1
|
Morrow A, Pilipenko A, Turkovich E, Sankaran S, Samaha J. Endogenous Attention Affects Decision-related Neural Activity but Not Afferent Visual Responses. J Cogn Neurosci 2024; 36:2481-2494. [PMID: 39145755 DOI: 10.1162/jocn_a_02239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Endogenous shifts of spatial attention toward an upcoming stimulus are associated with improvements in behavioral responses to the stimulus, preparatory retinotopic shifts in alpha power, and changes in ERPs. Although attentional modulation of several early sensory ERPs is well established, there is still debate about under what circumstances attention affects the earliest cortical visual evoked response-the C1 ERP component-which is putatively generated from afferent input into primary visual cortex. Moreover, the effects of spatial attention on the recently discovered ERP signature of evidence accumulation-the central parietal positivity (CPP)-have not been fully characterized. The present study assessed the effect of spatial attention on the C1 and CPP components through a spatially cued contrast discrimination task using stimuli that were specifically designed to produce large-amplitude C1 responses and that varied in sensory evidence strength to characterize the CPP. Participants responded according to which of two checkerboard stimuli had greater contrast following an 80% valid cue toward the upper or lower visual field. Prestimulus alpha power changed topographically based on the cue, suggesting participants shifted attention to prepare for the upcoming stimuli. Despite these attentional shifts in alpha power and the fact that the stimuli reliably elicited C1 responses several times greater than many prior studies, there was no evidence of an attention effect on the C1. The CPP, however, showed a clear increase in build-up rate on valid trials. Our findings suggest that endogenous attention may not affect the early C1 ERP component but may improve behavior at a decision stage, as reflected in brain signals related to evidence accumulation (the CPP).
Collapse
|
2
|
Jovanović V, Petrušić I, Savić A, Ković V. Processing of visual hapaxes in picture naming task: An event-related potential study. Int J Psychophysiol 2024; 203:112394. [PMID: 39053735 DOI: 10.1016/j.ijpsycho.2024.112394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/28/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024]
Abstract
Object recognition and visual categorization are typically swift and seemingly effortless tasks that involve numerous underlying processes. In our investigation, we utilized a picture naming task to explore the processing of rarely encountered objects (visual hapaxes) in comparison to common objects. Our aim was to determine the stage at which these rare objects are classified as unnamable. Contrary to our expectations and in contrast to some prior research on event-related potentials (ERPs) with novel and atypical objects, no differences between conditions were observed in the late time windows corresponding to the P300 or N400 components. However, distinctive patterns between hapaxes and common objects surfaced in three early time windows, corresponding to the posterior N1 and P2 waves, as well as a widespread N2 wave. According to the ERP data, the differentiation between hapaxes and common objects occurs within the first 380 ms of the processing line, involving only limited and indirect top-down influence.
Collapse
Affiliation(s)
- Vojislav Jovanović
- University of Belgrade, Faculty of Philosophy, Department of Psychology, Laboratory for Neurocognition and Applied Cognition, 11000 Belgrade, Serbia.
| | - Igor Petrušić
- University of Belgrade, Faculty of Physical Chemistry, Laboratory for Advanced Analysis of Neuroimages, 11000 Belgrade, Serbia
| | - Andrej Savić
- University of Belgrade, School of Electrical Engineering, Science and Research Centre, 11000 Belgrade, Serbia
| | - Vanja Ković
- University of Belgrade, Faculty of Philosophy, Department of Psychology, Laboratory for Neurocognition and Applied Cognition, 11000 Belgrade, Serbia
| |
Collapse
|
3
|
Carretié L, Fernández-Folgueiras U, Kessel D, Alba G, Veiga-Zarza E, Tapia M, Álvarez F. An extremely fast neural mechanism to detect emotional visual stimuli: A two-experiment study. PLoS One 2024; 19:e0299677. [PMID: 38905211 PMCID: PMC11192326 DOI: 10.1371/journal.pone.0299677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/03/2024] [Indexed: 06/23/2024] Open
Abstract
Defining the brain mechanisms underlying initial emotional evaluation is a key but unexplored clue to understanding affective processing. Event-related potentials (ERPs), especially suited for investigating this issue, were recorded in two experiments (n = 36 and n = 35). We presented emotionally negative (spiders) and neutral (wheels) silhouettes homogenized regarding their visual parameters. In Experiment 1, stimuli appeared at fixation or in the periphery (200 trials per condition and location), the former eliciting a N40 (39 milliseconds) and a P80 (or C1: 80 milliseconds) component, and the latter only a P80. In Experiment 2, stimuli were presented only at fixation (500 trials per condition). Again, an N40 (45 milliseconds) was observed, followed by a P100 (or P1: 105 milliseconds). Analyses revealed significantly greater N40-C1P1 peak-to-peak amplitudes for spiders in both experiments, and ANCOVAs showed that these effects were not explained by C1P1 alone, but that processes underlying N40 significantly contributed. Source analyses pointed to V1 as an N40 focus (more clearly in Experiment 2). Sources for C1P1 included V1 (P80) and V2/LOC (P80 and P100). These results and their timing point to low-order structures (such as visual thalamic nuclei or superior colliculi) or the visual cortex itself, as candidates for initial evaluation structures.
Collapse
Affiliation(s)
- Luis Carretié
- Facultad de Psicología, Universidad Autónoma de Madrid, Madrid, Spain
| | | | - Dominique Kessel
- Facultad de Psicología, Universidad Autónoma de Madrid, Madrid, Spain
| | - Guzmán Alba
- Facultad de Psicología, Universidad Autónoma de Madrid, Madrid, Spain
| | | | - Manuel Tapia
- Facultad de Psicología, Universidad Autónoma de Madrid, Madrid, Spain
| | - Fátima Álvarez
- Facultad de Psicología, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
4
|
Ziereis A, Schacht A. Validation of scrambling methods for vocal affect bursts. Behav Res Methods 2024; 56:3089-3101. [PMID: 37673809 PMCID: PMC11133081 DOI: 10.3758/s13428-023-02222-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2023] [Indexed: 09/08/2023]
Abstract
Studies on perception and cognition require sound methods allowing us to disentangle the basic sensory processing of physical stimulus properties from the cognitive processing of stimulus meaning. Similar to the scrambling of images, the scrambling of auditory signals is aimed at creating stimulus instances that are unrecognizable but have comparable low-level features. In the present study, we generated scrambled stimuli of short vocalizations taken from the Montreal Affective Voices database (Belin et al., Behav Res Methods, 40(2):531-539, 2008) by applying four different scrambling methods (frequency-, phase-, and two time-scrambling transformations). The original stimuli and their scrambled versions were judged by 60 participants for the apparency of a human voice, gender, and valence of the expressions, or, if no human voice was detected, for the valence of the subjective response to the stimulus. The human-likeness ratings were reduced for all scrambled versions relative to the original stimuli, albeit to a lesser extent for phase-scrambled versions of neutral bursts. For phase-scrambled neutral bursts, valence ratings were equivalent to those of the original neutral burst. All other scrambled versions were rated as slightly unpleasant, indicating that they should be used with caution due to their potential aversiveness.
Collapse
Affiliation(s)
- Annika Ziereis
- Department for Cognition, Emotion and Behavior, Affective Neuroscience and Psychophysiology Laboratory, Institute of Psychology, University of Göttingen, Göttingen, Germany.
| | - Anne Schacht
- Department for Cognition, Emotion and Behavior, Affective Neuroscience and Psychophysiology Laboratory, Institute of Psychology, University of Göttingen, Göttingen, Germany
| |
Collapse
|
5
|
Cary E, Pacheco D, Kaplan-Kahn E, McKernan E, Matsuba E, Prieve B, Russo N. Brain Signatures of Early and Late Neural Measures of Auditory Habituation and Discrimination in Autism and Their Relationship to Autistic Traits and Sensory Overresponsivity. J Autism Dev Disord 2024; 54:1344-1360. [PMID: 36626009 DOI: 10.1007/s10803-022-05866-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2022] [Indexed: 01/11/2023]
Abstract
Sensory differences are included in the DSM-5 criteria of autism for the first time, yet it is unclear how they relate to neural indicators of perception. We studied early brain signatures of perception and examined their relationship to sensory behaviors and autistic traits. Thirteen autistic children and 13 Typically Developing (TD) children matched on age and nonverbal IQ participated in a passive oddball task, during which P1 habituation and P1 and MMN discrimination were evoked by pure tones. Autistic children had less neural habituation than the TD comparison group, and the MMN, but not P1, mapped on to sensory overresponsivity. Findings highlight the significance of temporal and contextual factors in neural information processing as it relates to autistic traits and sensory behaviors.
Collapse
Affiliation(s)
- Emily Cary
- Department of Psychology, Syracuse University, 430 Huntington Hall, 13244 2340, Syracuse, NY, USA
| | - Devon Pacheco
- Department of Communication Sciences and Disorders, Syracuse University, 621 Skytop Rd. Suite 1200, 13244, Syracuse, NY, USA
| | - Elizabeth Kaplan-Kahn
- Department of Psychology, Syracuse University, 430 Huntington Hall, 13244 2340, Syracuse, NY, USA
| | - Elizabeth McKernan
- Department of Psychology, Syracuse University, 430 Huntington Hall, 13244 2340, Syracuse, NY, USA
| | - Erin Matsuba
- Department of Psychology, Syracuse University, 430 Huntington Hall, 13244 2340, Syracuse, NY, USA
| | - Beth Prieve
- Department of Communication Sciences and Disorders, Syracuse University, 621 Skytop Rd. Suite 1200, 13244, Syracuse, NY, USA
| | - Natalie Russo
- Department of Psychology, Syracuse University, 430 Huntington Hall, 13244 2340, Syracuse, NY, USA.
| |
Collapse
|
6
|
Santiago AF, Kosilo M, Cogoni C, Diogo V, Jerónimo R, Prata D. Oxytocin modulates neural activity during early perceptual salience attribution. Psychoneuroendocrinology 2024; 161:106950. [PMID: 38194846 DOI: 10.1016/j.psyneuen.2023.106950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 12/18/2023] [Accepted: 12/24/2023] [Indexed: 01/11/2024]
Abstract
Leading hypotheses of oxytocin's (OT) role in human cognition posit that it enhances salience attribution. However, whether OT exerts its effects predominantly in social (vs non-social) contexts remains debatable, and the time-course of intranasal OT's effects' on salience attribution processing is still unknown. We used the social Salience Attribution Task modified (sSAT) in a double-blind, placebo-controlled intranasal OT (inOT) administration, between-subjects design, with 54 male participants, to test existing theories of OT's role in cognition. Namely, we aimed to test whether inOT would differently affect salience attribution processing of social stimuli (expressing fearfulness) and non-social stimuli (fruits) made relevant via monetary reinforcement, and its neural processing time-course. During electroencephalography (EEG) recording, participants made speeded responses to emotional social (fearful faces) and non-emotional non-social (fruits) stimuli - which were matched for task-relevant motivational salience through their (color-dependent) probability of monetary reinforcement. InOT affected early (rather than late, P3b and LPP) EEG components, increasing N170 amplitude (p = .041) and P2b latency (p .001; albeit not of P1), regardless of stimuli's (emotional) socialness or reinforcement probability. Fear-related socialness affected salience attribution processing EEG (p .05) across time (N170, P2b and P3b), being later modulated by reinforcement probability (LPP). Our data suggest that OT's effects on neural activity during early perception, may exist irrespective of fear-related social- or reward-contexts. This partially supports the tri-phasic model of OT (which posits OT enhances salience attribution in an early perception stage regardless of socialness), and not the social salience nor the general approach-withdrawal hypotheses of OT, for early salience processing event-related potentials.
Collapse
Affiliation(s)
- Andreia F Santiago
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal; William James Center for Research, ISPA - Instituto Universitário, Lisbon, Portugal
| | - Maciej Kosilo
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal
| | - Carlotta Cogoni
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal
| | - Vasco Diogo
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal; Instituto Universitário de Lisboa (Iscte-IUL), CIS_Iscte, Lisbon, Portugal
| | - Rita Jerónimo
- Instituto Universitário de Lisboa (Iscte-IUL), CIS_Iscte, Lisbon, Portugal
| | - Diana Prata
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal; Department of Old Age Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK.
| |
Collapse
|
7
|
Siman-Tov Z, Lev M, Polat U. Probing the Bottleneck of Awareness Formed by Foveal Crowding: A Neurophysiological Study. Brain Sci 2024; 14:169. [PMID: 38391743 PMCID: PMC10886460 DOI: 10.3390/brainsci14020169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/28/2024] [Accepted: 02/05/2024] [Indexed: 02/24/2024] Open
Abstract
Crowding occurs when an easily identified isolated stimulus is surrounded by stimuli with similar properties, making it very difficult to identify. Crowding is suggested as a mechanism that creates a bottleneck in object recognition and awareness. Recently, we showed that brief presentation times at the fovea resulted in a significant crowding effect on target identification, impaired the target's color awareness, and resulted in a slower reaction time. However, when tagging the target with a red letter, the crowding effect is abolished. Crowding is widely considered a grouping; hence, it is pre-attentive. An event-related potential (ERP) study that investigated the spatial-temporal properties of crowding suggested the involvement of higher-level visual processing. Here, we investigated whether ERP's components may be affected by crowding and tagging, and whether the temporal advantage of ERP can be utilized to gain further information about the crowding mechanism. The participants reported target identification using our standard foveal crowing paradigm. It is assumed that crowding occurs due to a suppressive effect; thus, it can be probed by changes in perceptual (N1, ~160 ms) and attentive (P3 ~300-400 ms) components. We found a suppression effect (less negative ERP magnitude) in N1 under foveal crowding, which was recovered under tagging conditions. ERP's amplitude components (N1 and P3) and the behavioral proportion correct are highly correlated. These findings suggest that crowding is an early grouping mechanism that may be combined with later processing involving the segmentation mechanism.
