1
|
The Dorsal Integument of the Southern Long-Nosed Armadillo Dasypus hybridus (Cingulata, Xenarthra), and a Possible Neural Crest Origin of the Osteoderms. Discussing Evolutive Consequences for Amniota. J MAMM EVOL 2021. [DOI: 10.1007/s10914-021-09538-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
2
|
microRNA-875-5p plays critical role for mesenchymal condensation in epithelial-mesenchymal interaction during tooth development. Sci Rep 2020; 10:4918. [PMID: 32188878 PMCID: PMC7080778 DOI: 10.1038/s41598-020-61693-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 02/17/2020] [Indexed: 01/06/2023] Open
Abstract
Epithelial-mesenchymal interaction has critical roles for organ development including teeth, during which epithelial thickening and mesenchymal condensation are initiated by precise regulation of the signaling pathway. In teeth, neural crest-derived mesenchymal cells expressed PDGF receptors migrate and become condensed toward invaginated epithelium. To identify the molecular mechanism of this interaction, we explored the specific transcriptional start sites (TSSs) of tooth organs using cap analysis of gene expression (CAGE). We identified a tooth specific TSS detected in the chromosome 15qD1 region, which codes microRNA-875 (mir875). MiR875-5p is specifically expressed in dental mesenchyme during the early stage of tooth development. Furthermore, PRRX1/2 binds to the mir875 promoter region and enhances the expression of mir875. To assess the role of miR875-5p in dental mesenchyme, we transfected mimic miR875-5p into mouse dental pulp (mDP) cells, which showed that cell migration toward dental epithelial cells was significantly induced by miR875-5p via the PDGF signaling pathway. Those results also demonstrated that miR875-5p induces cell migration by inhibiting PTEN and STAT1, which are regulated by miR875-5p as part of post-transcriptional regulation. Together, our findings indicate that tooth specific miR875-5p has important roles in cell condensation of mesenchymal cells around invaginated dental epithelium and induction of epithelial-mesenchymal interaction.
Collapse
|
3
|
Nagel M, Winklbauer R. PDGF-A suppresses contact inhibition during directional collective cell migration. Development 2018; 145:dev.162651. [PMID: 29884673 DOI: 10.1242/dev.162651] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 05/25/2018] [Indexed: 12/15/2022]
Abstract
The leading-edge mesendoderm (LEM) of the Xenopus gastrula moves as an aggregate by collective migration. However, LEM cells on fibronectin in vitro show contact inhibition of locomotion by quickly retracting lamellipodia upon mutual contact. We found that a fibronectin-integrin-syndecan module acts between p21-activated kinase 1 upstream and ephrin B1 downstream to promote the contact-induced collapse of lamellipodia. To function in this module, fibronectin has to be present as puncta on the surface of LEM cells. To overcome contact inhibition in LEM cell aggregates, PDGF-A deposited in the endogenous substratum of LEM migration blocks the fibronectin-integrin-syndecan module at the integrin level. This stabilizes lamellipodia preferentially in the direction of normal LEM movement and supports cell orientation and the directional migration of the coherent LEM cell mass.
Collapse
Affiliation(s)
- Martina Nagel
- University of Toronto, Department of Cell and Systems Biology, 25 Harbord Street, Toronto M5S 3G5, ON, Canada
| | - Rudolf Winklbauer
- University of Toronto, Department of Cell and Systems Biology, 25 Harbord Street, Toronto M5S 3G5, ON, Canada
| |
Collapse
|
4
|
Huang Y, Winklbauer R. Cell migration in the Xenopus gastrula. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2018; 7:e325. [PMID: 29944210 DOI: 10.1002/wdev.325] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 05/22/2018] [Accepted: 05/30/2018] [Indexed: 12/17/2022]
Abstract
Xenopus gastrulation movements are in large part based on the rearrangement of cells by differential cell-on-cell migration within multilayered tissues. Different patterns of migration-based cell intercalation drive endoderm and mesoderm internalization and their positioning along their prospective body axes. C-cadherin, fibronectin, integrins, and focal contact components are expressed in all gastrula cells and play putative roles in cell-on-cell migration, but their actual functions in this respect are not yet understood. The gastrula can be subdivided into two motility domains, and in the vegetal, migratory domain, two modes of cell migration are discerned. Vegetal endoderm cells show ingression-type migration, a variant of amoeboid migration characterized by the lack of locomotory protrusions and by macropinocytosis as a mechanism of trailing edge resorption. Mesendoderm and prechordal mesoderm cells use lamellipodia in a mesenchymal mode of migration. Gastrula cell motility can be dissected into traits, such as cell polarity, adhesion, mobility, or protrusive activity, which are controlled separately yet in complex, combinatorial ways. Cells can instantaneously switch between different combinations of traits, showing plasticity as they respond to substratum properties. This article is categorized under: Early Embryonic Development > Gastrulation and Neurulation.
Collapse
Affiliation(s)
- Yunyun Huang
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Rudolf Winklbauer
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
5
|
Duran CL, Howell DW, Dave JM, Smith RL, Torrie ME, Essner JJ, Bayless KJ. Molecular Regulation of Sprouting Angiogenesis. Compr Physiol 2017; 8:153-235. [PMID: 29357127 DOI: 10.1002/cphy.c160048] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The term angiogenesis arose in the 18th century. Several studies over the next 100 years laid the groundwork for initial studies performed by the Folkman laboratory, which were at first met with some opposition. Once overcome, the angiogenesis field has flourished due to studies on tumor angiogenesis and various developmental models that can be genetically manipulated, including mice and zebrafish. In addition, new discoveries have been aided by the ability to isolate primary endothelial cells, which has allowed dissection of various steps within angiogenesis. This review will summarize the molecular events that control angiogenesis downstream of biochemical factors such as growth factors, cytokines, chemokines, hypoxia-inducible factors (HIFs), and lipids. These and other stimuli have been linked to regulation of junctional molecules and cell surface receptors. In addition, the contribution of cytoskeletal elements and regulatory proteins has revealed an intricate role for mobilization of actin, microtubules, and intermediate filaments in response to cues that activate the endothelium. Activating stimuli also affect various focal adhesion proteins, scaffold proteins, intracellular kinases, and second messengers. Finally, metalloproteinases, which facilitate matrix degradation and the formation of new blood vessels, are discussed, along with our knowledge of crosstalk between the various subclasses of these molecules throughout the text. Compr Physiol 8:153-235, 2018.
