1
|
Bardwell L, Thorner J. Mitogen-activated protein kinase (MAPK) cascades-A yeast perspective. Enzymes 2023; 54:137-170. [PMID: 37945169 DOI: 10.1016/bs.enz.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Discovery of the class of protein kinase now dubbed a mitogen (or messenger)-activated protein kinase (MAPK) is an illustrative example of how disparate lines of investigation can converge and reveal an enzyme family universally conserved among eukaryotes, from single-celled microbes to humans. Moreover, elucidation of the circuitry controlling MAPK function defined a now overarching principle in enzyme regulation-the concept of an activation cascade mediated by sequential phosphorylation events. Particularly ground-breaking for this field of exploration were the contributions of genetic approaches conducted using several model organisms, but especially the budding yeast Saccharomyces cerevisiae. Notably, examination of how haploid yeast cells respond to their secreted peptide mating pheromones was crucial in pinpointing genes encoding MAPKs and their upstream activators. Fully contemporaneous biochemical analysis of the activities elicited upon stimulation of mammalian cells by insulin and other growth- and differentiation-inducing factors lead eventually to the demonstration that components homologous to those in yeast were involved. Continued studies of these pathways in yeast were integral to other foundational discoveries in MAPK signaling, including the roles of tethering, scaffolding and docking interactions.
Collapse
Affiliation(s)
- Lee Bardwell
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, CA, United States
| | - Jeremy Thorner
- Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, College of Letters and Science, University of California, Berkeley, Berkeley, CA, United States.
| |
Collapse
|
2
|
Ishii T, Warabi E, Mann GE. Stress Activated MAP Kinases and Cyclin-Dependent Kinase 5 Mediate Nuclear Translocation of Nrf2 via Hsp90α-Pin1-Dynein Motor Transport Machinery. Antioxidants (Basel) 2023; 12:antiox12020274. [PMID: 36829834 PMCID: PMC9952688 DOI: 10.3390/antiox12020274] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/19/2023] [Accepted: 01/22/2023] [Indexed: 01/28/2023] Open
Abstract
Non-lethal low levels of oxidative stress leads to rapid activation of the transcription factor nuclear factor-E2-related factor 2 (Nrf2), which upregulates the expression of genes important for detoxification, glutathione synthesis, and defense against oxidative damage. Stress-activated MAP kinases p38, ERK, and JNK cooperate in the efficient nuclear accumulation of Nrf2 in a cell-type-dependent manner. Activation of p38 induces membrane trafficking of a glutathione sensor neutral sphingomyelinase 2, which generates ceramide upon depletion of cellular glutathione. We previously proposed that caveolin-1 in lipid rafts provides a signaling hub for the phosphorylation of Nrf2 by ceramide-activated PKCζ and casein kinase 2 to stabilize Nrf2 and mask a nuclear export signal. We further propose a mechanism of facilitated Nrf2 nuclear translocation by ERK and JNK. ERK and JNK phosphorylation of Nrf2 induces the association of prolyl cis/trans isomerase Pin1, which specifically recognizes phosphorylated serine or threonine immediately preceding a proline residue. Pin1-induced structural changes allow importin-α5 to associate with Nrf2. Pin1 is a co-chaperone of Hsp90α and mediates the association of the Nrf2-Pin1-Hsp90α complex with the dynein motor complex, which is involved in transporting the signaling complex to the nucleus along microtubules. In addition to ERK and JNK, cyclin-dependent kinase 5 could phosphorylate Nrf2 and mediate the transport of Nrf2 to the nucleus via the Pin1-Hsp90α system. Some other ERK target proteins, such as pyruvate kinase M2 and hypoxia-inducible transcription factor-1, are also transported to the nucleus via the Pin1-Hsp90α system to modulate gene expression and energy metabolism. Notably, as malignant tumors often express enhanced Pin1-Hsp90α signaling pathways, this provides a potential therapeutic target for tumors.
Collapse
Affiliation(s)
- Tetsuro Ishii
- School of Medicine, University of Tsukuba, Tsukuba 305-8577, Japan
- Correspondence:
| | - Eiji Warabi
- School of Medicine, University of Tsukuba, Tsukuba 305-8577, Japan
| | - Giovanni E. Mann
- King’s British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences, Faculty of Life Sciences & Medicine, King’s College London, 150 Stamford Street, London SE1 9NH, UK
| |
Collapse
|
3
|
Carbajal-García A, Reyes-García J, Montaño LM. Androgen Effects on the Adrenergic System of the Vascular, Airway, and Cardiac Myocytes and Their Relevance in Pathological Processes. Int J Endocrinol 2020; 2020:8849641. [PMID: 33273918 PMCID: PMC7676939 DOI: 10.1155/2020/8849641] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/17/2020] [Accepted: 10/20/2020] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION Androgen signaling comprises nongenomic and genomic pathways. Nongenomic actions are not related to the binding of the androgen receptor (AR) and occur rapidly. The genomic effects implicate the binding to a cytosolic AR, leading to protein synthesis. Both events are independent of each other. Genomic effects have been associated with different pathologies such as vascular ischemia, hypertension, asthma, and cardiovascular diseases. Catecholamines play a crucial role in regulating vascular smooth muscle (VSM), airway smooth muscle (ASM), and cardiac muscle (CM) function and tone. OBJECTIVE The aim of this review is an updated analysis of the role of androgens in the adrenergic system of vascular, airway, and cardiac myocytes. Body. Testosterone (T) favors vasoconstriction, and its concentration fluctuation during life stages can affect the vascular tone and might contribute to the development of hypertension. In the VSM, T increases α1-adrenergic receptors (α 1-ARs) and decreases adenylyl cyclase expression, favoring high blood pressure and hypertension. Androgens have also been associated with asthma. During puberty, girls are more susceptible to present asthma symptoms than boys because of the increment in the plasmatic concentrations of T in young men. In the ASM, β 2-ARs are responsible for the bronchodilator effect, and T augments the expression of β 2-ARs evoking an increase in the relaxing response to salbutamol. The levels of T are also associated with an increment in atherosclerosis and cardiovascular risk. In the CM, activation of α 1A-ARs and β 2-ARs increases the ionotropic activity, leading to the development of contraction, and T upregulates the expression of both receptors and improves the myocardial performance. CONCLUSIONS Androgens play an essential role in the adrenergic system of vascular, airway, and cardiac myocytes, favoring either a state of health or disease. While the use of androgens as a therapeutic tool for treating asthma symptoms or heart disease is proposed, the vascular system is warmly affected.
