more specifically in plants--ordered cell wall deposition, cytoplasmic streaming, and spindle function followed by phragmoplast function. All classes of hormones seem to make use of the cytoskeleton, either during their synthesis, transport, secretion, degradation, or when influencing their target cells. In this review special attention is paid to cytoskeleton-mediated effects of selected hormones related to growth, transepithelial transport, steroidogenesis, thyroid and parathyroid functioning, motility, oocyte maturation, and cell elongation in plants.
Collapse
Affiliation(s)
- A De Loof
- Zoological Institute of the K.U. Leuven, Belgium
| | | | | |
Collapse
|
33
|
Dippel WW, Chen PL, McArthur NH, Harms PG. Calcium involvement in luteinizing hormone-releasing hormone release from the bovine infundibulum. Domest Anim Endocrinol 1995; 12:349-54. [PMID: 8575167 DOI: 10.1016/0739-7240(95)00031-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Bovine infundibular (stalk median eminence) explants were incubated in vitro to test the hypothesis that calcium (Ca) is involved in the release of luteinizing hormone-releasing hormone (LHRH) from LHRH neuron terminals in cattle. Right and left infundibular halves from individual heifers and/or steers were randomly assigned to either control or treated (EGTA [a Ca chelator] or verapamil [an L-type Ca channel antagonist]) groups. Each half was incubated in 600 microliters of Krebs-Ringer bicarbonate medium (KRB) in the presence or absence of a treatment agent for 180 min. At 30-min intervals, 500-microliters samples were removed from each incubated and replaced with fresh media. Spontaneous (basal) and depolarization-induced (60 mM potassium) LHRH release was evaluated by radioimmunoassay of the LHRH content in the media incubated from 91 to 120 and 121 to 150 min of culture, respectively. The effect of treatment on depolarization-induced LHRH release was analyzed by comparing the differences between spontaneous and depolarization-induced LHRH release in control and treated groups. Spontaneous LHRH release was not different between control and 1.25 mM EGTA- or 100 microM verapamil-treated halves from steers. In contrast, steer infundibular halves incubated with EGTA (replacing Ca in KRB and chelating any Ca in the media) released less LHRH during depolarization than did control halves. In addition, verapamil-treated (to block Ca uptake by the terminal) infundibular halves from steers or heifers released less LHRH in response to depolarization than did control halves.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- W W Dippel
- Department of Animal Science, Texas A&M University, College Station 77843, USA
| | | | | | | |
Collapse
|
34
|
Ibarrondo J, Joubert D, Dufour MN, Cohen-Solal A, Homburger V, Jard S, Guillon G. Close association of the alpha subunits of Gq and G11 G proteins with actin filaments in WRK1 cells: relation to G protein-mediated phospholipase C activation. Proc Natl Acad Sci U S A 1995; 92:8413-17. [PMID: 7667304 PMCID: PMC41167 DOI: 10.1073/pnas.92.18.8413] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
A selective polyclonal antibody directed toward the C-terminal decapeptide common to the alpha subunits of Gq and G11 G proteins (G alpha q/G alpha 11) was prepared and used to investigate the subcellular distribution fo these proteins in WRK1 cells, a rat mammary tumor cell line. In immunoblots, the antibody recognized purified G alpha q and G alpha 11 proteins and labeled only two bands corresponding to these alpha subunits. Functional studies indicated that this antibody inhibited vasopressin- and guanosine 5'-[alpha-thio]triphosphate-sensitive phospholipase C activities. Immunofluorescence experiments done with this antibody revealed a filamentous labeling corresponding to intracytoplasmic and perimembranous actin-like filament structures. Colocalization of G alpha q/G alpha 11 and F-actin filaments (F-actin) was demonstrated by double-labeling experiments with anti-G alpha q/G alpha 11 and anti-actin antibodies. Immunoblot analysis of membrane, cytoskeletal, and F-actin-rich fractions confirmed the close association of G alpha q/G alpha 11 with actin. Large amounts of G alpha q/G alpha 11 were recovered in the desmin- and tubulin-free F-actin-rich fraction obtained by a double depolymerization-repolymerization cycle. Disorganization of F-actin filaments with cytochalasin D preserved G alpha q/G alpha 11 and F-actin colocalization but partially inhibited vasopressin- and fluoroaluminate-sensitive phospholipase C activity, suggesting that actin-associated G alpha q/G alpha 11 proteins play a role in signal transduction.