Collapse
Affiliation(s)
- Ziv Siman-Tov
- School of Optometry and Vision Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Maria Lev
- School of Optometry and Vision Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Uri Polat
- School of Optometry and Vision Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| |
Collapse
|
8
|
Serafini L, Leo I, Pesciarelli F. Event-related potential correlates of implicit processing of own- and other-race faces in children. J Exp Child Psychol 2024; 238:105773. [PMID: 37703721 DOI: 10.1016/j.jecp.2023.105773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/23/2023] [Accepted: 08/15/2023] [Indexed: 09/15/2023]
Abstract
Human adults typically experience difficulties in recognizing and discriminating individual faces belonging to racial groups other than their own. The origin of this "other-race" effect is set in infancy, but the understanding of its developmental course is fragmented. We aimed to access the mechanisms of the other-race effect in childhood by unraveling the neural time course of own- and other-race face processing during a masked priming paradigm. White 6- and 7-year-old children (N = 19) categorized fully visible Asian (other-race) or White (own-race) target faces according to gender. Target faces were preceded by masked same-identity or different-identity prime faces, matching the target for race and gender. We showed an early priming effect on the N100 component, with larger amplitude to different-face pairs than to same-face pairs, and a later race effect on the N200 component, with larger amplitude to own-race face pairs than to other-race face pairs. Critically, race did not interact with priming at any processing stage (P100, N100, P200, N200, or P300). Our results suggest that race could have a temporally limited impact on face processing and that the implicit and unconscious identity processing of own- and other-race faces could be similar in 6- and 7-year-olds, depicting an immature other-race effect during childhood.
Collapse
Affiliation(s)
- Luana Serafini
- Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, 41100 Modena, Italy
| | - Irene Leo
- Department of Developmental Psychology and Socialization, University of Padova, 35131 Padova, Italy
| | - Francesca Pesciarelli
- Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, 41100 Modena, Italy.
| |
Collapse
|
9
|
Kida T, Kaneda T, Nishihira Y. ERP evidence of attentional somatosensory processing and stimulus-response coupling under different hand and arm postures. Front Hum Neurosci 2023; 17:1252686. [PMID: 38021238 PMCID: PMC10676239 DOI: 10.3389/fnhum.2023.1252686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
We investigated (1) the effects of divided and focused attention on event-related brain potentials (ERPs) elicited by somatosensory stimulation under different response modes, (2) the effects of hand position (closely-placed vs. separated hands) and arm posture (crossed vs. uncrossed forearms) on the attentional modulation of somatosensory ERPs, and (3) changes in the coupling of stimulus- and response-related processes by somatosensory attention using a single-trial analysis of P300 latency and reaction times. Electrocutaneous stimulation was presented randomly to the thumb or middle finger of the left or right hand at random interstimulus intervals (700-900 ms). Subjects attended unilaterally or bilaterally to stimuli in order to detect target stimuli by a motor response or counting. The effects of unilaterally-focused attention were also tested under different hand and arm positions. The amplitude of N140 in the divided attention condition was intermediate between unilaterally attended and unattended stimuli in the unilaterally-focused attention condition in both the mental counting and motor response tasks. Attended infrequent (target) stimuli elicited greater P300 in the unilaterally attention condition than in the divided attention condition. P300 latency was longer in the divided attention condition than in the unilaterally-focused attention condition in the motor response task, but remained unchanged in the counting task. Closely locating the hands had no impact, whereas crossing the forearms decreased the attentional enhancement in N140 amplitude. In contrast, these two manipulations uniformly decreased P300 amplitude and increased P300 latency. The correlation between single-trial P300 latency and RT was decreased by crossed forearms, but not by divided attention or closely-placed hands. Therefore, the present results indicate that focused and divided attention differently affected middle latency and late processing, and that hand position and arm posture also differently affected attentional processes and stimulus-response coupling.
Collapse
Affiliation(s)
- Tetsuo Kida
- Higher Brain Function Unit, Department of Functioning and Disability, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, Japan
| | | | - Yoshiaki Nishihira
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
10
|
Marti-Marca A, Vilà-Balló A, Cerda-Company X, Ikumi N, Torres-Ferrus M, Caronna E, Gallardo VJ, Alpuente A, Torralba Cuello M, Soto-Faraco S, Pozo-Rosich P. Exploring sensory sensitivity, cortical excitability, and habituation in episodic migraine, as a function of age and disease severity, using the pattern-reversal task. J Headache Pain 2023; 24:104. [PMID: 37545005 PMCID: PMC10405481 DOI: 10.1186/s10194-023-01618-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 06/20/2023] [Indexed: 08/08/2023] Open
Abstract
BACKGROUND Migraine is a cyclic, neurosensory disorder characterized by recurrent headaches and altered sensory processing. The latter is manifested in hypersensitivity to visual stimuli, measured with questionnaires and sensory thresholds, as well as in abnormal cortical excitability and a lack of habituation, assessed with visual evoked potentials elicited by pattern-reversal stimulation. Here, the goal was to determine whether factors such as age and/or disease severity may exert a modulatory influence on sensory sensitivity, cortical excitability, and habituation. METHODS Two similar experiments were carried out, the first comparing 24 young, episodic migraine patients and 28 healthy age- and gender-matched controls and the second 36 middle-aged, episodic migraine patients and 30 healthy age- and gender-matched controls. A neurologist confirmed the diagnoses. Migraine phases were obtained using eDiaries. Sensory sensitivity was assessed with the Sensory Perception Quotient and group comparisons were carried out. We obtained pattern-reversal visual evoked potentials and calculated the N1-P1 Peak-to-Peak amplitude. Two linear mixed-effects models were fitted to these data. The first model had Block (first block, last block) and Group (patients, controls) as fixed factors, whereas the second model had Trial (all trials) and Group as fixed factors. Participant was included as a random factor in both. N1-P1 first block amplitude was used to assess cortical excitability and habituation was defined as a decrease of N1-P1 amplitude across Blocks/Trials. Both experiments were performed interictally. RESULTS The final samples consisted of 18 patients with episodic migraine and 27 headache-free controls (first experiment) and 19 patients and 29 controls (second experiment). In both experiments, patients reported increased visual hypersensitivity on the Sensory Perception Quotient as compared to controls. Regarding N1-P1 peak-to-peak data, there was no main effect of Group, indicating no differences in cortical excitability between groups. Finally, significant main effects of both Block and Trial were found indicating habituation in both groups, regardless of age and headache frequency. CONCLUSIONS The results of this study yielded evidence for significant hypersensitivity in patients but no significant differences in either habituation or cortical excitability, as compared to headache-free controls. Although the alterations in patients may be less pronounced than originally anticipated they demonstrate the need for the definition and standardization of optimal methodological parameters.
Collapse
Affiliation(s)
- Angela Marti-Marca
- Headache and Neurological Pain Research Group, Vall d'Hebron Institute of Research (VHIR), Department of Medicine, Universitat Autonoma Barcelona, Barcelona, Spain
| | - Adrià Vilà-Balló
- Headache and Neurological Pain Research Group, Vall d'Hebron Institute of Research (VHIR), Department of Medicine, Universitat Autonoma Barcelona, Barcelona, Spain
| | - Xim Cerda-Company
- Headache and Neurological Pain Research Group, Vall d'Hebron Institute of Research (VHIR), Department of Medicine, Universitat Autonoma Barcelona, Barcelona, Spain
| | - Nara Ikumi
- Headache and Neurological Pain Research Group, Vall d'Hebron Institute of Research (VHIR), Department of Medicine, Universitat Autonoma Barcelona, Barcelona, Spain
| | - Marta Torres-Ferrus
- Headache and Neurological Pain Research Group, Vall d'Hebron Institute of Research (VHIR), Department of Medicine, Universitat Autonoma Barcelona, Barcelona, Spain
- Headache Unit, Department of Neurology, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Edoardo Caronna
- Headache and Neurological Pain Research Group, Vall d'Hebron Institute of Research (VHIR), Department of Medicine, Universitat Autonoma Barcelona, Barcelona, Spain
| | - Victor J Gallardo
- Headache and Neurological Pain Research Group, Vall d'Hebron Institute of Research (VHIR), Department of Medicine, Universitat Autonoma Barcelona, Barcelona, Spain
| | - Alicia Alpuente
- Headache and Neurological Pain Research Group, Vall d'Hebron Institute of Research (VHIR), Department of Medicine, Universitat Autonoma Barcelona, Barcelona, Spain
- Headache Unit, Department of Neurology, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Mireia Torralba Cuello
- Multisensory Research Group, Center for Brain and Cognition, Pompeu Fabra University, 08005, Barcelona, Spain
| | - Salvador Soto-Faraco
- Multisensory Research Group, Center for Brain and Cognition, Pompeu Fabra University, 08005, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), 08010, Barcelona, Spain
| | - Patricia Pozo-Rosich
- Headache and Neurological Pain Research Group, Vall d'Hebron Institute of Research (VHIR), Department of Medicine, Universitat Autonoma Barcelona, Barcelona, Spain.
- Headache Unit, Department of Neurology, Hospital Universitari Vall d'Hebron, Barcelona, Spain.
| |
Collapse
|
11
|
Enge A, Süß F, Abdel Rahman R. Instant Effects of Semantic Information on Visual Perception. J Neurosci 2023; 43:4896-4906. [PMID: 37286353 PMCID: PMC10312055 DOI: 10.1523/jneurosci.2038-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 03/16/2023] [Accepted: 04/17/2023] [Indexed: 06/09/2023] Open
Abstract
Does our perception of an object change once we discover what function it serves? We showed human participants (n = 48, 31 females and 17 males) pictures of unfamiliar objects either together with keywords matching their function, leading to semantically informed perception, or together with nonmatching keywords, resulting in uninformed perception. We measured event-related potentials to investigate at which stages in the visual processing hierarchy these two types of object perception differed from one another. We found that semantically informed compared with uninformed perception was associated with larger amplitudes in the N170 component (150-200 ms), reduced amplitudes in the N400 component (400-700 ms), and a late decrease in alpha/beta band power. When the same objects were presented once more without any information, the N400 and event-related power effects persisted, and we also observed enlarged amplitudes in the P1 component (100-150 ms) in response to objects for which semantically informed perception had taken place. Consistent with previous work, this suggests that obtaining semantic information about previously unfamiliar objects alters aspects of their lower-level visual perception (P1 component), higher-level visual perception (N170 component), and semantic processing (N400 component, event-related power). Our study is the first to show that such effects occur instantly after semantic information has been provided for the first time, without requiring extensive learning.SIGNIFICANCE STATEMENT There has been a long-standing debate about whether or not higher-level cognitive capacities, such as semantic knowledge, can influence lower-level perceptual processing in a top-down fashion. Here we could show, for the first time, that information about the function of previously unfamiliar objects immediately influences cortical processing within less than 200 ms. Of note, this influence does not require training or experience with the objects and related semantic information. Therefore, our study is the first to show effects of cognition on perception while ruling out the possibility that prior knowledge merely acts by preactivating or altering stored visual representations. Instead, this knowledge seems to alter perception online, thus providing a compelling case against the impenetrability of perception by cognition.
Collapse
Affiliation(s)
- Alexander Enge
- Department of Psychology, Humboldt-Universität zu Berlin, 12489 Berlin, Germany
- Max Planck Institute for Human Cognitive, Research Group Learning in Early Childhood and Brain Sciences, 04103, Leipzig, Germany
| | - Franziska Süß
- Fachhochschule des Mittelstands, 96050, Bamberg, Germany
| | - Rasha Abdel Rahman
- Department of Psychology, Humboldt-Universität zu Berlin, 12489 Berlin, Germany
- Cluster of Excellence "Science of Intelligence," 10587, Berlin, Germany
| |
Collapse
|
12
|
Pasqualette L, Klinger S, Kulke L. Development and validation of a natural dynamic facial expression stimulus set. PLoS One 2023; 18:e0287049. [PMID: 37379278 DOI: 10.1371/journal.pone.0287049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/26/2023] [Indexed: 06/30/2023] Open
Abstract
Emotion research commonly uses either controlled and standardised pictures or natural video stimuli to measure participants' reactions to emotional content. Natural stimulus materials can be beneficial; however, certain measures such as neuroscientific methods, require temporally and visually controlled stimulus material. The current study aimed to create and validate video stimuli in which a model displays positive, neutral and negative expressions. These stimuli were kept as natural as possible while editing timing and visual features to make them suitable for neuroscientific research (e.g. EEG). The stimuli were successfully controlled regarding their features and the validation studies show that participants reliably classify the displayed expression correctly and perceive it as genuine. In conclusion, we present a motion stimulus set that is perceived as natural and that is suitable for neuroscientific research, as well as a pipeline describing successful editing methods for controlling natural stimuli.