Collapse
Affiliation(s)
- Abril Carbajal-García
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, Mexico
| | - Jorge Reyes-García
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, Mexico
| | - Luis M. Montaño
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, Mexico
| |
Collapse
|
4
|
Youssef GC, Gomez-Manzano C, Sawaya R, Fueyo J. Antitumor immune response during glioma virotherapy. Neuro Oncol 2019; 21:1087-1088. [PMID: 31348516 DOI: 10.1093/neuonc/noz114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Gilbert C Youssef
- Department of Neuro-Oncology, Brain Tumor Program, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Candelaria Gomez-Manzano
- Department of Neuro-Oncology, Brain Tumor Program, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Raymond Sawaya
- Department of Neurosurgery, Brain Tumor Program, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Juan Fueyo
- Department of Neuro-Oncology, Brain Tumor Program, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Department of Neurosurgery, Brain Tumor Program, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
5
|
Ahmed M, Legrand C, Yagüe Relimpio A, Beretta CA, Muschko A, Wegehingel S, Müller HM, Sehr P, Will DW, Lewis JD, Nickel W. A time-resolved live cell imaging assay to identify small molecule inhibitors of FGF2 signaling. FEBS Lett 2019; 593:2162-2176. [PMID: 31135968 DOI: 10.1002/1873-3468.13462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/18/2019] [Accepted: 05/24/2019] [Indexed: 11/10/2022]
Abstract
Fibroblast growth factor 2 (FGF2) is a cell survival factor with crucial functions in tumor-induced angiogenesis. Here, we describe a novel time-resolved FGF2 signaling assay based upon live cell imaging of neuroblastoma cells. To validate this system, we tested 8960 small molecules for inhibition of FGF2 signaling with kinetic resolution. Hit compounds were validated in dose-response experiments for FGF2 signaling, FGF receptor antagonism, downstream ERK phosphorylation and FGF2-dependent chemoresistance in a cellular leukemia model system. The new screening system for FGF2 signaling inhibitors has unique features, deselecting compounds with pleiotropic effects on cell proliferation and, along with the experimental pipeline reported, great potential for the discovery of new classes of FGF2 signaling inhibitors that block FGF2 dependent tumor cell survival.
Collapse
Affiliation(s)
| | | | | | - Carlo A Beretta
- CellNetworks Math-Clinic Core Facility, BioQuant, Heidelberg University, Germany
| | | | | | | | - Peter Sehr
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - David W Will
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - Joe D Lewis
- European Molecular Biology Laboratory, Heidelberg, Germany
| | | |
Collapse
|
6
|
Yao B, Wang S, Xiao P, Wang Q, Hea Y, Zhang Y. MAPK signaling pathways in eye wounds: Multifunction and cooperation. Exp Cell Res 2017; 359:10-16. [DOI: 10.1016/j.yexcr.2017.06.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 06/29/2017] [Indexed: 12/12/2022]
|
7
|
Hannen R, Hauswald M, Bartsch JW. A Rationale for Targeting Extracellular Regulated Kinases ERK1 and ERK2 in Glioblastoma. J Neuropathol Exp Neurol 2017; 76:838-847. [DOI: 10.1093/jnen/nlx076] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
8
|
Yang S, Liu Y, Yang Y, Yang Z, Cheng S, Hou W, Wang Y, Jiang Z, Xiao J, Guo H, Wang Z. Simulated microgravity influences circadian rhythm of NIH3T3 cells. BIOL RHYTHM RES 2016. [DOI: 10.1080/09291016.2016.1207391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Shuhong Yang
- Health Ministry Key Laboratory of Chronobiology, Pre-clinic and Forensic Medical School, Sichuan University, Chengdu, P.R. China
| | - Yanyou Liu
- Health Ministry Key Laboratory of Chronobiology, Pre-clinic and Forensic Medical School, Sichuan University, Chengdu, P.R. China
| | - Yunyun Yang
- Health Ministry Key Laboratory of Chronobiology, Pre-clinic and Forensic Medical School, Sichuan University, Chengdu, P.R. China
| | - Zhenhua Yang
- Health Ministry Key Laboratory of Chronobiology, Pre-clinic and Forensic Medical School, Sichuan University, Chengdu, P.R. China
| | - Shuting Cheng
- Health Ministry Key Laboratory of Chronobiology, Pre-clinic and Forensic Medical School, Sichuan University, Chengdu, P.R. China
| | - Wang Hou
- Health Ministry Key Laboratory of Chronobiology, Pre-clinic and Forensic Medical School, Sichuan University, Chengdu, P.R. China
| | - Yuhui Wang
- Health Ministry Key Laboratory of Chronobiology, Pre-clinic and Forensic Medical School, Sichuan University, Chengdu, P.R. China
| | - Zhou Jiang
- Health Ministry Key Laboratory of Chronobiology, Pre-clinic and Forensic Medical School, Sichuan University, Chengdu, P.R. China
| | - Jing Xiao
- Health Ministry Key Laboratory of Chronobiology, Pre-clinic and Forensic Medical School, Sichuan University, Chengdu, P.R. China
| | - Huiling Guo
- Health Ministry Key Laboratory of Chronobiology, Pre-clinic and Forensic Medical School, Sichuan University, Chengdu, P.R. China
| | - Zhengrong Wang
- Health Ministry Key Laboratory of Chronobiology, Pre-clinic and Forensic Medical School, Sichuan University, Chengdu, P.R. China
| |
Collapse
|
9
|
Burkhard KA, Chen F, Shapiro P. Quantitative analysis of ERK2 interactions with substrate proteins: roles for kinase docking domains and activity in determining binding affinity. J Biol Chem 2010; 286:2477-85. [PMID: 21098038 DOI: 10.1074/jbc.m110.177899] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Extracellular signal-regulated kinase-1 and -2 (ERK1/2) proteins regulate a variety of cellular functions, including cell proliferation and differentiation, by interacting with and phosphorylating substrate proteins. Two docking sites, common docking (CD/ED) domain and F-site recruitment site (FRS), on ERK proteins have been identified. Specific interactions with the CD/ED domain and the FRS occur with substrates containing a docking site for ERK and JNK, LXL (DEJL) motif (D-domain) and a docking site for ERK, FXF (DEF) motif (F-site), respectively. However, the relative contributions of the ERK docking sites in mediating substrate interactions that allow efficient phosphate transfer are largely unknown. In these studies, we provide a quantitative analysis of ERK2 interactions with substrates using surface plasmon resonance to measure real time protein-protein interactions. ERK2 interacted with ELK-1 (DEF and DEJL motifs), RSK-1 (DEJL motif), and c-Fos (DEF motif) with K(D) values of 0.25, 0.15, and 0.97 μM, respectively. CD/ED domain mutations inhibited interactions with ELK-1 and RSK-1 by 6-fold but had no effect on interactions with c-Fos. Select mutations in FRS residues differentially inhibited ELK-1 or c-Fos interactions with ERK2 but had little effect on RSK-1 interactions. Mutations in both the ED and FRS docking sites completely inhibited ELK-1 interactions but had no effect on interactions with stathmin, an ERK substrate whose docking site is unknown. The phosphorylation status of ERK2 did not affect interactions with RSK-1 or c-Fos but did inhibit interactions with ELK-1 and stathmin. These studies provide a quantitative evaluation of specific docking domains involved in mediating interactions between ERK2 and protein substrates and define the contributions of these interactions to phosphate transfer.
Collapse
Affiliation(s)
- Kimberly A Burkhard
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201, USA
| | | | | |
Collapse
|
10
|
Cruz CD, Cruz F. The ERK 1 and 2 pathway in the nervous system: from basic aspects to possible clinical applications in pain and visceral dysfunction. Curr Neuropharmacol 2010; 5:244-52. [PMID: 19305741 PMCID: PMC2644492 DOI: 10.2174/157015907782793630] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2007] [Revised: 07/09/2007] [Accepted: 07/19/2007] [Indexed: 12/16/2022] Open
Abstract
The extracellular signal-regulated kinases 1 and 2 (ERK) cascade, member of the mitogen-activated protein kinases superfamily of signalling pathways, is one of the best characterized pathways as many protein interactions and phosphorylation events have been systematically studied. Traditionally, ERK are associated with the regulation of proliferation and differentiation as well as survival of various cell types. Their activity is controlled by phosphorylation on specific aminoacidic residues, which is induced by a variety of external cues, including growth-promoting factors. In the nervous system, ERK phosphorylation is induced by binding of neurotrophins to their specific tyrosine kinase receptors or by neuronal activity leading to glutamate release and binding to its ionotropic and metabotropic receptors. Some studies have provided evidence of its importance in neuroplastic events. In particular, ERK phosphorylation in the spinal cord was shown to be nociceptive-specific and its upregulation, occurring in cases of chronic inflammatory and neuropathic pain, seems to be of the utmost importance to behavioural changes observed in those conditions. In fact, experiments using specific inhibitors of ERK phosphorylation have proved that ERK directly contributes to allodynia and hyperalgesia caused by spinal cord injury or chronic pain. Additionally, spinal ERK phosphorylation regulates the micturition reflex in experimental models of bladder inflammation and chronic spinal cord transection. In this review we will address the main findings that suggest that ERK might be a future therapeutic target to treat pain and other complications arising from chronic pain or neuronal injury.
