1
|
Schember I, Reid W, Sterling-Lentsch G, Halfon MS. Conserved and novel enhancers in the Aedes aegypti single-minded locus recapitulate embryonic ventral midline gene expression. PLoS Genet 2024; 20:e1010891. [PMID: 38683842 PMCID: PMC11081499 DOI: 10.1371/journal.pgen.1010891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 05/09/2024] [Accepted: 04/16/2024] [Indexed: 05/02/2024] Open
Abstract
Transcriptional cis-regulatory modules, e.g., enhancers, control the time and location of metazoan gene expression. While changes in enhancers can provide a powerful force for evolution, there is also significant deep conservation of enhancers for developmentally important genes, with function and sequence characteristics maintained over hundreds of millions of years of divergence. Not well understood, however, is how the overall regulatory composition of a locus evolves, with important outstanding questions such as how many enhancers are conserved vs. novel, and to what extent are the locations of conserved enhancers within a locus maintained? We begin here to address these questions with a comparison of the respective single-minded (sim) loci in the two dipteran species Drosophila melanogaster (fruit fly) and Aedes aegypti (mosquito). sim encodes a highly conserved transcription factor that mediates development of the arthropod embryonic ventral midline. We identify two enhancers in the A. aegypti sim locus and demonstrate that they function equivalently in both transgenic flies and transgenic mosquitoes. One A. aegypti enhancer is highly similar to known Drosophila counterparts in its activity, location, and autoregulatory capability. The other differs from any known Drosophila sim enhancers with a novel location, failure to autoregulate, and regulation of expression in a unique subset of midline cells. Our results suggest that the conserved pattern of sim expression in the two species is the result of both conserved and novel regulatory sequences. Further examination of this locus will help to illuminate how the overall regulatory landscape of a conserved developmental gene evolves.
Collapse
Affiliation(s)
- Isabella Schember
- Department of Biochemistry, University at Buffalo-State University of New York, Buffalo, New York, United States of America
| | - William Reid
- Department of Biochemistry, University at Buffalo-State University of New York, Buffalo, New York, United States of America
| | - Geyenna Sterling-Lentsch
- Department of Biochemistry, University at Buffalo-State University of New York, Buffalo, New York, United States of America
| | - Marc S. Halfon
- Department of Biochemistry, University at Buffalo-State University of New York, Buffalo, New York, United States of America
- Department of Biomedical Informatics, University at Buffalo-State University of New York, Buffalo, New York, United States of America
- Department of Biological Sciences, University at Buffalo-State University of New York, Buffalo, New York, United States of America
- New York State Center of Excellence in Bioinformatics & Life Sciences, Buffalo, New York, United States of America
| |
Collapse
|
2
|
Pearson JC, McKay DJ, Lieb JD, Crews ST. Chromatin profiling of Drosophila CNS subpopulations identifies active transcriptional enhancers. Development 2017; 143:3723-3732. [PMID: 27802137 DOI: 10.1242/dev.136895] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 08/30/2016] [Indexed: 12/25/2022]
Abstract
One of the key issues in studying transcriptional regulation during development is how to employ genome-wide assays that reveals sites of open chromatin and transcription factor binding to efficiently identify biologically relevant genes and enhancers. Analysis of Drosophila CNS midline cell development provides a useful system for studying transcriptional regulation at the genomic level due to a large, well-characterized set of midline-expressed genes and in vivo validated enhancers. In this study, FAIRE-seq on FACS-purified midline cells was performed and the midline FAIRE data were compared with whole-embryo FAIRE data. We find that regions of the genome with a strong midline FAIRE peak and weak whole-embryo FAIRE peak overlap with known midline enhancers and provide a useful predictive tool for enhancer identification. In a complementary analysis, we compared a large dataset of fragments that drive midline expression in vivo with the FAIRE data. Midline enhancer fragments with a midline FAIRE peak tend to be near midline-expressed genes, whereas midline enhancers without a midline FAIRE peak were often distant from midline-expressed genes and unlikely to drive midline transcription in vivo.