Collapse
Affiliation(s)
- Laura Pasqualette
- Neurocognitive Developmental Psychology, Psychology Department, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Bavaria, Germany
- Developmental and Educational Psychology Department, University of Bremen, Bremen, Germany
| | - Sara Klinger
- Neurocognitive Developmental Psychology, Psychology Department, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Bavaria, Germany
| | - Louisa Kulke
- Neurocognitive Developmental Psychology, Psychology Department, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Bavaria, Germany
- Developmental and Educational Psychology Department, University of Bremen, Bremen, Germany
| |
Collapse
|
13
|
Caponi C, Maldonado Moscoso PA, Castaldi E, Arrighi R, Grasso PA. EEG signature of grouping strategies in numerosity perception. Front Neurosci 2023; 17:1190317. [PMID: 37292163 PMCID: PMC10244500 DOI: 10.3389/fnins.2023.1190317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/02/2023] [Indexed: 06/10/2023] Open
Abstract
The moment we see a group of objects, we can appreciate its numerosity. Our numerical estimates can be imprecise for large sets (>4 items), but they become much faster and more accurate if items are clustered into groups compared to when they are randomly displaced. This phenomenon, termed groupitizing, is thought to leverage on the capacity to quickly identify groups from 1 to 4 items (subitizing) within larger sets, however evidence in support for this hypothesis is scarce. The present study searched for an electrophysiological signature of subitizing while participants estimated grouped numerosities exceeding this range by measuring event-related potential (ERP) responses to visual arrays of different numerosities and spatial configurations. The EEG signal was recorded while 22 participants performed a numerosity estimation task on arrays with numerosities in the subitizing (3 or 4) or estimation (6 or 8) ranges. In the latter case, items could be spatially arranged into subgroups (3 or 4) or randomly scattered. In both ranges, we observed a decrease in N1 peak latency as the number of items increased. Importantly, when items were arranged to form subgroups, we showed that the N1 peak latency reflected both changes in total numerosity and changes in the number of subgroups. However, this result was mainly driven by the number of subgroups to suggest that clustered elements might trigger the recruitment of the subitizing system at a relatively early stage. At a later stage, we found that P2p was mostly modulated by the total numerosity in the set, with much less sensitivity for the number of subgroups these might be segregated in. Overall, this experiment suggests that the N1 component is sensitive to both local and global parcelling of elements in a scene suggesting that it could be crucially involved in the emergence of the groupitizing advantage. On the other hand, the later P2p component seems to be much more bounded to the global aspects of the scene coding the total number of elements while being mostly blind to the number of subgroups in which elements are parsed.
Collapse
Affiliation(s)
- Camilla Caponi
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, Florence, Tuscany, Italy
| | - Paula A. Maldonado Moscoso
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, Florence, Tuscany, Italy
- Centre for Mind/Brain Sciences – CIMeC, University of Trento, Rovereto, Italy
| | - Elisa Castaldi
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, Florence, Tuscany, Italy
| | - Roberto Arrighi
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, Florence, Tuscany, Italy
| | - Paolo A. Grasso
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, Florence, Tuscany, Italy
- Department of Physics and Astronomy, University of Florence, Florence, Tuscany, Italy
| |
Collapse
|
14
|
Sawetsuttipan P, Phunchongharn P, Ounjai K, Salazar A, Pongsuwan S, Intrachooto S, Serences JT, Itthipuripat S. Perceptual Difficulty Regulates Attentional Gain Modulations in Human Visual Cortex. J Neurosci 2023; 43:3312-3330. [PMID: 36963848 PMCID: PMC10162463 DOI: 10.1523/jneurosci.0519-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 02/18/2023] [Accepted: 03/13/2023] [Indexed: 03/26/2023] Open
Abstract
Perceptual difficulty is sometimes used to manipulate selective attention. However, these two factors are logically distinct. Selective attention is defined by priority given to specific stimuli based on their behavioral relevance, whereas perceptual difficulty is often determined by perceptual demands required to discriminate relevant stimuli. That said, both perceptual difficulty and selective attention are thought to modulate the gain of neural responses in early sensory areas. Previous studies found that selectively attending to a stimulus or increasing perceptual difficulty enhanced the gain of neurons in visual cortex. However, some other studies suggest that perceptual difficulty can have either a null or even reversed effect on gain modulations in visual cortex. According to Yerkes-Dodson's Law, it is possible that this discrepancy arises because of an interaction between perceptual difficulty and attentional gain modulations yielding a nonlinear inverted-U function. Here, we used EEG to measure modulations in the visual cortex of male and female human participants performing an attention-cueing task where we systematically manipulated perceptual difficulty across blocks of trials. The behavioral and neural data implicate a nonlinear inverted-U relationship between selective attention and perceptual difficulty: a focused-attention cue led to larger response gain in both neural and behavioral data at intermediate difficulty levels compared with when the task was more or less difficult. Moreover, difficulty-related changes in attentional gain positively correlated with those predicted by quantitative modeling of the behavioral data. These findings suggest that perceptual difficulty mediates attention-related changes in perceptual performance via selective neural modulations in human visual cortex.SIGNIFICANCE STATEMENT Both perceptual difficulty and selective attention are thought to influence perceptual performance by modulating response gain in early sensory areas. That said, less is known about how selective attention interacts with perceptual difficulty. Here, we measured neural gain modulations in the visual cortex of human participants performing an attention-cueing task where perceptual difficulty was systematically manipulated. Consistent with Yerkes-Dodson's Law, our behavioral and neural data implicate a nonlinear inverted-U relationship between selective attention and perceptual difficulty. These results suggest that perceptual difficulty mediates attention-related changes in perceptual performance via selective neural modulations in visual cortex, extending our understanding of the attentional operation under different levels of perceptual demands.
Collapse
Affiliation(s)
- Prapasiri Sawetsuttipan
- Neuroscience Center for Research and Innovation, Learning Institute, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand
- Computer Engineering Department, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand
- Big Data Experience Center, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand
| | - Phond Phunchongharn
- Computer Engineering Department, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand
- Big Data Experience Center, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand
| | - Kajornvut Ounjai
- Neuroscience Center for Research and Innovation, Learning Institute, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand
- Biological Engineering Program, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand
| | - Annalisa Salazar
- Department of Psychology, University of California, San Diego, La Jolla, California 92093-1090
| | - Sarigga Pongsuwan
- Happiness Science Hub, Research & Innovation for Sustainability Center (RISC), Bangkok 10260, Thailand
| | - Singh Intrachooto
- Happiness Science Hub, Research & Innovation for Sustainability Center (RISC), Bangkok 10260, Thailand
| | - John T Serences
- Department of Psychology, University of California, San Diego, La Jolla, California 92093-1090
- Neurosciences Graduate Program and Kavli Foundation for the Brain and Mind, University of California, San Diego, La Jolla, California 92093-1090
| | - Sirawaj Itthipuripat
- Neuroscience Center for Research and Innovation, Learning Institute, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand
- Big Data Experience Center, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand
| |
Collapse
|
15
|
Yao Y, Zhou H, Xu T, Ge X, Du F, Wang C, Chen F. Different impacts of long-term abacus training on symbolic and non-symbolic numerical magnitude processing in children. Biol Psychol 2023; 178:108514. [PMID: 36740009 DOI: 10.1016/j.biopsycho.2023.108514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
Abacus-based mental calculation (AMC) has been shown to be effective in promoting math ability in children. Given that AMC relies on a visuospatial strategy to perform rapid and precise arithmetic, previous studies mostly focused on the promotion of AMC training on arithmetic ability and mathematical visual-spatial ability, as well as its transfer of advanced cognitive ability. However, little attention has been given to its impact on basic numerical comparison ability. Here, we aim to examine whether and how long-term AMC training impacts symbolic and non-symbolic numerical comparisons. The distance effect (DE) was utilized as a marker, indicating that the comparison between two numbers becomes faster as their numerical distance enlarges. In the current study, forty-one children matched for age and sex were recruited at primary school entry and randomly assigned to the AMC group and the control group. After three years of training, the event-related potential (ERP) recording technique was used to explore the temporal dynamics of number comparison, of which tasks were given in symbolic (Arabic number) or non-symbolic (dot array) format. In the symbolic task, the children in the AMC group showed a smaller DE than those in the control group. Two ERP components, N1 and P2p, located in parietal areas (PO7, PO8) were selected as neural markers of numerical processing. Both groups showed DE in the P2p component in both tasks, but only the children in the AMC group showed DE in the N1 component in the non-symbolic task. In addition, the DE size calculated from reaction times and ERP amplitudes was correlated with higher cognitive capacities, such as coding ability. Taken together, the present results provide evidence that long-term AMC training may be beneficial for numerical processing in children, which may be associated with neurocognitive indices of parietal brain regions.
Collapse
Affiliation(s)
- Yuan Yao
- Bio-X Laboratory, Department of Physics, Zhejiang University, Hangzhou, China; Department of Psychology, Suzhou University of Science and Technology, Suzhou, China
| | - Hui Zhou
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, China
| | - Tianyong Xu
- Bio-X Laboratory, Department of Physics, Zhejiang University, Hangzhou, China
| | - Xuelian Ge
- Bio-X Laboratory, Department of Physics, Zhejiang University, Hangzhou, China
| | - Fenglei Du
- Bio-X Laboratory, Department of Physics, Zhejiang University, Hangzhou, China; Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, China
| | - Chunjie Wang
- Bio-X Laboratory, Department of Physics, Zhejiang University, Hangzhou, China; Institute of Brain Science and Department of Physiology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | - Feiyan Chen
- Bio-X Laboratory, Department of Physics, Zhejiang University, Hangzhou, China.
| |
Collapse
|
16
|
Chen J, He B, Zhu H, Wu J. The implicit preference evaluation for the ceramic tiles with different visual features: Evidence from an event-related potential study. Front Psychol 2023; 14:1139687. [PMID: 37026082 PMCID: PMC10071668 DOI: 10.3389/fpsyg.2023.1139687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 03/06/2023] [Indexed: 04/08/2023] Open
Abstract
Background Ceramic tiles are popular because of their various forms, and they are often used to decorate the environment. However, few studies have applied objective methods to explore the implicit preference and visual attention of people toward ceramic tile features. Using event-related potential technology can provide neurophysiological evidence for the study and applications of tiles. Materials and methods This study explored the influence of pattern, lightness, and color system factors of ceramic tiles on the preferences of people using a combination of subjective questionnaires and event-related potential (ERP) technology. Twelve different conditions of tiles (2 × 3 × 2) were used as stimuli. EEG data were collected from 20 participants while they watched the stimuli. Subjective preference scores and average ERPs were analyzed using analysis of variance and correlation analysis. Results (1) Pattern, lightness, and color system factors significantly affected the subjective preference scores for tiles; the unpatterned tiles, light-toned tiles, and warm-colored tiles received higher preference scores. (2) The preferences of people for different features of tiles moderated ERP amplitudes. (3) The light-toned tiles with a high preference score caused a greater N100 amplitude than the medium-toned and dark-toned tiles; and the patterned tiles and warm-colored tiles with low preference scores induced greater P200 and N200 amplitudes. Discussion In the early stage of visual processing, light-toned tiles attracted more attention, possibly because of the positive emotional effects related to the preference. The greater P200 and N200 elicited by the patterned and neutral-colored tiles in the middle stage of visual processing indicates that patterned and neutral-colored tiles attracted more attention. This may be due to negativity bias, where more attention is allocated to negative stimuli that people strongly dislike. From the perspective of cognitive processes, the results indicate that the lightness of ceramic tiles is the factor that people first detect, and the visual processing of pattern and color system factors of ceramic tiles belong to a higher level of visual processing. This study provides a new perspective and relevant information for assessing the visual characteristics of tiles for environmental designers and marketers involved in the ceramic tiles industry.
Collapse
Affiliation(s)
- Jiayin Chen
- School of Design and Art, Jingdezhen Ceramic Institute, Jingdezhen, China
- School of Ceramic Art, Jiangxi Arts and Ceramics Technology Institute, Jingdezhen, China
- *Correspondence: Jiayin Chen,
| | - Bingqin He
- School of Design and Art, Jingdezhen Ceramic Institute, Jingdezhen, China
| | - Huiqiu Zhu
- School of Ceramic Art, Jiangxi Arts and Ceramics Technology Institute, Jingdezhen, China
| | - Jianghua Wu
- Department of Ophthalmology, Jingdezhen Third People's Hospital, Jingdezhen, China
| |
Collapse
|
17
|
Hua L, Gao F, Leong C, Yuan Z. Neural decoding dissociates perceptual grouping between proximity and similarity in visual perception. Cereb Cortex 2022; 33:3803-3815. [PMID: 35973163 DOI: 10.1093/cercor/bhac308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
Unlike single grouping principle, cognitive neural mechanism underlying the dissociation across two or more grouping principles is still unclear. In this study, a dimotif lattice paradigm that can adjust the strength of one grouping principle was used to inspect how, when, and where the processing of two grouping principles (proximity and similarity) were carried out in human brain. Our psychophysical findings demonstrated that similarity grouping effect was enhanced with reduced proximity effect when the grouping cues of proximity and similarity were presented simultaneously. Meanwhile, EEG decoding was performed to reveal the specific cognitive patterns involved in each principle by using time-resolved MVPA. More importantly, the onsets of dissociation between 2 grouping principles coincided within 3 time windows: the early-stage proximity-defined local visual element arrangement in middle occipital cortex, the middle-stage processing for feature selection modulating low-level visual cortex such as inferior occipital cortex and fusiform cortex, and the high-level cognitive integration to make decisions for specific grouping preference in the parietal areas. In addition, it was discovered that the brain responses were highly correlated with behavioral grouping. Therefore, our study provides direct evidence for a link between the human perceptual space of grouping decision-making and neural space of brain activation patterns.