Collapse
Affiliation(s)
- Célia D Cruz
- Institute of Histology and Embryology, Faculty of Medicine and IBMC, University of Porto, Portugal.
| | | |
Collapse
|
11
|
Goyal R, Mittal A, Chu N, Zhang L, Longo LD. alpha(1)-Adrenergic receptor subtype function in fetal and adult cerebral arteries. Am J Physiol Heart Circ Physiol 2010; 298:H1797-806. [PMID: 20348219 PMCID: PMC2886655 DOI: 10.1152/ajpheart.00112.2010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Accepted: 03/24/2010] [Indexed: 11/22/2022]
Abstract
In the developing fetus, cerebral artery (CA) contractility demonstrates significant functional differences from that of the adult. This may be a consequence of differential activities of alpha(1)-adrenergic receptor (alpha(1)-AR) subtypes. Thus we tested the hypothesis that maturational differences in adrenergic-mediated CA contractility are, in part, a consequence of differential expression and/or activities of alpha(1)-AR subtypes. In CA from fetal ( approximately 140 days) and nonpregnant adult sheep, we used wire myography and imaging, with simultaneous measurement of tension and intracellular Ca(2+) concentration ([Ca(2+)](i)), radioimmunoassay, and Western immunoblots to examine phenylephrine (Phe)-induced contractile responses. The alpha(1A)-AR antagonists (5-MU and WB-4101) completely inhibited Phe-induced contraction in adult but not fetal CA; however, [Ca(2+)](i) increase was reduced significantly in both age groups. The alpha(1D)-AR antagonist (BMY-7378) blocked both Phe-induced contractions and Ca(2+) responses to a significantly greater extent in adult compared with fetal CA. In both age groups, inhibition of alpha(1A)-AR and alpha(1B)-AR, but not alpha(1D)-AR, significantly reduced inositol 1,4,5-trisphosphate responses to Phe. Western immunoblots demonstrated that the alpha(1)-AR subtype expression was only approximately 20% in fetal CA compared with the adult. Moreover, in fetal CA, the alpha(1D)-AR was expressed significantly greater than the other two subtypes. Also, in fetal but not adult CA, Phe induced a significant increase in activated ERK1/2; this increase in phosphorylated ERK was blocked by alpha(1B)-AR (CEC) and alpha(1D)-AR (BMY-7378) inhibitors, but not by alpha(1A)-AR inhibitors (5-MU or WB-4101). In conclusion, in the fetal CA, alpha(1B)-AR and alpha(1D)-AR subtypes play a key role in contractile response as well as in ERK activation. We speculate that in fetal CA alpha(1B)-AR and alpha(1D)-AR subtypes may be a critical factor associated with cerebrovascular growth and function.
Collapse
Affiliation(s)
- Ravi Goyal
- Center for Perinatal Biology, Department of Physiology and Pharmacology, Loma Linda Univ., School of Medicine, Loma Linda, CA 92350, USA
| | | | | | | | | |
Collapse
|
12
|
Ding GL, Chen XJ, Luo Q, Dong MY, Wang N, Huang HF. Attenuated oocyte fertilization and embryo development associated with altered growth factor/signal transduction induced by endometriotic peritoneal fluid. Fertil Steril 2010; 93:2538-44. [DOI: 10.1016/j.fertnstert.2009.11.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Revised: 11/02/2009] [Accepted: 11/04/2009] [Indexed: 11/29/2022]
|
13
|
You H, Yang H, Zhu Q, Li M, Xue J, Gu Y, Lin S, Ding F. Advanced oxidation protein products induce vascular calcification by promoting osteoblastic trans-differentiation of smooth muscle cells via oxidative stress and ERK pathway. Ren Fail 2009; 31:313-9. [PMID: 19462281 DOI: 10.1080/08860220902875182] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Vascular calcification is an actively regulated process similar to bone formation. Advanced oxidation protein products (AOPPs) have been demonstrated to be novel markers of oxidant-mediated protein damage. The present study investigated the role of AOPPs in inducing osteoblastic trans-differentiation and calcification of smooth muscle cells in vitro. We found that AOPPs directly increased the calcium deposition and expression of core binding factor-alpha1 (CBF-alpha1) and osteopontin (OPN) and significantly decreased SM-alpha-actin expression in human aortic smooth muscle cells (HASMCs). AOPPs increased intracellular oxidative stress, which was inhibited by vitamin E. Vitamin E also inhibited AOPP-induced calcium content and osteoblast differentiation of HASMCs. Furthermore, the inhibitor of ERK significantly suppressed the effects of AOPPs on calcification and osteoblast marker expression. These findings suggest that AOPPs induce vascular calcification by promoting osteoblast differentiation of smooth muscle cells via oxidative stress and ERK pathway.
Collapse
Affiliation(s)
- Huaizhou You
- Division of Nephrology, Huashan Hospital, Fudan University, Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Ceglia L. Vitamin D and skeletal muscle tissue and function. Mol Aspects Med 2008; 29:407-14. [PMID: 18727936 DOI: 10.1016/j.mam.2008.07.002] [Citation(s) in RCA: 223] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2008] [Accepted: 07/31/2008] [Indexed: 12/22/2022]
Abstract
This review aims to summarize current knowledge on the role of vitamin D in skeletal muscle tissue and function. Vitamin D deficiency can cause a myopathy of varying severity. Clinical studies have indicated that vitamin D status is positively associated with muscle strength and physical performance and inversely associated with risk of falling. Vitamin D supplementation has shown to improve tests of muscle function, reduce falls, and possibly impact on muscle fiber composition and morphology in vitamin D deficient older adults. Molecular mechanisms of vitamin D action on muscle tissue include genomic and non-genomic effects via a receptor present in muscle cells. Genomic effects are initiated by binding of 1,25-dihydroxyvitamin D [1,25(OH)(2)D] to its nuclear receptor, which results in changes in gene transcription of mRNA and subsequent protein synthesis. Non-genomic effects of vitamin D are rapid and mediated through a cell surface receptor. Knockout mouse models of the vitamin D receptor provide insight into understanding the direct effects of vitamin D on muscle tissue. Recently, VDR polymorphisms have been described to affect muscle function. Parathyroid hormone which is strongly linked with vitamin D status also may play a role in muscle function; however, distinguishing its role from that of vitamin D has yet to be fully clarified. Despite the enormous advances in recent decades, further research is needed to fully characterize the exact underlying mechanisms of vitamin D action on muscle tissue and to understand how these cellular changes translate into clinical improvements in physical performance.