Collapse
Affiliation(s)
- Camille L Duran
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - David W Howell
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - Jui M Dave
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - Rebecca L Smith
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - Melanie E Torrie
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, USA
| | - Jeffrey J Essner
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, USA
| | - Kayla J Bayless
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| |
Collapse
|
6
|
Bahm I, Barriga EH, Frolov A, Theveneau E, Frankel P, Mayor R. PDGF controls contact inhibition of locomotion by regulating N-cadherin during neural crest migration. Development 2017; 144:2456-2468. [PMID: 28526750 PMCID: PMC5536867 DOI: 10.1242/dev.147926] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 05/15/2017] [Indexed: 12/20/2022]
Abstract
A fundamental property of neural crest (NC) migration is contact inhibition of locomotion (CIL), a process by which cells change their direction of migration upon cell contact. CIL has been proven to be essential for NC migration in amphibians and zebrafish by controlling cell polarity in a cell contact-dependent manner. Cell contact during CIL requires the participation of the cell adhesion molecule N-cadherin, which starts to be expressed by NC cells as a consequence of the switch between E- and N-cadherins during epithelial-to-mesenchymal transition (EMT). However, the mechanism that controls the upregulation of N-cadherin remains unknown. Here, we show that platelet-derived growth factor receptor alpha (PDGFRα) and its ligand platelet-derived growth factor A (PDGF-A) are co-expressed in migrating cranial NC. Inhibition of PDGF-A/PDGFRα blocks NC migration by inhibiting N-cadherin and, consequently, impairing CIL. Moreover, we identify phosphatidylinositol-3-kinase (PI3K)/AKT as a downstream effector of the PDGFRα cellular response during CIL. Our results lead us to propose PDGF-A/PDGFRα signalling as a tissue-autonomous regulator of CIL by controlling N-cadherin upregulation during EMT. Finally, we show that once NC cells have undergone EMT, the same PDGF-A/PDGFRα works as an NC chemoattractant, guiding their directional migration. Summary: PDGF-A and its receptor control Xenopus neural crest migration by promoting EMT and contact inhibition of locomotion, acting via N-cadherin regulation at early stages of development and working as chemoattractant later.
Collapse
Affiliation(s)
- Isabel Bahm
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Elias H Barriga
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK.,London Centre for Nanotechnology, University College London, London WC1H 0AH, UK
| | - Antonina Frolov
- Centre for Cardiovascular Biology and Medicine, Division of Medicine, University College London, London WC1E 6JJ, UK
| | - Eric Theveneau
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Paul Frankel
- Centre for Cardiovascular Biology and Medicine, Division of Medicine, University College London, London WC1E 6JJ, UK
| | - Roberto Mayor
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| |
Collapse
|
7
|
Chemotaxis during neural crest migration. Semin Cell Dev Biol 2016; 55:111-8. [DOI: 10.1016/j.semcdb.2016.01.031] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 01/22/2016] [Indexed: 01/12/2023]
|
8
|
McCarthy N, Liu JS, Richarte AM, Eskiocak B, Lovely CB, Tallquist MD, Eberhart JK. Pdgfra and Pdgfrb genetically interact during craniofacial development. Dev Dyn 2016; 245:641-52. [PMID: 26971580 DOI: 10.1002/dvdy.24403] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 02/15/2016] [Accepted: 02/24/2016] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND One of the most prevalent congenital birth defects is cleft palate. The palatal skeleton is derived from the cranial neural crest and platelet-derived growth factors (Pdgf) are critical in palatogenesis. Of the two Pdgf receptors, pdgfra is required for neural crest migration and palatogenesis. However, the role pdgfrb plays in the neural crest, or whether pdgfra and pdgfrb interact during palatogenesis is unclear. RESULTS We find that pdgfrb is dispensable for craniofacial development in zebrafish. However, the palatal defect in pdgfra;pdgfrb double mutants is significantly more severe than in pdgfra single mutants. Data in mouse suggest this interaction is conserved and that neural crest requires both genes. In zebrafish, pdgfra and pdgfrb are both expressed by neural crest within the pharyngeal arches, and pharmacological analyses demonstrate Pdgf signaling is required at these times. While neither proliferation nor cell death appears affected, time-lapsed confocal analysis of pdgfra;pdgfrb mutants shows a failure of proper neural crest condensation during palatogenesis. CONCLUSIONS We provide data showing that pdgfra and pdgfrb interact during palatogenesis in both zebrafish and mouse. In zebrafish, this interaction affects proper condensation of maxillary neural crest cells, revealing a previously unknown interaction between Pdgfra and Pdgfrb during palate formation. Developmental Dynamics 245:641-652, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Neil McCarthy
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, Institute for Neuroscience, Waggoner Center for Alcohol and Addiction Research, University of Texas, Austin, Texas
| | - Jocelyn S Liu
- Center for Cardiovascular Research, University of Hawaii, Honolulu, Hawaii
| | - Alicia M Richarte
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Banu Eskiocak
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - C Ben Lovely
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, Institute for Neuroscience, Waggoner Center for Alcohol and Addiction Research, University of Texas, Austin, Texas
| | | | - Johann K Eberhart
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, Institute for Neuroscience, Waggoner Center for Alcohol and Addiction Research, University of Texas, Austin, Texas
| |
Collapse
|
9
|
The role of the non-canonical Wnt-planar cell polarity pathway in neural crest migration. Biochem J 2014; 457:19-26. [PMID: 24325550 DOI: 10.1042/bj20131182] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The neural crest is an embryonic stem cell population whose migratory behaviour has been likened to malignant invasion. The neural crest, as does cancer, undergoes an epithelial-to-mesenchymal transition and migrates to colonize almost all the tissues of the embryo. Neural crest cells exhibit collective cell migration, moving in streams of high directionality. The migratory neural crest streams are kept in shape by the presence of negative signals in their vicinity. The directionality of the migrating neural crest is achieved by contact-dependent cell polarization, in a phenomenon called contact inhibition of locomotion. Two cells experiencing contact inhibition of locomotion move away from each other after collision. However, if the cell density is high only cells exposed to a free edge can migrate away from the cluster leading to the directional migration of the whole group. Recent work performed in chicks, zebrafish and frogs has shown that the non-canonical Wnt-PCP (planar cell polarity) pathway plays a major role in neural crest migration. PCP signalling controls contact inhibition of locomotion between neural crest cells by localizing different PCP proteins at the site of cell contact during collision and locally regulating the activity of Rho GTPases. Upon collision RhoA (ras homologue family member A) is activated, whereas Rac1 is inhibited at the contact between two migrating neural crest cells, leading to the collapse of protrusions and the migration of cells away from one another. The present review summarizes the mechanisms that control neural crest migration and focuses on the role of non-canonical Wnt or PCP signalling in this process.
