1
|
Lim HD, Bartuzi D, Keen AC, Rauffenbart C, Glenn J, Charlton SJ, Lovera S, Sands ZA, Ates A, Wood M, Canals M, Javitch JA, Carlsson J, Lane JR. Identification of a Lipid-Exposed Extrahelical Binding Site for Positive Allosteric Modulators of the Dopamine D 2 Receptor. ACS Chem Neurosci 2025. [PMID: 40372152 DOI: 10.1021/acschemneuro.5c00105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2025] Open
Abstract
Recently, the first small-molecule positive allosteric modulators (PAMs) of the dopamine D2 receptor (D2R) were identified. The more potent PAM potentiated the effects of D2R signaling in vitro and in an in vivo model predictive of anti-Parkinson's efficacy. We reveal, based on the results of our site-directed mutagenesis and molecular dynamics experiments, that this scaffold binds to a hitherto unexploited lipid-exposed extrahelical allosteric site in the D2R that lies in a cleft toward the intracellular aspect of the D2R defined by residues in transmembrane domains 1 and 7 and helix 8. By binding to this site, the PAM acts to potentiate the binding affinity of efficacious agonists, such as dopamine. Our simulations suggest that the PAM achieves this effect by stabilizing an active-like conformation of the receptor, similar to the G protein-bound state with TM5 and the tyrosine toggle switch playing the major role.
Collapse
Affiliation(s)
- Herman D Lim
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 399 Royal Parade, Parkville, VIC 3052, Australia
| | - Damian Bartuzi
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Uppsala SE- 751 24, Sweden
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, Faculty of Pharmacy, Medical University of Lublin, 4A Chodźki St., Lublin 20093, Poland
| | - Alastair C Keen
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 399 Royal Parade, Parkville, VIC 3052, Australia
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, United Kingdom
- Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, Nottingham NG7 2UH, United Kingdom
| | - Caroline Rauffenbart
- Departments of Psychiatry and Pharmacology, College of Physicians and Surgeons, Columbia University, New York, New York 10032, United States
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, New York 10032, United States
| | - Jacqueline Glenn
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, United Kingdom
- Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, Nottingham NG7 2UH, United Kingdom
| | - Steven J Charlton
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, United Kingdom
- Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, Nottingham NG7 2UH, United Kingdom
| | - Silvia Lovera
- UCB BioPharma SPRL, Chemin de Foriest, Braine-l'Alleud, Brussels B-1420, Belgium
| | - Zara A Sands
- UCB BioPharma SPRL, Chemin de Foriest, Braine-l'Alleud, Brussels B-1420, Belgium
| | - Ali Ates
- UCB BioPharma SPRL, Chemin de Foriest, Braine-l'Alleud, Brussels B-1420, Belgium
| | - Martyn Wood
- UCB BioPharma SPRL, Chemin de Foriest, Braine-l'Alleud, Brussels B-1420, Belgium
| | - Meritxell Canals
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, United Kingdom
- Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, Nottingham NG7 2UH, United Kingdom
| | - Jonathan A Javitch
- Departments of Psychiatry and Pharmacology, College of Physicians and Surgeons, Columbia University, New York, New York 10032, United States
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, New York 10032, United States
| | - Jens Carlsson
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Uppsala SE- 751 24, Sweden
| | - J Robert Lane
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, United Kingdom
- Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, Nottingham NG7 2UH, United Kingdom
| |
Collapse
|
2
|
Rodriguez-Contreras D, García-Nafría J, Chan AE, Shinde U, Neve KA. Comparison of the function of two novel human dopamine D2 receptor variants identifies a likely mechanism for their pathogenicity. Biochem Pharmacol 2024; 228:116228. [PMID: 38643909 PMCID: PMC11410538 DOI: 10.1016/j.bcp.2024.116228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/29/2024] [Accepted: 04/18/2024] [Indexed: 04/23/2024]
Abstract
Two recently discovered DRD2 mutations, c.634A > T, p.Ile212Phe and c.1121T > G, p.Met374Arg, cause hyperkinetic movement disorders that have overlapping features but apparently differ in severity. The two known carriers of the Met374Arg variant had early childhood disease onset and more severe motor, cognitive, and neuropsychiatric deficits than any known carriers of the Ile212Phe variant, whose symptoms were first apparent in adolescence. Here, we evaluated if differences in the function of the two variants in cultured cells could explain differing pathogenicity. Both variants were expressed less abundantly than the wild type receptor and exhibited loss of agonist-induced arrestin binding, but differences in expression and arrestin binding between the variants were minor. Basal and agonist-induced activation of heterotrimeric Gi/o/z proteins, however, showed clear differences; agonists were generally more potent at Met374Arg than at the Ile212Phe or wild type variants. Furthermore, all Gα subtypes tested were constitutively activated more by Met374Arg than by Ile212Phe. Met374Arg produced greater constitutive inhibition of cyclic AMP accumulation than Ile212Phe or the wild type D2 receptor. Met374Arg and Ile212Phe were more sensitive to thermal inactivation than the wild type D2 receptor, as reported for other constitutively active receptors, but Ile212Phe was affected more than Met374Arg. Additional pharmacological characterization suggested that the mutations differentially affect the shape of the agonist binding pocket and the potency of dopamine, norepinephrine, and tyramine. Molecular dynamics simulations provided a structural rationale for enhanced constitutive activation and agonist potency. Enhanced constitutive and agonist-induced G protein-mediated signaling likely contributes to the pathogenicity of these novel variants.
Collapse
Affiliation(s)
- Dayana Rodriguez-Contreras
- Research Service, Veterans Affairs Portland Health Care System, and Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA
| | - Javier García-Nafría
- Institute for Biocomputation and Physics of Complex Systems (BIFI) and Laboratory of Advanced Microscopy (LMA), University of Zaragoza, 50018, Zaragoza, Spain
| | - Amy E Chan
- Research Service, Veterans Affairs Portland Health Care System, and Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA
| | - Ujwal Shinde
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA
| | - Kim A Neve
- Research Service, Veterans Affairs Portland Health Care System, and Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA.
| |
Collapse
|
3
|
Legros C, Rojas A, Dupré C, Brasseur C, Riest‐Fery I, Muller O, Ortuno J, Nosjean O, Guenin S, Ferry G, Boutin JA. Approach to the specificity and selectivity between D2 and D3 receptors by mutagenesis and binding experiments part I: Expression and characterization of D2 and D3 receptor mutants. Protein Sci 2022; 31:e4459. [PMID: 36177735 PMCID: PMC9667827 DOI: 10.1002/pro.4459] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/22/2022] [Accepted: 09/25/2022] [Indexed: 12/13/2022]
Abstract
D3/D2 sub-specificity is a complex problem to solve. Indeed, in the absence of easy structural biology of the G-protein coupled receptors, and despite key progresses in this area, the systematic knowledge of the ligand/receptor relationship is difficult to obtain. Due to these structural biology limitations concerning membrane proteins, we favored the use of directed mutagenesis to document a rational towards the discovery of markedly specific D3 ligands over D2 ligands together with basic binding experiments. Using our methodology of stable expression of receptors in HEK cells, we constructed the gene encoding for 24 mutants and 4 chimeras of either D2 or D3 receptors and expressed them stably. Those cell lines, expressing a single copy of one receptor mutant each, were stably constructed, selected, amplified and the membranes from them were prepared. Binding data at those receptors were obtained using standard binding conditions for D2 and D3 dopamine receptors. We generated 26 new molecules derived from D2 or D3 ligands. Using 8 reference compounds and those 26 molecules, we characterized their binding at those mutants and chimeras, exemplifying an approach to better understand the difference at the molecular level of the D2 and D3 receptors. Although all the individual results are presented and could be used for minute analyses, the present report does not discuss the differences between D2 and D3 data. It simply shows the feasibility of the approach and its potential.
Collapse
Affiliation(s)
- Céline Legros
- Pôle d'expertise Biotechnologie, Chimie, BiologieInstitut de Recherches ServierCroissy‐sur‐SeineFrance
| | - Anne Rojas
- Chimie MédicinaleInstitut de Recherches ServierCroissy‐sur‐SeineFrance
| | - Clémence Dupré
- Pôle d'expertise Biotechnologie, Chimie, BiologieInstitut de Recherches ServierCroissy‐sur‐SeineFrance
| | - Chantal Brasseur
- Pôle d'expertise Biotechnologie, Chimie, BiologieInstitut de Recherches ServierCroissy‐sur‐SeineFrance
| | - Isabelle Riest‐Fery
- Pôle d'expertise Biotechnologie, Chimie, BiologieInstitut de Recherches ServierCroissy‐sur‐SeineFrance
| | - Olivier Muller
- Chimie MédicinaleInstitut de Recherches ServierCroissy‐sur‐SeineFrance
| | | | - Olivier Nosjean
- Pôle d'expertise Biotechnologie, Chimie, BiologieInstitut de Recherches ServierCroissy‐sur‐SeineFrance
| | - Sophie‐Pénélope Guenin
- Pôle d'expertise Biotechnologie, Chimie, BiologieInstitut de Recherches ServierCroissy‐sur‐SeineFrance
| | - Gilles Ferry
- Pôle d'expertise Biotechnologie, Chimie, BiologieInstitut de Recherches ServierCroissy‐sur‐SeineFrance
| | - Jean A. Boutin
- Pôle d'expertise Biotechnologie, Chimie, BiologieInstitut de Recherches ServierCroissy‐sur‐SeineFrance
- Laboratory of Neuronal and Neuroendocrine Differentiation and CommunicationUniversity of NormandyRouenFrance
| |
Collapse
|
4
|
Tosso RD, Zarycz MNC, Schiel A, Goicoechea Moro L, Baldoni HA, Angelina E, Enriz RD. Evaluating the conformational space of the active site of D 2 dopamine receptor. Scope and limitations of the standard docking methods. J Comput Chem 2022; 43:1298-1312. [PMID: 35638694 DOI: 10.1002/jcc.26938] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 04/11/2022] [Accepted: 05/08/2022] [Indexed: 11/05/2022]
Abstract
We report here for the first time the potential energy surfaces (PES) of phenyletilamine (PEA) and meta-tyramine (m-OH-PEA) at the D2 dopamine receptor (D2DR) binding site. PESs not only allow us to observe all the critical points of the surface (minimums, maximums, and transition states), but also to note the ease or difficulty that each local minima have for their conformational inter-conversions and therefore know the conformational flexibility that these ligands have in their active sites. Taking advantage of possessing this valuable information, we analyze how accurate a standard docking study is in these cases. Our results indicate that although we have to be careful in how to carry out this type of study and to consider performing some extra-simulations, docking calculations can be satisfactory. In order to analyze in detail the different molecular interactions that are stabilizing the different ligand-receptor (L-R) complexes, we carried out quantum theory of atoms in molecules (QTAIM) computations and NMR shielding calculations. Although some of these techniques are a bit tedious and require more computational time, our results demonstrate the importance of performing computational simulations using different types of combined techniques (docking/MD/hybrid QM-MM/QTAIM and NMR shielding calculations) in order to obtain more accurate results. Our results allow us to understand in details the molecular interactions stabilizing and destabilizing the different L-R complexes reported here. Thus, the different activities observed for dopamine (DA), m-OH-PEA, and PEA can be clearly explained at molecular level.