Collapse
Affiliation(s)
- J Ibarrondo
- Centre de Pharmacologie Endocrinologie, Institut National de la Santé et de la Recherche Médicale, Montpellier, France
| | | | | | | | | | | | | |
Collapse
|
35
|
Watson PF, Plummer JM, Jones PS, Bredl JC. Localization of intracellular calcium during the acrosome reaction in ram spermatozoa. Mol Reprod Dev 1995; 41:513-20. [PMID: 7576619 DOI: 10.1002/mrd.1080410414] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Calcium was identified by a pyroantimonate-osmium fixation technique in ram spermatozoa undergoing a spontaneous acrosome reaction induced by incubation of diluted semen at 39 degrees C. Intracellular calcium was only detected in diluted spermatozoa and increased in amount and distribution over 4 hr At 4 hr, the majority of the spermatozoa displayed ultrastructural evidence of an acrosome reaction. Calcium was initially evident on the outer acrosomal membrane in multiparticulate clusters, which were seen to be located on scalloped crests of acrosomal membrane as fusion developed; it was also located in the region of the acrosomal ridge beneath the outer acrosomal membrane. Vesiculation commenced just anterior to the equatorial segment and proceeded anteriorly. As vesiculation advanced, calcium particles became associated with the periphery of the vesicles attached in the region of the fusion between the two membranes, but were never seen inside the vesicles. The equatorial segment was not labelled until much later in the reaction, at which time calcium particles were also evident on the nuclear membrane; vesiculation of the equatorial segment was also noted at this time. Dense labelling of the postacrosomal dense lamina was seen in all incubated spermatozoa. At the anterior margin of this structure the labelling was seen to be in a "sawtooth" arrangement. The disposition of the calcium both temporally and spatially is discussed in relation to its possible mechanisms in bringing about membrane fusion.
Collapse
Affiliation(s)
- P F Watson
- Department of Veterinary Basic Sciences, Royal Veterinary College, London, United Kingdom
| | | | | | | |
Collapse
|
36
|
Schweitzer ES, Sanderson MJ, Wasterlain CG. Inhibition of regulated catecholamine secretion from PC12 cells by the Ca2+/calmodulin kinase II inhibitor KN-62. J Cell Sci 1995; 108 ( Pt 7):2619-28. [PMID: 7593303 DOI: 10.1242/jcs.108.7.2619] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
When stimulated by the cholinergic agonist carbachol, PC12 cells rapidly secrete a large fraction of the intracellular catecholamines by exocytotic release from the large dense-core secretory vesicles in a Ca(2+)-dependent manner. To investigate whether Ca2+/calmodulin kinase II plays a role in the regulated secretion of catecholamines, we examined the effect of the specific Ca2+/calmodulin kinase II inhibitor KN-62 on the carbachol-induced release of norepinephrine from PC12 cells. Approximately 50% of the regulated release of norepinephrine, stimulated either by carbachol or direct depolarization, was inhibited by pretreatment with KN-62, while the remaining 50% was resistant to KN-62 and therefore independent of Ca2+/calmodulin kinase II. In contrast, H7, an inhibitor of protein kinase C, had no effect on any of the stimulated release. FURA 2 imaging experiments demonstrated that KN-62 does not act by blocking the stimulation-induced increase in intracellular [Ca2+]. The most likely model consistent with these data is that all the dense-core vesicles fuse with the plasma membrane in a Ca(2+)-dependent process, but that approximately 50% of the vesicles require an additional step that is dependent on the action of Ca2+/calmodulin kinase II. This step occurs between the influx of Ca2+ and the fusion of vesicle membranes with the plasma membrane, and may be analogous to the Ca2+/calmodulin kinase II phosphorylation of synapsin which mobilizes small, clear synaptic vesicles for exocytosis at the synapse.