Collapse
Affiliation(s)
- Lin Hua
- Centre for Cognitive and Brain Sciences, N21 Research Building, University of Macau, Avenida da Universidade, Taipa, Macau SAR 999078, China.,Faculty of Health Sciences, E12 Building, University of Macau, Avenida da Universidade, Taipa, Macau SAR 999078, China
| | - Fei Gao
- Centre for Cognitive and Brain Sciences, N21 Research Building, University of Macau, Avenida da Universidade, Taipa, Macau SAR 999078, China
| | - Chantat Leong
- Centre for Cognitive and Brain Sciences, N21 Research Building, University of Macau, Avenida da Universidade, Taipa, Macau SAR 999078, China.,Faculty of Health Sciences, E12 Building, University of Macau, Avenida da Universidade, Taipa, Macau SAR 999078, China
| | - Zhen Yuan
- Centre for Cognitive and Brain Sciences, N21 Research Building, University of Macau, Avenida da Universidade, Taipa, Macau SAR 999078, China.,Faculty of Health Sciences, E12 Building, University of Macau, Avenida da Universidade, Taipa, Macau SAR 999078, China
| |
Collapse
|
18
|
Mitra S, Boatman C, Baker J. Age-related changes in the interference between cognitive task components and concurrent sensorimotor coordination. Brain Res 2022; 1790:147985. [PMID: 35714710 DOI: 10.1016/j.brainres.2022.147985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 06/06/2022] [Accepted: 06/10/2022] [Indexed: 12/01/2022]
Abstract
Continuous sensorimotor coordinations (CSCs) such as driving, walking, using control interfaces or maintaining the body's balance are often performed alongside concurrent cognitive tasks involving attention and executive function. A range of these task combinations show interference, particularly in older adults, but the timing, direction and reciprocity of interference is not yet understood at the level of the tasks' information-processing operations. This paper compares the chronometry of dual task interference between a visual oddball task and a continuous visuomanual tracking task performed by young and older adults. The oddball task's constituent operations were identified using electrophysiological correlates, and deviations in the tracking task reflected perturbations to state monitoring and adjustment characteristics of CSC tasks. Despite instructions to give equal priority to both tasks, older participants maintained a high level of resourcing of the oddball task when dual tasking whereas young participants reduced resourcing to accommodate the demands of the tracking task. Older participants had a longer period of tracking inaccuracy during the executive function component of the oddball task, and unlike in young participants, this decrement was also observed when the stimulus was not a target and the executive function of updating the target tally was not required. These detailed chronometric results clarify that age-related amplification of CSC-cognitive interference are largely due to greater inflexibility in task prioritization. Prioritization of the cognitive task over the CSC in this type of dual tasking may have safety implications in everyday task settings.
Collapse
Affiliation(s)
| | | | - Joshua Baker
- NTU Psychology, Nottingham Trent University, UK; Department of Systems Neuroscience, University Hospital Hamburg-Eppendorf, Germany.
| |
Collapse
|
19
|
Kosilo M, Martinovic J, Haenschel C. Luminance Contrast Drives Interactions between Perception and Working Memory. J Cogn Neurosci 2022; 34:1128-1147. [PMID: 35468214 DOI: 10.1162/jocn_a_01852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Visual working memory (WM) enables the use of past sensory experience in guiding behavior. Yet, laboratory tasks commonly evaluate WM in a way that separates it from its sensory bottleneck. To understand how perception interacts with visual memory, we used a delayed shape recognition task to probe how WM may differ for stimuli that bias processing toward different visual pathways. Luminance compared with chromatic signals are more efficient in driving the processing of shapes and may thus also lead to better WM encoding, maintenance, and memory recognition. To evaluate this prediction, we conducted two experiments. In the first psychophysical experiment, we measured contrast thresholds for different WM loads. Luminance contrast was encoded into WM more efficiently than chromatic contrast, even when both sets of stimuli were equated for discriminability. In the second experiment, which also equated stimuli for discriminability, early sensory responses in the EEG that are specific to luminance pathways were modulated by WM load and thus likely reflect the neural substrate of the increased efficiency. Our results cannot be accounted for by simple saliency differences between luminance and color. Rather, they provide evidence for a direct connection between low-level perceptual mechanisms and WM by showing a crucial role of luminance for forming WM representations of shape.
Collapse
Affiliation(s)
- Maciej Kosilo
- University of London, United Kingdom.,University of Lisbon, Portugal
| | | | | |
Collapse
|
20
|
Ma X, Kang J, Li X, Maurer U, Cao X, Sommer W. Does learning different script systems affect configural visual processing? ERP evidence from early readers of Chinese and German. Psychophysiology 2022; 59:e14006. [PMID: 35150451 DOI: 10.1111/psyp.14006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 12/17/2021] [Accepted: 01/02/2022] [Indexed: 11/27/2022]
Affiliation(s)
- Xiaoli Ma
- Institut für Psychologie, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jing Kang
- Department of Psychology, Zhejiang Normal University, Jin Hua, China
| | - Xinran Li
- Institut für Psychologie, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Urs Maurer
- Department of Psychology, The Chinese University of Hong Kong, Hong Kong, China.,Brain and Mind Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiaohua Cao
- Department of Psychology, Zhejiang Normal University, Jin Hua, China
| | - Werner Sommer
- Institut für Psychologie, Humboldt-Universität zu Berlin, Berlin, Germany.,Department of Psychology, Zhejiang Normal University, Jin Hua, China
| |
Collapse
|
21
|
Anzures G, Mildort M, Fennell E, Bell C, Soethe E. Race and early face-sensitive event-related potentials in children and adults. J Exp Child Psychol 2022; 214:105287. [PMID: 34507182 PMCID: PMC8691419 DOI: 10.1016/j.jecp.2021.105287] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 02/03/2023]
Abstract
Studies examining children's face perception have revealed developmental changes in early and face-sensitive event-related potential (ERP) components. Children also tend to show racial biases in their face perception and evaluation of others. The current study examined how early face-sensitive ERPs are influenced by face race in children and adults. A second objective examined face recognition proficiency and implicit racial bias in relation to ERP responses to own- and other-race faces. Electroencephalographic responses were recorded while Caucasian children and adults viewed Caucasian and East Asian faces. Participants also completed recognition tasks and an IAT with Caucasian and East Asian faces. Other-race faces elicited larger P100 amplitudes than own-race faces. Furthermore, adults with better other-race recognition proficiency showed larger P100 amplitude responses to other-race faces compared with adults with worse other-race recognition proficiency. In addition, larger implicit biases favoring own-race individuals were associated with larger P100 to N170 peak-to-peak amplitudes for other-race faces in adults. In contrast, larger implicit biases favoring own-race individuals were associated with smaller P100 to N170 peak-to-peak amplitudes for both own- and other-race faces in 8- to 10-year-olds. There was also an age-related decrease in P100 to N170 peak-to-peak amplitudes for own-race faces among 5- to 10-year-olds with better own-race recognition proficiency. The age-related decrease in N170 latency for other-race faces was also more pronounced in 5- to 10-year-olds with better other-race recognition proficiency. Thus, recognition proficiency and implicit racial bias are associated with early ERP responses in adults and children, but in different ways.
Collapse
Affiliation(s)
- Gizelle Anzures
- Department of Psychology, Florida Atlantic University, Boca Raton, FL 33431 USA,FAU Brain Institute, Florida Atlantic University, Boca Raton, FL 33431 USA,Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, FL 33431 USA
| | - Melissa Mildort
- Department of Psychology, Florida Atlantic University, Boca Raton, FL 33431 USA
| | - Eli Fennell
- Department of Psychology, Florida Atlantic University, Boca Raton, FL 33431 USA
| | - Cassandra Bell
- Department of Psychology, Florida Atlantic University, Boca Raton, FL 33431 USA
| | - Elizabeth Soethe
- Department of Psychology, Florida Atlantic University, Boca Raton, FL 33431 USA
| |
Collapse
|
22
|
Carretié L, Fernández-Folgueiras U, Álvarez F, Cipriani GA, Tapia M, Kessel D. Fast Unconscious Processing of Emotional Stimuli in Early Stages of the Visual Cortex. Cereb Cortex 2022; 32:4331-4344. [DOI: 10.1093/cercor/bhab486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/04/2021] [Accepted: 11/24/2021] [Indexed: 11/12/2022] Open
Abstract
Abstract
Several cortical and subcortical brain areas have been reported to be sensitive to the emotional content of subliminal stimuli. However, the timing of these activations remains unclear. Our scope was to detect the earliest cortical traces of emotional unconscious processing of visual stimuli by recording event-related potentials (ERPs) from 43 participants. Subliminal spiders (emotional) and wheels (neutral), sharing similar low-level visual parameters, were presented at two different locations (fixation and periphery). The differential (peak-to-peak) amplitude from CP1 (77 ms from stimulus onset) to C2 (100 ms), two early visual ERP components originated in V1/V2 according to source localization analyses, was analyzed via Bayesian and traditional frequentist analyses. Spiders elicited greater CP1–C2 amplitudes than wheels when presented at fixation. This fast effect of subliminal stimulation—not reported previously to the best of our knowledge—has implications in several debates: 1) The amygdala cannot be mediating these effects, 2) latency of other evaluative structures recently proposed, such as the visual thalamus, is compatible with these results, 3) the absence of peripheral stimuli effects points to a relevant role of the parvocellular visual system in unconscious processing.
Collapse
|
23
|
Cui M, Peng C, Huang M, Chen Y. Electrophysiological Evidence for a Common Magnitude Representation of Spatiotemporal Information in Working Memory. Cereb Cortex 2022; 32:4068-4079. [PMID: 35024791 DOI: 10.1093/cercor/bhab466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 11/12/2022] Open
Abstract
Spatiotemporal interference has attracted increasing attention because it provides a window for studying the neural representation of magnitude in the brain. We aimed to identify the neural basis of spatiotemporal interference using a Kappa effect task in which two circles were presented in sequence with two time intervals and three space distances. Participants reproduced the time intervals while ignoring the space distance when electroencephalogram signals were recorded synchronously. The behavior results showed that production time increased with time interval and space distance. Offset of the time intervals elicited typical P2 and P3b components. Larger parietal P2 and P3b amplitudes were elicited by the combination of longer time intervals and longer space distances. The parietal P2 and P3b amplitudes were positively correlated with the production time, and the corresponding neural source was located in the parietal cortex. The results suggest that the parietal P2 and P3b index updates a common representation of spatiotemporal information in working memory, which provides electrophysiological evidence for the mechanisms underlying spatiotemporal interferences. Our study supports a theory of magnitude, in which different dimensions can be integrated into a common magnitude representation in a generalized magnitude system that is localized at the parietal cortex.
Collapse
Affiliation(s)
- Minghui Cui
- Key Laboratory of Cognition and Personality (Ministry of Education), Time Psychology Research Center, Center of Studies for Psychology and Social Development, Faculty of Psychology, Southwest University, Chongqing 400715, China
| | - Chunhua Peng
- Laboratory of Emotion and Mental Health, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Mei Huang
- Research Institute of Teacher Development, Faculty of College of Teacher Education, Southwest University, Chongqing 400715, China
| | - Youguo Chen
- Key Laboratory of Cognition and Personality (Ministry of Education), Time Psychology Research Center, Center of Studies for Psychology and Social Development, Faculty of Psychology, Southwest University, Chongqing 400715, China
| |
Collapse
|
24
|
Liu J, Zhang Q, Liang M, Wang Y, Chen Y, Wang J, Li J, Chen L, Yu L, Cai Y, Zheng Y, Ou Y. Altered Processing of Visual Stimuli in Vestibular Migraine Patients Between Attacks: A Combined VEP and sLORETA Study. Front Hum Neurosci 2022; 15:762970. [PMID: 35002656 PMCID: PMC8740197 DOI: 10.3389/fnhum.2021.762970] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 12/02/2021] [Indexed: 01/03/2023] Open
Abstract
Objective: Vestibular migraine (VM) is one of the most common causes of recurrent vertigo, but the neural mechanisms that mediate such symptoms remain unknown. Since visual symptoms and photophobia are common clinical features of VM patients, we hypothesized that VM patients have abnormally sensitive low-level visual processing capabilities. This study aimed to investigate cortex abnormalities in VM patients using visual evoked potential (VEP) and standardized low-resolution brain electromagnetic tomography (sLORETA) analysis. Methods: We employed visual stimuli consisting of reversing displays of circular checkerboard patterns to examine “low-level” visual processes. Thirty-three females with VM and 20 healthy control (HC) females underwent VEP testing. VEP components and sLORETA were analyzed. Results: Patients with VM showed significantly lower amplitude and decreased latency of P1 activation compared with HC subjects. Further topographic mapping analysis revealed a group difference in the occipital area around P1 latency. sLORETA analysis was performed in the time frame of the P1 component and showed significantly less activity (deactivation) in VM patients in the frontal, parietal, temporal, limbic, and occipital lobes, as well as sub-lobar regions. The maximum current density difference was in the postcentral gyrus of the parietal lobe. P1 source density differences between HC subjects and VM patients overlapped with the vestibular cortical fields. Conclusion: The significantly abnormal response to visual stimuli indicates altered processing in VM patients. These findings suggest that abnormalities in vestibular cortical fields might be a pathophysiological mechanism of VM.