Collapse
Affiliation(s)
- Rodrigo D Tosso
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Instituto Multidisciplinario de Investigaciones Biológicas, San Luis, Argentina
| | - M Natalia C Zarycz
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Instituto Multidisciplinario de Investigaciones Biológicas, San Luis, Argentina
| | - Ayelén Schiel
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Instituto Multidisciplinario de Investigaciones Biológicas, San Luis, Argentina
| | - Luisa Goicoechea Moro
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Instituto Multidisciplinario de Investigaciones Biológicas, San Luis, Argentina
| | - Héctor A Baldoni
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis; Instituto de Matemáticas, San Luis, Argentina
| | - Emilio Angelina
- Laboratorio de Estructura Molecular y Propiedades, Facultad de Ciencias Exactas y Naturales y Agrimensura, Universidad Nacional del Nordeste, Instituto de Química Básica y Aplicada, Corrientes, Argentina
| | - Ricardo D Enriz
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Instituto Multidisciplinario de Investigaciones Biológicas, San Luis, Argentina
| |
Collapse
|
5
|
Xiao P, Yan W, Gou L, Zhong YN, Kong L, Wu C, Wen X, Yuan Y, Cao S, Qu C, Yang X, Yang CC, Xia A, Hu Z, Zhang Q, He YH, Zhang DL, Zhang C, Hou GH, Liu H, Zhu L, Fu P, Yang S, Rosenbaum DM, Sun JP, Du Y, Zhang L, Yu X, Shao Z. Ligand recognition and allosteric regulation of DRD1-Gs signaling complexes. Cell 2021; 184:943-956.e18. [PMID: 33571432 PMCID: PMC11005940 DOI: 10.1016/j.cell.2021.01.028] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 12/01/2020] [Accepted: 01/15/2021] [Indexed: 02/08/2023]
Abstract
Dopamine receptors, including D1- and D2-like receptors, are important therapeutic targets in a variety of neurological syndromes, as well as cardiovascular and kidney diseases. Here, we present five cryoelectron microscopy (cryo-EM) structures of the dopamine D1 receptor (DRD1) coupled to Gs heterotrimer in complex with three catechol-based agonists, a non-catechol agonist, and a positive allosteric modulator for endogenous dopamine. These structures revealed that a polar interaction network is essential for catecholamine-like agonist recognition, whereas specific motifs in the extended binding pocket were responsible for discriminating D1- from D2-like receptors. Moreover, allosteric binding at a distinct inner surface pocket improved the activity of DRD1 by stabilizing endogenous dopamine interaction at the orthosteric site. DRD1-Gs interface revealed key features that serve as determinants for G protein coupling. Together, our study provides a structural understanding of the ligand recognition, allosteric regulation, and G protein coupling mechanisms of DRD1.
Collapse
Affiliation(s)
- Peng Xiao
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Wei Yan
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Lu Gou
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Ya-Ni Zhong
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Liangliang Kong
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Chao Wu
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xin Wen
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yuan Yuan
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Sheng Cao
- School of Life and Health Sciences, Kobilka Institute of Innovative Drug Discovery, Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Changxiu Qu
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xin Yang
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Chuan-Cheng Yang
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Anjie Xia
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zhenquan Hu
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Qianqian Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Yong-Hao He
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; School of Pharmacy, Binzhou Medical University, Yantai, Shandong 264003, China
| | - Dao-Lai Zhang
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong 264003, China
| | - Chao Zhang
- Biomedical Isotope Research Center, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Gui-Hua Hou
- Biomedical Isotope Research Center, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Huanxiang Liu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Lizhe Zhu
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Ping Fu
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shengyong Yang
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Daniel M Rosenbaum
- Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jin-Peng Sun
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, China.
| | - Yang Du
- School of Life and Health Sciences, Kobilka Institute of Innovative Drug Discovery, Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China.
| | - Lei Zhang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Xiao Yu
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| | - Zhenhua Shao
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
6
|
Structure of the dopamine D 2 receptor in complex with the antipsychotic drug spiperone. Nat Commun 2020; 11:6442. [PMID: 33353947 PMCID: PMC7755896 DOI: 10.1038/s41467-020-20221-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 11/19/2020] [Indexed: 12/26/2022] Open
Abstract
In addition to the serotonin 5-HT2A receptor (5-HT2AR), the dopamine D2 receptor (D2R) is a key therapeutic target of antipsychotics for the treatment of schizophrenia. The inactive state structures of D2R have been described in complex with the inverse agonists risperidone (D2Rris) and haloperidol (D2Rhal). Here we describe the structure of human D2R in complex with spiperone (D2Rspi). In D2Rspi, the conformation of the extracellular loop (ECL) 2, which composes the ligand-binding pocket, was substantially different from those in D2Rris and D2Rhal, demonstrating that ECL2 in D2R is highly dynamic. Moreover, D2Rspi exhibited an extended binding pocket to accommodate spiperone’s phenyl ring, which probably contributes to the selectivity of spiperone to D2R and 5-HT2AR. Together with D2Rris and D2Rhal, the structural information of D2Rspi should be of value for designing novel antipsychotics with improved safety and efficacy. The dopamine D2 receptor (D2R) is a GPCR and an important drug target for schizophrenia treatment. Here, the authors present the crystal structure of human D2R in complex with the antipsychotic drug spiperone, which is of interest for designing antipsychotics with improved receptor selectivity.
Collapse
|
7
|
Yin J, Chen KYM, Clark MJ, Hijazi M, Kumari P, Bai XC, Sunahara RK, Barth P, Rosenbaum DM. Structure of a D2 dopamine receptor-G-protein complex in a lipid membrane. Nature 2020; 584:125-129. [PMID: 32528175 PMCID: PMC7415663 DOI: 10.1038/s41586-020-2379-5] [Citation(s) in RCA: 145] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 04/08/2020] [Indexed: 12/28/2022]
Abstract
The D2 dopamine receptor (DRD2) is a therapeutic target for Parkinson’s disease1 and antipsychotic drugs2. DRD2 is activated by the endogenous neurotransmitter dopamine and synthetic agonist drugs such as bromocriptine3, leading to stimulation of Gi and inhibition of adenylyl cyclase. We used cryo-electron microscopy to elucidate the structure of an agonist-bound activated DRD2-Gi complex reconstituted into a phospholipid membrane. The extracellular ligand binding site of DRD2 is remodeled in response to agonist binding, with conformational changes in extracellular loop 2 (ECL2), transmembrane domain 5 (TM5), TM6, and TM7 propagating to opening of the intracellular Gi binding site. The DRD2-Gi structure represents the first experimental model of a GPCR-G protein complex embedded in a phospholipid bilayer, which serves as a benchmark to validate the interactions seen in previous detergent-bound structures. The structure also reveals interactions that are unique to the membrane-embedded complex, including helix 8 burial in the inner leaflet, ordered lysine and arginine sidechains in the membrane interfacial regions, and lipid anchoring of the G protein in the membrane. Our model of the activated DRD2 will help inform the design of subtype-selective DRD2 ligands for multiple human CNS disorders.
Collapse
Affiliation(s)
- Jie Yin
- Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kuang-Yui M Chen
- Institute of Bioengineering, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Mary J Clark
- Department of Pharmacology, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Mahdi Hijazi
- Institute of Bioengineering, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Punita Kumari
- Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xiao-Chen Bai
- Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Roger K Sunahara
- Department of Pharmacology, University of California San Diego School of Medicine, La Jolla, CA, USA.
| | - Patrick Barth
- Institute of Bioengineering, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland.
| | - Daniel M Rosenbaum
- Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
8
|
Tosso RD, Parravicini O, Zarycz MNC, Angelina E, Vettorazzi M, Peruchena N, Andujar S, Enriz RD. Conformational and electronic study of dopamine interacting with theD2dopamine receptor. J Comput Chem 2020; 41:1898-1911. [DOI: 10.1002/jcc.26361] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/10/2020] [Accepted: 05/22/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Rodrigo D. Tosso
- Facultad de Química, Bioquímica y FarmaciaUniversidad Nacional de San Luis San Luis Argentina
- Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO‐SL)CONICET San Luis Argentina
| | - Oscar Parravicini
- Facultad de Química, Bioquímica y FarmaciaUniversidad Nacional de San Luis San Luis Argentina
- Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO‐SL)CONICET San Luis Argentina
| | - M. Natalia C. Zarycz
- Facultad de Química, Bioquímica y FarmaciaUniversidad Nacional de San Luis San Luis Argentina
- Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO‐SL)CONICET San Luis Argentina
| | - Emilio Angelina
- Laboratorio de Estructura Molecular y PropiedadesFacultad de Ciencias Exactas y Naturales y Agrimensura Corrientes Argentina
- Instituto de Química Básica y Aplicada (IQUIBA‐NEA)CONICET Corrientes Argentina
| | - Marcela Vettorazzi
- Facultad de Química, Bioquímica y FarmaciaUniversidad Nacional de San Luis San Luis Argentina
- Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO‐SL)CONICET San Luis Argentina
| | - Nélida Peruchena
- Laboratorio de Estructura Molecular y PropiedadesFacultad de Ciencias Exactas y Naturales y Agrimensura Corrientes Argentina
- Instituto de Química Básica y Aplicada (IQUIBA‐NEA)CONICET Corrientes Argentina
| | - Sebastián Andujar
- Facultad de Química, Bioquímica y FarmaciaUniversidad Nacional de San Luis San Luis Argentina
- Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO‐SL)CONICET San Luis Argentina
| | - Ricardo D. Enriz
- Facultad de Química, Bioquímica y FarmaciaUniversidad Nacional de San Luis San Luis Argentina
- Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO‐SL)CONICET San Luis Argentina
| |
Collapse
|
9
|
Klein Herenbrink C, Verma R, Lim HD, Kopinathan A, Keen A, Shonberg J, Draper-Joyce CJ, Scammells PJ, Christopoulos A, Javitch JA, Capuano B, Shi L, Lane JR. Molecular Determinants of the Intrinsic Efficacy of the Antipsychotic Aripiprazole. ACS Chem Biol 2019; 14:1780-1792. [PMID: 31339684 DOI: 10.1021/acschembio.9b00342] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Partial agonists of the dopamine D2 receptor (D2R) have been developed to treat the symptoms of schizophrenia without causing the side effects elicited by antagonists. The receptor-ligand interactions that determine the intrinsic efficacy of such drugs, however, are poorly understood. Aripiprazole has an extended structure comprising a phenylpiperazine primary pharmacophore and a 1,2,3,4-tetrahydroquinolin-2-one secondary pharmacophore. We combined site-directed mutagenesis, analytical pharmacology, ligand fragments, and molecular dynamics simulations to identify the D2R-aripiprazole interactions that contribute to affinity and efficacy. We reveal that an interaction between the secondary pharmacophore of aripiprazole and a secondary binding pocket defined by residues at the extracellular portions of transmembrane segments 1, 2, and 7 determines the intrinsic efficacy of aripiprazole. Our findings reveal a hitherto unappreciated mechanism for fine-tuning the intrinsic efficacy of D2R agonists.