Collapse
|
10
|
McGurk PD, Lovely CB, Eberhart JK. Analyzing craniofacial morphogenesis in zebrafish using 4D confocal microscopy. J Vis Exp 2014:e51190. [PMID: 24514435 DOI: 10.3791/51190] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Time-lapse imaging is a technique that allows for the direct observation of the process of morphogenesis, or the generation of shape. Due to their optical clarity and amenability to genetic manipulation, the zebrafish embryo has become a popular model organism with which to perform time-lapse analysis of morphogenesis in living embryos. Confocal imaging of a live zebrafish embryo requires that a tissue of interest is persistently labeled with a fluorescent marker, such as a transgene or injected dye. The process demands that the embryo is anesthetized and held in place in such a way that healthy development proceeds normally. Parameters for imaging must be set to account for three-dimensional growth and to balance the demands of resolving individual cells while getting quick snapshots of development. Our results demonstrate the ability to perform long-term in vivo imaging of fluorescence-labeled zebrafish embryos and to detect varied tissue behaviors in the cranial neural crest that cause craniofacial abnormalities. Developmental delays caused by anesthesia and mounting are minimal, and embryos are unharmed by the process. Time-lapse imaged embryos can be returned to liquid medium and subsequently imaged or fixed at later points in development. With an increasing abundance of transgenic zebrafish lines and well-characterized fate mapping and transplantation techniques, imaging any desired tissue is possible. As such, time-lapse in vivo imaging combines powerfully with zebrafish genetic methods, including analyses of mutant and microinjected embryos.
Collapse
Affiliation(s)
- Patrick D McGurk
- Institute for Cell and Molecular Biology, The University of Texas at Austin
| | | | | |
Collapse
|
11
|
Bae CJ, Park BY, Lee YH, Tobias JW, Hong CS, Saint-Jeannet JP. Identification of Pax3 and Zic1 targets in the developing neural crest. Dev Biol 2013; 386:473-83. [PMID: 24360908 DOI: 10.1016/j.ydbio.2013.12.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 10/07/2013] [Accepted: 12/10/2013] [Indexed: 11/28/2022]
Abstract
The neural crest (NC) is a multipotent population of migratory cells unique to the vertebrate embryo, contributing to the development of multiple organ systems. Transcription factors pax3 and zic1 are among the earliest genes activated in NC progenitors, and they are both necessary and sufficient to promote NC fate. In order to further characterize the function of these transcription factors during NC development we have used hormone inducible fusion proteins in a Xenopus animal cap assay, and DNA microarray to identify downstream targets of Pax3 and Zic1. Here we present the results of this screen and the initial validation of these targets using quantitative RT-PCR, in situ hybridization and morpholinos-mediated knockdown. Among the targets identified we found several well-characterized NC-specific genes, including snail2, foxd3, gbx2, twist, sox8 and sox9, which validate our approach. We also obtained several factors with no known function in Xenopus NC, which represent novel regulators of NC fate. The comprehensive characterization of Pax3 and Zic1 targets function in the NC gene regulatory network, are essential to understanding the mechanisms regulating the emergence of this important cell population.
Collapse
Affiliation(s)
- Chang-Joon Bae
- Department of Basic Science & Craniofacial Biology, College of Dentistry, New York University, New York, USA
| | - Byung-Yong Park
- Department of Anatomy, College of Veterinary Medicine, Chonbuk National University, Jeonju, Republic of Korea
| | - Young-Hoon Lee
- Department of Oral Anatomy, School of Dentistry & Institute of Oral Biosciences, Chonbuk National University, Jeonju, Republic of Korea
| | - John W Tobias
- Bioinformatics Group, Molecular Profiling Facility, University of Pennsylvania, Philadelphia, PA, USA
| | - Chang-Soo Hong
- Department of Basic Science & Craniofacial Biology, College of Dentistry, New York University, New York, USA; Department of Biological Sciences, College of Natural Sciences, Daegu University, Gyeongsan, Republic of Korea.
| | - Jean-Pierre Saint-Jeannet
- Department of Basic Science & Craniofacial Biology, College of Dentistry, New York University, New York, USA; Department of Animal Biology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA.
| |
Collapse
|
12
|
Theveneau E, Mayor R. Neural crest delamination and migration: from epithelium-to-mesenchyme transition to collective cell migration. Dev Biol 2012; 366:34-54. [PMID: 22261150 DOI: 10.1016/j.ydbio.2011.12.041] [Citation(s) in RCA: 364] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 12/26/2011] [Indexed: 10/25/2022]
Abstract
After induction and specification in the ectoderm, at the border of the neural plate, the neural crest (NC) population leaves its original territory through a delamination process. Soon afterwards, the NC cells migrate throughout the embryo and colonize a myriad of tissues and organs where they settle and differentiate. The delamination involves a partial or complete epithelium-to-mesenchyme transition (EMT) regulated by a complex network of transcription factors including several proto-oncogenes. Studying the relationship between these genes at the time of emigration, and their individual or collective impact on cell behavior, provides valuable information about their role in EMT in other contexts such as cancer metastasis. During migration, NC cells are exposed to large number of positive and negative regulators that control where they go by generating permissive and restricted areas and by modulating their motility and directionality. In addition, as most NC cells migrate collectively, cell-cell interactions play a crucial role in polarizing the cells and interpreting external cues. Cell cooperation eventually generates an overall polarity to the population, leading to directional collective cell migration. This review will summarize our current knowledge on delamination, EMT and migration of NC cells using key examples from chicken, Xenopus, zebrafish and mouse embryos. Given the similarities between neural crest migration and cancer invasion, these cells may represent a useful model for understanding the mechanisms of metastasis.
Collapse
Affiliation(s)
- Eric Theveneau
- Department of Cell and Developmental Biology, University College London, UK
| | | |
Collapse
|
13
|
Abstract
Activation of platelet derived growth factor (PDGF) receptors causes context-dependent cellular responses, including proliferation and migration, and studies in model organisms have demonstrated that this receptor family (PDGFRα and PDGFRβ) is required in many mesenchymal and migratory cell populations during embryonic development. One of these migratory cell populations is the neural crest, which forms cranial bone and mesenchyme, sympathetic neurons and ganglia, melanocytes, and smooth muscle. Mice with disruption of PDGF signaling exhibit defects in some of these neural crest derivatives including the palate, aortic arch, salivary gland, and thymus. Although many of these neural crest defects were identified many years ago, the mechanism of action of PDGF in neural crest remains controversial. In this review, we examine the current knowledge of PDGF function during neural crest cell (NCC) development, focusing on its role in the formation of different neural crest-derived tissues and the implications for PDGF receptors in NCC-related human birth defects.