Collapse
Affiliation(s)
- Jiahao Liu
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Institute of Hearing and Speech-Language Sciences, Sun Yat-sen University, Guangzhou, China
| | - Qi Zhang
- School of Foreign Languages, Shenzhen University, Shenzhen, China
| | - Maojin Liang
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Institute of Hearing and Speech-Language Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yajing Wang
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Institute of Hearing and Speech-Language Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yuebo Chen
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Institute of Hearing and Speech-Language Sciences, Sun Yat-sen University, Guangzhou, China
| | - Junbo Wang
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Institute of Hearing and Speech-Language Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jiahong Li
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Institute of Hearing and Speech-Language Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ling Chen
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Institute of Hearing and Speech-Language Sciences, Sun Yat-sen University, Guangzhou, China
| | - Leyin Yu
- Department of Hearing and Speech Science, Guangzhou Xinhua College, Guangzhou, China
| | - Yinglin Cai
- Department of Hearing and Speech Science, Guangzhou Xinhua College, Guangzhou, China
| | - Yiqing Zheng
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Institute of Hearing and Speech-Language Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yongkang Ou
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Institute of Hearing and Speech-Language Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
25
|
Antonova I, van Swam C, Hubl D, Griskova-Bulanova I, Dierks T, Koenig T. Altered Visuospatial Processing in Schizophrenia: An Event-related Potential Microstate Analysis Comparing Patients with and without Hallucinations with Healthy Controls. Neuroscience 2021; 479:140-156. [PMID: 34687795 DOI: 10.1016/j.neuroscience.2021.10.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/04/2021] [Accepted: 10/11/2021] [Indexed: 11/25/2022]
Abstract
Patients with schizophrenia present with various symptoms related to different domains. Abnormalities of auditory and visual perception are parts of a more general problem. Nevertheless, the relationship between the lifetime history of auditory verbal hallucination (AVH), one of the most prevalent symptoms in schizophrenia, and visuospatial deficits remains unclear. This study aimed to investigate differences in hemispheric involvement and visuospatial processing between healthy controls (HCs) and schizophrenia patients with and without AVHs. HCs (N = 20), schizophrenia patients with AVH (AVH group, N = 16), and schizophrenia patients without hallucinations (NH group, N = 10) participated in a 4-choice reaction task with lateralized stimuli. An event-related potential (ERP)-microstate approach was used to analyze ERP differences between the conditions and groups. The schizophrenia patients without hallucinations had slower responses than the HCs. An early visual N1 contralateral to stimulation side was prominent in all groups of participants but with decreased amplitude in the patients with schizophrenia, especially in the AVH group over the right hemisphere. The amplitude of P3b, a cognitive evaluation component, was also decreased in schizophrenia. Compared to AVH and HC groups, the patients in the NH group had altered microstate patterns: P3b was replaced by a novelty component, P3a. Although the difference between both patient groups was only based on the presence of AVHs, our findings indicated that patients had specific visuospatial deficits associated with a lifetime history of hallucinations: patients with AVHs showed early visual component alterations in the right hemisphere, and those without AVHs had more prominent visuospatial impairment.
Collapse
Affiliation(s)
- Ingrida Antonova
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland; Vilnius University, Life Sciences Center, Vilnius, Lithuania; Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland.
| | - Claudia van Swam
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Daniela Hubl
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | | | - Thomas Dierks
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Thomas Koenig
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| |
Collapse
|
26
|
Moore M, Katsumi Y, Dolcos S, Dolcos F. Electrophysiological Correlates of Social Decision-making: An EEG Investigation of a Modified Ultimatum Game. J Cogn Neurosci 2021; 34:54-78. [PMID: 34673955 DOI: 10.1162/jocn_a_01782] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Cooperation behaviors during social decision-making have been shown to be sensitive to manipulations of context. However, it remains unclear how aspects of context in dynamic social interactions, such as observed nonverbal behaviors, may modulate cooperation decisions and the associated neural mechanisms. In this study, participants responded to offers from proposers to split $10 in an Ultimatum Game following observation of proposer approach (friendly) or avoidance (nonfriendly) behaviors, displayed by dynamic whole-body animated avatars, or following a nonsocial interaction control condition. As expected, behavioral results showed that participants tended to have greater acceptance rates for unfair offers following observed nonverbal social interactions with proposers compared with control, suggesting an enhancing effect of social interactions on cooperative decisions. ERP results showed greater N1 and N2 responses at the beginning of social interaction conditions compared with control, and greater sustained and late positivity responses for observed approach and avoidance proposer behaviors compared with control. Event-related spectral perturbation (ERSP) results showed differential sensitivity within theta, alpha, and beta bands during observation of social interactions and offers that was associated with subsequent decision behaviors. Together, these results point to the impact of proposers' nonverbal behaviors on subsequent cooperation decisions at both behavioral and neural levels. The ERP and ERSP findings suggest modulated attention, monitoring, and processing of biological motion during the observed nonverbal social interactions, influencing the participants' responses to offers. These findings shed light on electrophysiological correlates of response to observed social interactions that predict subsequent social decisions.
Collapse
Affiliation(s)
| | - Yuta Katsumi
- University of Illinois at Urbana-Champaign.,Northeastern University
| | | | | |
Collapse
|
27
|
Rivera-Rodriguez A, Sherwood M, Fitzroy AB, Sanders LD, Dasgupta N. Anger, race, and the neurocognition of threat: attention, inhibition, and error processing during a weapon identification task. Cogn Res Princ Implic 2021; 6:74. [PMID: 34800191 PMCID: PMC8605958 DOI: 10.1186/s41235-021-00342-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 10/31/2021] [Indexed: 12/02/2022] Open
Abstract
This study measured event-related brain potentials (ERPs) to test competing hypotheses regarding the effects of anger and race on early visual processing (N1, P2, and N2) and error recognition (ERN and Pe) during a sequentially primed weapon identification task. The first hypothesis was that anger would impair weapon identification in a biased manner by increasing attention and vigilance to, and decreasing recognition and inhibition of weapon identification errors following, task-irrelevant Black (compared to White) faces. Our competing hypothesis was that anger would facilitate weapon identification by directing attention toward task-relevant stimuli (i.e., objects) and away from task-irrelevant stimuli (i.e., race), and increasing recognition and inhibition of biased errors. Results partially supported the second hypothesis, in that anger increased early attention to faces but minimized attentional processing of race, and did not affect error recognition. Specifically, angry (vs. neutral) participants showed increased N1 to both Black and White faces, ablated P2 race effects, and topographically restricted N2 race effects. Additionally, ERN amplitude was unaffected by emotion, race, or object type. However, Pe amplitude was affected by object type (but not emotion or race), such that Pe amplitude was larger after the misidentification of harmless objects as weapons. Finally, anger slowed overall task performance, especially the correct identification of harmless objects, but did not impact task accuracy. Task performance speed and accuracy were unaffected by the race of the face prime. Implications are discussed.
Collapse
Affiliation(s)
- Adrian Rivera-Rodriguez
- Department of Psychological and Brain Sciences, University of Massachusetts Amherst, 135 Hicks Way, Amherst, MA, 01003, USA.
| | - Maxwell Sherwood
- Department of Psychological and Brain Sciences, University of Massachusetts Amherst, 135 Hicks Way, Amherst, MA, 01003, USA
| | - Ahren B Fitzroy
- Department of Psychological and Brain Sciences, University of Massachusetts Amherst, 135 Hicks Way, Amherst, MA, 01003, USA
- Neuroscience and Behavior Program, University of Massachusetts Amherst, 230 Stockbridge Road, Amherst, MA, 01003, USA
- Department of Psychology and Education, Mount Holyoke College, 50 College Street, South Hadley, MA, 01075, USA
| | - Lisa D Sanders
- Department of Psychological and Brain Sciences, University of Massachusetts Amherst, 135 Hicks Way, Amherst, MA, 01003, USA
| | - Nilanjana Dasgupta
- Department of Psychological and Brain Sciences, University of Massachusetts Amherst, 135 Hicks Way, Amherst, MA, 01003, USA
| |
Collapse
|
28
|
Gupta RS, Kujawa A, Vago DR. A Preliminary Investigation of ERP Components of Attentional Bias in Anxious Adults using Temporospatial Principal Component Analysis. J PSYCHOPHYSIOL 2021; 35:223-236. [PMID: 34732969 DOI: 10.1027/0269-8803/a000275] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Threat-related attention bias is thought to contribute to the development and maintenance of anxiety disorders. Dot-probe studies using event-related potentials (ERPs) have indicated that several early ERP components are modulated by threatening and emotional stimuli in anxious populations, suggesting enhanced allocation of attention to threat and emotion at earlier stages of processing. However, ERP components selected for examination and analysis in these studies vary widely and remain inconsistent. The present study used temporospatial principal component analysis (PCA) to systematically identify ERP components elicited to face pair cues and probes in a dot-probe task in anxious adults. Cue-locked components sensitive to emotion included an early occipital C1 component enhanced for happy versus angry face pair cues and an early parieto-occipital P1 component enhanced for happy versus angry face pair cues. Probe-locked components sensitive to congruency included a parieto-occipital P2 component enhanced for incongruent probes (probes replacing neutral faces) versus congruent probes (probes replacing emotional faces). Split-half correlations indicated that the mean value around the PCA-derived peaks were reliably measured in the ERP waveforms. These results highlight promising neurophysiological markers for attentional bias research that can be extended to designs comparing anxious and healthy comparison groups. Results from a secondary exploratory PCA analysis investigating the effects of emotional face position and analyses on behavioral reaction time data are also presented.
Collapse
Affiliation(s)
- Resh S Gupta
- Department of Physical Medicine and Rehabilitation, Osher Center for Integrative Medicine, Contemplative Neuroscience & Integrative Medicine Laboratory, Vanderbilt University Medical Center, 3401 West End Ave., Suite 380, Nashville, TN 37212, USA
| | - Autumn Kujawa
- Department of Psychology and Human Development, Vanderbilt University, Peabody College #552, 230 Appleton Place, Nashville, TN 37203-5721, USA
| | - David R Vago
- Department of Physical Medicine and Rehabilitation, Osher Center for Integrative Medicine, Contemplative Neuroscience & Integrative Medicine Laboratory, Vanderbilt University Medical Center, 3401 West End Ave., Suite 380, Nashville, TN 37212, USA.,Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, 2201 Children's Way, Suite 1318, Nashville, TN 37212, USA
| |
Collapse
|
29
|
Tempesta AJ, Miller CE, Litvak V, Bowman H, Schofield AJ. The missing N1 or jittered P2: Electrophysiological correlates of pattern glare in the time and frequency domain. Eur J Neurosci 2021; 54:6168-6186. [PMID: 34374142 PMCID: PMC9290835 DOI: 10.1111/ejn.15419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 07/16/2021] [Accepted: 07/29/2021] [Indexed: 12/04/2022]
Abstract
Excessive sensitivity to certain visual stimuli (cortical hyperexcitability) is associated with a number of neurological disorders including migraine, epilepsy, multiple sclerosis, autism and possibly dyslexia. Others show disruptive sensitivity to visual stimuli with no other obvious pathology or symptom profile (visual stress) which can extend to discomfort and nausea. We used event‐related potentials (ERPs) to explore the neural correlates of visual stress and headache proneness. We analysed ERPs in response to thick (0.37 cycles per degree [c/deg]), medium (3 c/deg) and thin (12 c/deg) gratings, using mass univariate analysis, considering three factors in the general population: headache proneness, visual stress and discomfort. We found relationships between ERP features and the headache and discomfort factors. Stimulus main effects were driven by the medium stimulus regardless of participant characteristics. Participants with high discomfort ratings had larger P1 components for the initial presentation of medium stimuli, suggesting initial cortical hyperexcitability that is later suppressed. The participants with high headache ratings showed atypical N1‐P2 components for medium stripes relative to the other stimuli. This effect was present only after repeated stimulus presentation. These effects were also explored in the frequency domain, suggesting variations in intertrial theta band phase coherence. Our results suggest that discomfort and headache in response to striped stimuli are related to different neural processes; however, more exploration is needed to determine whether the results translate to a clinical migraine population.