Collapse
Affiliation(s)
- E S Schweitzer
- Department of Anatomy, UCLA School of Medicine 90024, USA
| | | | | |
Collapse
|
37
|
Livnat T, Chen-Zion M, Brodie C, Beitner R. Rapid stimulatory effect of insulin on binding of glycolytic enzymes to cytoskeleton of C-6 glial cells, and the antagonistic action of calmodulin inhibitors. Endocrine 1995; 3:319-22. [PMID: 21153182 DOI: 10.1007/bf03021413] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/1995] [Accepted: 01/10/1995] [Indexed: 11/30/2022]
Abstract
Insulin was shown in our previous experiments to induce an increase in binding of glycolytic enzymes to muscle cytoskeleton. We show here the same stimulatory effect of insulin in C-6 glial cells in culture. In these cells, like in muscle, a short time of incubation with insulin (1-10 min) induced an increase in cytoskeleton bound phosphofructokinase and aldolase. This stimulatory effect of insulin could be prevented by treatment with calmodulin antagonists trifluoperazine, thioridazine or CGS 9343 B (a potent and selective inhibitor of calmodulin activity), which strongly suggests that calmodulin is involved in this action of insulin. Our previous experiments have shown that growth factors and Ca(2+) also induce a rapid, calmodulin-mediated stimulation of binding of glycolytic enzymes to cytoskeleton. The present and previous results suggest that the rapid binding of glycolytic enzymes to cytoskeleton, may be a general mechanism, in different cells, in signal transduction of insulin, growth factors and other Ca(2+) -mobilizing hormones. The accelerated cytoskeletal glycolysis will supply local ATP, which is required for the rapid cytoskeletal-membrane rearrangements following the binding of hormone to its receptor.
Collapse
Affiliation(s)
- T Livnat
- Dept. of Life Sciences, Bar-llan University Ramat Can, 52900, Israel
| | | | | | | |
Collapse
|
38
|
Alarcón C, Cheatham B, Lincoln B, Kahn CR, Siddle K, Rhodes CJ. A Kex2-related endopeptidase activity present in rat liver specifically processes the insulin proreceptor. Biochem J 1994; 301 ( Pt 1):257-65. [PMID: 8037679 PMCID: PMC1137170 DOI: 10.1042/bj3010257] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The insulin proreceptor is cleaved by limited proteolysis post-translationally at an Arg-Lys-Arg-Arg site to generate its mature alpha- and beta-subunit form. An 35S-labelled insulin proreceptor substrate preparation and a 15-mer peptide substrate that mimics the amino acid sequence around and including the insulin proreceptor processing site (IRP-peptide) has revealed an endopeptidase activity that catalyses insulin proreceptor cleavage in a rat liver subcellular fraction. Under optimal conditions, normal 35S-labelled insulin proreceptor substrate processing by this fraction was quantitative. This fraction was not able to process an 35S-labelled insulin proreceptor variant substrate (where the Arg-1 of the tetrabasic cleavage site had been replaced by Ala-1), similarly to previous in vivo observations, suggesting that this endopeptidase activity has physiological relevance. Biochemical characterization of the insulin proreceptor/IRP-peptide processing revealed this rat liver endopeptidase activity to have a broad pH range (> 70% maximal activity between pH 5.5 and 10.0) and a pH optimum of pH 8-10. It was Ca(2+)-dependent activity, maximally active between 0.5 and 5 mM Ca2+ and half-maximally activated between 50 and 90 microM Ca2+. Endoproteolytic activity was not inhibited by group-specific inhibitors of serine-, cysteinyl or aspartyl proteinases or by 1,10-phenanthroline; however, EDTA and 1,2-cyclohexanediaminetetraacetic acid did inhibit the activity, but this was accounted for by Ca2+ chelation. The IRP-peptide substrate assay enabled measurement of an apparent Km of 22 microM and a Vmax of 18.6 pmol/min for this endopeptidase activity. These biochemical characteristics suggest that insulin proreceptor processing endopeptidase activity to be a legitimate member of the Kex2-related proprotein convertase family. Immunoblotting detected furin and PACE4 proteins (both members of this family) to be present in the rat liver subcellular fraction containing insulin proreceptor processing activity. Since the biochemical characteristics of the insulin proreceptor processing endopeptidase activity mostly resembled those of furin activity, it is likely that insulin proreceptor proteolytic maturation can be catalysed by furin in the liver.