Collapse
Affiliation(s)
- Christopher L Smith
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | |
Collapse
|
14
|
Theveneau E, Mayor R. Collective cell migration of the cephalic neural crest: The art of integrating information. Genesis 2011; 49:164-76. [DOI: 10.1002/dvg.20700] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Revised: 11/30/2010] [Accepted: 12/04/2010] [Indexed: 02/03/2023]
|
15
|
Schneider L, Cammer M, Lehman J, Nielsen SK, Guerra CF, Veland IR, Stock C, Hoffmann EK, Yoder BK, Schwab A, Satir P, Christensen ST. Directional cell migration and chemotaxis in wound healing response to PDGF-AA are coordinated by the primary cilium in fibroblasts. Cell Physiol Biochem 2010; 25:279-92. [PMID: 20110689 DOI: 10.1159/000276562] [Citation(s) in RCA: 190] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2009] [Indexed: 12/28/2022] Open
Abstract
Cell motility and migration play pivotal roles in numerous physiological and pathophysiological processes including development and tissue repair. Cell migration is regulated through external stimuli such as platelet-derived growth factor-AA (PDGF-AA), a key regulator in directional cell migration during embryonic development and a chemoattractant during postnatal migratory responses including wound healing. We previously showed that PDGFRalpha signaling is coordinated by the primary cilium in quiescent cells. However, little is known about the function of the primary cilium in cell migration. Here we used micropipette analysis to show that a normal chemosensory response to PDGF-AA in fibroblasts requires the primary cilium. In vitro and in vivo wound healing assays revealed that in ORPK mouse (IFT88(Tg737Rpw)) fibroblasts, where ciliary assembly is defective, chemotaxis towards PDGF-AA is absent, leading to unregulated high speed and uncontrolled directional cell displacement during wound closure, with subsequent defects in wound healing. These data suggest that in coordination with cytoskeletal reorganization, the fibroblast primary cilium functions via ciliary PDGFRalpha signaling to monitor directional movement during wound healing.
Collapse
Affiliation(s)
- Linda Schneider
- Department of Biology, Section of Cell and Developmental Biology, The August Krogh Building, University of Copenhagen, DK-2100 Copenhagen OE, Denmark
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Luxardi G, Marchal L, Thomé V, Kodjabachian L. Distinct Xenopus Nodal ligands sequentially induce mesendoderm and control gastrulation movements in parallel to the Wnt/PCP pathway. Development 2010; 137:417-26. [PMID: 20056679 DOI: 10.1242/dev.039735] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The vertebrate body plan is established in two major steps. First, mesendoderm induction singles out prospective endoderm, mesoderm and ectoderm progenitors. Second, these progenitors are spatially rearranged during gastrulation through numerous and complex movements to give rise to an embryo comprising three concentric germ layers, polarised along dorsoventral, anteroposterior and left-right axes. Although much is known about the molecular mechanisms of mesendoderm induction, signals controlling gastrulation movements are only starting to be revealed. In vertebrates, Nodal signalling is required to induce the mesendoderm, which has precluded an analysis of its potential role during the later process of gastrulation. Using time-dependent inhibition, we show that in Xenopus, Nodal signalling plays sequential roles in mesendoderm induction and gastrulation movements. Nodal activity is necessary for convergent extension in axial mesoderm and for head mesoderm migration. Using morpholino-mediated knockdown, we found that the Nodal ligands Xnr5 and Xnr6 are together required for mesendoderm induction, whereas Xnr1 and Xnr2 act later to control gastrulation movements. This control is operated via the direct regulation of key movement-effector genes, such as papc, has2 and pdgfralpha. Interestingly, however, Nodal does not appear to mobilise the Wnt/PCP pathway, which is known to control cell and tissue polarity. This study opens the way to the analysis of the genetic programme and cell behaviours that are controlled by Nodal signalling during vertebrate gastrulation. It also provides a good example of the sub-functionalisation that results from the expansion of gene families in evolution.
Collapse
Affiliation(s)
- Guillaume Luxardi
- Institut de Biologie du Développement de Marseille Luminy, UMR 6216, CNRS-Université de la Méditerranée, Case 907, 13288 Marseille Cedex 09, France
| | | | | | | |
Collapse
|
17
|
Abstract
Platelet-derived growth factors (PDGFs) and their receptors (PDGFRs) have served as prototypes for growth factor and receptor tyrosine kinase function for more than 25 years. Studies of PDGFs and PDGFRs in animal development have revealed roles for PDGFR-alpha signaling in gastrulation and in the development of the cranial and cardiac neural crest, gonads, lung, intestine, skin, CNS, and skeleton. Similarly, roles for PDGFR-beta signaling have been established in blood vessel formation and early hematopoiesis. PDGF signaling is implicated in a range of diseases. Autocrine activation of PDGF signaling pathways is involved in certain gliomas, sarcomas, and leukemias. Paracrine PDGF signaling is commonly observed in epithelial cancers, where it triggers stromal recruitment and may be involved in epithelial-mesenchymal transition, thereby affecting tumor growth, angiogenesis, invasion, and metastasis. PDGFs drive pathological mesenchymal responses in vascular disorders such as atherosclerosis, restenosis, pulmonary hypertension, and retinal diseases, as well as in fibrotic diseases, including pulmonary fibrosis, liver cirrhosis, scleroderma, glomerulosclerosis, and cardiac fibrosis. We review basic aspects of the PDGF ligands and receptors, their developmental and pathological functions, principles of their pharmacological inhibition, and results using PDGF pathway-inhibitory or stimulatory drugs in preclinical and clinical contexts.
Collapse
|
18
|
MicroRNA Mirn140 modulates Pdgf signaling during palatogenesis. Nat Genet 2008; 40:290-8. [PMID: 18264099 DOI: 10.1038/ng.82] [Citation(s) in RCA: 266] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2007] [Accepted: 12/18/2007] [Indexed: 12/21/2022]
Abstract
Disruption of signaling pathways such as those mediated by sonic hedgehog (Shh) or platelet-derived growth factor (Pdgf) causes craniofacial abnormalities, including cleft palate. The role that microRNAs play in modulating palatogenesis, however, is completely unknown. We show that, in zebrafish, the microRNA Mirn140 negatively regulates Pdgf signaling during palatal development, and we provide a mechanism for how disruption of Pdgf signaling causes palatal clefting. The pdgf receptor alpha (pdgfra) 3' UTR contained a Mirn140 binding site functioning in the negative regulation of Pdgfra protein levels in vivo. pdgfra mutants and Mirn140-injected embryos shared a range of facial defects, including clefting of the crest-derived cartilages that develop in the roof of the larval mouth. Concomitantly, the oral ectoderm beneath where these cartilages develop lost pitx2 and shha expression. Mirn140 modulated Pdgf-mediated attraction of cranial neural crest cells to the oral ectoderm, where crest-derived signals were necessary for oral ectodermal gene expression. Mirn140 loss of function elevated Pdgfra protein levels, altered palatal shape and caused neural crest cells to accumulate around the optic stalk, a source of the ligand Pdgfaa. These results suggest that the conserved regulatory interactions of mirn140 and pdgfra define an ancient mechanism of palatogenesis, and they provide candidate genes for cleft palate.