Collapse
Affiliation(s)
- Austyn J Tempesta
- School of Psychology, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Claire E Miller
- School of Psychology, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Vladimir Litvak
- Wellcome Centre for Human Neuroimaging, University College London, London, UK
| | - Howard Bowman
- School of Psychology, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, UK.,School of Computing, University of Kent, Canterbury, UK
| | - Andrew J Schofield
- School of Psychology, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, UK.,School of Psychology, College of Health and Life Sciences, Aston University, Birmingham, UK
| |
Collapse
|
30
|
Aksoy M, Ufodiama CE, Bateson AD, Martin S, Asghar AUR. A comparative experimental study of visual brain event-related potentials to a working memory task: virtual reality head-mounted display versus a desktop computer screen. Exp Brain Res 2021; 239:3007-3022. [PMID: 34347129 PMCID: PMC8536609 DOI: 10.1007/s00221-021-06158-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 06/19/2021] [Indexed: 11/20/2022]
Abstract
Virtual reality head mounted display (VR HMD) systems are increasingly utilised in combination with electroencephalography (EEG) in the experimental study of cognitive tasks. The aim of our investigation was to determine the similarities/differences between VR HMD and the computer screen (CS) in response to an n-back working memory task by comparing visual electrophysiological event-related potential (ERP) waveforms (N1/P1/P3 components). The same protocol was undertaken for VR HMD and CS with participants wearing the same EEG headcap. ERP waveforms obtained with the VR HMD environment followed a similar time course to those acquired in CS. The P3 mean and peak amplitudes obtained in VR HMD were not significantly different to those obtained in CS. In contrast, the N1 component was significantly higher in mean and peak amplitudes for the VR HMD environment compared to CS at the frontal electrodes. Significantly higher P1 mean and peak amplitudes were found at the occipital region compared to the temporal for VR HMD. Our results show that successful acquisition of ERP components to a working memory task is achievable by combining VR HMD with EEG. In addition, the higher amplitude N1/P1 components seen in VR HMD indicates the potential utility of this VR modality in the investigation of early ERPs. In conclusion, the combination of VR HMD with EEG/ERP would be a useful approach to advance the study of cognitive function in experimental brain research.
Collapse
Affiliation(s)
- Murat Aksoy
- Centre for Anatomical and Human Sciences, Hull York Medical School, University of Hull, Hull, HU6 7RX, UK
| | - Chiedu E Ufodiama
- Centre for Anatomical and Human Sciences, Hull York Medical School, University of Hull, Hull, HU6 7RX, UK
| | - Anthony D Bateson
- Department of Engineering, Faculty Science and Engineering, University of Hull, Cottingham Road, Hull, HU6 7RX, UK
| | - Stewart Martin
- School of Education and Social Sciences, University of Hull, Cottingham Road, Hull, HU6 7RX, UK
| | - Aziz U R Asghar
- Centre for Anatomical and Human Sciences, Hull York Medical School, University of Hull, Hull, HU6 7RX, UK.
| |
Collapse
|
31
|
Schindler S, Gutewort L, Bruchmann M, Moeck R, Straube T. Nonlinear Effects of Linearly Increasing Perceptual Load on ERPs to Emotional Pictures. Cereb Cortex Commun 2021; 1:tgaa040. [PMID: 34296109 PMCID: PMC8153054 DOI: 10.1093/texcom/tgaa040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/23/2020] [Accepted: 07/23/2020] [Indexed: 11/13/2022] Open
Abstract
The prioritized processing of emotional as compared to neutral stimuli is reflected in enlarged event-related potentials (ERPs). However, perceptual load theory proposes that under conditions of high perceptual load, information processing is attenuated or abolished. The parametrical effects of load on ERPs to emotional pictures are unknown. To shed light on this question, the current preregistered ERP study (N = 30) systematically investigated the effects of load on ERPs to task-irrelevant negative, neutral, and positive pictures. Crucially, while perceptual input was held constant, perceptual load was systematically manipulated so that it increased linearly across 4 load levels, which was evident in behavioral data. In contrast, load effects on ERP differences between emotional and neutral stimuli did not follow a linear function. For the N1, early posterior negativity and late positive potential, a nonlinear function with reversed emotion effects at the third load level provided the best fit. These findings do not only show that perceptual load attenuates emotional picture processing but also suggest that active processes are initiated to reduce distraction by emotional information. Moreover, these effects of perceptual load on emotional ERP components appear to deviate from theoretically expected functions.
Collapse
Affiliation(s)
- Sebastian Schindler
- Institute of Medical Psychology and Systems Neuroscience, University of Muenster, Münster D-48149, Germany
| | - Laura Gutewort
- Institute of Medical Psychology and Systems Neuroscience, University of Muenster, Münster D-48149, Germany
| | - Maximilian Bruchmann
- Institute of Medical Psychology and Systems Neuroscience, University of Muenster, Münster D-48149, Germany
| | - Robert Moeck
- Institute of Medical Psychology and Systems Neuroscience, University of Muenster, Münster D-48149, Germany
| | - Thomas Straube
- Institute of Medical Psychology and Systems Neuroscience, University of Muenster, Münster D-48149, Germany
| |
Collapse
|
32
|
Mohr KS, Carr N, Georgel R, Kelly SP. Modulation of the Earliest Component of the Human VEP by Spatial Attention: An Investigation of Task Demands. Cereb Cortex Commun 2021; 1:tgaa045. [PMID: 34296113 PMCID: PMC8152881 DOI: 10.1093/texcom/tgaa045] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/29/2020] [Accepted: 07/29/2020] [Indexed: 11/17/2022] Open
Abstract
Spatial attention modulations of initial afferent activity in area V1, indexed by the first component “C1” of the human visual evoked potential, are rarely found. It has thus been suggested that early modulation is induced only by special task conditions, but what these conditions are remains unknown. Recent failed replications—findings of no C1 modulation using a certain task that had previously produced robust modulations—present a strong basis for examining this question. We ran 3 experiments, the first to more exactly replicate the stimulus and behavioral conditions of the original task, and the second and third to manipulate 2 key factors that differed in the failed replication studies: the provision of informative performance feedback, and the degree to which the probed stimulus features matched those facilitating target perception. Although there was an overall significant C1 modulation of 11%, individually, only experiments 1 and 2 showed reliable effects, underlining that the modulations do occur but not consistently. Better feedback induced greater P1, but not C1, modulations. Target-probe feature matching had an inconsistent influence on modulation patterns, with behavioral performance differences and signal-overlap analyses suggesting interference from extrastriate modulations as a potential cause.
Collapse
Affiliation(s)
- Kieran S Mohr
- Cognitive Neural Systems Lab, School of Electrical and Electronic Engineering and UCD Centre for Biomedical Engineering, University College Dublin, Dublin 4, Ireland
| | - Niamh Carr
- Cognitive Neural Systems Lab, School of Electrical and Electronic Engineering and UCD Centre for Biomedical Engineering, University College Dublin, Dublin 4, Ireland
| | - Rachel Georgel
- Cognitive Neural Systems Lab, School of Electrical and Electronic Engineering and UCD Centre for Biomedical Engineering, University College Dublin, Dublin 4, Ireland
| | - Simon P Kelly
- Cognitive Neural Systems Lab, School of Electrical and Electronic Engineering and UCD Centre for Biomedical Engineering, University College Dublin, Dublin 4, Ireland
| |
Collapse
|
33
|
What processes are disrupted during the attentional blink? An integrative review of event-related potential research. Psychon Bull Rev 2021; 29:394-414. [PMID: 34291430 DOI: 10.3758/s13423-021-01973-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2021] [Indexed: 11/08/2022]
Abstract
Reporting the second of two targets is impaired when these appear in close succession, a phenomenon known as the attentional blink (AB). Despite decades of research, what factors limit our ability to process multiple sequentially presented events remains unclear. Specifically, two central issues remain open: does failure to report the second target (T2) reflect a structural limitation in working memory (WM) encoding or a disruption to attentional processes? And is perceptual processing of the stimulus that we fail to report impaired, or only processes that occur after this stimulus is identified? We address these questions by reviewing event-related potential (ERP) studies of the AB, after providing a brief overview of the theoretical landscape relevant to these debates and clarifying key concepts essential for interpreting ERP studies. We show that failure to report the second target is most often associated with disrupted attentional engagement (associated with a smaller and delayed N2pc component). This disruption occurs after early processing of T2 (associated with an intact P1 component), weakens its semantic processing (typically associated with a smaller N400 component), and prevents its encoding into WM (associated with absent P3b). However, failure to encode T2 in WM can occur despite intact attentional engagement and semantic processing. We conclude that the AB phenomenon, which reflects our limited ability to process sequential events, emerges from the disruption of both attentional engagement and WM encoding.
Collapse
|
34
|
Cabrera FE, Sánchez-Núñez P, Vaccaro G, Peláez JI, Escudero J. Impact of Visual Design Elements and Principles in Human Electroencephalogram Brain Activity Assessed with Spectral Methods and Convolutional Neural Networks. SENSORS 2021; 21:s21144695. [PMID: 34300436 PMCID: PMC8309592 DOI: 10.3390/s21144695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 11/30/2022]
Abstract
The visual design elements and principles (VDEPs) can trigger behavioural changes and emotions in the viewer, but their effects on brain activity are not clearly understood. In this paper, we explore the relationships between brain activity and colour (cold/warm), light (dark/bright), movement (fast/slow), and balance (symmetrical/asymmetrical) VDEPs. We used the public DEAP dataset with the electroencephalogram signals of 32 participants recorded while watching music videos. The characteristic VDEPs for each second of the videos were manually tagged for by a team of two visual communication experts. Results show that variations in the light/value, rhythm/movement, and balance in the music video sequences produce a statistically significant effect over the mean absolute power of the Delta, Theta, Alpha, Beta, and Gamma EEG bands (p < 0.05). Furthermore, we trained a Convolutional Neural Network that successfully predicts the VDEP of a video fragment solely by the EEG signal of the viewer with an accuracy ranging from 0.7447 for Colour VDEP to 0.9685 for Movement VDEP. Our work shows evidence that VDEPs affect brain activity in a variety of distinguishable ways and that a deep learning classifier can infer visual VDEP properties of the videos from EEG activity.
Collapse
Affiliation(s)
- Francisco E. Cabrera
- Department of Languages and Computer Sciences, School of Computer Science and Engineering, Universidad de Málaga, 29071 Málaga, Spain; (F.E.C.); (G.V.); (J.I.P.)
- Centre for Applied Social Research (CISA), Ada Byron Research Building, Universidad de Málaga, 29071 Málaga, Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA), 29071 Málaga, Spain
| | - Pablo Sánchez-Núñez
- Centre for Applied Social Research (CISA), Ada Byron Research Building, Universidad de Málaga, 29071 Málaga, Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA), 29071 Málaga, Spain
- Department of Audiovisual Communication and Advertising, Faculty of Communication Sciences, Universidad de Málaga, 29071 Málaga, Spain
- Correspondence: (P.S.-N.); (J.E.)
| | - Gustavo Vaccaro
- Department of Languages and Computer Sciences, School of Computer Science and Engineering, Universidad de Málaga, 29071 Málaga, Spain; (F.E.C.); (G.V.); (J.I.P.)
- Centre for Applied Social Research (CISA), Ada Byron Research Building, Universidad de Málaga, 29071 Málaga, Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA), 29071 Málaga, Spain
| | - José Ignacio Peláez
- Department of Languages and Computer Sciences, School of Computer Science and Engineering, Universidad de Málaga, 29071 Málaga, Spain; (F.E.C.); (G.V.); (J.I.P.)
- Centre for Applied Social Research (CISA), Ada Byron Research Building, Universidad de Málaga, 29071 Málaga, Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA), 29071 Málaga, Spain
| | - Javier Escudero
- School of Engineering, Institute for Digital Communications (IDCOM), The University of Edinburgh, 8 Thomas Bayes Rd, Edinburgh EH9 3FG, UK
- Correspondence: (P.S.-N.); (J.E.)
| |
Collapse
|
35
|
Epstein ML, Emmanouil TA. Ensemble Statistics Can Be Available before Individual Item Properties: Electroencephalography Evidence Using the Oddball Paradigm. J Cogn Neurosci 2021; 33:1056-1068. [PMID: 34428790 DOI: 10.1162/jocn_a_01704] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Behavioral studies have shown that statistical properties of object groups are perceived accurately with brief exposure durations. This finding motivated the hypothesis that ensemble perception occurs rapidly in vision. However, the precise timing of ensemble perception remains unclear. Here, we used the superior temporal resolution of electroencephalography to directly compare the timing of ensemble processing to that of individual object processing. The P3b was chosen as a particular component of interest, as it is thought to measure the latency of stimulus evaluation. Participants performed a simple "oddball" task in which sets of 51 lines with varied orientations sequentially flashed briefly on the display. In these sequences, there was a 20% chance of an individual oddball, wherein one marked object tilted clockwise, and a 20% chance of an ensemble oddball, wherein the average orientation of the set tilted clockwise. In counterbalanced blocks, participants were instructed to respond to either individual or ensemble oddballs. ERP analysis was performed to test the timing of this processing. At parietal electrodes, P3b components were found for both individual and ensemble oddballs. Ensemble P3b components were found to occur significantly earlier than individual P3b components, as measured with both 50% area latency and 50% onset latency. Using multivariate pattern analysis, ensemble oddball trials were classifiable from standard trials significantly earlier in their timecourse than individual oddball trials. Altogether, these results provide compelling evidence that ensemble perception occurs rapidly and that ensemble properties can be available earlier than individual object properties.