Collapse
Affiliation(s)
- Joseph C Pearson
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280, USA.,Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280, USA
| | - Daniel J McKay
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280, USA .,Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280, USA.,Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280, USA
| | - Jason D Lieb
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280, USA
| | - Stephen T Crews
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280, USA .,Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280, USA
| |
Collapse
|
3
|
Suryamohan K, Hanson C, Andrews E, Sinha S, Scheel MD, Halfon MS. Redeployment of a conserved gene regulatory network during Aedes aegypti development. Dev Biol 2016; 416:402-13. [PMID: 27341759 DOI: 10.1016/j.ydbio.2016.06.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 06/13/2016] [Accepted: 06/20/2016] [Indexed: 10/21/2022]
Abstract
Changes in gene regulatory networks (GRNs) underlie the evolution of morphological novelty and developmental system drift. The fruitfly Drosophila melanogaster and the dengue and Zika vector mosquito Aedes aegypti have substantially similar nervous system morphology. Nevertheless, they show significant divergence in a set of genes co-expressed in the midline of the Drosophila central nervous system, including the master regulator single minded and downstream genes including short gastrulation, Star, and NetrinA. In contrast to Drosophila, we find that midline expression of these genes is either absent or severely diminished in A. aegypti. Instead, they are co-expressed in the lateral nervous system. This suggests that in A. aegypti this "midline GRN" has been redeployed to a new location while lost from its previous site of activity. In order to characterize the relevant GRNs, we employed the SCRMshaw method we previously developed to identify transcriptional cis-regulatory modules in both species. Analysis of these regulatory sequences in transgenic Drosophila suggests that the altered gene expression observed in A. aegypti is the result of trans-dependent redeployment of the GRN, potentially stemming from cis-mediated changes in the expression of sim and other as-yet unidentified regulators. Our results illustrate a novel "repeal, replace, and redeploy" mode of evolution in which a conserved GRN acquires a different function at a new site while its original function is co-opted by a different GRN. This represents a striking example of developmental system drift in which the dramatic shift in gene expression does not result in gross morphological changes, but in more subtle differences in development and function of the late embryonic nervous system.
Collapse
Affiliation(s)
- Kushal Suryamohan
- Department of Biochemistry, University at Buffalo-State University of New York, Buffalo, NY, United States; NY State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY, United States
| | - Casey Hanson
- Department of Computer Science, University of Illinois Urbana-Champaign, Champaign, IL, United States
| | - Emily Andrews
- Indiana University School of Medicine, Department of Medical and Molecular Genetics, South Bend, IN, United States
| | - Saurabh Sinha
- Department of Computer Science, University of Illinois Urbana-Champaign, Champaign, IL, United States
| | - Molly Duman Scheel
- Indiana University School of Medicine, Department of Medical and Molecular Genetics, South Bend, IN, United States; University of Notre Dame, Eck Inst. for Global Health and Department of Biological Sciences, South Bend, IN, United States
| | - Marc S Halfon
- Department of Biochemistry, University at Buffalo-State University of New York, Buffalo, NY, United States; NY State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY, United States; Department of Biological Sciences and Department of Biomedical Informatics, University at Buffalo-State University of New York, Buffalo, NY, United States; Department of Molecular and Cellular Biology and Program in Cancer Genetics, Roswell Park Cancer Institute, Buffalo, NY, United States.