Collapse
Affiliation(s)
| | - Ravi Verma
- Computational Chemistry and Molecular Biophysics Unit, National Institute on Drug Abuse-Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | | | | | | | | | | | | | | | | | | | - Lei Shi
- Computational Chemistry and Molecular Biophysics Unit, National Institute on Drug Abuse-Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - J. Robert Lane
- Division of Pharmacology, Physiology and Neuroscience, School of Life Sciences, Queen’s Medical Centre, University of Nottingham, Nottingham NG7 2UH, U.K
- Centre of Membrane Protein and Receptors, Universities of Birmingham and Nottingham, Nottingham, United Kingdom
| |
Collapse
|
10
|
A Machine Learning Approach for the Discovery of Ligand-Specific Functional Mechanisms of GPCRs. Molecules 2019; 24:molecules24112097. [PMID: 31159491 PMCID: PMC6600179 DOI: 10.3390/molecules24112097] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 05/23/2019] [Accepted: 05/30/2019] [Indexed: 01/11/2023] Open
Abstract
G protein-coupled receptors (GPCRs) play a key role in many cellular signaling mechanisms, and must select among multiple coupling possibilities in a ligand-specific manner in order to carry out a myriad of functions in diverse cellular contexts. Much has been learned about the molecular mechanisms of ligand-GPCR complexes from Molecular Dynamics (MD) simulations. However, to explore ligand-specific differences in the response of a GPCR to diverse ligands, as is required to understand ligand bias and functional selectivity, necessitates creating very large amounts of data from the needed large-scale simulations. This becomes a Big Data problem for the high dimensionality analysis of the accumulated trajectories. Here we describe a new machine learning (ML) approach to the problem that is based on transforming the analysis of GPCR function-related, ligand-specific differences encoded in the MD simulation trajectories into a representation recognizable by state-of-the-art deep learning object recognition technology. We illustrate this method by applying it to recognize the pharmacological classification of ligands bound to the 5-HT2A and D2 subtypes of class-A GPCRs from the serotonin and dopamine families. The ML-based approach is shown to perform the classification task with high accuracy, and we identify the molecular determinants of the classifications in the context of GPCR structure and function. This study builds a framework for the efficient computational analysis of MD Big Data collected for the purpose of understanding ligand-specific GPCR activity.
Collapse
|
11
|
Montgomery D, Campbell A, Sullivan HJ, Wu C. Molecular dynamics simulation of biased agonists at the dopamine D2 receptor suggests the mechanism of receptor functional selectivity. J Biomol Struct Dyn 2018; 37:3206-3225. [PMID: 30124143 DOI: 10.1080/07391102.2018.1513378] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The dopamine D2 receptor (D2R) is the primary target for antipsychotic drugs. Besides schizophrenia, this receptor is linked to dementia, Parkinson's disease, and depression. Recent studies have shown that β-arrestin biased agonists at this receptor treat schizophrenia with less side effects. Although the high resolution structure of this receptor exists, the mechanism of biased agonism at the receptor is unknown. In this study, dopamine, the endogenous unbiased G-protein agonist, MLS1547, a G-protein biased agonist, and UNC9975, a G-protein antagonist and a β-arrestin biased agonist, were docked to a homology model of the whole D2R including all flexible loops, and molecular dynamics simulations were conducted to study the potential mechanisms of biased agonism. Our thorough analysis on the protein-ligand interaction, secondary structure, tertiary structure, structure dynamics, and molecular switches of all three systems indicates that ligand binding to transmembrane 3 might be essential for G-protein recruitment, while ligand binding to transmembrane 6 might be essential for β-arrestin recruitment. Our analysis also suggests changes in both the secondary and the tertiary structures of TM5 and TM7, molecular switches and ICL3 flexibility are important in biased signaling. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- David Montgomery
- a College of Science and Mathematics , Rowan University , Glassboro , NJ , USA
| | - Alexandra Campbell
- a College of Science and Mathematics , Rowan University , Glassboro , NJ , USA
| | - Holli-Joi Sullivan
- a College of Science and Mathematics , Rowan University , Glassboro , NJ , USA
| | - Chun Wu
- a College of Science and Mathematics , Rowan University , Glassboro , NJ , USA
| |
Collapse
|
12
|
Wang Y, Zhou FM. Striatal But Not Extrastriatal Dopamine Receptors Are Critical to Dopaminergic Motor Stimulation. Front Pharmacol 2017; 8:935. [PMID: 29311936 PMCID: PMC5742616 DOI: 10.3389/fphar.2017.00935] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Accepted: 12/11/2017] [Indexed: 11/19/2022] Open
Abstract
Dopamine (DA) is required for motor function in vertebrate animals including humans. The striatum, a key motor control center, receives a dense DA innervation and express high levels of DA D1 receptors (D1Rs) and D2 receptors (D2Rs). Other brain areas involved in motor function such as the globus pallidus external segment (GPe) and the substantia nigra pars reticulata (SNr) and the motor cortex (MC) also receive DA innervation and express DA receptors. Thus, the relative contribution of the striatal and extrastriatal DA systems to the motor function has been an important question critical for understanding the functional operation of the motor control circuits and also for therapeutic targeting. We have now experimentally addressed this question in the transcription factor Pitx3 null mutant (Pitx3Null) mice that have an autogenic and parkinsonian-like striatal DA denervation and hence supersensitive motor response to DA stimulation. Using DA agonist unilateral microinjection-induced rotation as a reliable readout of motor stimulation, our results show that L-dopa microinjection into the dorsal striatum (DS) induced 5–10 times more rotations than that induced by L-dopa microinjection into GPe and SNr, while L-dopa microinjection into the primary MC induced the least number of rotations. Furthermore, our results show that separate microinjection of the D1R-like agonist SKF81297 and the D2R-like agonist ropinirole into the DS each induced only modest numbers of rotation, whereas concurrent injection of the two agonists triggered more rotations than the sum of the rotations induced by each of these two agonists separately, indicating D1R–D2R synergy. These results suggest that the striatum, not GPe, SNr or MC, is the primary site for D1Rs and D2Rs to synergistically stimulate motor function in L-dopa treatment of Parkinson’s disease (PD). Our results also predict that non-selective, broad spectrum DA agonists activating both D1Rs and D2Rs are more efficacious anti-PD drugs than the current D2R agonists.
Collapse
Affiliation(s)
- Yuhan Wang
- Department of Pharmacology, University of Tennessee College of Medicine, Memphis, TN, United States
| | - Fu-Ming Zhou
- Department of Pharmacology, University of Tennessee College of Medicine, Memphis, TN, United States
| |
Collapse
|
13
|
Luchi AM, Angelina EL, Andujar SA, Enriz RD, Peruchena NM. Halogen bonding in biological context: a computational study of D2 dopamine receptor. J PHYS ORG CHEM 2016; 29:645-655. [DOI: 10.1002/poc.3586] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
In this work, Halogen Bond (X‐bond) interactions formed by halogenated ligands (LX) at the Dopamine Receptor D2 (DRD2) binding pocket were studied by Molecular Dynamics (MD) and charge density analysis. The X‐bonds were contrasted with the Hydrogen Bond (H‐bond) interactions established by hydroxylated analogs (LOH, where X was replaced by OH). The ligands for this study were extracted from a dataset of compounds deposited in ZINC database that were active in binding assays to DRD2. This dataset was subjected to the filtering rules by employing cheminformatics tools to find the LX/LOH pairs that were then submitted to MD simulations. A homology model of DRD2 was employed for the simulations because no crystal structure is yet available for the receptor. To mimic the positive cap (σ‐hole) on the halogen atom, a massless, positive charged extra‐point was introduced in the force field. An analysis of the charge density (QTAIM) was performed on reduced models of simulated complexes to explain their binding differences. Results show that the halogen atom tends to form X‐bond with protein backbone oxygen atom. Two out of the four halogenated ligands studied form a specific X‐bond with the carbonyl oxygen of Ser193. This specific X‐bond decreases the inherent propensity of transmembrane 5 to unfolding. These results suggest a possible role of the X‐bond as a protein secondary structure modulator because of the ability of the halogen to interact with the protein backbone. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Adriano M. Luchi
- Lab. Estructura Molecular y Propiedades, IQUIBA‐NEA Universidad Nacional del Nordeste, CONICET, FACENA Av. Libertad 5470 Corrientes 3400 Argentina
| | - Emilio L. Angelina
- Lab. Estructura Molecular y Propiedades, IQUIBA‐NEA Universidad Nacional del Nordeste, CONICET, FACENA Av. Libertad 5470 Corrientes 3400 Argentina
| | - Sebastián A. Andujar
- Instituto Multidisciplinario de Investigaciones Biológicas San Luis Universidad Nacional de San Luis, CONICET, FQBF Chacabuco 917 San Luis 5700 Argentina
| | - Ricardo D. Enriz
- Instituto Multidisciplinario de Investigaciones Biológicas San Luis Universidad Nacional de San Luis, CONICET, FQBF Chacabuco 917 San Luis 5700 Argentina
| | - Nélida M. Peruchena
- Lab. Estructura Molecular y Propiedades, IQUIBA‐NEA Universidad Nacional del Nordeste, CONICET, FACENA Av. Libertad 5470 Corrientes 3400 Argentina
| |
Collapse
|
14
|
Salmas RE, Yurtsever M, Durdagi S. Atomistic molecular dynamics simulations of typical and atypical antipsychotic drugs at the dopamine D2 receptor (D2R) elucidates their inhibition mechanism. J Biomol Struct Dyn 2016; 35:738-754. [DOI: 10.1080/07391102.2016.1159986] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
| | - Mine Yurtsever
- Department of Chemistry, Istanbul Technical University, Istanbul, Turkey
| | - Serdar Durdagi
- Department of Biophysics, School of Medicine, Bahcesehir University, Istanbul, Turkey
| |
Collapse
|
15
|
Gertzen CGW, Spomer L, Smits SHJ, Häussinger D, Keitel V, Gohlke H. Mutational mapping of the transmembrane binding site of the G-protein coupled receptor TGR5 and binding mode prediction of TGR5 agonists. Eur J Med Chem 2015; 104:57-72. [PMID: 26435512 DOI: 10.1016/j.ejmech.2015.09.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Revised: 09/06/2015] [Accepted: 09/15/2015] [Indexed: 12/31/2022]
Abstract
TGR5 (Gpbar-1, M-Bar) is a class A G-protein coupled bile acid-sensing receptor predominately expressed in brain, liver and gastrointestinal tract, and a promising drug target for the treatment of metabolic disorders. Due to the lack of a crystal structure of TGR5, the development of TGR5 agonists has been guided by ligand-based approaches so far. Three binding mode models of bile acid derivatives have been presented recently. However, they differ from one another in terms of overall orientation or with respect to the location and interactions of the cholane scaffold, or cannot explain all results from mutagenesis experiments. Here, we present an extended binding mode model based on an iterative and integrated computational and biological approach. An alignment of 68 TGR5 agonists based on this binding mode leads to a significant and good structure-based 3D QSAR model, which constitutes the most comprehensive structure-based 3D-QSAR study of TGR5 agonists undertaken so far and suggests that the binding mode model is a close representation of the "true" binding mode. The binding mode model is further substantiated in that effects predicted for eight mutations in the binding site agree with experimental analyses on the impact of these TGR5 variants on receptor activity. In the binding mode, the hydrophobic cholane scaffold of taurolithocholate orients towards the interior of the orthosteric binding site such that rings A and B are in contact with TM5 and TM6, the taurine side chain orients towards the extracellular opening of the binding site and forms a salt bridge with R79(EL1), and the 3-hydroxyl group forms hydrogen bonds with E169(5.44) and Y240(6.51). The binding mode thus differs in important aspects from the ones recently presented. These results are highly relevant for the development of novel, more potent agonists of TGR5 and should be a valuable starting point for the development of TGR5 antagonists, which could show antiproliferative effects in tumor cells.