Collapse
Affiliation(s)
- Michael L Epstein
- Program in Psychology, The Graduate Center, City University of New York
| | - Tatiana A Emmanouil
- Program in Psychology, The Graduate Center, City University of New York.,Department of Psychology, Baruch College, City University of New York
| |
Collapse
|
36
|
Electrophysiological correlates of visual attention span in Chinese adults with poor reading fluency. Exp Brain Res 2021; 239:1987-1999. [PMID: 33893841 DOI: 10.1007/s00221-021-06115-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 04/15/2021] [Indexed: 10/21/2022]
Abstract
Individuals with reading fluency difficulty (RFD) show an impairment in the simultaneous processing of multiple elements, which could be reflected in their visual attention span (VAS) capacity. However, the relationship between VAS impairment and RFD is still controversial. A series of processes underlie VAS, such as the early stage of visual attentional processing and the late stage of allocating and maintaining attentional resources. Therefore, the present study explored the relationships between VAS skills and RFD through the event-related potential (ERP) technique to disentangle the contributing cognitive processes regarding VAS from a temporal perspective. Eighteen Chinese adults with poor reading fluency and 18 age-matched normal readers participated. Their VAS skills were measured by a visual one-back task with symbols as nonverbal stimuli and key pressing as nonverbal responses, while relevant electrophysiological signals were recorded. The results showed that lower d' values and abnormal electrophysiological activities (especially weak amplitudes in the N1 and P3 components) in the VAS task were observed for the nonfluent readers compared with the controls. These findings suggested that the low VAS capacity in adults with poor reading fluency could be reflected by problems both in directing selective attention to visually discriminate stimuli within a multielement string at the early processing stage and in allocating attention to further encode targets at the late processing stage. Alternative explanations were further discussed. The current results provide theoretical explanations of the VAS-RFD relationship from a temporal perspective and provide insights for future remediation of reading fluency difficulty.
Collapse
|
37
|
Visalli A, Capizzi M, Ambrosini E, Kopp B, Vallesi A. Electroencephalographic correlates of temporal Bayesian belief updating and surprise. Neuroimage 2021; 231:117867. [PMID: 33592246 DOI: 10.1016/j.neuroimage.2021.117867] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 02/02/2021] [Accepted: 02/09/2021] [Indexed: 12/16/2022] Open
Abstract
The brain predicts the timing of forthcoming events to optimize responses to them. Temporal predictions have been formalized in terms of the hazard function, which integrates prior beliefs on the likely timing of stimulus occurrence with information conveyed by the passage of time. However, how the human brain updates prior temporal beliefs is still elusive. Here we investigated electroencephalographic (EEG) signatures associated with Bayes-optimal updating of temporal beliefs. Given that updating usually occurs in response to surprising events, we sought to disentangle EEG correlates of updating from those associated with surprise. Twenty-six participants performed a temporal foreperiod task, which comprised a subset of surprising events not eliciting updating. EEG data were analyzed through a regression-based massive approach in the electrode and source space. Distinct late positive, centro-parietally distributed, event-related potentials (ERPs) were associated with surprise and belief updating in the electrode space. While surprise modulated the commonly observed P3b, updating was associated with a later and more sustained P3b-like waveform deflection. Results from source analyses revealed that neural encoding of surprise comprises neural activity in the cingulo-opercular network (CON) and parietal regions. These data provide evidence that temporal predictions are computed in a Bayesian manner, and that this is reflected in P3 modulations, akin to other cognitive domains. Overall, our study revealed that analyzing P3 modulations provides an important window into the Bayesian brain. Data and scripts are shared on OSF: https://osf.io/ckqa5/.
Collapse
Affiliation(s)
- Antonino Visalli
- Department of Neuroscience, University of Padova, 35128 Padova, Italy; Department of General Psychology, University of Padova, 35131 Padova, Italy.
| | | | - Ettore Ambrosini
- Department of General Psychology, University of Padova, 35131 Padova, Italy; Department of Neuroscience & Padova Neuroscience Center, University of Padova, 35131 Padova, Italy
| | - Bruno Kopp
- Department of Neurology, Hannover Medical School, 30625 Hannover, Germany
| | - Antonino Vallesi
- Department of Neuroscience & Padova Neuroscience Center, University of Padova, 35131 Padova, Italy; Brain Imaging and Neural Dynamics Research Group, IRCCS San Camillo Hospital, 30126 Venice, Italy.
| |
Collapse
|
38
|
Mustile M, Giocondo F, Caligiore D, Borghi AM, Kourtis D. Motor Inhibition to Dangerous Objects: Electrophysiological Evidence for Task-dependent Aversive Affordances. J Cogn Neurosci 2021; 33:826-839. [PMID: 33571078 DOI: 10.1162/jocn_a_01690] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Previous work suggests that perception of an object automatically facilitates actions related to object grasping and manipulation. Recently, the notion of automaticity has been challenged by behavioral studies suggesting that dangerous objects elicit aversive affordances that interfere with encoding of an object's motor properties; however, related EEG studies have provided little support for these claims. We sought EEG evidence that would support the operation of an inhibitory mechanism that interferes with the motor encoding of dangerous objects, and we investigated whether such mechanism would be modulated by the perceived distance of an object and the goal of a given task. EEGs were recorded by 24 participants who passively perceived dangerous and neutral objects in their peripersonal, boundary, or extrapersonal space and performed either a reachability judgment task or a categorization task. Our results showed that greater attention, reflected in the visual P1 potential, was drawn by dangerous and reachable objects. Crucially, a frontal N2 potential, associated with motor inhibition, was larger for dangerous objects only when participants performed a reachability judgment task. Furthermore, a larger parietal P3b potential for dangerous objects indicated the greater difficulty in linking a dangerous object to the appropriate response, especially when it was located in the participants' extrapersonal space. Taken together, our results show that perception of dangerous objects elicits aversive affordances in a task-dependent way and provides evidence for the operation of a neural mechanism that does not code affordances of dangerous objects automatically, but rather on the basis of contextual information.
Collapse
Affiliation(s)
| | | | | | - Anna M Borghi
- National Research Council, Rome, Italy.,Sapienza University of Rome, Italy
| | | |
Collapse
|
39
|
Creupelandt C, D'Hondt F, Maurage P. Neural correlates of visuoperceptive changes in severe alcohol use disorder: A critical review of neuroimaging and electrophysiological findings. J Neurosci Res 2021; 99:1253-1275. [PMID: 33550638 DOI: 10.1002/jnr.24799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/04/2021] [Accepted: 01/06/2021] [Indexed: 01/04/2023]
Abstract
Visuoperceptive deficits are frequently reported in severe alcohol use disorder (SAUD) and are considered as pervasive and persistent in time. While this topic of investigation has previously driven researchers' interest, far fewer studies have focused on visuoperception in SAUD since the '90s, leaving open central questions regarding the origin and implications of these deficits. To renew research in the field and provide a solid background to work upon, this paper reviews the neural correlates of visuoperception in SAUD, based on data from neuroimaging and electrophysiological studies. Results reveal structural and functional changes within the visual system but also in the connections between occipital and frontal areas. We highlight the lack of integration of these findings in the dominant models of vision which stress the dynamic nature of the visual system and consider the presence of both bottom-up and top-down cerebral mechanisms. Visuoperceptive changes are also discussed in the framework of long-lasting debates regarding the influence of demographic and alcohol-related factors, together stressing the presence of inter-individual differences. Capitalizing on this review, we provide guidelines to inform future research, and ultimately improve clinical care.
Collapse
Affiliation(s)
- Coralie Creupelandt
- Louvain Experimental Psychopathology Research Group (UCLEP), Faculté de Psychologie, Psychological Sciences Research Institute (IPSY), UCLouvain, Louvain-la-Neuve, Belgium
| | - Fabien D'Hondt
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France.,CHU Lille, Clinique de Psychiatrie, CURE, Lille, France.,Centre National de Ressources et de Résilience Lille-Paris (CN2R), Lille, France
| | - Pierre Maurage
- Louvain Experimental Psychopathology Research Group (UCLEP), Faculté de Psychologie, Psychological Sciences Research Institute (IPSY), UCLouvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
40
|
Cui S, Song S, Si J, Wu M, Feng J. The influence of mouth opening and closing degrees on processing in NimStim facial expressions: An ERP study from Chinese college students. Int J Psychophysiol 2021; 162:157-165. [PMID: 33548347 DOI: 10.1016/j.ijpsycho.2021.01.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 12/23/2020] [Accepted: 01/12/2021] [Indexed: 01/13/2023]
Abstract
The degree of mouth opening and closing is one of the most important attributes of expression, reflecting the intensity of facial expression and can assist people to recognize the expression more accurately. The NimStim set of facial expressions contains the open and closed expression pictures of the same actor. Although this expression set has been widely used, there is little research on the intensity effect of this set. In this study, 32 Chinese college students were recruited in to view the pictures passively in an ERP experiment, aiming to investigate the intensity effect in the NimStim set (mouth open, mouth closed) of anger, disgust, sad, happy and neutral expression in electrical physiological aspects of the reaction. Our results reported that intensity of expression early affected in VPP and mainly affected in LPP with the open mouth having a larger activity. And there was no intensity effect found in P1, N170 and EPN. Notably, culture and social environment may influence the intensity effect of different emotions. In future, researchers should use methods that ensure subjects pay more attention to the intensity effect of the NimStim facial set.
Collapse
Affiliation(s)
- Shuang Cui
- School of Psychology, Shandong Normal University, Jinan, China
| | - Sutao Song
- School of Information Science and Engineering, Shandong Normal University, Jinan, China; School of Education and Psychology, University of Jinan, Jinan, China.
| | - Jiwei Si
- School of Psychology, Shandong Normal University, Jinan, China.
| | - Meiyun Wu
- School of Education and Psychology, University of Jinan, Jinan, China; State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Jieyin Feng
- School of Education and Psychology, University of Jinan, Jinan, China
| |
Collapse
|
41
|
Murphy N, Killen A, Gupta RK, Graziadio S, Rochester L, Firbank M, Baker MR, Allan C, Collerton D, Taylor JP, Urwyler P. Exploring Bottom-Up Visual Processing and Visual Hallucinations in Parkinson's Disease With Dementia. Front Neurol 2021; 11:579113. [PMID: 33584490 PMCID: PMC7876258 DOI: 10.3389/fneur.2020.579113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 12/31/2020] [Indexed: 01/28/2023] Open
Abstract
Visual hallucinations (VH) are a common symptom of Parkinson's disease with dementia (PDD), affecting up to 65% of cases. Integrative models of their etiology posit that a decline in executive control of the visuo-perceptual system is a primary mechanism of VH generation. The role of bottom-up processing in the manifestation of VH in this condition is still not clear although visual evoked potential (VEP) differences have been associated with VH at an earlier stage of PD. Here we compared the amplitude and latency pattern reversal VEPs in healthy controls (n = 21) and PDD patients (n = 34) with a range of VH severities. PDD patients showed increased N2 latency relative to controls, but no significant differences in VEP measures were found for patients reporting complex VH (CVH) (n = 17) compared to those without VH. Our VEP findings support previous reports of declining visual system physiology in PDD and some evidence of visual system differences between patients with and without VH. However, we did not replicate previous findings of a major relationship s between the integrity of the visual pathway and VH.
Collapse
Affiliation(s)
- Nicholas Murphy
- Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, United States
| | - Alison Killen
- Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Rajnish Kumar Gupta
- ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - Sara Graziadio
- National Institute for Health Research Newcastle In Vitro Diagnostics Co-operative, Newcastle Upon Tyne Hospitals Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Lynn Rochester
- Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Michael Firbank
- Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Mark R. Baker
- Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Charlotte Allan
- Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Daniel Collerton
- Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - John-Paul Taylor
- Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Prabitha Urwyler
- Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
- Gerontechnology and Rehabilitation Group, University of Bern, Bern, Switzerland
- University Neurorehabilitation Unit, Department of Neurology, Inselspital, Bern University Hospital, Bern, Switzerland
| |
Collapse
|
42
|
Scrivano RM, Kieffaber PD. Behavioral and electrophysiological correlates of Simon and flanker conflict interference in younger and older adults. AGING NEUROPSYCHOLOGY AND COGNITION 2021; 29:318-348. [PMID: 33472533 DOI: 10.1080/13825585.2021.1874278] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Conflict processing and interference control have been popular topics of research in the study of pathological brain aging. However, there remains much to be learned about how these cognitive processes are altered in the course of healthy brain aging. Moreover, few studies have combined multiple measures of interference control using factorial designs. The aim of this study was to determine the nature of age-related changes in behavioral and electroencephalographic correlates of interference control using a factorial combination of the Simon and flanker interference conditions. Data were collected from a group of younger and high-functioning older adults. Behavioral results indicated the presence of conflict interference effects in both groups, that both Simon and flanker conflict effects are increased in high-functioning older adults, that the two types of conflict interference interact superadditively, and that older adults are more susceptible to the superadditive costs of multiple conflict types. ERP analyses revealed that early perceptual and response-selection processes are differentially modulated by flanker and Simon conflict respectively, however, there was no evidence that these early processes were impaired in older adults. Later components of the ERP in the P3 time range mirrored behavioral results, reflecting the increased susceptibility to flanker and Simon conflict in older adults.