Collapse
Affiliation(s)
- C Alarcón
- EP. Joslin Research Laboratory, Joslin Diabetes Center, Brigham and Women's Hospital, Boston, MA 02215
| | | | | | | | | | | |
Collapse
|
39
|
Maher E, Bachoo B, Polosa C. In vitro and in vivo evidence of neurotensin release from preganglionic axon terminals in the stellate ganglion of the cat. Brain Res 1994; 640:131-5. [PMID: 8004441 DOI: 10.1016/0006-8993(94)91866-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We have previously shown that the neurotensin (NT) store in preganglionic axon terminals of the cat stellate ganglion (SG) is reversibly depleted by prolonged preganglionic stimulation. The present study addresses the questions of whether the preganglionic axon terminals release NT in response to depolarizing stimuli in vitro and whether in vivo NT is released by the tonic firing of the sympathetic preganglionic neurons. Slices of the SG of the anaesthetized cat, maintained in oxygenated Ringer solution, released NT. The efflux increased when the K concentration was increased from 5 to 25 or 45 mM or when veratridine was added to the medium. In Ca-free medium, efflux was suppressed. The effect of veratridine was blocked by tetrodotoxin (TTX). In awake, freely moving cats, in which TTX was applied for 4 days to the preganglionic input of the right SG, the NT content of this ganglion doubled by comparison with the left SG. Since NT accumulates proximal to a ligature on the preganglionic input of the SG, the increased NT content is likely to result from suppression of action potential-dependent release while influx into the terminals persists. This result suggests that the steady state of the NT store in sympathetic preganglionic terminals is the result of a steady influx from the soma balanced by action potential-dependent loss, presumably release.
Collapse
Affiliation(s)
- E Maher
- Department of Physiology, McGill University, Montreal, Que., Canada
| | | | | |
Collapse
|
40
|
Maurer JA, McKay DB. Staurosporine-induced reduction of secretory function in cultured bovine adrenal chromaffin cells. Eur J Pharmacol 1994; 253:115-24. [PMID: 8013537 DOI: 10.1016/0014-2999(94)90765-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Staurosporine, a potent inhibitor of protein kinases, has been used to investigate the involvement of protein kinases in cellular processes such as secretory function and differentiation. We have been examining the effects of staurosporine on secretory function under the same conditions it induces dramatic changes in cell morphology in cultured bovine adrenal chromaffin cells. Our results show that treatment with 100 nM staurosporine reduces catecholamine release stimulated by 56 mM KCl, 10 microM nicotine, and 2 mM BaCl2 in a time-dependent manner (t1/2s, 42, 32, and 31 min, respectively). However, we demonstrate that the time-dependent effects on secretory function are not the direct result of staurosporine-induced changes in cell morphology. The effects of staurosporine on secretion stimulated by KCl, nicotine, and BaCl2 are concentration-dependent (IC50s, 6.3, 29.3, and 34.9 nM, respectively). Staurosporine pretreatment does not inhibit activated 45Ca2+ influx, but does reduce catecholamine release stimulated directly by Ca2+ from permeabilized cells. Furthermore, staurosporine also inhibits basal release with time- and concentration-dependencies (IC50, 9.3 nM and t1/2, 21 min) similar to those found for stimulated release. These results suggest that prolonged staurosporine pretreatment may result in the depletion/alteration of a component essential for the more terminal steps of the secretory process.
Collapse
Affiliation(s)
- J A Maurer
- Division of Pharmacology, Ohio State University, College of Pharmacy, Columbus 43210
| | | |
Collapse
|
41
|
Greengard P, Benfenati F, Valtorta F. Synapsin I, an actin-binding protein regulating synaptic vesicle traffic in the nerve terminal. ADVANCES IN SECOND MESSENGER AND PHOSPHOPROTEIN RESEARCH 1994; 29:31-45. [PMID: 7848718 DOI: 10.1016/s1040-7952(06)80005-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- P Greengard
- Laboratory of Molecular and Cellular Neuroscience, Rockefeller University, New York, New York 10021
| | | | | |
Collapse
|
42
|
Abstract
It has become apparent in recent years that the cytoskeleton and its associated proteins play a major role in secretion. This review summarizes recent findings on the cytoskeleton organization and the molecular topology of its regulatory proteins, as well as the dynamic changes that occur in this organelle during secretion from neurons and secretory cells. Although two apparently different ultrastructures and molecular organizations of the cytoskeleton seem to be involved in neuronal and secretory cell secretion, there are similarities between the two systems. In both neurons and secretory cells, Ca2+ plays a pivotal role in the control of cytoskeleton dynamics, especially in the changes in actin filament networks observed during secretion.