Collapse
Affiliation(s)
- Christoph G W Gertzen
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Lina Spomer
- Clinic for Gastroenterology, Hepatology, and Infectious Diseases, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Sander H J Smits
- Institute for Biochemistry, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Dieter Häussinger
- Clinic for Gastroenterology, Hepatology, and Infectious Diseases, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Verena Keitel
- Clinic for Gastroenterology, Hepatology, and Infectious Diseases, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany.
| | - Holger Gohlke
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany.
| |
Collapse
|
16
|
Salmas RE, Yurtsever M, Stein M, Durdagi S. Modeling and protein engineering studies of active and inactive states of human dopamine D2 receptor (D2R) and investigation of drug/receptor interactions. Mol Divers 2015; 19:321-32. [DOI: 10.1007/s11030-015-9569-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Accepted: 01/11/2015] [Indexed: 01/11/2023]
|
17
|
Angelina E, Andujar S, Moreno L, Garibotto F, Párraga J, Peruchena N, Cabedo N, Villecco M, Cortes D, Enriz RD. 3-Chlorotyramine Acting as Ligand of the D2
Dopamine Receptor. Molecular Modeling, Synthesis and D2
Receptor Affinity. Mol Inform 2014; 34:28-43. [PMID: 27490860 DOI: 10.1002/minf.201400093] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 09/04/2014] [Indexed: 12/12/2022]
|
18
|
Keov P, López L, Devine SM, Valant C, Lane JR, Scammells PJ, Sexton PM, Christopoulos A. Molecular mechanisms of bitopic ligand engagement with the M1 muscarinic acetylcholine receptor. J Biol Chem 2014; 289:23817-37. [PMID: 25006252 DOI: 10.1074/jbc.m114.582874] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
TBPB and 77-LH-28-1 are selective agonists of the M1 muscarinic acetylcholine receptor (mAChR) that may gain their selectivity through a bitopic mechanism, interacting concomitantly with the orthosteric site and part of an allosteric site. The current study combined site-directed mutagenesis, analytical pharmacology,and molecular modeling to gain further insights into the structural basis underlying binding and signaling by these agonists. Mutations within the orthosteric binding site caused similar reductions in affinity and signaling efficacy for both selective and prototypical orthosteric ligands. In contrast, the mutation of residues within transmembrane helix (TM) 2 and the second extracellular loop (ECL2) discriminated between the different classes of ligand. In particular, ECL2 appears to be involved in the selective binding of bitopic ligands and in coordinating biased agonism between intracellular calcium mobilization and ERK1/2 phosphorylation. Molecular modeling of the interaction between TBPB and the M1 mAChR revealed a binding pose predicted to extend from the orthosteric site up toward a putative allosteric site bordered by TM2, TM3, and TM7, thus consistent with a bitopic mode of binding. Overall, these findings provide valuable structural and mechanistic insights into bitopic ligand actions and receptor activation and support a role for ECL2 in dictating the active states that can be adopted by a G protein-coupled receptor. This may enable greater selective ligand design and development for mAChRs and facilitate improved identification of bitopic ligands.
Collapse
Affiliation(s)
- Peter Keov
- From the Drug Discovery Biology Theme and Department of Pharmacology and
| | - Laura López
- From the Drug Discovery Biology Theme and Department of Pharmacology and
| | - Shane M Devine
- the Medicinal Chemistry Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Celine Valant
- From the Drug Discovery Biology Theme and Department of Pharmacology and
| | - J Robert Lane
- From the Drug Discovery Biology Theme and Department of Pharmacology and
| | - Peter J Scammells
- the Medicinal Chemistry Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Patrick M Sexton
- From the Drug Discovery Biology Theme and Department of Pharmacology and
| | | |
Collapse
|
19
|
Angelina EL, Andujar SA, Tosso RD, Enriz RD, Peruchena NM. Non-covalent interactions in receptor-ligand complexes. A study based on the electron charge density. J PHYS ORG CHEM 2013. [DOI: 10.1002/poc.3250] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Emilio L. Angelina
- Lab. Estructura Molecular y Propiedades, Área de Química Física, Departamento de Química, Facultad de Ciencias Exactas y Naturales y Agrimensura; Universidad Nacional del Nordeste; Av. Libertad 5470 Corrientes 3400 Argentina
- Instituto Multidiciplinario de Investigaciones Biológicas (IMIBIO-SL, CONICET); Chacabuco y Pedrenera (5700) San Luis Argentina
| | - Sebastián A. Andujar
- Departamento de Química, Facultad de Química, Bioquímica y Farmacia; Universidad Nacional de San Luis; Chacabuco 917, San Luis (5700) San Luis Argentina
- Instituto Multidiciplinario de Investigaciones Biológicas (IMIBIO-SL, CONICET); Chacabuco y Pedrenera (5700) San Luis Argentina
| | - Rodrigo D. Tosso
- Departamento de Química, Facultad de Química, Bioquímica y Farmacia; Universidad Nacional de San Luis; Chacabuco 917, San Luis (5700) San Luis Argentina
- Instituto Multidiciplinario de Investigaciones Biológicas (IMIBIO-SL, CONICET); Chacabuco y Pedrenera (5700) San Luis Argentina
| | - Ricardo D. Enriz
- Departamento de Química, Facultad de Química, Bioquímica y Farmacia; Universidad Nacional de San Luis; Chacabuco 917, San Luis (5700) San Luis Argentina
- Instituto Multidiciplinario de Investigaciones Biológicas (IMIBIO-SL, CONICET); Chacabuco y Pedrenera (5700) San Luis Argentina
| | - Nélida M. Peruchena
- Lab. Estructura Molecular y Propiedades, Área de Química Física, Departamento de Química, Facultad de Ciencias Exactas y Naturales y Agrimensura; Universidad Nacional del Nordeste; Av. Libertad 5470 Corrientes 3400 Argentina
| |
Collapse
|
20
|
Párraga J, Cabedo N, Andujar S, Piqueras L, Moreno L, Galán A, Angelina E, Enriz RD, Ivorra MD, Sanz MJ, Cortes D. 2,3,9- and 2,3,11-Trisubstituted tetrahydroprotoberberines as D2 dopaminergic ligands. Eur J Med Chem 2013; 68:150-66. [PMID: 23974015 DOI: 10.1016/j.ejmech.2013.07.036] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 07/23/2013] [Accepted: 07/25/2013] [Indexed: 12/17/2022]
|
21
|
Jain ZJ, Kankate RS, Chaudhari BN, Kakad RD. Action of benzimidazolo-piperazinyl derivatives on dopamine receptors. Med Chem Res 2013. [DOI: 10.1007/s00044-012-0055-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
22
|
Munusamy V, Yap BK, Buckle MJC, Doughty SW, Chung LY. Structure-Based Identification of Aporphines with Selective 5-HT2AReceptor-Binding Activity. Chem Biol Drug Des 2012; 81:250-6. [DOI: 10.1111/cbdd.12069] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
23
|
Gogoi S, Biswas S, Modi G, Antonio T, Reith MEA, Dutta AK. Novel bivalent ligands for D2/D3 dopamine receptors: Significant co-operative gain in D2 affinity and potency. ACS Med Chem Lett 2012; 3:991-996. [PMID: 23275802 DOI: 10.1021/ml3002117] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
This report describes development of a series of novel bivalent molecules with a pharmacophore derived from the D2/D3 agonist 5-OH-DPAT. Spacer length in the bivalent compounds had a pronounced influence on affinity for D2 receptors. A 23-fold increase of D2 affinity was observed at a spacer length of 9 or 10 (compounds 11d and 14b) compared to monovalent 5-OH-DPAT (Ki; 2.5 and 2.0 vs. 59 nM for 11d and 14b vs. 5-OH-DPAT, respectively). Functional potency of 11d and 14b indicated a 24- and 94-fold increase in potency at the D2 receptor compared to 5-OH-DPAT (EC50; 1.7 and 0.44 vs. 41 nM for 11d and 14b vs. 5-OH-DPAT, respectively). These are the most potent bivalent agonists for D2 receptor known to date. This synergism is consonant with cooperative interaction at the two orthosteric binding sites in the homodimeric receptor.