Collapse
Affiliation(s)
- Lisa Ceglia
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Bone Metabolism Laboratory, 711 Washington Street, Boston, MA 02111, USA.
| |
Collapse
|
15
|
Voong LN, Slater AR, Kratovac S, Cressman DE. Mitogen-activated protein kinase ERK1/2 regulates the class II transactivator. J Biol Chem 2008; 283:9031-9. [PMID: 18245089 PMCID: PMC2431044 DOI: 10.1074/jbc.m706487200] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2007] [Revised: 01/31/2008] [Indexed: 01/12/2023] Open
Abstract
The expression of major histocompatibility class II genes is necessary for proper antigen presentation and induction of an immune response. This expression is initiated by the class II transactivator, CIITA. The establishment of the active form of CIITA is controlled by a series of post-translational events, including GTP binding, ubiquitination, and dimerization. However, the role of phosphorylation is less clearly defined as are the consequences of phosphorylation on CIITA activity and the identity of the kinases involved. In this study we show that the extracellular signal-regulated kinases 1 and 2 (ERK1/2) interact directly with CIITA, targeting serine residues in the amino terminus of the protein, including serine 288. Inhibition of this phosphorylation by dominant-negative forms of ERK or by treatment of cells with the ERK inhibitor PD98059 resulted in the increase in CIITA-mediated gene expression from a class II promoter, enhanced the nuclear concentration of CIITA, and impaired its ability to bind to the nuclear export factor, CRM1. In contrast, inhibition of ERK1/2 activity had little effect on serine-to-alanine mutant forms of CIITA. These data suggest a model whereby ERK1/2-mediated phosphorylation of CIITA down-regulates CIITA activity by priming it for nuclear export, thus providing a means for cells to tightly regulate the extent of antigen presentation.
Collapse
Affiliation(s)
- Lilien N Voong
- Department of Biology, Sarah Lawrence College, 1 Mead Way, Bronxville, NY 10708, USA
| | | | | | | |
Collapse
|
16
|
Colo GP, Rubio MF, Nojek IM, Werbajh SE, Echeverría PC, Alvarado CV, Nahmod VE, Galigniana MD, Costas MA. The p160 nuclear receptor co-activator RAC3 exerts an anti-apoptotic role through a cytoplasmatic action. Oncogene 2007; 27:2430-44. [DOI: 10.1038/sj.onc.1210900] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
17
|
Nordle AKL, Rios P, Gaulton A, Pulido R, Attwood TK, Tabernero L. Functional assignment of MAPK phosphatase domains. Proteins 2007; 69:19-31. [PMID: 17596826 DOI: 10.1002/prot.21477] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Mitogen-activated protein kinase (MAPK) pathways are well conserved in most organisms, from yeast to humans. The principal components of these pathways are MAP kinases whose activity is regulated by phosphorylation, implicating various MAPK protein effectors-in particular, protein phosphatases that inactivate MAPKs by dephosphorylation. The molecular basis of binding specificity of such regulatory phosphatases to MAPKs is poorly understood. To try to pinpoint potential functional regions within the sequences and to help identify new family members, we have applied a multimotif pattern-recognition approach to characterize two MAPK phosphatase subfamilies (tyrosine-specific and dual specificity) that are crucial in the regulation of MAPKs. We built "fingerprints" for these two subfamilies that are unique to, and highly discriminatory for, each group of proteins. The fingerprints were used in a genome-wide screen, identifying more than 80 MAPK phosphatase domains, several of which were in partial sequences or unclassified proteins. We confirmed experimentally that one predicted MAPK phosphatase orthologue in Xenopus binds to ERK1/2, suggesting a role in MAPK signaling and thus supporting our functional predictions. Further analysis, mapping the fingerprints on the three-dimensional structure of MAPK phosphatases, revealed that some of the fingerprint motifs reside in the N-terminal noncatalytic regions coinciding with reported MAPK binding sites, while others lie within the catalytic phosphatase domain. These results also suggest the presence of putative allosteric sites in the catalytic region for modulation of protein-protein interactions, and provide a framework for future experimental validation.
Collapse
Affiliation(s)
- Anna K L Nordle
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | | | | | | | | | | |
Collapse
|
18
|
McElvaine AT, Korytko AI, Kilen SM, Cuttler L, Mayo KE. Pituitary-Specific Expression and Pit-1 Regulation of the Rat Growth Hormone-Releasing Hormone Receptor Gene. Mol Endocrinol 2007; 21:1969-83. [PMID: 17536003 DOI: 10.1210/me.2007-0116] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The GHRH receptor is expressed in the somatotroph cell of the anterior pituitary, where it functions to mediate GHRH-stimulated GH release. To study pituitary and somatotroph cell-specific expression of this gene, a transgenic mouse model and complementary cell culture experiments were developed. The activity of the 1.6-kb proximal rat GHRH receptor promoter was examined in vivo by generating transgenic mice with the promoter directing expression of a luciferase reporter. The promoter directs tissue-specific expression; luciferase is highly expressed in the pituitary but absent from 14 other tissues. Immunocytochemistry experiments show that transgene expression is targeted to GH-expressing somatotroph cells. The transgene is 5-fold more highly expressed in males than females, and there is an increase in transgene expression leading up to the onset of puberty. The 1.6-kb promoter was further examined in cell culture experiments, which revealed that the promoter is selectively activated in pituitary cells and that promoter-reporter expression in nonpituitary cells can be enhanced by the pituitary-specific transcription factor Pit-1. EMSAs identified 10 short regions that specifically bind Pit-1 with highly variable relative affinities. The highest affinity site was previously identified and is required for Pit-1 activation of the promoter. Four additional sites contribute to Pit-1 regulation of the promoter and are important to achieving full activation of the gene. The results show that the 1.6-kb promoter is sufficient to direct tissue- and cell-specific expression in vivo and is regulated by Pit-1.
Collapse
Affiliation(s)
- Allison T McElvaine
- Department of Biochemistry, Molecular Biology, and Cell Biology, Northwestern University, Hogan 4-112, Evanston, Illinois 60208, USA
| | | | | | | | | |
Collapse
|
19
|
Abramczyk O, Rainey MA, Barnes R, Martin L, Dalby KN. Expanding the repertoire of an ERK2 recruitment site: cysteine footprinting identifies the D-recruitment site as a mediator of Ets-1 binding. Biochemistry 2007; 46:9174-86. [PMID: 17658891 PMCID: PMC2897722 DOI: 10.1021/bi7002058] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Many substrates of ERK2 contain a D-site, a sequence recognized by ERK2 that is used to promote catalysis. Despite lacking a canonical D-site, the substrate Ets-1 is displaced from ERK2 by peptides containing one. This suggests that Ets-1 may contain a novel or cryptic D-site. To investigate this possibility a protein footprinting strategy was developed to elucidate ERK2-ligand interactions. Using this approach, single cysteine reporters were placed in the D-recruitment site (DRS) of ERK2 and the resulting ERK2 proteins subjected to alkylation by iodoacetamide. The ability of residues 1-138 of Ets-1 to protect the cysteines from alkylation was determined. The pattern of protection observed is consistent with Ets-1 occupying a hydrophobic binding site within the DRS of ERK2. Significantly, a peptide derived from the D-site of Elk-1, which is known to bind the DRS, exhibits a similar pattern of cysteine protection. This analysis expands the repertoire of the DRS on ERK2 and suggests that other targeting sequences remain to be identified. Furthermore, cysteine-footprinting is presented as a useful way to interrogate protein-ligand interactions at the resolution of a single amino acid.