| |
Collapse
|
4
|
Ren H, Li L, Su H, Xu L, Wei C, Zhang L, Li H, Liu W, Du L. Histological and transcriptome-wide level characteristics of fetal myofiber hyperplasia during the second half of gestation in Texel and Ujumqin sheep. BMC Genomics 2011; 12:411. [PMID: 21838923 PMCID: PMC3173453 DOI: 10.1186/1471-2164-12-411] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2011] [Accepted: 08/14/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Whether myofibers increase with a pulsed-wave mode at particular developmental stages or whether they augment evenly across developmental stages in large mammals is unclear. Additionally, the molecular mechanisms of myostatin in myofiber hyperplasia at the fetal stage in sheep remain unknown. Using the first specialized transcriptome-wide sheep oligo DNA microarray and histological methods, we investigated the gene expression profile and histological characteristics of developing fetal ovine longissimus muscle in Texel sheep (high muscle and low fat), as a myostatin model of natural mutation, and Ujumqin sheep (low muscle and high fat). Fetal skeletal muscles were sampled at 70, 85, 100, 120, and 135 d of gestation. RESULTS Myofiber number increased sharply with a pulsed-wave mode at certain developmental stages but was not augmented evenly across developmental stages in fetal sheep. The surges in myofiber hyperplasia occurred at 85 and 120 d in Texel sheep, whereas a unique proliferative surge appeared at 100 d in Ujumqin sheep. Analysis of the microarray demonstrated that immune and hematological systems' development and function, lipid metabolism, and cell communication were the biological functions that were most differentially expressed between Texel and Ujumqin sheep during muscle development. Pathways associated with myogenesis and the proliferation of myoblasts, such as calcium signaling, chemokine (C-X-C motif) receptor 4 signaling, and vascular endothelial growth factor signaling, were affected significantly at specific fetal stages, which underpinned fetal myofiber hyperplasia and postnatal muscle hypertrophy. Moreover, we identified some differentially expressed genes between the two breeds that could be potential myostatin targets for further investigation. CONCLUSIONS Proliferation of myofibers proceeded in a pulsed-wave mode at particular fetal stages in the sheep. The myostatin mutation changed the gene expression pattern in skeletal muscle at a transcriptome-wide level, resulting in variation in myofiber phenotype between Texel and Ujumqin sheep during the second half of gestation. Our findings provide a novel and dynamic description of the effect of myostatin on skeletal muscle development, which contributes to understanding the biology of muscle development in large mammals.
Collapse
Affiliation(s)
- Hangxing Ren
- National Center for Molecular Genetics and Breeding of Animal, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Pielage J, Steffes G, Lau DC, Parente BA, Crews ST, Strauss R, Klämbt C. Novel behavioral and developmental defects associated with Drosophila single-minded. Dev Biol 2002; 249:283-99. [PMID: 12221007 DOI: 10.1006/dbio.2002.0770] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In Drosophila, the development of the midline cells of the embryonic ventral nerve cord depends on the function of the bHLH-PAS transcription factor Single-minded (Sim). The expression domain of sim, however, is also found anterior and posterior to the developing ventral cord throughout the germ band. Indeed, mutations in sim were identified based on their characteristic cuticle phenotype. Eight abdominal segments (A1-A8) can be easily seen in the larval cuticle, while three more can be identified during embryogenesis. Cells located in A8-A10 give rise to the formation of the genital imaginal discs, and a highly modified A11 segment gives rise to the anal pads that flank the anus. sim is expressed in all these segments and is required for the formation of both the anal pads and the genital imaginal discs. A new temperature-sensitive sim allele allowed an assessment of possible postembryonic function(s) of sim. Reduction of sim function below a 50% threshold leads to sterile flies with marked behavioral deficits. Most mutant sim flies were only able to walk in circles. Further analyses indicated that this phenotype is likely due to defects in the brain central complex. This brain region, which has previously been implicated in the control of walking behavior, expresses high levels of nuclear Sim protein in three clusters of neurons in each central brain hemisphere. Additional Sim localization in the medullary and laminar neurons of the optic lobes may correlate with the presence of ectopic axon bundles observed in the optic lobes of sim mutant flies.