Collapse
Affiliation(s)
- Sanjib Gogoi
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan 48202, United States
| | - Swati Biswas
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan 48202, United States
| | - Gyan Modi
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan 48202, United States
| | | | | | - Aloke K. Dutta
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan 48202, United States
| |
Collapse
|
24
|
Fowler JC, Bhattacharya S, Urban JD, Vaidehi N, Mailman RB. Receptor conformations involved in dopamine D(2L) receptor functional selectivity induced by selected transmembrane-5 serine mutations. Mol Pharmacol 2012; 81:820-31. [PMID: 22416052 PMCID: PMC3362898 DOI: 10.1124/mol.111.075457] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 03/13/2012] [Indexed: 11/22/2022] Open
Abstract
Although functional selectivity is now widely accepted, the molecular basis is poorly understood. We have studied how aspects of transmembrane region 5 (TM5) of the dopamine D(2L) receptor interacts with three rationally selected rigid ligands (dihydrexidine, dinapsoline, and dinoxyline) and the reference compounds dopamine and quinpirole. As was expected from homology modeling, mutation of three TM5 serine residues to alanine (S5.42A, S5.43A, S5.46A) had little effect on antagonist affinity. All three mutations decreased the affinity of the agonist ligands to different degrees, S5.46A being somewhat less affected. Four functions [adenylate cyclase (AC), extracellular signal-regulated kinase 1/2 phosphorylation (MAPK), arachidonic acid release (AA), and guanosine 5'-O-(3-thio)triphosphate binding (GTPγS)] were assessed. The intrinsic activity (IA) of quinpirole was unaffected by any of the mutations, whereas S5.42A and S5.46A mutations abolished the activity of dopamine and the three rigid ligands, although dihydrexidine retained IA at MAPK function only with S5.42A. Remarkably, S5.43A did not markedly affect IA for AC and MAPK for any of the ligands and eliminated AA activity for dinapsoline and dihydrexidine but not dinoxyline. These data suggest that this mutation did not disrupt the overall conformation or signaling ability of the mutant receptors but differentially affected ligand activation. Computational studies indicate that these D(2) agonists stabilize multiple receptor conformations. This has led to models showing the stabilized conformations and interhelical and receptor-ligand contacts corresponding to the different activation pathways stabilized by various agonists. These data provide a basis for understanding D(2L) functional selectivity and rationally discovering functionally selective D(2) drugs.
Collapse
Affiliation(s)
- J Corey Fowler
- Division of Medicinal Chemistry and Toxicology Curriculum, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | | | | | | | | |
Collapse
|
25
|
Homology modeling of the human 5-HT1A, 5-HT2A, D1, and D2 receptors: model refinement with molecular dynamics simulations and docking evaluation. J Mol Model 2012; 18:3639-55. [DOI: 10.1007/s00894-012-1368-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Accepted: 01/23/2012] [Indexed: 12/22/2022]
|
26
|
Malo M, Brive L, Luthman K, Svensson P. Investigation of D₂ receptor-agonist interactions using a combination of pharmacophore and receptor homology modeling. ChemMedChem 2012; 7:471-82, 338. [PMID: 22315215 PMCID: PMC3382189 DOI: 10.1002/cmdc.201100545] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 01/05/2012] [Indexed: 01/21/2023]
Abstract
A combined modeling approach was used to identify structural factors that underlie the structure–activity relationships (SARs) of full dopamine D2 receptor agonists and structurally similar inactive compounds. A 3D structural model of the dopamine D2 receptor was constructed, with the agonist (−)-(R)-2-OH-NPA present in the binding site during the modeling procedure. The 3D model was evaluated and compared with our previously published D2 agonist pharmacophore model. The comparison revealed an inconsistency between the projected hydrogen bonding feature (Ser-TM5) in the pharmacophore model and the TM5 region in the structure model. A new refined pharmacophore model was developed, guided by the shape of the binding site in the receptor model and with less emphasis on TM5 interactions. The combination of receptor and pharmacophore modeling also identified the importance of His3936.55 for agonist binding. This convergent 3D pharmacophore and protein structure modeling strategy is considered to be general and can be highly useful in less well-characterized systems to explore ligand–receptor interactions. The strategy has the potential to identify weaknesses in the individual models and thereby provides an opportunity to improve the discriminating predictivity of both pharmacophore searches and structure-based virtual screens.
Collapse
Affiliation(s)
- Marcus Malo
- Department of Chemistry, Medicinal Chemistry, University of Gothenburg, 41296 Göteborg, Sweden
| | | | | | | |
Collapse
|
27
|
McRobb FM, Crosby IT, Yuriev E, Lane JR, Capuano B. Homobivalent ligands of the atypical antipsychotic clozapine: design, synthesis, and pharmacological evaluation. J Med Chem 2012; 55:1622-34. [PMID: 22243698 DOI: 10.1021/jm201420s] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
To date all typical and atypical antipsychotics target the dopamine D(2) receptor. Clozapine represents the best-characterized atypical antipsychotic, although it displays only moderate (submicromolar) affinity for the dopamine D(2) receptor. Herein, we present the design, synthesis, and pharmacological evaluation of three series of homobivalent ligands of clozapine, differing in the length and nature of the spacer and the point of attachment to the pharmacophore. Attachment of the spacer at the N4' position of clozapine yielded a series of homobivalent ligands that displayed spacer-length-dependent gains in affinity and activity for the dopamine D(2) receptor. The 16 and 18 atom spacer bivalent ligands were the highlight compounds, displaying marked low nanomolar receptor binding affinity (1.41 and 1.35 nM, respectively) and functional activity (23 and 44 nM), which correspond to significant gains in affinity (75- and 79-fold) and activity (9- and 5-fold) relative to the original pharmacophore, clozapine. As such these ligands represent useful tools with which to investigate dopamine receptor dimerization and the atypical nature of clozapine.
Collapse
Affiliation(s)
- Fiona M McRobb
- Medicinal Chemistry and Drug Action, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, Victoria 3052 Australia
| | | | | | | | | |
Collapse
|
28
|
Andujar SA, Tosso RD, Suvire FD, Angelina E, Peruchena N, Cabedo N, Cortes D, Enriz RD. Searching the "biologically relevant"conformation of dopamine: a computational approach. J Chem Inf Model 2011; 52:99-112. [PMID: 22146008 DOI: 10.1021/ci2004225] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
We report here an exhaustive and complete conformational study on the conformational potential energy hypersurface (PEHS) of dopamine (DA) interacting with the dopamine D2 receptor (D2-DR). A reduced 3D model for the binding pocket of the human D2-DR was constructed on the basis of the theoretical model structure of bacteriorhodopsin. In our reduced model system, only 13 amino acids were included to perform the quantum mechanics calculations. To obtain the different complexes of DA/D2-DR, we combined semiempirical (PM6), DFT (B3LYP/6-31G(d)), and QTAIM calculations. The molecular flexibility of DA interacting with the D2-DR was evaluated from potential energy surfaces and potential energy curves. A comparative study between the molecular flexibility of DA in the gas phase and at D2-DR was carried out. In addition, several molecular dynamics simulations were carried out to evaluate the molecular flexibility of the different complexes obtained. Our results allow us to postulate the complexes of type A as the "biologically relevant conformations" of DA. In addition, the theoretical calculations reported here suggested that a mechanistic stepwise process takes place for DA in which the protonated nitrogen group (in any conformation) acts as the anchoring portion, and this process is followed by a rapid rearrangement of the conformation allowing the interaction of the catecholic OH groups.
Collapse
Affiliation(s)
- Sebastian A Andujar
- Departamento de Química, Universidad Nacional de San Luis, Chacabuco 915, 5700 San Luis, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
29
|
CODA-RET reveals functional selectivity as a result of GPCR heteromerization. Nat Chem Biol 2011; 7:624-30. [PMID: 21785426 PMCID: PMC3158273 DOI: 10.1038/nchembio.623] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Accepted: 05/16/2011] [Indexed: 01/09/2023]
Abstract
Here we present a novel method that combines protein complementation with resonance energy transfer to study conformational changes in response to activation of a defined G protein-coupled receptor heteromer, and we apply the approach to the putative dopamine D1-D2 receptor heteromer. Remarkably, the potency of the D2 receptor (D2R) agonist R(–)-Propylnorapomorphine (NPA) to change the Gαi conformation via the D2R protomer in the D1-D2 heteromer was enhanced 10-fold relative to that observed in the D2R homomer. In contrast, the potencies of the D2R agonists dopamine and quinpirole were the same in the homomer and heteromer. Thus, we have uncovered a molecular mechanism for functional selectivity, in which a drug acts differently at a GPCR protomer depending on the identity of the second protomer that participates in forming the signaling unit, opening the door to enhanced pharmacological specificity through targeting differences between homomeric and heteromeric signaling.
Collapse
|
30
|
Sahlholm K, Barchad-Avitzur O, Marcellino D, Gómez-Soler M, Fuxe K, Ciruela F, Arhem P. Agonist-specific voltage sensitivity at the dopamine D2S receptor--molecular determinants and relevance to therapeutic ligands. Neuropharmacology 2011; 61:937-49. [PMID: 21752340 DOI: 10.1016/j.neuropharm.2011.06.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2011] [Revised: 05/20/2011] [Accepted: 06/24/2011] [Indexed: 10/18/2022]
Abstract
Voltage sensitivity has been demonstrated for some GPCRs. At the dopamine D(2S) receptor, this voltage sensitivity is agonist-specific; some agonists, including dopamine, exhibit decreased potency at depolarized potentials, whereas others are not significantly affected. In the present study, we examined some of the receptor-agonist interactions contributing to these differences, and investigated how dopamine D(2S) receptor voltage sensitivity affects clinically used dopamine agonists. GIRK channel activation in voltage-clamped Xenopus oocytes was used as readout of receptor activation. Structurally distinct agonists and complementary site-directed mutagenesis of the receptor's binding site were used to investigate the role of agonist-receptor interactions. We also confirmed that the depolarization-induced decrease of dopamine potency in GIRK activation is correlated by decreased binding of radiolabeled dopamine, and by decreased potency in G protein activation. In the mutagenesis experiments, a conserved serine residue as well as the conserved aspartate in the receptor's binding site were found to be important for voltage sensitive potency of dopamine. Furthermore, the voltage sensitivity of the receptor had distinct effects on different therapeutic D(2) agonists. Depolarization decreased the potency of several compounds, whereas for others, efficacy was reduced. For some agonists, both potency and efficacy were diminished, whereas for others still, neither parameter was significantly altered. The present work identifies some of the ligand-receptor interactions which determine agonist-specific effects of voltage at the dopamine D(2S) receptor. The observed differences between therapeutic agonists might be clinically relevant, and make them potential tools for investigating the roles of dopamine D(2) receptor voltage sensitivity in native tissue.