Collapse
Affiliation(s)
- J M Trifaró
- Dept of Pharmacology, University of Ottawa, Canada
| | | |
Collapse
|
43
|
Voronin LL. On the quantal analysis of hippocampal long-term potentiation and related phenomena of synaptic plasticity. Neuroscience 1993; 56:275-304. [PMID: 8247261 DOI: 10.1016/0306-4522(93)90332-a] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- L L Voronin
- Brain Research Institute, Russian Academy of Medical Sciences, Moscow
| |
Collapse
|
44
|
Paul S, Ebadi M. Vasoactive intestinal peptide: its interactions with calmodulin and catalytic antibodies. Neurochem Int 1993; 23:197-214. [PMID: 8220166 DOI: 10.1016/0197-0186(93)90111-h] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- S Paul
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha 68198-6830
| | | |
Collapse
|
45
|
Beitner R. Control of glycolytic enzymes through binding to cell structures and by glucose-1,6-bisphosphate under different conditions. The role of Ca2+ and calmodulin. THE INTERNATIONAL JOURNAL OF BIOCHEMISTRY 1993; 25:297-305. [PMID: 8462719 DOI: 10.1016/0020-711x(93)90616-m] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- R Beitner
- Department of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
46
|
Chakrabarti S, Sonaye B, Nadkarni PP, Da Silva SV. Early postnatal undernutrition impairs protein kinase C-dependent phosphorylation in rat brain synaptosomes. Neurosci Lett 1993; 150:65-7. [PMID: 8469405 DOI: 10.1016/0304-3940(93)90109-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Undernutrition in rat pups was established by restricting feeding time daily. Protein kinase C-dependent phosphorylation in vitro was studied by incubating the mitochondrial-synaptosomal membrane fractions from adult, 18-day-old control and undernourished rats with gamma-[32P]ATP in presence of Ca2+ and phosphatidylserine. In adult and 18-day-old control rats, an increased phosphorylation of three major proteins (49, 53, 84 kDa) were detected in presence of calcium and phosphatidylserine. However, in 18-day-old undernourished rats, calcium/phosphatidylserine activated phosphorylation was found to be significantly impaired with only a slightly increased labelling detected in the 49 kDa protein.
Collapse
Affiliation(s)
- S Chakrabarti
- Department of Biochemistry, Goa Medical College, Bambolim, India
| | | | | | | |
Collapse
|
47
|
Abstract
Because synaptic vesicles and secretory granules are simple in composition and easy to purify, many of their protein components have been identified and often sequenced. Attempts are underway to link the small number of membrane proteins to the small number of functions the vesicles perform. The discovery of sequence homologies has helped greatly with this. In addition, techniques that have begun to prove successful involve microinjection, identification of proteins that bind synaptic vesicle proteins, DNA transfection into cells and oocytes, and more recently, in vitro reconstitution of exocytosis, endocytosis, and vesicle biogenesis. Advances in the latter areas have been strongly influenced by the breakthroughs in our knowledge of membrane traffic in nonneuronal cells. The budding reactions involved in making synaptic vesicles and secretory granules resemble in many ways the generation of carrier vesicles from the ER and the Golgi complex. Finally, exocytosis in neurons may closely resemble fusion of carrier vesicles with target organelles in nonneuronal cells, using complexes of peripheral membrane proteins, GTP hydrolysis, and integral membrane proteins with fusogenic domains. The usefulness of in vitro reconstitution, reverse genetics, and the parallels with better understood systems compensates in part for a major weakness in the field, namely the difficulty in obtaining viable mutants that are defective in the storage and release of secretory vesicle content.
Collapse
Affiliation(s)
- R B Kelly
- Department of Biochemistry and Biophysics, University of California, San Francisco 94143-0448
| |
Collapse
|