Collapse
|
19
|
Cebra-Thomas JA, Betters E, Yin M, Plafkin C, McDow K, Gilbert SF. Evidence that a late-emerging population of trunk neural crest cells forms the plastron bones in the turtle Trachemys scripta. Evol Dev 2007; 9:267-77. [PMID: 17501750 DOI: 10.1111/j.1525-142x.2007.00159.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The origin of the turtle plastron is not known, but these nine bones have been homologized to the exoskeletal components of the clavicles, the interclavicular bone, and gastralia. Earlier evidence from our laboratory showed that the bone-forming cells of the plastron were positive for HNK-1 and PDGFRalpha, two markers of the skeletogenic neural crest. This study looks at the embryonic origin of these plastron-forming cells. We show that the HNK-1+ cells are also positive for p75 and FoxD3, confirming their neural crest identity, and that they originate from the dorsal neural tube of stage 17 turtle embryos, several days after the original wave of neural crest cells have migrated and differentiated. DiI studies show that these are migratory cells, and they can be observed in the lateral regions of the embryo and can be seen forming intramembranous bone in the ventral (plastron) regions. Before migrating ventrally, these late-emerging neural crest cells reside for over a week in a carapacial staging area above the neural tube and vertebrae. It is speculated that this staging area is where they lose the inability to form skeletal cells.
Collapse
Affiliation(s)
- Judith A Cebra-Thomas
- Biology Department, Swarthmore College, 500 College Avenue, Swarthmore, PA 19081, USA
| | | | | | | | | | | |
Collapse
|
20
|
Abstract
The neural crest is a transient, migratory cell population found in all vertebrate embryos that generate a diverse range of cell and tissue derivatives including, but not limited, to the neurons and glia of the peripheral nervous system, smooth muscle, connective tissue, melanocytes, craniofacial cartilage, and bone. Over the past few years, many studies have provided tremendous insights into understanding the mechanisms regulating the induction and migration of neural crest cell development. This review highlights the surprising and perhaps unexpected roles for morphogens in these distinct processes. A comparison of studies performed in several different vertebrates emphasizes the requirement for coordination between multiple signaling pathways in the induction and migration of neural crest cells in the developing embryo.
Collapse
Affiliation(s)
- Natalie C Jones
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, Missouri 64110, USA
| | | |
Collapse
|
21
|
Wawersik S, Evola C, Whitman M. Conditional BMP inhibition in Xenopus reveals stage-specific roles for BMPs in neural and neural crest induction. Dev Biol 2005; 277:425-42. [PMID: 15617685 DOI: 10.1016/j.ydbio.2004.10.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2004] [Revised: 10/03/2004] [Accepted: 10/04/2004] [Indexed: 02/05/2023]
Abstract
Bone morphogenetic protein (BMP) inhibition has been proposed as the primary determinant of neural cell fate in the developing Xenopus ectoderm. The evidence supporting this hypothesis comes from experiments in explanted "animal cap" ectoderm and in intact embryos using BMP antagonists that are unregulated and active well before gastrulation. While informative, these experiments cannot answer questions regarding the timing of signals and the behavior of cells in the more complex environment of the embryo. To examine the effects of BMP antagonism at defined times in intact embryos, we have generated a novel, two-component system for conditional BMP inhibition. We find that while blocking BMP signals induces ectopic neural tissue both in animal caps and in vivo, in intact embryos, it can only do so prior to late blastula stage (stage 9), well before the onset of gastrulation. Later inhibition does not induce neural identity, but does induce ectopic neural crest, suggesting that BMP antagonists play temporally distinct roles in establishing neural and neural crest identity. By combining BMP inhibition with fibroblast growth factor (FGF) activation, the neural inductive response in whole embryos is greatly enhanced and is no longer limited to pre-gastrula ectoderm. Thus, BMP inhibition during gastrulation is insufficient for neural induction in intact embryos, arguing against a BMP gradient as the sole determinant of ectodermal cell fate in the frog.
Collapse
Affiliation(s)
- Stefan Wawersik
- Department of Cell Biology, Harvard Medical School, Boston, MA 02215, USA
| | | | | |
Collapse
|
22
|
Ataliotis P, Ivins S, Mohun TJ, Scambler PJ. XTbx1 is a transcriptional activator involved in head and pharyngeal arch development inXenopus laevis. Dev Dyn 2005; 232:979-91. [PMID: 15736267 DOI: 10.1002/dvdy.20276] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The development of pharyngeal arch derivatives in mouse and zebrafish embryos depends on the activity of the transcription factor Tbx1. We cloned the Xenopus laevis orthologue of Tbx1 (XTbx1) and show that the pattern of expression is similar to that in other vertebrate species. Zygotic transcripts are first detected shortly after the mid-blastula transition and are localized to the presumptive mesoderm at mid-gastrula stages. XTbx1 expression persists in the lateral plate mesoderm at neurula stages and is found in the pharyngeal arches and otic vesicles from early tail bud stages onward. We demonstrate that XTbx1 is a transcriptional activator and that this trans-activation requires the C-terminal region of the protein. A dominant interfering mutant of XTbx1 disrupts the development of Xenopus head structures and pharyngeal arch derivatives. Lineage labeling reveals a requirement for XTbx1 function in cells that contribute to the pharyngeal mesoderm and for fgf8 expression.
Collapse
Affiliation(s)
- Paris Ataliotis
- Molecular Medicine Unit, Institute of Child Health, London WC1N 1EH, United Kingdom.
| | | | | | | |
Collapse
|
23
|
Van Stry M, McLaughlin KA, Ataliotis P, Symes K. The mitochondrial-apoptotic pathway is triggered in Xenopus mesoderm cells deprived of PDGF receptor signaling during gastrulation. Dev Biol 2004; 268:232-42. [PMID: 15031119 DOI: 10.1016/j.ydbio.2003.12.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2003] [Revised: 10/28/2003] [Accepted: 12/23/2003] [Indexed: 11/20/2022]
Abstract
Platelet-derived growth factor receptor (PDGFR) signaling is required for normal gastrulation in Xenopus laevis. Embryos deprived of PDGFR signaling develop with a range of gastrulation-specific defects including spina bifida, shortened anteroposterior axis, and reduced anterior structures. These defects arise because the involuting mesoderm fails to move appropriately. In this study, we determine that inhibition of PDGFR signaling causes prospective head mesoderm cells to appear in the blastocoel cavity at the onset of gastrulation, stage 10. These aberrant cells undergo apoptosis via the caspase 3 pathway at an embryonic checkpoint called the early gastrula transition (EGT). They are TUNEL-positive and have increased levels of caspase 3 activity compared to control embryos. Apoptotic death of these mesoderm cells can be prevented by co-injection of mRNA encoding Bcl-2 or by injection of either a general caspase inhibitor or a caspase 3-specific inhibitor. Prevention of cell death, however, is not sufficient to rescue gastrulation defects in these embryos. Based on these data, we propose that PDGFR signaling is necessary for survival of prospective head mesoderm cells, and also plays an essential role in the control of their cell movement during gastrulation.