Collapse
Affiliation(s)
- Jan Pielage
- Institut für Neurobiologie, Universität Münster, Badestrasse 9, D-48149 Münster, Germany
| | | | | | | | | | | | | |
Collapse
|
6
|
Jacobs JR. The midline glia of Drosophila: a molecular genetic model for the developmental functions of glia. Prog Neurobiol 2000; 62:475-508. [PMID: 10869780 DOI: 10.1016/s0301-0082(00)00016-2] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The Midline Glia of Drosophila are required for nervous system morphogenesis and midline axon guidance during embryogenesis. In origin, gene expression and function, this lineage is analogous to the floorplate of the vertebrate neural tube. The expression or function of over 50 genes, summarised here, has been linked to the Midline Glia. Like the floorplate, the cells which generate the Midline Glia lineage, the mesectoderm, are determined by the interaction of ectoderm and mesoderm during gastrulation. Determination and differentiation of the Midline Glia involves the Drosophila EGF, Notch and segment polarity signaling pathways, as well as twelve identified transcription factors. The Midline Glia lineage has two phases of cell proliferation and of programmed cell death. During embryogenesis, the EGF receptor pathway signaling and Wrapper protein both function to suppress apoptosis only in those MG which are appropriately positioned to separate and ensheath midline axonal commissures. Apoptosis during metamorphosis is regulated by the insect steroid, Ecdysone. The Midline Glia participate in both the attraction of axonal growth cones towards the midline, as well as repulsion of growth cones from the midline. Midline axon guidance requires the Drosophila orthologs of vertebrate genes expressed in the floorplate, which perform the same function. Genetic and molecular evidence of the interaction of attractive (Netrin) and repellent (Slit) signaling is reviewed and summarised in a model. The Midline Glia participate also in the generation of extracellular matrix and in trophic interactions with axons. Genetic evidence for these functions is reviewed.
Collapse
Affiliation(s)
- J R Jacobs
- Department of Biology, McMaster University, 1280 Main Street W., L8S 4K1, Hamilton, Canada.
| |
Collapse
|
7
|
Abstract
A full understanding of somite development requires knowledge of the molecular genetic pathways for cell determination as well as the cellular behaviors that underlie segmentation, somite epithelialization, and somite patterning. The zebrafish has long been recognized as an ideal organism for cellular and histological studies of somite patterning. In recent years, genetics has proven to be a very powerful complementary approach to these embryological studies, as genetic screens for zebrafish mutants defective in somitogenesis have identified over 50 genes that are necessary for normal somite development. Zebrafish is thus an ideal system in which to analyze the role of specific gene products in regulating the cell behaviors that underlie somite development. We review what is currently known about zebrafish somite development and compare it where appropriate to somite development in chick and mouse. We discuss the processes of segmentation and somite epithelialization, and then review the patterning of cell types within the somite. We show directly, for the first time, that muscle cell and sclerotome migrations occur at the same time. We end with a look at the many questions about somitogenesis that are still unanswered.
Collapse
Affiliation(s)
- H L Stickney
- Biology Department, Wesleyan University, Middletown, Connecticut 06459, USA
| | | | | |
Collapse
|
8
|
Schulz RA, Gajewski K. Ventral neuroblasts and the heartless FGF receptor are required for muscle founder cell specification in Drosophila. Oncogene 1999; 18:6818-23. [PMID: 10597291 DOI: 10.1038/sj.onc.1203081] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Muscle founder cells are uniquely specified cells that fuse with neighboring myoblasts to generate the complex pattern of body wall muscles in the Drosophila embryo. We have investigated the positional specification of founder cells for ventral oblique muscles, marked by the restricted expression of tinman RNA and the activity of a D-mef2 enhancer. The formation of these ventral myoblasts requires the function of the Heartless FGF receptor in the mesoderm and the presence of ventral neuroblasts in the central nervous system. Overproduction of ventral neuroblasts due to the forced expression of the homeodomain protein Vnd leads to increased numbers of founder cells. These results suggest the use of a neuroectoderm-to-mesoderm signaling pathway in the specification of ventral muscle precursors.