Collapse
Affiliation(s)
- Olga Abramczyk
- Division of Medicinal Chemistry, University of Texas at Austin, Texas 78712
| | - Mark A. Rainey
- Graduate Program in Molecular Biology, University of Texas at Austin, Texas 78712
| | - Richard Barnes
- Graduate Program in Biochemistry, University of Texas at Austin, Texas 78712
| | - Lance Martin
- Department of Biochemistry, Stanford University, Stanford, California 94305
| | - Kevin N. Dalby
- Division of Medicinal Chemistry, University of Texas at Austin, Texas 78712
- Graduate Program in Molecular Biology, University of Texas at Austin, Texas 78712
- Graduate Program in Biochemistry, University of Texas at Austin, Texas 78712
- Corresponding author. Division of Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, TX 78712. Tel: 512-4719267. Fax: 512-2322606.
| |
Collapse
|
20
|
Abstract
Cardiac hypertrophy and heart failure are major causes of morbidity and mortality in Western societies. Many factors have been implicated in cardiac remodeling, including alterations in gene expression in myocytes, cardiomyocytes apoptosis, cytokines and growth factors that influence cardiac dynamics, and deficits in energy metabolism as well as alterations in cardiac extracellular matrix composition. Many therapeutic means have been shown to prevent or reverse cardiac hypertrophy. New concepts for characterizing the pathophysiology of cardiac hypertrophy have been drawn from various aspects, including medical therapy and gene therapy, or use of stem cells for tissue regeneration. In this review, we focus on various types of cardiac hypertrophy, defining the causes of hypertrophy, describing available animal models of hypertrophy, discussing the mechanisms for development of hypertrophy and its transition to heart failure, and presenting the potential use of novel promising therapeutic strategies derived from new advances in basic scientific research.
Collapse
Affiliation(s)
- Sudhiranjan Gupta
- Department of Molecular Cardiology, Lerner Research Institute, The Cleveland Clinic, Cleveland, Ohio 44195, USA
| | | | | |
Collapse
|
21
|
Xiao D, Li M, Herman-Antosiewicz A, Antosiewicz J, Xiao H, Lew KL, Zeng Y, Marynowski SW, Singh SV. Diallyl trisulfide inhibits angiogenic features of human umbilical vein endothelial cells by causing Akt inactivation and down-regulation of VEGF and VEGF-R2. Nutr Cancer 2007; 55:94-107. [PMID: 16965246 DOI: 10.1207/s15327914nc5501_12] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
We have shown recently that diallyl trisulfide (DATS), a cancer-chemopreventive constituent of garlic, inactivates Akt to trigger mitochondrial translocation of proapoptotic protein BAD in human prostate cancer cells. Because Akt activation is implicated in the promotion of endothelial cell survival and angiogenesis, we hypothesized that DATS may inhibit angiogenesis. In the present study, we tested this hypothesis using human umbilical vein endothelial cells (HUVECs) as a model. Survival of HUVECs was reduced significantly in the presence of DATS in a concentration-dependent manner, with an IC50 of approximately 4 microM. The DATS-mediated suppression of HUVEC survival was associated with apoptosis induction characterized by accumulation of subdiploid cells, cytoplasmic histone-associated DNA fragmentation, and cleavage of caspase-3 and poly-(ADP-ribose)-polymerase. The DATS-induced DNA fragmentation was significantly attenuated in the presence of pan-caspase inhibitor zVAD-fmk and specific inhibitors of caspase-9 (zLEHD-fmk) and caspase-8 (zIETD-fmk). DATS treatment inhibited the formation of capillary-like tube structure and migration by HUVECs in association with suppression of vascular endothelial growth factor (VEGF) secretion and VEGF receptor-2 protein level and inactivation of Akt kinase. DATS treatment also caused activation of extracellular signal-regulated kinase 1/2 (ERK1/2) but not c-Jun NH2-terminal kinase (JNK) or p38 mitogen-activated protein kinase (p38MAPK).DATS-mediatedapoptosis induction and inhibition of HUVEC tube formation was partially but statistically significantly attenuated by pharmacologic inhibition of ERK1/2 but not JNK or p38MAPK. The present study demonstrates, for the first time, that DATS has the ability to inhibit angiogenic features of human endothelial cells.
Collapse
Affiliation(s)
- Dong Xiao
- University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Anhê GF, Torrão AS, Nogueira TCA, Caperuto LC, Amaral MEC, Medina MC, Azevedo-Martins AK, Carpinelli AR, Carvalho CRO, Curi R, Boschero AC, Bordin S. ERK3 associates with MAP2 and is involved in glucose-induced insulin secretion. Mol Cell Endocrinol 2006; 251:33-41. [PMID: 16597486 DOI: 10.1016/j.mce.2006.02.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2006] [Accepted: 02/14/2006] [Indexed: 11/30/2022]
Abstract
The adaptation of pancreatic islets to pregnancy includes increased beta cell proliferation, expansion of islet mass, and increased insulin synthesis and secretion. Most of these adaptations are induced by prolactin (PRL). We have previously described that in vitro PRL treatment increases ERK3 expression in isolated rat pancreatic islets. This study shows that ERK3 is also upregulated during pregnancy. Islets from pregnant rats treated with antisense oligonucleotide targeted to the PRL receptor displayed a significant reduction in ERK3 expression. Immunohistochemical double-staining showed that ERK3 expression is restricted to pancreatic beta cells. Transfection with antisense oligonucleotide targeted to ERK3 abolished the insulin secretion stimulated by glucose in rat islets and by PMA in RINm5F cells. Therefore, we examined the participation of ERK3 in the activation of a cellular target involved in secretory events, the microtubule associated protein MAP2. PMA induced ERK3 phosphorylation that was companied by an increase in ERK3/MAP2 association and MAP2 phosphorylation. These observations provide evidence that ERK3 is involved in the regulation of stimulus-secretion coupling in pancreatic beta cells.
Collapse
Affiliation(s)
- Gabriel F Anhê
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, USP, 05508-900 São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Wang JHC, Thampatty BP. An introductory review of cell mechanobiology. Biomech Model Mechanobiol 2006; 5:1-16. [PMID: 16489478 DOI: 10.1007/s10237-005-0012-z] [Citation(s) in RCA: 355] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2005] [Accepted: 12/08/2005] [Indexed: 11/30/2022]
Abstract
Mechanical loads induce changes in the structure, composition, and function of living tissues. Cells in tissues are responsible for these changes, which cause physiological or pathological alterations in the extracellular matrix (ECM). This article provides an introductory review of the mechanobiology of load-sensitive cells in vivo, which include fibroblasts, chondrocytes, osteoblasts, endothelial cells, and smooth muscle cells. Many studies have shown that mechanical loads affect diverse cellular functions, such as cell proliferation, ECM gene and protein expression, and the production of soluble factors. Major cellular components involved in the mechanotransduction mechanisms include the cytoskeleton, integrins, G proteins, receptor tyrosine kinases, mitogen-activated protein kinases, and stretch-activated ion channels. Future research in the area of cell mechanobiology will require novel experimental and theoretical methodologies to determine the type and magnitude of the forces experienced at the cellular and sub-cellular levels and to identify the force sensors/receptors that initiate the cascade of cellular and molecular events.