Collapse
|
24
|
Nagel M, Tahinci E, Symes K, Winklbauer R. Guidance of mesoderm cell migration in the Xenopus gastrula requires PDGF signaling. Development 2004; 131:2727-36. [PMID: 15128658 DOI: 10.1242/dev.01141] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In vertebrates, PDGFA and its receptor, PDGFRalpha, are expressed in the early embryo. Impairing their function causes an array of developmental defects, but the underlying target processes that are directly controlled by these factors are not well known. We show that in the Xenopus gastrula, PDGFA/PDGFRalpha signaling is required for the directional migration of mesodermal cells on the extracellular matrix of the blastocoel roof. Blocking PDGFRalpha function in the mesoderm does not inhibit migration per se, but results in movement that is randomized and no longer directed towards the animal pole. Likewise, compromising PDGFA function in the blastocoel roof substratum abolishes directionality of movement. Overexpression of wild-type PDGFA, or inhibition of PDGFA both lead to randomized migration, disorientation of polarized mesodermal cells, decreased movement towards the animal pole, and reduced head formation and axis elongation. This is consistent with an instructive role for PDGFA in the guidance of mesoderm migration.
Collapse
Affiliation(s)
- Martina Nagel
- Department of Zoology, University of Toronto, 25 Harbord Street, Toronto, Ontario M5S 3G5, Canada
| | | | | | | |
Collapse
|
25
|
Betsholtz C. Biology of platelet-derived growth factors in development. ACTA ACUST UNITED AC 2004; 69:272-85. [PMID: 14745969 DOI: 10.1002/bdrc.10030] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Platelet-derived growth factor (PDGF) was one of the first growth factors to be characterized, and the PDGF family of ligand and receptors has remained an archetype system for studies of the mechanisms of action of growth factors and receptor tyrosine kinases for more than two decades. The small size of the family has also facilitated genetic studies and, in particular, manipulations of the mouse PDGF and PDGF receptor genes have given important insights into the role of this family during mammalian development. These studies have shown that discrete populations of mesenchymal and neuroectodermal progenitor cells depend on PDGF signaling for their growth and distribution within developing organs. Other studies suggest that the same, or similar, cells may be targeted by exaggerated PDGF signaling in a number of pathological processes, including different types of cancer. The present review summarizes current views on the roles of PDGFs in developmental processes, and discusses the critical importance of the amount, spatial distribution, and bioavailability of the PDGF proteins for acquisition of the correct number and location of target cells.
Collapse
|
26
|
Abstract
Recent advances in genetic manipulation have greatly expanded our understanding of cellular responses to platelet-derived growth factors (PDGFs) during animal development. In addition to driving mesenchymal proliferation, PDGFs have been shown to direct the migration, differentiation and function of a variety of specialized mesenchymal and migratory cell types, both during development and in the adult animal. Furthermore, the availability of genomic sequence data has facilitated the identification of novel PDGF and PDGF receptor (PDGFR) family members in C. elegans, Drosophila, Xenopus, zebrafish and mouse. Early data from these different systems suggest that some functions of PDGFs have been evolutionarily conserved.
Collapse
Affiliation(s)
- Renée V Hoch
- Program in Developmental Biology and Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109, USA
| | | |
Collapse
|
27
|
Clark K, Bender G, Murray BP, Panfilio K, Cook S, Davis R, Murnen K, Tuan RS, Gilbert SF. Evidence for the neural crest origin of turtle plastron bones. Genesis 2001; 31:111-7. [PMID: 11747201 DOI: 10.1002/gene.10012] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The migrating cranial neural crest cells of birds, fish, and mammals have been shown to form the membranous bones of the cranium and face. These findings have been extrapolated to suggest that all the dermal bones of the vertebrate exoskeleton are derived from the neural crest ectomesenchyme. However, only one group of extant animals, the Chelonians, has an extensive bony exoskeleton in the trunk. We have previously shown that the autapomorphic carapacial and plastron bones of the turtle shell arise from dermal intramembranous ossification. Here, we show that the bones of the plastron stain positively for HNK-1 and PDGFRalpha and are therefore most likely of neural crest origin. This extends the hypothesis of the neural crest origin of the exoskeleton to include the turtle plastron.
Collapse
Affiliation(s)
- K Clark
- Department of Orthopedic Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Li J, Molkentin JD, Colbert MC. Retinoic acid inhibits cardiac neural crest migration by blocking c-Jun N-terminal kinase activation. Dev Biol 2001; 232:351-61. [PMID: 11401397 DOI: 10.1006/dbio.2001.0203] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Retinoic acid (RA), a potent teratogen, produces a characteristic set of embryonic cardiovascular malformations similar to those observed in neural crest ablated avians. While the effects of RA on neural crest are well described, the molecular mechanism(s) of RA action on these cells is less clear. The present study examines the relationship between RA and mitogen-activated protein kinase signaling in neural crest cells and demonstrates that c-Jun N-terminal kinase (JNK) activation is severely repressed by RA. RA suppressed migration and proliferation of primary cultures of mouse neural crest cells treated in vitro as well as from animals treated in vivo. On Western blots, JNK activation/phosphorylation in neural crest cultures was reduced, while neither extracellular signal-regulated kinase (ERK) nor p38 pathways were affected. Both the dose-dependent stimulation of neural crest outgrowth and JNK phosphorylation by platelet-derived growth factor AA, which promotes outgrowth but not proliferation of neural crest cultures, were completely abrogated by RA. To establish the relevance of the JNK signaling pathway to cardiac neural crest migration, dominant negative adenoviral constructs were used to inhibit upstream activation of JNK or c-Jun downstream responses. Both adenoviral constructs markedly reduced neural crest cell outgrowth, while a dominant negative inhibitor of the p38 pathway had no effect. These data demonstrate that the JNK signaling pathway and c-Jun activation are critical for cardiac neural crest outgrowth and are potential targets for the action of RA.
Collapse
Affiliation(s)
- J Li
- Division of Molecular Cardiovascular Biology, Children's Hospital Medical Center, Cincinnati, Ohio 45229-3039, USA
| | | | | |
Collapse
|
29
|
Raffin M, Leong LM, Rones MS, Sparrow D, Mohun T, Mercola M. Subdivision of the cardiac Nkx2.5 expression domain into myogenic and nonmyogenic compartments. Dev Biol 2000; 218:326-40. [PMID: 10656773 DOI: 10.1006/dbio.1999.9579] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Nkx2.5 is expressed in the cardiogenic mesoderm of avian, mouse, and amphibian embryos. To understand how various cardiac fates within this domain are apportioned, we fate mapped the mesodermal XNkx2.5 domain of neural tube stage Xenopus embryos. The lateral portions of the XNkx2.5 expression domain in the neural tube stage embryo (stage 22) form the dorsal mesocardium and roof of the pericardial cavity while the intervening ventral region closes to form the myocardial tube. XNkx2.5 expression is maintained throughout the period of heart tube morphogenesis and differentiation of myocardial, mesocardial, and pericardial tissues. A series of microsurgical experiments showed that myocardial differentiation in the lateral portion of the field is suppressed during normal development by signals from the prospective myocardium and by tissues located more dorsally in the embryo, in particular the neural tube. These signals combine to block myogenesis downstream of XNkx2.5 and at or above the level of contractile protein gene expression. We propose that the entire XNkx2.5/heart field is transiently specified as cardiomyogenic. Suppression of this program redirects lateral cells to adopt dorsal mesocardial and dorsal pericardial fates and subdivides the field into distinct myogenic and nonmyogenic compartments.