Collapse
Affiliation(s)
- R A Schulz
- Department of Biochemistry and Molecular Biology, University of Texas MD Anderson Cancer Center, Houston 77030, USA
| | | |
Collapse
|
9
|
Zhu Y, Li H, Zhou L, Wu JY, Rao Y. Cellular and molecular guidance of GABAergic neuronal migration from an extracortical origin to the neocortex. Neuron 1999; 23:473-85. [PMID: 10433260 DOI: 10.1016/s0896-6273(00)80801-6] [Citation(s) in RCA: 196] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Formation of the normal mammalian cerebral cortex requires the migration of GABAergic inhibitory interneurons from an extracortical origin, the lateral ganglionic eminence (LGE). Mechanisms guiding the migratory direction of these neurons, or other neurons in the neocortex, are not well understood. We have used an explant assay to study GABAergic neuronal migration and found that the ventricular zone (VZ) of the LGE is repulsive to GABAergic neurons. Furthermore, the secreted protein Slit is a chemorepellent guiding the migratory direction of GABAergic neurons, and blockade of endogenous Slit signaling inhibits the repulsive activity in the VZ. These results have revealed a cellular source of guidance for GABAergic neurons, demonstrated a molecular cue important for cortical development, and suggested a guidance mechanism for the migration of extracortical neurons into the neocortex.
Collapse
Affiliation(s)
- Y Zhu
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | |
Collapse
|
10
|
Bashaw GJ, Goodman CS. Chimeric axon guidance receptors: the cytoplasmic domains of slit and netrin receptors specify attraction versus repulsion. Cell 1999; 97:917-26. [PMID: 10399919 DOI: 10.1016/s0092-8674(00)80803-x] [Citation(s) in RCA: 166] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Frazzled (Fra) is the DCC-like Netrin receptor in Drosophila that mediates attraction; Roundabout (Robo) is a Slit receptor that mediates repulsion. Both ligands are expressed at the midline; both receptors have related structures and are often expressed by the same neurons. To determine if attraction versus repulsion is a modular function encoded in the cytoplasmic domain of these receptors, we created chimeras carrying the ectodomain of one receptor and the cytoplasmic domain of the other and tested their function in transgenic Drosophila. Fra-Robo (Fra's ectodomain and Robo's cytoplasmic domain) functions as a repulsive Netrin receptor; neurons expressing Fra-Robo avoid the Netrin-expressing midline and muscles. Robo-Fra (Robo's ectodomain and Fra's cytoplasmic domain) is an attractive Slit receptor; neurons and muscle precursors expressing Robo-Fra are attracted to the Slit-expressing midline.
Collapse
Affiliation(s)
- G J Bashaw
- Howard Hughes Medical Institute, Department of Molecular and Cell Biology, University of California, Berkeley 94720, USA
| | | |
Collapse
|
11
|
Abstract
Previous studies suggested that Roundabout (Robo) is a repulsive guidance receptor on growth cones that binds to an unknown midline ligand. Here we present genetic evidence that Slit is the midline Robo ligand; a companion paper presents biochemical evidence that Slit binds Robo. Slit is a large extracellular matrix protein expressed by midline glia. In slit mutants, growth cones enter the midline but never leave it; they abnormally continue to express high levels of Robo while at the midline. slit and robo display dosage-sensitive genetic interactions, indicating that they function in the same pathway. slit is also required for migration of muscle precursors away from the midline. Slit appears to function as a short-range repellent controlling axon crossing of the midline and as a long-range chemorepellent controlling mesoderm migration away from the midline.
Collapse
Affiliation(s)
- T Kidd
- Howard Hughes Medical Institute, Department of Molecular and Cell Biology, University of California, Berkeley 94720, USA
| | | | | |
Collapse
|
12
|
Halfon MS, Keshishian H. The Toll pathway is required in the epidermis for muscle development in the Drosophila embryo. Dev Biol 1998; 199:164-74. [PMID: 9676200 DOI: 10.1006/dbio.1998.8915] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Toll signaling pathway functions in several Drosophila processes, including dorsal-ventral pattern formation and the immune response. Here, we demonstrate that this pathway is required in the epidermis for proper muscle development. Previously, we showed that the zygotic Toll protein is necessary for normal muscle development; in the absence of zygotic Toll, close to 50% of hemisegments have muscle patterning defects consisting of missing, duplicated and misinserted muscle fibers (Halfon, M.S., Hashimoto, C., and Keshishian, H., Dev. Biol. 169, 151-167, 1995). We have now also analyzed the requirements for easter, spätzle, tube, and pelle, all of which function in the Toll-mediated dorsal-ventral patterning pathway. We find that spätzle, tube, and pelle, but not easter, are necessary for muscle development. Mutations in these genes give a phenotype identical to that seen in Toll mutants, suggesting that elements of the same pathway used for Toll signaling in dorsal-ventral development are used during muscle development. By expressing the Toll cDNA under the control of distinct Toll enhancer elements in Toll mutant flies, we have examined the spatial requirements for Toll expression during muscle development. Expression of Toll in a subset of epidermal cells that includes the epidermal muscle attachment cells, but not Toll expression in the musculature, is necessary for proper muscle development. Our results suggest that signals received by the epidermis early during muscle development are an important part of the muscle patterning process.