Collapse
Affiliation(s)
- J H-C Wang
- MechanoBiology Laboratory, Department of Orthopaedic Surgery, University of Pittsburgh, 210 Lothrop St. BST, E1640, Pittsburgh, PA 15213, USA.
| | | |
Collapse
|
24
|
Callaway K, Rainey MA, Dalby KN. Quantifying ERK2–protein interactions by fluorescence anisotropy: PEA-15 inhibits ERK2 by blocking the binding of DEJL domains. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2005; 1754:316-23. [PMID: 16324895 DOI: 10.1016/j.bbapap.2005.11.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
While mitogen-activated protein kinase signaling pathways constitute highly regulated networks of protein-protein interactions, little quantitative information for these interactions is available. Here we highlight recent fluorescence anisotropy binding studies that focus on the interactions of ERK1 and ERK2 with PEA-15 (antiapoptotic phosphoprotein enriched in astrocytes-15 kDa), a small protein that sequesters ERK2 in the cytoplasm. The regulation of ERK2 by PEA-15 is appraised in the light of a simple equilibrium-binding model for reversible ERK2 nucleoplasmic-cytoplasmic shuttling, which elaborates on the theory of Burack and Shaw (J. Biol. Chem. 280, 3832-3837; 2005). Also highlighted is the recent observation that the peptide N-QKGKPRDLELPLSPSL-C, derived from the docking site for ERK/JNK and LEL (DEJL) in Elk-1, displaces PEA-15 from ERK2. It is proposed that the C-terminus of PEA-15 ((121)LXLXXXXKK(129)) is a reverse DEJL domain [which has a general consensus of R/K-phi(A)-X(3/4)-phi(B), where phi(A) and phi(B) are hydrophobic residues (Leu, Ile, or Val)], which mediates one arm of a bidentate PEA-15 interaction with ERK2. The notion that PEA-15 is a potent inhibitor of many ERK2-mediated phosphorylations, by virtue of its ability to block ERK2-DEJL domain interactions, is proposed.
Collapse
Affiliation(s)
- Kari Callaway
- Graduate Program in Biochemistry, University of Texas at Austin, TX 78712, USA
| | | | | |
Collapse
|
25
|
Mackeigan JP, Murphy LO, Dimitri CA, Blenis J. Graded mitogen-activated protein kinase activity precedes switch-like c-Fos induction in mammalian cells. Mol Cell Biol 2005; 25:4676-82. [PMID: 15899869 PMCID: PMC1140635 DOI: 10.1128/mcb.25.11.4676-4682.2005] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mitogen-activated protein kinase (MAPK) pathway is an evolutionarily conserved signaling module that controls important cell fate decisions in a variety of physiological contexts. During Xenopus oocyte maturation, the MAPK cascade converts an increasing progesterone stimulus into a switch-like, all-or-nothing response. While the importance of such switch-like behavior is widely discussed in the literature, it is not known whether the MAPK pathway in mammalian cells exhibits a switch-like or graded response. For this study, we used flow cytometry and immunofluorescence to generate single-cell measurements of MAPK signaling in Swiss 3T3 fibroblasts. In contrast to the case in Xenopus oocytes, we found that ERK activation in individual mammalian cells is not ultrasensitive and shows a graded response to changes in agonist concentration. Thus, the conserved MAPK signaling module exhibits different systems-level properties in different cellular contexts. Furthermore, the graded ERK response was converted into a more switch-like behavior at the level of immediate-early gene induction and cell cycle progression. Thus, while MAPK signaling is involved in all-or-nothing cell fate decisions for both Xenopus oocyte maturation and mammalian fibroblast proliferation, the underlying mechanisms responsible for the switch-like nature of the cellular responses are different in these two systems, with the mechanism appearing to lie downstream of the kinase cascade in mammalian fibroblasts.
Collapse
Affiliation(s)
- Jeffrey P Mackeigan
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave., Boston MA 02115, USA
| | | | | | | |
Collapse
|
26
|
Zhao Y, Zhang L, Longo LD. PKC-induced ERK1/2 interactions and downstream effectors in ovine cerebral arteries. Am J Physiol Regul Integr Comp Physiol 2005; 289:R164-71. [PMID: 15956760 DOI: 10.1152/ajpregu.00847.2004] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Both protein kinase C (PKC) and extracellular signal-regulated kinases (ERK1/2) are involved in mediating vascular smooth muscle contraction. We tested the hypotheses that in addition to PKC activation of ERK1/2, by negative feedback ERKs modulate PKC-induced contraction, and that their interactions modulate both thick and thin myofilament pathways. In ovine middle cerebral arteries (MCA), we measured isometric tension and intracellular free calcium concentration ([Ca(2+)](i)) responses to PKC stimulation [phorbol 12,13-dibutyrate (PDBu), 3 x 10(-6) M] in the absence or presence of ERK1/2 inhibition (U-0126, 10(-5) M). After PDBu +/- ERK1/2 inhibition, we also examined by Western immunoblot the levels of total and phosphorylated ERK1/2, caldesmon(Ser789), myosin light chain(20) (MLC(20)), and CPI-17. PDBu induced significant increase in tension in the absence of increased [Ca(2+)](i). PDBu also increased phosphorylated ERK1/2 levels, a response blocked by U-0126. In turn, U-0126 augmented PDBu-induced contractions. PDBu also was associated with significant increases in phosphorylated caldesmon(Ser789) and MLC(20) levels, each of which peaked at 5 to 10 min. PDBu also increased phosphorylated CPI-17 levels, which peaked at 2 to 3 min. Rho kinase inhibition (Y-27632, 3 x 10(-7) M) did not alter PDBu-induced contraction. These results support the idea that PKC activation can increase CPI-17 phosphorylation to decrease myosin light chain phosphatase activity. In turn, this increases MLC(20) phosphorylation in the thick filament pathway and increases Ca(2+) sensitivity. In addition, ERK1/2-dependent phosphorylation of caldesmon(Ser789) was not necessary for PDBu-induced contraction and appears not to be involved in the reversal of caldesmon's inhibitory effect on actin-myosin ATPase.
Collapse
Affiliation(s)
- Yu Zhao
- Center for Perinatal Biology, Department of Physiology and Pharmacology, Loma Linda University, School of Medicine, Loma Linda, California 92350, USA
| | | | | |
Collapse
|
27
|
Longo LD, Pearce WJ. Fetal cerebrovascular acclimatization responses to high-altitude, long-term hypoxia: a model for prenatal programming of adult disease? Am J Physiol Regul Integr Comp Physiol 2005; 288:R16-24. [PMID: 15590993 DOI: 10.1152/ajpregu.00462.2004] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
During the past several decades, many risk factors for cerebrovascular and cardiovascular disease have been identified. More recently, it has been appreciated that inadequate nutrition and/or other intrauterine factors during fetal development may play an important role in the genesis of these conditions. An additional stress factor that may "program" the fetus for disease later in life is chronic hypoxia. In studies originally designed to examine the function of developing cerebral arterial function in response to long-term hypoxia (LTH), it has become clear that many cellular and subcellular changes may have important implications for later life. Here we review some of the significant alterations in fetal cerebral artery structure and function induced by high-altitude (3,820 m, 12,470 ft) LTH ( approximately 110 days). LTH is associated with augmentation or upregulation of presynaptic functions, including responses to perivascular (i.e., sympathetic) nerve stimulation, and structural maturational changes. In contrast, many postsynaptic functions related to the Ca(2+)-dependent contractile pathway tend to be downregulated, whereas elements of the Ca(2+)-independent contraction pathway are upregulated. The results emphasize the role of high-altitude LTH in modulating many aspects of electromechanical and pharmacomechanical coupling in the developing cerebral vasculature. A complicating factor is that the regulation of cerebrovascular tone by Ca(2+)-dependent and Ca(2+)-independent pathways changes significantly as a function of maturational age. In addition to highlighting independent regulation of various elements of the signal transduction cascade, the studies demonstrate the potential for LTH to program the fetus for cerebrovascular and other disease as an adult.