Collapse
|
31
|
Carneiro K, Donnet C, Rejtar T, Karger BL, Barisone GA, Díaz E, Kortagere S, Lemire JM, Levin M. Histone deacetylase activity is necessary for left-right patterning during vertebrate development. BMC DEVELOPMENTAL BIOLOGY 2011; 11:29. [PMID: 21599922 PMCID: PMC3113753 DOI: 10.1186/1471-213x-11-29] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Accepted: 05/20/2011] [Indexed: 01/23/2023]
Abstract
Background Consistent asymmetry of the left-right (LR) axis is a crucial aspect of vertebrate embryogenesis. Asymmetric gene expression of the TGFβ superfamily member Nodal related 1 (Nr1) in the left lateral mesoderm plate is a highly conserved step regulating the situs of the heart and viscera. In Xenopus, movement of maternal serotonin (5HT) through gap-junctional paths at cleavage stages dictates asymmetry upstream of Nr1. However, the mechanisms linking earlier biophysical asymmetries with this transcriptional control point are not known. Results To understand how an early physiological gradient is transduced into a late, stable pattern of Nr1 expression we investigated epigenetic regulation during LR patterning. Embryos injected with mRNA encoding a dominant-negative of Histone Deacetylase (HDAC) lacked Nr1 expression and exhibited randomized sidedness of the heart and viscera (heterotaxia) at stage 45. Timing analysis using pharmacological blockade of HDACs implicated cleavage stages as the active period. Inhibition during these early stages was correlated with an absence of Nr1 expression at stage 21, high levels of heterotaxia at stage 45, and the deposition of the epigenetic marker H3K4me2 on the Nr1 gene. To link the epigenetic machinery to the 5HT signaling pathway, we performed a high-throughput proteomic screen for novel cytoplasmic 5HT partners associated with the epigenetic machinery. The data identified the known HDAC partner protein Mad3 as a 5HT-binding regulator. While Mad3 overexpression led to an absence of Nr1 transcription and randomized the LR axis, a mutant form of Mad3 lacking 5HT binding sites was not able to induce heterotaxia, showing that Mad3's biological activity is dependent on 5HT binding. Conclusion HDAC activity is a new LR determinant controlling the epigenetic state of Nr1 from early developmental stages. The HDAC binding partner Mad3 may be a new serotonin-dependent regulator of asymmetry linking early physiological asymmetries to stable changes in gene expression during organogenesis.
Collapse
Affiliation(s)
- Katia Carneiro
- Department of Biology Center for Regenerative and Developmental Biology Tufts University, Medford, MA 02155 USA
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Tetrahydroisoquinolines acting as dopaminergic ligands. A molecular modeling study using MD simulations and QM calculations. J Mol Model 2011; 18:419-31. [DOI: 10.1007/s00894-011-1061-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Accepted: 03/22/2011] [Indexed: 11/24/2022]
|
33
|
Zhao Y, Lu X, Yang CY, Huang Z, Fu W, Hou T, Zhang J. Computational modeling toward understanding agonist binding on dopamine 3. J Chem Inf Model 2011; 50:1633-43. [PMID: 20695484 DOI: 10.1021/ci1002119] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The dopamine 3 (D3) receptor is a promising therapeutic target for the treatment of nervous system disorders, such as Parkinson's disease, and current research interests primarily focus on the discovery/design of potent D3 agonists. Herein, a well-designed computational protocol, which combines pharmacophore identification, homology modeling, molecular docking, and molecular dynamics (MD) simulations, was employed to understand the agonist binding on D3 aiming to provide insights into the development of novel potent D3 agonists. We (1) identified the chemical features required in effective D3 agonists by pharmacophore modeling based upon 18 known diverse D3 agonists; (2) constructed the three-dimensional (3D) structure of D3 based on homology modeling and the pharmacophore hypothesis; (3) identified the binding modes of the agonists to D3 by the correlation between the predicted binding free energies and the experimental values; and (4) investigated the induced fit of D3 upon agonist binding through MD simulations. The pharmacophore models of the D3 agonists and the 3D structure of D3 can be used for either ligand- or receptor-based drug design. Furthermore, the MD simulations further give the insight that the long and flexible EL2 acts as a "door" for agonist binding, and the "ionic lock" at the bottom of TM3 and TM6 is essential to transduce the activation signal.
Collapse
Affiliation(s)
- Yaxue Zhao
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | | | | | | | | | | | | |
Collapse
|
34
|
Kortagere S, Cheng SY, Antonio T, Zhen J, Reith MEA, Dutta AK. Interaction of novel hybrid compounds with the D3 dopamine receptor: Site-directed mutagenesis and homology modeling studies. Biochem Pharmacol 2011; 81:157-63. [PMID: 20833147 PMCID: PMC2991514 DOI: 10.1016/j.bcp.2010.08.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Revised: 08/05/2010] [Accepted: 08/30/2010] [Indexed: 12/14/2022]
Abstract
The dopamine D3 receptor has been implicated as a potential target for drug development in various complex psychiatric disorders including psychosis, drug dependence, and Parkinson's disease. In our overall goal to develop molecules with preferential affinity at D3 receptors, we undertook a hybrid drug development approach by combining a known dopamine agonist moiety with a substituted piperazine fragment. In the present study, three compounds produced this way with preferential D3 agonist activity, were tested at D3 receptors with mutations in the agonist binding pocket of three residues known to be important for agonist binding activity. At S192A and T369V, the hybrid agonist compounds produced an interaction profile in [(3)H]spiperone binding assays similar to that of the parent 5-OH-DPAT and 7-OH-DPAT molecules. The loss of affinity at the S192A mutant was most prominent for 5-OH-DPAT and its corresponding hybrid compound D237. D110N did not show any radioligand binding. Homology modeling indicated that 7-OH-DPAT-derived D315 uniquely shares H-bonding with Tyr365 which produced favorable interaction and no loss of H-bonding in the S192A mutant, suggesting that agonist activity may not be solely controlled by residues in the binding pocket.
Collapse
Affiliation(s)
- Sandhya Kortagere
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | | | | | | | | | | |
Collapse
|
35
|
Dilly S, Liégeois JF. Interaction of clozapine and its nitrenium ion with rat D2 dopamine receptors: in vitro binding and computational study. J Comput Aided Mol Des 2010; 25:163-9. [PMID: 21184252 DOI: 10.1007/s10822-010-9407-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Accepted: 12/08/2010] [Indexed: 11/29/2022]
Abstract
The interaction of diazepine analogues like clozapine or olanzapine with D2 receptor was greatly affected by a mixture of HRP/H(2)O(2) known to induce the formation of nitrenium ion. Unlike diazepine derivatives, the oxidative mixture had low impact on the affinity of oxa- and thiazepine derivatives such as loxapine, clothiapine or JL13 for the D2 receptor. Molecular docking simulations revealed a huge difference between the mode of interaction of clozapine nitrenium ion and the parent drug. Electronic and geometric changes of the tricyclic ring system caused by the oxidation appeared to prevent the compound finding the correct binding mode and could therefore explain the difference observed in binding affinities.
Collapse
Affiliation(s)
- Sébastien Dilly
- Laboratory of Medicinal Chemistry and CIRM (B36), University of Liège, 4000 Liège, Belgium
| | | |
Collapse
|
36
|
Ortore G, Tuccinardi T, Orlandini E, Martinelli A. Different Binding Modes of Structurally Diverse Ligands for Human D3DAR. J Chem Inf Model 2010; 50:2162-75. [DOI: 10.1021/ci100290f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Gabriella Ortore
- Dipartimento di Scienze Farmaceutiche, Università di Pisa, via Bonanno 6, 56126 Pisa, Italy
| | - Tiziano Tuccinardi
- Dipartimento di Scienze Farmaceutiche, Università di Pisa, via Bonanno 6, 56126 Pisa, Italy
| | - Elisabetta Orlandini
- Dipartimento di Scienze Farmaceutiche, Università di Pisa, via Bonanno 6, 56126 Pisa, Italy
| | - Adriano Martinelli
- Dipartimento di Scienze Farmaceutiche, Università di Pisa, via Bonanno 6, 56126 Pisa, Italy
| |
Collapse
|
37
|
López L, Selent J, Ortega R, Masaguer CF, Domínguez E, Areias F, Brea J, Loza MI, Sanz F, Pastor M. Synthesis, 3D-QSAR, and structural modeling of benzolactam derivatives with binding affinity for the D(2) and D(3) receptors. ChemMedChem 2010; 5:1300-17. [PMID: 20544783 DOI: 10.1002/cmdc.201000101] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A series of 37 benzolactam derivatives were synthesized, and their respective affinities for the dopamine D(2) and D(3) receptors evaluated. The relationships between structures and binding affinities were investigated using both ligand-based (3D-QSAR) and receptor-based methods. The results revealed the importance of diverse structural features in explaining the differences in the observed affinities, such as the location of the benzolactam carbonyl oxygen, or the overall length of the compounds. The optimal values for such ligand properties are slightly different for the D(2) and D(3) receptors, even though the binding sites present a very high degree of homology. We explain these differences by the presence of a hydrogen bond network in the D(2) receptor which is absent in the D(3) receptor and limits the dimensions of the binding pocket, causing residues in helix 7 to become less accessible. The implications of these results for the design of more potent and selective benzolactam derivatives are presented and discussed.
Collapse
Affiliation(s)
- Laura López
- GRIB, IMIM, DCEXS, Universitat Pompeu Fabra, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Histamine signalling in Schistosoma mansoni: Immunolocalisation and characterisation of a new histamine-responsive receptor (SmGPR-2). Int J Parasitol 2010; 40:1395-406. [DOI: 10.1016/j.ijpara.2010.04.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Revised: 04/01/2010] [Accepted: 04/05/2010] [Indexed: 11/24/2022]
|
39
|
Abstract
The antipsychotic effectiveness of chlorpromazine and haloperidol started a search for their therapeutic targets. The antipsychotic receptor target turned out to be a dopamine receptor, now cloned as the dopamine D2 receptor. The D2 receptor is the common target for antipsychotics. Antipsychotic clinical doses correlate with their affinities for this receptor. Therapeutic doses of antipsychotics occupy 60 to 80% of brain D2 receptors in patients, but aripiprazole occupies up to 90%. While antipsychotics may take up to six hours to occupy D2 receptors, much clinical improvement occurs within a few days. The receptor has high- and low-affinity states. The D2High state is functional for dopamine-like agonists such as aripiprazole. Most individuals with schizophrenia are supersensitive to dopamine. Animal models of psychosis show that a variety of risk factors, genetic and nongenetic, are associated with behavioral supersensitivity to dopamine, reflected in elevated levels of dopamine D2High receptors. Although antipsychotics such as haloperidol alleviate psychosis and reverse the elevation of D2High receptors, long-term use of traditional antipsychotics can further enhance dopamine supersensitivity in patients. Therefore, switching from a traditional antipsychotic to an agonist antipsychotic such as aripiprazole can result in the emergence of psychotic signs and symptoms. Clozapine and quetiapine do not elicit parkinsonism and rarely result in tardive dyskinesia because they are released from D2 within 12 to 24 hours. Traditional antipsychotics remain attached to D2 receptors for days, preventing relapse, but allowing accumulation that can lead to tardive dyskinesia. Future goals include imaging D2High receptors and desensitizing them in early-stage psychosis.