Collapse
Affiliation(s)
- M S Halfon
- Biology Department, Yale University, New Haven, Connecticut 06520-8103, USA
| | | |
Collapse
|
13
|
Nose A, Isshiki T, Takeichi M. Regional specification of muscle progenitors in Drosophila: the role of the msh homeobox gene. Development 1998; 125:215-23. [PMID: 9486795 DOI: 10.1242/dev.125.2.215] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The somatic musculature in the abdominal hemisegments of Drosophila consists of 30 uniquely identifiable muscle fibers. Previous studies have suggested that the muscle diversity originates in a special class of myoblasts, called muscle founders, that are formed by the division of muscle progenitors. However, the mechanisms that locate and specify the muscle progenitors/founders are largely unknown. In this study, we first used a novel marker, rP298-LacZ, to chart the development of muscle progenitors/founders during the formation of distinct groups of mature muscles. We then determined the function of the muscle segment homeobox (msh) gene in myogenesis. msh encodes a homeobox-containing protein, vertebrate homologues of which are known as Msxs. We show that msh is expressed in the dorsal and lateral domains of muscle progenitors and is required for the specification of the progenitor cells. Ectopic expression of msh in the entire mesoderm inhibits the proper development of the normally msh-negative muscle progenitors in the dorsolateral domain. These results suggest that msh plays a role in regional specification of muscle progenitors/founders.
Collapse
Affiliation(s)
- A Nose
- National Institute for Basic Biology, Okazaki, Japan.
| | | | | |
Collapse
|
14
|
Menne TV, Lüer K, Technau GM, Klämbt C. CNS midline cells in Drosophila induce the differentiation of lateral neural cells. Development 1997; 124:4949-58. [PMID: 9362458 DOI: 10.1242/dev.124.24.4949] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cells located at the midline of the developing central nervous system perform a number of conserved functions during the establishment of the lateral CNS. The midline cells of the Drosophila CNS were previously shown to be required for correct pattern formation in the ventral ectoderm and for the induction of specific mesodermal cells. Here we investigated whether the midline cells are required for the correct development of lateral CNS cells as well. Embryos that lack midline cells through genetic ablation show a 15% reduction in the number of cortical CNS cells. A similar thinning of the ventral nerve cord can be observed following mechanical ablation of the midline cells. We have identified a number of specific neuronal and glial cell markers that are reduced in CNS midline-less embryos (in single-minded embryos, in early heat-shocked Notch(ts1) embryos or in embryos where we mechanically ablated the midline cells). Genetic data suggest that both neuronal and glial midline cell lineages are required for differentiation of lateral CNS cells. We could rescue the lateral CNS phenotype of single-minded mutant embryos by transplantation of midline cells as well as by homotopic expression of single-minded, the master gene for midline development. Furthermore, ectopic midline cells are able to induce enhanced expression of some lateral CNS cell markers. We thus conclude that the CNS midline plays an important role in the differentiation or maintenance of the lateral CNS cortex.