Collapse
Affiliation(s)
- Lawrence D Longo
- Center for Perinatal Biology, Department of Physiology, Loma Linda University, School of Medicine, Loma Linda, CA 92350, USA.
| | | |
Collapse
|
28
|
Naoi K, Hashimoto T. A semidominant mutation in an Arabidopsis mitogen-activated protein kinase phosphatase-like gene compromises cortical microtubule organization. THE PLANT CELL 2004; 16:1841-53. [PMID: 15208393 PMCID: PMC514165 DOI: 10.1105/tpc.021865] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2004] [Accepted: 04/12/2004] [Indexed: 05/18/2023]
Abstract
Reversible protein phosphorylation regulates many cellular processes, including the dynamics and organization of the microtubule cytoskeleton, but the events mediating it are poorly understood. A semidominant phs1-1 allele of the Arabidopsis thaliana PROPYZAMIDE-HYPERSENSITIVE 1 locus exhibits phenotypes indicative of compromised cortical microtubule functions, such as left-handed helical growth of seedling roots, defective anisotropic growth at low doses of microtubule-destabilizing drugs, enhancement of the temperature-sensitive microtubule organization1-1 phenotype, and less ordered and more fragmented cortical microtubule arrays compared with the wild type. PHS1 encodes a novel protein similar to mitogen-activated protein kinase (MAPK) phosphatases. In phs1-1, a conserved Arg residue in the noncatalytic N-terminal region is exchanged with Cys, and the mutant PHS1 retained considerable phosphatase activity in vitro. In mammalian MAPK phosphatases, the corresponding region serves as a docking motif for MAPKs, and analogous Arg substitutions severely inhibit the kinase-phosphatase association. Transgenic studies indicate that the phs1-1 mutation acts dominant negatively, whereas the null phs1-2 allele is recessive embryonic lethal. We propose that the PHS1 phosphatase regulates more than one MAPK and that a subset of its target kinases is involved in the organization of cortical microtubules.
Collapse
Affiliation(s)
- Kuniko Naoi
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, 630-0192, Japan
| | | |
Collapse
|
29
|
Chen L, Carter-Su C. Adapter protein SH2-B beta undergoes nucleocytoplasmic shuttling: implications for nerve growth factor induction of neuronal differentiation. Mol Cell Biol 2004; 24:3633-47. [PMID: 15082760 PMCID: PMC387738 DOI: 10.1128/mcb.24.9.3633-3647.2004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The adapter protein SH2-B has been shown to bind to activated nerve growth factor (NGF) receptor TrkA and has been implicated in NGF-induced neuronal differentiation and the survival of sympathetic neurons. However, the mechanism by which SH2-B enhances and maintains neurite outgrowth is unclear. We examined the ability of truncation mutants to regulate neuronal differentiation and observed that certain truncation mutants localized in the nucleus rather than in the cytoplasm or at the plasma membrane as reported for wild-type SH2-B beta. Addition of the nuclear export inhibitor leptomycin B caused both overexpressed wild-type and endogenous SH2-B beta to accumulate in the nucleus of both PC12 cells and COS-7 cells as did deletion of a putative nuclear export sequence (amino acids 224 to 233) or mutation of two critical lysines in that sequence. Deleting or mutating the nuclear export signal caused SH2-B beta to lose its ability to enhance NGF-induced differentiation of PC12 cells. Neither the NGF-induced phosphorylation of ERKs 1 and 2 nor their subcellular distribution was altered in PC12 cells stably expressing the nuclear export-defective SH2-B beta(L231A, L233A). These data provide strong evidence that SH2-B beta shuttles constitutively between the nucleus and cytoplasm. However, SH2-B beta needs continuous access to the cytoplasm and/or plasma membrane to participate in NGF-induced neurite outgrowth. These data also suggest that the stimulatory effect of SH2-B beta on NGF-induced neurite outgrowth of PC12 cells is either downstream of ERKs or via some other pathway yet to be identified.
Collapse
Affiliation(s)
- Linyi Chen
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan 48109-0622, USA
| | | |
Collapse
|
30
|
Kesavapany S, Li BS, Amin N, Zheng YL, Grant P, Pant HC. Neuronal cyclin-dependent kinase 5: role in nervous system function and its specific inhibition by the Cdk5 inhibitory peptide. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2004; 1697:143-53. [PMID: 15023357 DOI: 10.1016/j.bbapap.2003.11.020] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2003] [Accepted: 11/12/2003] [Indexed: 12/19/2022]
Abstract
Cyclin-dependent kinase 5 (Cdk5) is a member of the cyclin-dependent kinase family that is involved in the regulation of the cell cycle. As their name suggests, the Cdks require association with activator proteins called cyclins for their activity. Cdk5, however, is unique to this family of proline-directed serine/threonine kinases on two accounts. Firstly, Cdk5 has not been found to function in the cell cycle and, although expressed in a number of tissues, its activity is restricted to the nervous system. Secondly, unlike the other members of the Cdk family, Cdk5 is not activated by association with a cyclin, although it can bind them. Instead, Cdk5 is activated by the activator proteins p35 and p39 that are structurally distinct from cyclins and have, for the most part, a neuronal-specific expression pattern. In the past decade of research on Cdk5, it is now established that Cdk5 activity is critical for the proper formation and function of the brain. Moreover, its role as a central kinase, phosphorylating its substrates in its 'cross-talk' control of other kinase and signal transduction pathways, has also been determined. In addition to the normal physiological role of Cdk5, the kinase has been implicated in certain neurodegenerative disorders. For example, Cdk5 associates with the proteolytic, more active p25 fragment that is derived through the cleavage of p35. In turn, the p25/Cdk5 complex aberrantly phosphorylates its substrates tau and neurofilaments, which has been implicated in the pathogenesis of these disorders. Here, we attempt to review the past decade of research on Cdk5 from our laboratory and others, on the roles of Cdk5 in nervous system function. Additionally, our research has recently uncovered a possible therapeutic avenue of research, focusing on inhibition of aberrant Cdk5 hyperactivity which may well be used to treat the symptoms of a number of neurodegenerative diseases. The elucidation of a specific inhibitor of p25/Cdk5, termed CIP, also inhibits p25/Cdk5-mediated tau phosphorylation. This may well provide us with avenues of research focusing on the inhibition of pathologically damaging p25/Cdk5 species.
Collapse
Affiliation(s)
- Sashi Kesavapany
- Cytoskeletal Protein Regulation Section, Laboratory of Neurochemistry, Building 36, Room 4D-28, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
31
|
He T, Alving K, Feild B, Norton J, Joseloff EG, Patterson SD, Domon B. Quantitation of phosphopeptides using affinity chromatography and stable isotope labeling. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2004; 15:363-373. [PMID: 14998538 DOI: 10.1016/j.jasms.2003.11.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2003] [Revised: 11/03/2003] [Accepted: 11/10/2003] [Indexed: 05/24/2023]
Abstract
Reversible phosphorylation of proteins represents an important component of cellular signaling pathways. The isolation of phosphoproteins in complex mixtures and the determination of the level of phosphorylation have been and remain a major challenge. It has prompted the development of several strategies, including immobilized metal affinity capture to enrich for phosphorylated peptides. An improved methodology was published (Ficarro, et al., Nature Biotechnology 2002, 20, 301-305) that showed increased selectivity through esterification of amino acid side chain carboxylic groups of enzymatically digested peptides. This method was applied for relative quantitation of phosphopeptides in conjunction with the use of stable isotope labeling. The merits and limits of the approach are discussed and its application to the analysis of the effects of serum starvation on in vitro cultured human lung cells is presented.