Collapse
Affiliation(s)
- M Raffin
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
30
|
Chong LD, Park EK, Latimer E, Friesel R, Daar IO. Fibroblast growth factor receptor-mediated rescue of x-ephrin B1-induced cell dissociation in Xenopus embryos. Mol Cell Biol 2000; 20:724-34. [PMID: 10611251 PMCID: PMC85187 DOI: 10.1128/mcb.20.2.724-734.2000] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/1999] [Accepted: 10/14/1999] [Indexed: 11/20/2022] Open
Abstract
The Eph family of receptor tyrosine kinases and their membrane-bound ligands, the ephrins, have been implicated in regulating cell adhesion and migration during development by mediating cell-to-cell signaling events. Genetic evidence suggests that ephrins may transduce signals and become tyrosine phosphorylated during embryogenesis. However, the induction and functional significance of ephrin phosphorylation is not yet clear. Here, we report that when we used ectopically expressed proteins, we found that an activated fibroblast growth factor (FGF) receptor associated with and induced the phosphorylation of ephrin B1 on tyrosine. Moreover, this phosphorylation reduced the ability of overexpressed ephrin B1 to reduce cell adhesion. In addition, we identified a region in the cytoplasmic tail of ephrin B1 that is critical for interaction with the FGF receptor; we also report FGF-induced phosphorylation of ephrins in a neural tissue. This is the first demonstration of communication between the FGF receptor family and the Eph ligand family and implicates cross talk between these two cell surface molecules in regulating cell adhesion.
Collapse
Affiliation(s)
- L D Chong
- Basic Research Laboratory, National Cancer Institute, Frederick, Maryland 21702, USA
| | | | | | | | | |
Collapse
|
31
|
Abstract
Platelet-derived growth factor (PDGF) is a major mitogen for connective tissue cells and certain other cell types. It is a dimeric molecule consisting of disulfide-bonded, structurally similar A- and B-polypeptide chains, which combine to homo- and heterodimers. The PDGF isoforms exert their cellular effects by binding to and activating two structurally related protein tyrosine kinase receptors, denoted the alpha-receptor and the beta-receptor. Activation of PDGF receptors leads to stimulation of cell growth, but also to changes in cell shape and motility; PDGF induces reorganization of the actin filament system and stimulates chemotaxis, i.e., a directed cell movement toward a gradient of PDGF. In vivo, PDGF has important roles during the embryonic development as well as during wound healing. Moreover, overactivity of PDGF has been implicated in several pathological conditions. The sis oncogene of simian sarcoma virus (SSV) is related to the B-chain of PDGF, and SSV transformation involves autocrine stimulation by a PDGF-like molecule. Similarly, overproduction of PDGF may be involved in autocrine and paracrine growth stimulation of human tumors. Overactivity of PDGF has, in addition, been implicated in nonmalignant conditions characterized by an increased cell proliferation, such as atherosclerosis and fibrotic conditions. This review discusses structural and functional properties of PDGF and PDGF receptors, the mechanism whereby PDGF exerts its cellular effects, and the role of PDGF in normal and diseased tissues.
Collapse
Affiliation(s)
- C H Heldin
- Ludwig Institute for Cancer Research, Biomedical Center, and Department of Pathology, University Hospital, Uppsala, Sweden.
| | | |
Collapse
|
32
|
Abstract
It is well known that cardiac neural crest participates in development of the cardiac outflow septation and patterning of the great arteries. Less well known is that ablation of the cardiac neural crest leads to a primary myocardial dysfunction. Recent data suggests that the myocardial dysfunction occurs because of the absence of an interaction of neural crest and pharyngeal endoderm to alter signaling from the endoderm. Continuation of an FGF-like signal from the endoderm past a precise time in development appears to be detrimental to myocardial maturation.
Collapse
Affiliation(s)
- M Farrell
- Developmental Biology Program, Medical College of Georgia, Augusta 30912-2640, USA
| | | | | | | |
Collapse
|
33
|
Kirby ML, Farrell M. The diverse roles of neural crest in cardiovascular development: myocardial function, aortic arch repatterning and outflow septation. PROGRESS IN PEDIATRIC CARDIOLOGY 1998. [DOI: 10.1016/s1058-9813(99)00004-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
34
|
Zhang XQ, Afink GB, Svensson K, Jacobs JJ, Günther T, Forsberg-Nilsson K, van Zoelen EJ, Westermark B, Nistér M. Specific expression in mouse mesoderm- and neural crest-derived tissues of a human PDGFRA promoter/lacZ transgene. Mech Dev 1998; 70:167-80. [PMID: 9510033 DOI: 10.1016/s0925-4773(97)00190-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The platelet-derived growth factor alpha-receptor (PDGFR-alpha) displays a lineage-specific expression pattern in the mouse embryo and is required for normal development of mesoderm and cephalic neural crest derivatives. The purpose of the present study was to demonstrate the in vivo promoter function of genomic DNA fragments representing the 5'-flanking part of the human PDGFRA gene. 2.2, 0.9 and 0.4 kb PDGFRA promoter fragments, ligated to a lacZ reporter gene, were microinjected into fertilized mouse eggs and transgenic mouse lines were established. The expression patterns were basically similar in the 2.2 and 0.9 kb lines and overlapped grossly the endogenous Pdgfra gene expression pattern. The transgenic line with the highest expression level was chosen for detailed analysis. Expression was, as expected, mainly confined to tissues of mesodermal and neural crest origin. No expression was found in epithelial tissues of endo- or ectodermal origin. The promoter fragments were also active in neuroepithelium and in certain neuronal cell types that did not faithfully express PDGFR-alpha mRNA, while they failed to specify reporter expression in PDGFR-alpha expressing O-2A progenitor cells and other glial elements of the central nervous system. Thus, the isolated human PDGFRA promoter contains most but not all of the regulatory elements that are necessary to establish tissue specific gene expression during development.