Collapse
Affiliation(s)
- T V Menne
- Institut für Entwicklungsbiologie, Universität zu Köln, Germany
| | | | | | | |
Collapse
|
15
|
Abstract
The dorsal median cells are unique mesodermal cells that reside on the surface of the ventral nerve cord in the Drosophila embryo. The Buttonless homeodomain protein is specifically expressed in these cells and is required for their differentiation. We have determined that proper buttonless gene expression and dorsal median cell differentiation requires signals from underlying CNS midline cells. Thus, dorsal median cells fail to form in single-minded mutants and do not persist in slit mutants. Through analysis of rhomboid mutants and targeted rhomboid expression, we also show that the EGF signaling pathway regulates the number of both the dorsal median cells, as well as a set of mesodermal cells that arise next to the midline and express the single-minded gene. Finally, wingless-patched double mutants exhibit defects in the restriction of dorsal median cells to segment boundaries and alterations in CNS midline cell fates. Taken together, these data define a novel neuroectoderm to mesoderm signaling pathway and suggest that unique mesodermal cell types are specified by a combination of midline and segmental cues.
Collapse
Affiliation(s)
- L Zhou
- Program for Neuroscience and Behavior, University of Massachusetts at Amherst, 01003, USA
| | | | | |
Collapse
|
16
|
Paululat A, Goubeaud A, Damm C, Knirr S, Burchard S, Renkawitz-Pohl R. The mesodermal expression of rolling stone (rost) is essential for myoblast fusion in Drosophila and encodes a potential transmembrane protein. J Cell Biol 1997; 138:337-48. [PMID: 9230076 PMCID: PMC2138187 DOI: 10.1083/jcb.138.2.337] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In homozygous rolling stone embryos, the fusion of myoblasts to syncytial myotubes is diminished. Nevertheless, the visceral mesoderm, the heart mesoderm, and few somatic muscles are properly formed. Thus, we postulate a central role of rolling stone for the fusion process within the somatic mesoderm. We have cloned the rolling stone gene, and the deduced protein sequence is in accordance with a transmembrane protein, which agrees with the enrichment of Rost in the membrane fraction of Drosophila embryos. No homologous genes have been described so far. rolling stone is expressed in the embryonic nervous system and cells of the somatic mesoderm, most notable in muscle founder cells. To elucidate the function of rolling stone for myoblast fusion, we applied a knock-out strategy. The expression of an antisense rolling stone transcript specifically within the mesoderm of wild-type embryos results in fusion defects of myoblasts, proving that the rolling stone expression in the mesoderm is responsible for the rolling stone phenotype. We suggest that rolling stone is a member of a group of genes that are necessary for the fusion process during myogenesis.
Collapse
Affiliation(s)
- A Paululat
- Zoologie-Entwicklungsbiologie, FB Biologie, Philipps-Universität, 35032 Marburg, FRG.
| | | | | | | | | | | |
Collapse
|
17
|
Lüer K, Urban J, Klämbt C, Technau GM. Induction of identified mesodermal cells by CNS midline progenitors in Drosophila. Development 1997; 124:2681-90. [PMID: 9226439 DOI: 10.1242/dev.124.14.2681] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Drosophila ventral midline cells generate a discrete set of CNS lineages, required for proper patterning of the ventral ectoderm. Here we provide the first evidence that the CNS midline cells also exert inductive effects on the mesoderm. Mesodermal progenitors adjacent to the midline progenitor cells give rise to ventral somatic mucles and a pair of unique cells that come to lie dorsomedially on top of the ventral nerve cord, the so-called DM cells. Cell ablation as well as cell transplantation experiments indicate that formation of the DM cells is induced by midline progenitors in the early embryo. These results are corroborated by genetic analyses. Mutant single minded embryos lack the CNS midline as well as the DM cells. Embryos mutant for any of the spitz group genes, which primarily express defects in the midline glial cell lineages, show reduced formation of the DM cells. Conversely, directed overexpression of secreted SPITZ by some or all CNS midline cells leads to the formation of additional DM cells. Furthermore we show that DM cell development does not depend on the absolute concentration of a local inductor but appears to require a graded source of an inducing signal. Thus, the Drosophila CNS midline cells play a central inductive role in patterning the mesoderm as well as the underlying ectoderm.