Collapse
Affiliation(s)
- Rachel M Scrivano
- The College of Social Work, the Ohio State University, Columbus, United States
| | - Paul D Kieffaber
- Department of Psychological Sciences, College of William & Mary, Williamsburg, United States
| |
Collapse
|
43
|
Ghasemian S, Vardanjani MM, Sheibani V, Mansouri FA. Color-hierarchies in executive control of monkeys' behavior. Am J Primatol 2021; 83:e23231. [PMID: 33400335 DOI: 10.1002/ajp.23231] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 12/22/2020] [Accepted: 12/22/2020] [Indexed: 12/22/2022]
Abstract
Processing advantages for particular colors (color-hierarchies) influence emotional regulation and cognitive functions in humans and manifest as an advantage of the red color, compared with the green color, in triggering response inhibition but not in response execution. It remains unknown how such color-hierarchies emerge in human cognition and whether they are the unique properties of human brain with advanced trichromatic vision. Dominant models propose that color-hierarchies are formed as experience-dependent learning that associates various colors with different human-made conventions and concepts (e.g., traffic lights). We hypothesized that if color-hierarchies modulate cognitive functions in trichromatic nonhuman primates, it would indicate a preserved neurobiological basis for such color-hierarchies. We trained six macaque monkeys to perform cognitive tasks that required behavioral control based on colored cues. Color-hierarchies significantly influenced monkeys' behavior and appeared as an advantage of the red color, compared to the green, in triggering response inhibition but not response execution. For all monkeys, the order of color-hierarchies, in response inhibition and also execution, was similar to that in humans. In addition, the cognitive effects of color-hierarchies were not limited to the trial in which the colored cues were encountered but also persisted in the following trials in which there was no colored cue on the visual scene. These findings suggest that color-hierarchies are not resulting from association of colors with human-made conventions and that simple processing advantage in retina or early visual pathways does not explain the cognitive effects of color-hierarchies. The discovery of color-hierarchies in cognitive repertoire of monkeys indicates that although the evolution of humans and monkeys diverged in about 25 million years ago, the color-hierarchies are evolutionary preserved, with the same order, in trichromatic primates and exert overarching effects on the executive control of behavior.
Collapse
Affiliation(s)
- Sadegh Ghasemian
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.,Cognitive Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Marzieh M Vardanjani
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.,Cognitive Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Vahid Sheibani
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.,Cognitive Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Farshad A Mansouri
- ARC Centre of Excellence for Integrative Brain Function, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
44
|
Anzures G, Mildort M. Do perceptual expertise and implicit racial bias predict early face-sensitive ERP responses? Brain Cogn 2020; 147:105671. [PMID: 33360041 DOI: 10.1016/j.bandc.2020.105671] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/30/2020] [Accepted: 12/04/2020] [Indexed: 11/16/2022]
Abstract
Studies examining the visual perception of face race have revealed mixed findings regarding the presence or direction of effects on early face-sensitive event-related potential (ERP) components. Few studies have examined how early ERP components are influenced by individual differences in bottom-up and top-down processes involved in face perception, and how such factors might interact to influence early face-sensitive ERP components has yet to be investigated. Thus, the current study examined whether P100, N170, and P200 responses can be predicted by individual differences in own- and other-race face recognition, implicit racial bias, and their interaction. Race effects were observed in the P100, N170, and P200 responses. Other-race face recognition, implicit racial biases, and their interaction explained a significant amount of unique variability in N170 responses when viewing other-race faces. Responses to own-race faces were minimally influenced with only implicit racial bias predicting a significant amount of unique variability in N170 latency when viewing own-race faces. Face recognition, implicit racial bias, or their interaction did not predict P100 responses. The current findings suggest that face recognition abilities and its interaction with implicit racial bias modulate the early stages of other-race face processing.
Collapse
Affiliation(s)
- Gizelle Anzures
- Department of Psychology, Florida Atlantic University, Boca Raton, FL 33431, USA; FAU Brain Institute, Florida Atlantic University, Boca Raton, FL 33431, USA; Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA.
| | - Melissa Mildort
- Department of Psychology, Florida Atlantic University, Boca Raton, FL 33431, USA
| |
Collapse
|
45
|
Li M, Cheng D, Lu Y, Zhou X. Neural association between non-verbal number sense and arithmetic fluency. Hum Brain Mapp 2020; 41:5128-5140. [PMID: 32937010 PMCID: PMC7670642 DOI: 10.1002/hbm.25179] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 06/18/2020] [Accepted: 08/04/2020] [Indexed: 11/29/2022] Open
Abstract
Non‐verbal number sense has been shown to significantly correlate with arithmetic fluency. Accumulated behavioral evidence indicates that the cognitive mechanism relies on visual perception. However, few studies have investigated the neural mechanism underlying this association. Following the visual perception account, we hypothesized that there would be a neural association in occipital areas of the brain between non‐verbal number sense, arithmetic fluency, and visual perception. We analyzed event‐related potentials that are sensitive to neural responses while participants performed five cognitive tasks: simple addition, simple subtraction, numerosity comparison, figure matching, and character rhyming. The single‐trial ERP‐behavior correlation approach was used to enhance the statistical power. The results showed that the N1 component significantly correlated with reaction time at occipital electrodes on all tasks except for character rhyming. The N1 component for arithmetic fluency (simple addition and subtraction) and character rhyming correlated with the reaction time for numerosity comparison and figure matching. The results suggest that there are neural associations between arithmetic fluency, non‐verbal number sense, and visual perception in the occipital cortex, and that visual perception is the shared mechanism for both non‐verbal number sense and arithmetic fluency.
Collapse
Affiliation(s)
- Mengyi Li
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.,Advanced Innovation Center for Future Education, Beijing Normal University, Beijing, China.,Siegler Center for Innovative Learning, Beijing Normal University, Beijing, China
| | - Dazhi Cheng
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.,Advanced Innovation Center for Future Education, Beijing Normal University, Beijing, China.,Department of Pediatric Neurology, Capital Institute of Pediatrics, Beijing, China
| | - Yujie Lu
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.,Advanced Innovation Center for Future Education, Beijing Normal University, Beijing, China.,Siegler Center for Innovative Learning, Beijing Normal University, Beijing, China
| | - Xinlin Zhou
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.,Advanced Innovation Center for Future Education, Beijing Normal University, Beijing, China.,Siegler Center for Innovative Learning, Beijing Normal University, Beijing, China
| |
Collapse
|
46
|
Balas B, Saville A. Neural sensitivity to natural image statistics changes during middle childhood. Dev Psychobiol 2020; 63:1061-1070. [PMID: 33233018 DOI: 10.1002/dev.22062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 10/29/2020] [Accepted: 11/01/2020] [Indexed: 11/10/2022]
Abstract
Natural images have properties that adults' behavioral and neural responses are sensitive to, but the development of this sensitivity is not clear. Behaviorally, children acquire adult-like sensitivity to natural image statistics during middle childhood (Ellemberg et al., 2012), but infants exhibit sensitivity to deviations of natural image structure (Balas & Woods, 2014). We used event-related potentials (ERPs) to examine sensitivity to natural image statistics during childhood at distinct processing stages (the P1 and N1 components). We presented children (5-10 years old) and adults with natural images varying in positive/negative contrast, and natural/synthetic texture appearance to compare electrophysiological responses to images that did or did not violate natural statistics. We hypothesized that children would acquire sensitivity to these deviations late in middle childhood. Instead, we observed significant responses to unnatural contrast and texture statistics at the N1 in all age groups. At the P1, however, only young children exhibited sensitivity to contrast polarity. The latter effect suggests greater sensitivity earlier in development to some violations of natural image statistics. We discuss these results in terms of changing patterns of invariant texture processing during middle childhood and ongoing refinement of the representations supporting natural image perception.
Collapse
Affiliation(s)
- Benjamin Balas
- Department of Psychology, Center for Visual and Cognitive Neuroscience, North Dakota State University, Fargo, ND, USA
| | - Alyson Saville
- Department of Psychology, Center for Visual and Cognitive Neuroscience, North Dakota State University, Fargo, ND, USA
| |
Collapse
|
47
|
Protzak J, Wiczorek R, Gramann K. Peripheral visual perception during natural overground dual-task walking in older and younger adults. Neurobiol Aging 2020; 98:146-159. [PMID: 33290992 DOI: 10.1016/j.neurobiolaging.2020.10.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/14/2020] [Accepted: 10/12/2020] [Indexed: 12/20/2022]
Abstract
Little is known about the neurophysiological processes underlying visual processing during active behavior and how these change over the life span. This study investigated early (P1) and later (P3) event-related potentials of the electroencephalogram associated with visual perception in older and younger adults while sitting, standing, and walking. While sitting and standing, accurate performance in both groups was not associated with event-related potential characteristics. During walking, in contrast, prolonged latencies and reduced amplitudes of the P1 were related to slower responses and increased misses, respectively. No covariations of behavior and P3 characteristics were observed. However, prolonged P3 latencies with increasing motor task complexity were present for both age groups, and reduced amplitudes while walking were replicated in younger participants. Older participants were more affected by walking in general as reflected in slower walking speeds as well as reduced accuracy and relative P1 amplitudes. These results provide further insights into cognitive-motor interference during natural walking in younger and older adults on early attentional-perceptual processing stages, even for simple additional visual tasks.
Collapse
Affiliation(s)
- Janna Protzak
- Junior Research Group FANS (Pedestrian Assistance System for Older Road User), Technische Universität Berlin, Berlin, Germany.
| | - Rebecca Wiczorek
- Junior Research Group FANS (Pedestrian Assistance System for Older Road User), Technische Universität Berlin, Berlin, Germany
| | - Klaus Gramann
- Biological Psychology and Neuroergonomics, Technische Universität Berlin, Berlin, Germany; School of Computer Science, University of Technology, Sydney, Australia; Center for Advanced Neurological Engineering, University of California San Diego, La Jolla, USA
| |
Collapse
|
48
|
Time-dependent effects of perceptual load on processing fearful and neutral faces. Neuropsychologia 2020; 146:107529. [DOI: 10.1016/j.neuropsychologia.2020.107529] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 05/27/2020] [Accepted: 06/08/2020] [Indexed: 11/20/2022]
|
49
|
Neural indices of orienting, discrimination, and conflict monitoring after contextual fear and safety learning. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2020; 20:917-927. [PMID: 32720204 DOI: 10.3758/s13415-020-00810-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Investigations of fear conditioning have recently begun to evaluate contextual factors that affect attention-related processes. However, much of the extant literature does not evaluate how contextual fear learning influences neural indicators of attentional processes during goal-directed activity. The current study evaluated how early attention for task-relevant stimuli and conflict monitoring were affected when presented within task-irrelevant safety and threat contexts after fear learning. Participants (N = 72) completed a Flanker task with modified context before and after context-dependent fear learning. Flanker stimuli were presented in the same threat and safety contexts utilized in the fear learning task while EEG was collected. Results indicated increased early attention (N1) to flankers appearing in threat contexts and later increased neural indicators (P2) of attention to flankers appearing in safety contexts. Results of this study indicate that contextual fear learning modulates early attentional processes for task-relevant stimuli that appear in the context of safety and threat. Theoretical and clinical implications are discussed.
Collapse
|
50
|
Gagl B, Sassenhagen J, Haan S, Gregorova K, Richlan F, Fiebach CJ. An orthographic prediction error as the basis for efficient visual word recognition. Neuroimage 2020; 214:116727. [PMID: 32173410 PMCID: PMC7284316 DOI: 10.1016/j.neuroimage.2020.116727] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 12/23/2019] [Accepted: 03/07/2020] [Indexed: 01/28/2023] Open
Abstract
Most current models assume that the perceptual and cognitive processes of visual word recognition and reading operate upon neuronally coded domain-general low-level visual representations - typically oriented line representations. We here demonstrate, consistent with neurophysiological theories of Bayesian-like predictive neural computations, that prior visual knowledge of words may be utilized to 'explain away' redundant and highly expected parts of the visual percept. Subsequent processing stages, accordingly, operate upon an optimized representation of the visual input, the orthographic prediction error, highlighting only the visual information relevant for word identification. We show that this optimized representation is related to orthographic word characteristics, accounts for word recognition behavior, and is processed early in the visual processing stream, i.e., in V4 and before 200 ms after word-onset. Based on these findings, we propose that prior visual-orthographic knowledge is used to optimize the representation of visually presented words, which in turn allows for highly efficient reading processes.
Collapse
Affiliation(s)
- Benjamin Gagl
- Department of Psychology, Goethe University Frankfurt, Frankfurt/Main, Germany; Center for Individual Development and Adaptive Education of Children at Risk (IDeA), Frankfurt/Main, Germany.
| | - Jona Sassenhagen
- Department of Psychology, Goethe University Frankfurt, Frankfurt/Main, Germany
| | - Sophia Haan
- Department of Psychology, Goethe University Frankfurt, Frankfurt/Main, Germany
| | - Klara Gregorova
- Department of Psychology, Goethe University Frankfurt, Frankfurt/Main, Germany
| | - Fabio Richlan
- Centre for Cognitive Neuroscience, University of Salzburg, Salzburg, Austria
| | - Christian J Fiebach
- Department of Psychology, Goethe University Frankfurt, Frankfurt/Main, Germany; Center for Individual Development and Adaptive Education of Children at Risk (IDeA), Frankfurt/Main, Germany; Brain Imaging Center, Goethe University Frankfurt, Frankfurt/Main, Germany
| |
Collapse
|