Collapse
Affiliation(s)
- X Q Zhang
- Department of Pathology, University of Uppsala, University Hospital, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Ataliotis P, Mercola M. Distribution and functions of platelet-derived growth factors and their receptors during embryogenesis. INTERNATIONAL REVIEW OF CYTOLOGY 1997; 172:95-127. [PMID: 9102395 DOI: 10.1016/s0074-7696(08)62359-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Platelet-derived growth factors (PDGFs) are soluble proteins that mediate intercellular signaling via receptor tyrosine kinases. The patterns of PDGF and PDGF receptor expression during embryogenesis are complex and dynamic and suggest that signaling can be autocrine or paracrine, depending on the particular tissue and the stage of development. Mesenchymal cells throughout the embryo and within some developing organs produce PDGF receptors, whereas their ligands are often produced by adjacent epithelial or endothelial cells. Disruption of PDGF signaling in the embryo leads to morphogenetic defects and embryonic or perinatal lethality. Tissues that are particularly susceptible to the absence of PDGF signaling are migrating mesoderm cells during gastrulation, nonneuronal neural crest cell derivatives, and kidney mesangial cells. These tissues share the common feature of undergoing epithelial-mesenchymal transitions. We review current knowledge of the distribution of PDGF ligands and receptors and discuss how this distribution may relate to several roles for PDGF during embryogenesis, particularly the regulation of mesenchymal cell behavior.
Collapse
Affiliation(s)
- P Ataliotis
- Department of Cell Biology, Harvard Medical School, Boston Massachusetts 02115, USA
| | | |
Collapse
|
36
|
Abstract
A prototype two- and three-dimensional color atlas of mouse development is described. The prototype has been developed using two embryos, a 13.5 d normal mouse embryo and a PATCH mutant embryo of the same age. Serial sections of the embryos, with an external registration marker system, introduced into the paraffin embedding process, were prepared by standard histological methods. For the 2D atlas, color images were digitized from 100 consecutive sections of the normal embryo. For the 3D atlas, 300 gray scale images digitized from the mutant embryo were conformally warped and reconstructed into a 3D volume dataset. The external fiducial system facilitated the three-dimensional reconstruction by providing accurate registration of consecutive images and also allowed for precise spatial calibration and the correction for warping artifacts. The atlases, with their associated anatomical knowledge base, will be integrated into a multimedia on-line information resource via the Internet's World Wide Web (WWW) using an enhanced (patent pending, Eòlas Technologies) version of the Mosaic WWW browser program from the National Center for Supercomputer Applications. These programs will provide research biologists with a set of advanced tools to analyze normal and abnormal development.
Collapse
|
37
|
Olsson L, Hanken J. Cranial neural-crest migration and chondrogenic fate in the oriental fire-bellied toadBombina orientalis: Defining the ancestral pattern of head development in anuran amphibians. J Morphol 1996; 229:105-120. [DOI: 10.1002/(sici)1097-4687(199607)229:1<105::aid-jmor7>3.0.co;2-2] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
38
|
Dunn MK, Mercola M. Cloning and expression of Xenopus CCT gamma, a chaperonin subunit developmentally regulated in neural-derived and myogenic lineages. Dev Dyn 1996; 205:387-94. [PMID: 8901050 DOI: 10.1002/(sici)1097-0177(199604)205:4<387::aid-aja3>3.0.co;2-e] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The chaperonin containing TCP-1 (CCT) is a eukaryotic cytoplasmic chaperonin, consisting of multiple distinct subunits in a double-toroid structure. In vitro, the CCT has been shown to assist in the folding of tubulin and actin into active conformations through an ATP-dependent mechanism. The function and distribution of these proteins in vivo are also not known. In this report, we show that the expression of two CCT subunits (alpha and gamma) are developmentally regulated in neural-derived and myogenic lineages. While expression in the central nervous system and muscle is consistent with a role in tubulin and actin conformation, we also detect robust expression in the developing cranial neural crest. Enrichment in the neural crest may represent the presence of a novel substrate for the CCT. We have also cloned the complete cDNA for the Xenopus ortholog of CCT gamma, which has 87% amino acid identity with the mouse protein. This remarkable evolutionary conservation suggests a conserved function for this protein among vertebrates, and possibly among all eukaryotes.
Collapse
Affiliation(s)
- M K Dunn
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
39
|
Duband JL, Delannet M, Monier F, Garret S, Desban N. Modulations of cellular interactions during development of the neural crest: role of growth factors and adhesion molecules. Curr Top Microbiol Immunol 1996; 212:207-27. [PMID: 8934821 DOI: 10.1007/978-3-642-80057-3_17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- J L Duband
- Laboratoire de Biologie Cellulaire du Dévelopement, Université Paris, France
| | | | | | | | | |
Collapse
|
40
|
Abstract
PDGF is an important polypeptide growth factor that plays an essential role during early vertebrate development and is associated with tissue repair and wound healing in the adult vertebrate. Moreover, PDGF is thought to play a role in a variety of pathological phenomena, such as cancer, fibrosis and atherosclerosis. PDGF is expressed as a dimer of A and/or B chains, the precursors of which are encoded by two single copy genes. Although the PDGF genes are expressed coordinately in a number of cell types, they are independently expressed in a majority of cell types. The expression of either PDGF gene can be affected by very diverse extracellular stimuli and the type of response is dependent on the cell type that is exposed to the stimulus. Expression of the PDGF chains can be modulated at every imaginable level: by regulating accessibility of the transcription start site, by varying the transcription initiation rate, by using alternative transcription start sites, by alternative splicing, by using alternative polyadenylation signals, by varying mRNA decay rates, by regulating efficiency of translation, by protein modification, and by regulating secretion. Even upon secretion, the activity of PDGF can be modulated by non-specific or specific PDGF-binding proteins. This review provides an overview of the cell types in which the PDGF genes are expressed, of the factors that are known to affect the expression of PDGF, and of the various levels at which the expression of PDGF genes can be regulated.
Collapse
Affiliation(s)
- R P Dirks
- Department of Molecular Biology, University of Nijmegen, The Netherlands
| | | |
Collapse
|
41
|
Ataliotis P, Symes K, Chou MM, Ho L, Mercola M. PDGF signalling is required for gastrulation of Xenopus laevis. Development 1995; 121:3099-110. [PMID: 7555734 DOI: 10.1242/dev.121.9.3099] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
During Xenopus gastrulation, platelet-derived growth factor (PDGF) receptor-alpha is expressed in involuting marginal zone cells which migrate over ectodermal cells expressing PDGF-A. To investigate the role of PDGF signalling during this process, we have generated a novel point mutant of PDGF receptor-alpha analogous to the W37 mutation of c-kit. This molecule is a specific, potent, dominant inhibitor of PDGF signalling in vivo. Injection of RNA encoding this protein into Xenopus embryos prevents closure of the blastopore, leads to abnormal gastrulation and a loss of anterior structures. Convergent extension is not inhibited in these embryos, but rather, involuting mesodermal cells fail to adhere to the overlying ectoderm. PDGF may therefore be required for mesodermal cell-substratum interaction.
Collapse
Affiliation(s)
- P Ataliotis
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|