Collapse
Affiliation(s)
- K Lüer
- Institut für Genetik, Universität Mainz, Germany
| | | | | | | |
Collapse
|
18
|
Pourquié O, Fan CM, Coltey M, Hirsinger E, Watanabe Y, Bréant C, Francis-West P, Brickell P, Tessier-Lavigne M, Le Douarin NM. Lateral and axial signals involved in avian somite patterning: a role for BMP4. Cell 1996; 84:461-71. [PMID: 8608600 DOI: 10.1016/s0092-8674(00)81291-x] [Citation(s) in RCA: 319] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In vertebrates, muscles of the limbs and body wall derive from the lateral compartment of the embryonic somites, and axial muscles derive from the medial compartment. Whereas the mechanisms that direct patterning of somites along the dorsoventral axis are beginning to be understood, little is known about the tissue interactions and signaling molecules that direct somite patterning along the mediolateral axis. We report the identification of a specific marker for the lateral somitic compartment and its early derivatives, cSim1, an avian homolog of the Drosophila single minded gene. Using this marker, we provide evidence that specification of the lateral somitic lineage results from the antagonistic actions of a diffusible medializing signal from the neural tube and a diffusible lateralizing signal from the lateral plate mesoderm, and we implicate bone morphogenetic protein 4(BMP4) in directing this lateralization.
Collapse
Affiliation(s)
- O Pourquié
- Institut d'Embryologie du Centre National de la Recherche Scientifique et du Collège de France, Nogent sur Marne
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Dahmane N, Charron G, Lopes C, Yaspo ML, Maunoury C, Decorte L, Sinet PM, Bloch B, Delabar JM. Down syndrome-critical region contains a gene homologous to Drosophila sim expressed during rat and human central nervous system development. Proc Natl Acad Sci U S A 1995; 92:9191-5. [PMID: 7568099 PMCID: PMC40950 DOI: 10.1073/pnas.92.20.9191] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Many features of Down syndrome might result from the overdosage of only a few genes located in a critical region of chromosome 21. To search for these genes, cosmids mapping in this region were isolated and used for trapping exons. One of the trapped exons obtained has a sequence very similar to part of the Drosophila single-minded (sim) gene, a master regulator of the early development of the fly central nervous system midline. Mapping data indicated that this exonic sequence is only present in the Down syndrome-critical region in the human genome. Hybridization of this exonic sequence with human fetal kidney poly(A)+ RNA revealed two transcripts of 6 and 4.3 kb. In situ hybridization of a probe derived from this exon with human and rat fetuses showed that the corresponding gene is expressed during early fetal life in the central nervous system and in other tissues, including the facial, skull, palate, and vertebra primordia. The expression pattern of this gene suggests that it might be involved in the pathogenesis of some of the morphological features and brain anomalies observed in Down syndrome.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Basic Helix-Loop-Helix Transcription Factors
- Central Nervous System/embryology
- Chromosomes, Human, Pair 21
- Cosmids
- DNA-Binding Proteins/biosynthesis
- DNA-Binding Proteins/genetics
- Down Syndrome/genetics
- Drosophila/embryology
- Drosophila/genetics
- Drosophila Proteins
- Embryonic and Fetal Development
- Exons
- Gene Expression
- Genes, Insect
- Genes, Regulator
- Genome, Human
- Helix-Loop-Helix Motifs
- Humans
- In Situ Hybridization, Fluorescence
- Kidney/embryology
- Kidney/metabolism
- Molecular Sequence Data
- Nuclear Proteins/biosynthesis
- Nuclear Proteins/genetics
- Oligonucleotide Probes
- Organ Specificity
- RNA, Messenger/analysis
- RNA, Messenger/biosynthesis
- Rats
- Sequence Homology, Amino Acid
- Sequence Homology, Nucleic Acid
- Sequence Tagged Sites
Collapse
Affiliation(s)
- N Dahmane
- Unité de Recherche Associée 1335 Centre National de la Recherche Scientifique, Hôpital Necker, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|