Collapse
Affiliation(s)
- Philip Seeman
- Pharmacology Department, Faculty of Medicine, University of Toronto, Canada.
| |
Collapse
|
40
|
Rondou P, Haegeman G, Van Craenenbroeck K. The dopamine D4 receptor: biochemical and signalling properties. Cell Mol Life Sci 2010; 67:1971-86. [PMID: 20165900 PMCID: PMC11115718 DOI: 10.1007/s00018-010-0293-y] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Revised: 01/19/2010] [Accepted: 01/26/2010] [Indexed: 01/20/2023]
Abstract
Dopamine is an important neurotransmitter that regulates several key functions in the brain, such as motor output, motivation and reward, learning and memory, and endocrine regulation. Dopamine does not mediate fast synaptic transmission, but rather modulates it by triggering slow-acting effects through the activation of dopamine receptors, which belong to the G-protein-coupled receptor superfamily. Besides activating different effectors through G-protein coupling, dopamine receptors also signal through interaction with a variety of proteins, collectively termed dopamine receptor-interacting proteins. We focus on the dopamine D4 receptor, which contains an important polymorphism in its third intracellular loop. This polymorphism has been the subject of numerous studies investigating links with several brain disorders, such as attention-deficit hyperactivity disorder and schizophrenia. We provide an overview of the structure, signalling properties and regulation of dopamine D4 receptors, and briefly discuss their physiological and pathophysiological role in the brain.
Collapse
Affiliation(s)
- Pieter Rondou
- Laboratory of Eukaryotic Gene Expression and Signal Transduction (LEGEST), Ghent University (UGent), K.L. Ledeganckstraat 35, 9000 Ghent, Belgium
- Present Address: Center for Medical Genetics Ghent (CMGG), Ghent University Hospital, Medical Research Building, De Pintelaan 185, 9000 Ghent, Belgium
| | - Guy Haegeman
- Laboratory of Eukaryotic Gene Expression and Signal Transduction (LEGEST), Ghent University (UGent), K.L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Kathleen Van Craenenbroeck
- Laboratory of Eukaryotic Gene Expression and Signal Transduction (LEGEST), Ghent University (UGent), K.L. Ledeganckstraat 35, 9000 Ghent, Belgium
| |
Collapse
|
41
|
Pettersson F, Pontén H, Waters N, Waters S, Sonesson C. Synthesis and evaluation of a set of 4-phenylpiperidines and 4-phenylpiperazines as D2 receptor ligands and the discovery of the dopaminergic stabilizer 4-[3-(methylsulfonyl)phenyl]-1-propylpiperidine (huntexil, pridopidine, ACR16). J Med Chem 2010; 53:2510-20. [PMID: 20155917 DOI: 10.1021/jm901689v] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Modification of the partial dopamine type 2 receptor (D(2)) agonist 3-(1-benzylpiperidin-4-yl)phenol (9a) generated a series of novel functional D(2) antagonists with fast-off kinetic properties. A representative of this series, pridopidine (4-[3-(methylsulfonyl)phenyl]-1-propylpiperidine; ACR16, 12b), bound competitively with low affinity to D(2) in vitro, without displaying properties essential for interaction with D(2) in the inactive state, thereby allowing receptors to rapidly regain responsiveness. In vivo, neurochemical effects of 12b were similar to those of D(2) antagonists, and in a model of locomotor hyperactivity, 12b dose-dependently reduced activity. In contrast to classic D(2) antagonists, 12b increased spontaneous locomotor activity in partly habituated animals. The "agonist-like" kinetic profile of 12b, combined with its lack of intrinsic activity, induces a functional state-dependent D(2) antagonism that can vary with local, real-time dopamine concentration fluctuations around distinct receptor populations. These properties may contribute to its unique "dopaminergic stabilizer" characteristics, differentiating 12b from D(2) antagonists and partial D(2) agonists.
Collapse
Affiliation(s)
- Fredrik Pettersson
- NeuroSearch Sweden AB, Arvid Wallgrens Backe 20, S-413 46 Göteborg, Sweden.
| | | | | | | | | |
Collapse
|
42
|
Malo M, Brive L, Luthman K, Svensson P. Selective pharmacophore models of dopamine D(1) and D(2) full agonists based on extended pharmacophore features. ChemMedChem 2010; 5:232-46. [PMID: 20077461 DOI: 10.1002/cmdc.200900398] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This study is focused on the identification of structural features that determine the selectivity of dopamine receptor agonists toward D(1) and D(2) receptors. Selective pharmacophore models were developed for both receptors. The models were built by using projected pharmacophoric features that represent the main agonist interaction sites in the receptor (the Ser residues in TM5 and the Asp in TM3), a directional aromatic feature in the ligand, a feature with large positional tolerance representing the positively charged nitrogen in the ligand, and sets of excluded volumes reflecting the shapes of the receptors. The sets of D(1) and D(2) ligands used for modeling were carefully selected from published sources and consist of structurally diverse, conformationally rigid full agonists as active ligands together with structurally related inactives. The robustness of the models in discriminating actives from inactives was tested against four ensembles of conformations generated by using different established methods and different force fields. The reasons for the selectivity can be attributed to both geometrical differences in the arrangement of the features, e.g., different tilt angels of the pi system, as well as shape differences covered by the different sets of excluded volumes. This work provides useful information for the design of new D(1) and D(2) agonists and also for comparative homology modeling of D(1) and D(2) receptors. The approach is general and could therefore be applied to other ligand-protein interactions for which no experimental protein structure is available.
Collapse
Affiliation(s)
- Marcus Malo
- Department of Chemistry, Medicinal Chemistry, University of Gothenburg, 41296 Göteborg, Sweden
| | | | | | | |
Collapse
|
43
|
McRobb FM, Capuano B, Crosby IT, Chalmers DK, Yuriev E. Homology Modeling and Docking Evaluation of Aminergic G Protein-Coupled Receptors. J Chem Inf Model 2010; 50:626-37. [DOI: 10.1021/ci900444q] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Fiona M. McRobb
- Medicinal Chemistry and Drug Action, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, VIC 3052 Australia
| | - Ben Capuano
- Medicinal Chemistry and Drug Action, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, VIC 3052 Australia
| | - Ian T. Crosby
- Medicinal Chemistry and Drug Action, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, VIC 3052 Australia
| | - David K. Chalmers
- Medicinal Chemistry and Drug Action, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, VIC 3052 Australia
| | - Elizabeth Yuriev
- Medicinal Chemistry and Drug Action, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, VIC 3052 Australia
| |
Collapse
|
44
|
Concentration of receptor and ligand revisited in a modified receptor binding protocol for high-affinity radioligands: [3H]Spiperone binding to D2 and D3 dopamine receptors. J Neurosci Methods 2010; 188:32-8. [PMID: 20122961 DOI: 10.1016/j.jneumeth.2010.01.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Revised: 01/08/2010] [Accepted: 01/25/2010] [Indexed: 11/21/2022]
Abstract
In receptor binding assays with ultra-high-affinity radioligands, it is difficult, in practice, to adhere the golden rule that the receptor concentration in the assay should be substantially (at least 10-fold) lower than the dissociation constant (K(d)) of the radioligand and inhibition constant (K(i)) of compound. Especially for low specific activity radioligands (usually tritiated ligands of a couple of TBq/mmol), routinely applied in concentrations at around or below the K(d), the use of extremely small amounts of receptor protein per assay will result in low levels of bound radioactivity; the alternative use of larger assay volumes will make it difficult to apply 96-well filtration devices. For assessing the inhibition constant (K(i)) of competitive inhibitors under conditions violating the above golden rule, equations are available incorporating both [receptor] and [ligand] versus K(d); however, their application requires precise knowledge of [receptor] or initial bound/free [radioligand] ratio. In this study, we present the theoretical basis for determining the K(i) for a competitive inhibitor in a new protocol at high [protein] and high [radioligand] with the simple Cheng-Prusoff correction without the need to correct for [receptor] or initial bound/free [radioligand] ratio. In addition, we present results on the binding of the ultra-high-affinity ligand [(3)H]spiperone to dopamine D(2) and D(3) receptors validating the K(i) values calculated with the new protocol for competitive inhibitors as compared with those calculated with the most comprehensive equation available to date, that of Munson and Rodbard (1988). Binding was measured at varying [radioligand] and [receptor], test compounds (including (-)5-OH-DPAT, (+/-)7-OH-DPAT, and ropinirole) were run with varying [receptor], and simulations were done at vastly varying [radioligand] for inhibitors with vastly different K(i)s. The modified high [radioligand] protocol presented here removes a major hindrance in the proper execution of binding assays with ultra-high-affinity tritiated ligands with K(d) values in the sub-nanomolar range, allowing the use of 96-well plates with small volumes of 100-200 microl per binding assay.
Collapse
|
45
|
Ehrlich K, Götz A, Bollinger S, Tschammer N, Bettinetti L, Härterich S, Hübner H, Lanig H, Gmeiner P. Dopamine D2, D3, and D4 Selective Phenylpiperazines as Molecular Probes To Explore the Origins of Subtype Specific Receptor Binding. J Med Chem 2009; 52:4923-35. [DOI: 10.1021/jm900690y] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Katharina Ehrlich
- Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich Alexander University, Schuhstrasse 19, 91052 Erlangen, Germany
| | - Angela Götz
- Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich Alexander University, Schuhstrasse 19, 91052 Erlangen, Germany
- Department of Chemistry and Pharmacy, Computer Chemistry Center, Friedrich-Alexander-Universität, Nägelsbachstrasse, 25, 91052 Erlangen, Germany
| | - Stefan Bollinger
- Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich Alexander University, Schuhstrasse 19, 91052 Erlangen, Germany
| | - Nuska Tschammer
- Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich Alexander University, Schuhstrasse 19, 91052 Erlangen, Germany
| | - Laura Bettinetti
- Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich Alexander University, Schuhstrasse 19, 91052 Erlangen, Germany
| | - Steffen Härterich
- Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich Alexander University, Schuhstrasse 19, 91052 Erlangen, Germany
| | - Harald Hübner
- Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich Alexander University, Schuhstrasse 19, 91052 Erlangen, Germany
| | - Harald Lanig
- Department of Chemistry and Pharmacy, Computer Chemistry Center, Friedrich-Alexander-Universität, Nägelsbachstrasse, 25, 91052 Erlangen, Germany
| | - Peter Gmeiner
- Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich Alexander University, Schuhstrasse 19, 91052 Erlangen, Germany
| |
Collapse
|
46
|
Berenguer I, Aouad NE, Andujar S, Romero V, Suvire F, Freret T, Bermejo A, Ivorra MD, Enriz RD, Boulouard M, Cabedo N, Cortes D. Tetrahydroisoquinolines as dopaminergic ligands: 1-Butyl-7-chloro-6-hydroxy-tetrahydroisoquinoline, a new compound with antidepressant-like activity in mice. Bioorg Med Chem 2009; 17:4968-80. [DOI: 10.1016/j.bmc.2009.05.079] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Revised: 05/19/2009] [Accepted: 05/31/2009] [Indexed: 01/15/2023]
|
47
|
Katritch V, Reynolds KA, Cherezov V, Hanson MA, Roth CB, Yeager M, Abagyan R. Analysis of full and partial agonists binding to beta2-adrenergic receptor suggests a role of transmembrane helix V in agonist-specific conformational changes. J Mol Recognit 2009; 22:307-18. [PMID: 19353579 PMCID: PMC2693451 DOI: 10.1002/jmr.949] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The 2.4 A crystal structure of the beta(2)-adrenergic receptor (beta(2)AR) in complex with the high-affinity inverse agonist (-)-carazolol provides a detailed structural framework for the analysis of ligand recognition by adrenergic receptors. Insights into agonist binding and the corresponding conformational changes triggering G-protein coupled receptor (GPCR) activation mechanism are of special interest. Here we show that while the carazolol pocket captured in the beta(2)AR crystal structure accommodates (-)-isoproterenol and other agonists without steric clashes, a finite movement of the flexible extracellular part of TM-V helix (TM-Ve) obtained by receptor optimization in the presence of docked ligand can further improve the calculated binding affinities for agonist compounds. Tilting of TM-Ve towards the receptor axis provides a more complete description of polar receptor-ligand interactions for full and partial agonists, by enabling optimal engagement of agonists with two experimentally identified anchor sites, formed by Asp113/Asn312 and Ser203/Ser204/Ser207 side chains. Further, receptor models incorporating a flexible TM-V backbone allow reliable prediction of binding affinities for a set of diverse ligands, suggesting potential utility of this approach to design of effective and subtype-specific agonists for adrenergic receptors. Systematic differences in capacity of partial, full and inverse agonists to induce TM-V helix tilt in the beta(2)AR model suggest potential role of TM-V as a conformational "rheostat" involved in the whole spectrum of beta(2)AR responses to small molecule signals.
Collapse
Affiliation(s)
- Vsevolod Katritch
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037 USA
| | - Kimberly A. Reynolds
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037 USA
| | - Vadim Cherezov
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037 USA
| | - Michael A. Hanson
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037 USA
| | - Christopher B. Roth
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037 USA
| | - Mark Yeager
- Department of Cell Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037 USA
- Department of Molecular Physiology and Biological Physics, University of Virginia Health System, PO Box 800736, Charlottesville, VA 22908-0736
| | - Ruben Abagyan
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037 USA
| |
Collapse
|
48
|
Taman A, Ribeiro P. Investigation of a dopamine receptor in Schistosoma mansoni: functional studies and immunolocalization. Mol Biochem Parasitol 2009; 168:24-33. [PMID: 19545592 DOI: 10.1016/j.molbiopara.2009.06.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Revised: 06/05/2009] [Accepted: 06/11/2009] [Indexed: 11/15/2022]
Abstract
A dopamine receptor (SmD2) was cloned from adult Schistosoma mansoni. The receptor has the classical heptahelical topology of class A (rhodopsin-like) G protein-coupled receptors (GPCR) and shares sequence homology with D2-like receptors from other species. The full length SmD2 cDNA was expressed in the yeast Saccharomyces cerevisiae and mammalian HEK293 cells. Functional assays in both expression systems revealed that SmD2 was responsive to dopamine in a dose-dependent manner, whereas other structurally related amines had no effect. Activation of SmD2 in mammalian cells caused an elevation in intracellular cAMP but not calcium, suggesting that the receptor coupled to Gs and the stimulation of adenylate cyclase. Pharmacological studies showed that the S. mansoni dopamine receptor was inhibited by apomorphine, a classical dopamine agonist, as well as known dopaminergic antagonists, including chlorpromazine, spiperone and haloperidol. SmD2 immunoreactivity was detected in membrane protein fractions of S. mansoni cercaria, in vitro transformed schistosomula and adult parasites, using a specific peptide antibody. When tested by confocal immunofluorescence, SmD2 was detected in the subtegumental somatic musculature and acetabulum of all larval stages tested. In the adults, SmD2 was enriched in the somatic muscles and, to a lesser extent, the muscular lining of the caecum. The results suggest that SmD2 is an important component of the neuromuscular system in schistosomes.
Collapse
Affiliation(s)
- Amira Taman
- Institute of Parasitology, McGill University, Macdonald Campus, 21,111 Lakeshore Road, Sainte Anne de Bellevue, Quebec, Canada
| | | |
Collapse
|
49
|
Selent J, López L, Sanz F, Pastor M. Multi-receptor binding profile of clozapine and olanzapine: a structural study based on the new beta2 adrenergic receptor template. ChemMedChem 2008; 3:1194-8. [PMID: 18465762 DOI: 10.1002/cmdc.200800074] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Jana Selent
- Research Unit on Biomedical Informatics (GRIB), IMIM/Universitat Pompeu Fabra, Avinguda Dr. Aiguader 88, 08003 Barcelona, Spain
| | | | | | | |
Collapse
|
50
|
Aranda R, Villalba K, Raviña E, Masaguer CF, Brea J, Areias F, Domínguez E, Selent J, López L, Sanz F, Pastor M, Loza MI. Synthesis, Binding Affinity, and Molecular Docking Analysis of New Benzofuranone Derivatives as Potential Antipsychotics. J Med Chem 2008; 51:6085-94. [DOI: 10.1021/jm800602w] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Reyes Aranda
- Departamento de Química Orgánica, Laboratorio de Química Farmacéutica, and Departamento de Farmacología, Facultad de Farmacia, Universidad de Santiago de Compostela, E-15782 Santiago de Compostela, Spain, and Research Unit on Biomedical Informatics (GRIB), IMIM, Universitat Pompeu Fabra, Dr. Aiguader 88, E-08003 Barcelona, Spain
| | - Karen Villalba
- Departamento de Química Orgánica, Laboratorio de Química Farmacéutica, and Departamento de Farmacología, Facultad de Farmacia, Universidad de Santiago de Compostela, E-15782 Santiago de Compostela, Spain, and Research Unit on Biomedical Informatics (GRIB), IMIM, Universitat Pompeu Fabra, Dr. Aiguader 88, E-08003 Barcelona, Spain
| | - Enrique Raviña
- Departamento de Química Orgánica, Laboratorio de Química Farmacéutica, and Departamento de Farmacología, Facultad de Farmacia, Universidad de Santiago de Compostela, E-15782 Santiago de Compostela, Spain, and Research Unit on Biomedical Informatics (GRIB), IMIM, Universitat Pompeu Fabra, Dr. Aiguader 88, E-08003 Barcelona, Spain
| | - Christian F. Masaguer
- Departamento de Química Orgánica, Laboratorio de Química Farmacéutica, and Departamento de Farmacología, Facultad de Farmacia, Universidad de Santiago de Compostela, E-15782 Santiago de Compostela, Spain, and Research Unit on Biomedical Informatics (GRIB), IMIM, Universitat Pompeu Fabra, Dr. Aiguader 88, E-08003 Barcelona, Spain
| | - José Brea
- Departamento de Química Orgánica, Laboratorio de Química Farmacéutica, and Departamento de Farmacología, Facultad de Farmacia, Universidad de Santiago de Compostela, E-15782 Santiago de Compostela, Spain, and Research Unit on Biomedical Informatics (GRIB), IMIM, Universitat Pompeu Fabra, Dr. Aiguader 88, E-08003 Barcelona, Spain
| | - Filipe Areias
- Departamento de Química Orgánica, Laboratorio de Química Farmacéutica, and Departamento de Farmacología, Facultad de Farmacia, Universidad de Santiago de Compostela, E-15782 Santiago de Compostela, Spain, and Research Unit on Biomedical Informatics (GRIB), IMIM, Universitat Pompeu Fabra, Dr. Aiguader 88, E-08003 Barcelona, Spain
| | - Eduardo Domínguez
- Departamento de Química Orgánica, Laboratorio de Química Farmacéutica, and Departamento de Farmacología, Facultad de Farmacia, Universidad de Santiago de Compostela, E-15782 Santiago de Compostela, Spain, and Research Unit on Biomedical Informatics (GRIB), IMIM, Universitat Pompeu Fabra, Dr. Aiguader 88, E-08003 Barcelona, Spain
| | - Jana Selent
- Departamento de Química Orgánica, Laboratorio de Química Farmacéutica, and Departamento de Farmacología, Facultad de Farmacia, Universidad de Santiago de Compostela, E-15782 Santiago de Compostela, Spain, and Research Unit on Biomedical Informatics (GRIB), IMIM, Universitat Pompeu Fabra, Dr. Aiguader 88, E-08003 Barcelona, Spain
| | - Laura López
- Departamento de Química Orgánica, Laboratorio de Química Farmacéutica, and Departamento de Farmacología, Facultad de Farmacia, Universidad de Santiago de Compostela, E-15782 Santiago de Compostela, Spain, and Research Unit on Biomedical Informatics (GRIB), IMIM, Universitat Pompeu Fabra, Dr. Aiguader 88, E-08003 Barcelona, Spain
| | - Ferran Sanz
- Departamento de Química Orgánica, Laboratorio de Química Farmacéutica, and Departamento de Farmacología, Facultad de Farmacia, Universidad de Santiago de Compostela, E-15782 Santiago de Compostela, Spain, and Research Unit on Biomedical Informatics (GRIB), IMIM, Universitat Pompeu Fabra, Dr. Aiguader 88, E-08003 Barcelona, Spain
| | - Manuel Pastor
- Departamento de Química Orgánica, Laboratorio de Química Farmacéutica, and Departamento de Farmacología, Facultad de Farmacia, Universidad de Santiago de Compostela, E-15782 Santiago de Compostela, Spain, and Research Unit on Biomedical Informatics (GRIB), IMIM, Universitat Pompeu Fabra, Dr. Aiguader 88, E-08003 Barcelona, Spain
| | - María I. Loza
- Departamento de Química Orgánica, Laboratorio de Química Farmacéutica, and Departamento de Farmacología, Facultad de Farmacia, Universidad de Santiago de Compostela, E-15782 Santiago de Compostela, Spain, and Research Unit on Biomedical Informatics (GRIB), IMIM, Universitat Pompeu Fabra, Dr. Aiguader 88, E-08003 Barcelona, Spain
| |
Collapse
|