Collapse
Affiliation(s)
- Tao He
- Celera Genomics, Rockville, Maryland 20850, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Wright PA, Boyd HF, Bethell RC, Busch M, Gribbon P, Kraemer J, Lopez-Calle E, Mander TH, Winkler D, Benson N. Development of a 1-microl scale assay for mitogen-activated kinase kinase 7 using 2-D fluorescence intensity distribution analysis anisotropy. ACTA ACUST UNITED AC 2003; 7:419-28. [PMID: 14599357 DOI: 10.1177/108705702237673] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This paper describes the development of a robust, miniaturizable, and quantitative fluorescence-based assay for mitogen-activated protein kinase kinase 7 (MKK7). As a first step, the basic steady-state kinetics of the MKK7-catalyzed phosphorylation of c-Jun N-terminal kinases (JNKs) 1, 2, and 3 were defined using standard radiometric methods. Subsequently, the authors found that in addition to the holo JNKs, a series of novel small peptides (based on the region around the JNK phosphorylation site) are also substrates, provided that these were prephosphorylated on the Y residue of the TPY motif. One of these peptide substrates was used in the development of a fluorescence polarization-based assay using an antibody as a sensor. The assay was successfully miniaturized for use with conventional fluorescence polarization (FP) reader technology in 8.5 microl and on the single microl scale using Evotec proprietary 2-dimensional fluorescence intensity distribution analysis (2D-FIDA) anisotropy and liquid handling technology. The steady-state kinetic parameters derived using the FP or 2D-FIDA anisotropy format assays correlated well with those generated using a radiometric assay. Moreover, the quantitative sensitivity to known inhibitors was maintained independent of the format and assay volume. In addition, the authors found that the 2D-FIDA anisotropy assay exhibited superior performance statistics (typical Z' = approximately 0.5) relative to conventional FP (typical Z' = 0.3) and yielded the additional benefit of order-of-magnitude savings in terms of reagent costs. The 2D-FIDA anisotropy assay was used to carry out a successful high-throughput screening in 1-microl final volume against company file compounds.
Collapse
Affiliation(s)
- Penny A Wright
- Pfizer Global Research and Development, Sandwich, Kent, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Zhao Y, Long W, Zhang L, Longo LD. Extracellular signal-regulated kinases and contractile responses in ovine adult and fetal cerebral arteries. J Physiol 2003; 551:691-703. [PMID: 12816972 PMCID: PMC2343231 DOI: 10.1113/jphysiol.2003.046128] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Accumulating evidence suggests that extracellular signal-regulated kinases (ERK1/2) play a key role in regulating vascular tone. To test the hypotheses that ERK1/2 modulate cerebral artery agonist-induced contraction, and that this changes with developmental age, we measured both total and phosphorylated ERK1/2 in adult and fetal ovine cerebral arteries. In middle cerebral arteries (MCA) we also examined tension and [Ca2+]i responses to phenylephrine (PHE), in the absence and presence of the ERK1/2 inhibitor U-0126 and the mitogen-activated protein kinase kinase (MAPKK or MEK) inhibitor PD-98059. In the fetus, but not adult, U-0126 potentiated PHE-induced contraction. In both age groups, inhibition by U-0126, but not PD-98059, decreased the PHE-induced [Ca2+]i increase; in fact for adult, this eliminated any significant [Ca2+]i increase. In turn in the adult, but not fetus, protein kinase C (PKC) inhibition by staurosporine (3 x 10(-8) M) prior to ERK1/2 inhibition by U-0126 (10(-5) M) prevented this elimination of [Ca2+]i increase. In adult and fetal cerebral arteries basal total ERK1/2 levels were similar. However, in fetal arteries the basal phosphorylated ERK1/2 levels were significantly less than in adult. In fetal, but not adult, cerebral arteries, 10(-6)-10(-4) M PHE increased ERK1/2 phosphorylation in a concentration- and time-dependent manner. The ERK1/2 inhibitor U-0126, but not the MEK inhibitor PD-98059, lowered basal activated ERK1/2 levels in vessels of both age groups. These results suggest that basal levels of phosphorylated ERK1/2 play an important role in suppressing Ca2+ sensitivity, perhaps by PKC inhibition. The developmental increase in cerebral artery basal phosphorylated ERK levels from fetus to adult, suggests a transition in the regulation of contraction from Ca2+ sensitivity in the fetal arteries to Ca2+ concentration in the adult vessels.
Collapse
Affiliation(s)
- Yu Zhao
- Center for Perinatal Biology, Departments of Physiology and Pharmacology, and Obstetrics and Gynecology, Loma Linda University, School of Medicine, Loma Linda, CA 92350, USA
| | | | | | | |
Collapse
|
34
|
Chang L, Jones Y, Ellisman MH, Goldstein LSB, Karin M. JNK1 is required for maintenance of neuronal microtubules and controls phosphorylation of microtubule-associated proteins. Dev Cell 2003; 4:521-33. [PMID: 12689591 DOI: 10.1016/s1534-5807(03)00094-7] [Citation(s) in RCA: 296] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Microtubules (MTs) play an important role in elaboration and maintenance of axonal and dendritic processes. MT dynamics are modulated by MT-associated proteins (MAPs), whose activities are regulated by protein phosphorylation. We found that a member of the c-Jun NH(2)-terminal protein kinase (JNK) subgroup of MAP kinases, JNK1, is involved in regulation of MT dynamics in neuronal cells. Jnk1(-/-) mice exhibit disrupted anterior commissure tract formation and a progressive loss of MTs within axons and dendrites. MAP2 and MAP1B polypeptides are hypophosphorylated in Jnk1(-/-) brains, resulting in compromised ability to bind MTs and promote their assembly. These results suggest that JNK1 is required for maintaining the cytoskeletal integrity of neuronal cells and is a critical regulator of MAP activity and MT assembly.
Collapse
Affiliation(s)
- Lufen Chang
- Laboratory of Gene Regulation and Signal Transduction, University of California, San Diego, School of Medicine, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
35
|
Xu ZG, Kim KS, Park HC, Choi KH, Lee HY, Han DS, Kang SW. High glucose activates the p38 MAPK pathway in cultured human peritoneal mesothelial cells. Kidney Int 2003; 63:958-68. [PMID: 12631076 DOI: 10.1046/j.1523-1755.2003.00836.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Peritoneal fibrosis is a serious complication in long-term continuous ambulatory peritoneal dialysis (CAPD) patients, but the underlying mechanism is not well understood. Since high glucose activates the p38 mitogen-activated protein kinase (MAPK) pathway in various kinds of cells, and because mesothelial cells are always exposed to high glucose dialysate, we examined the activity and expression of p38 MAPK members in cultured human peritoneal mesothelial cells (HPMCs) under high glucose conditions. METHODS HPMCs were isolated from omentum and subcultured. After serum restriction, HPMCs were exposed to 5.6 mmol/L glucose (low glucose), 5.6 mmol/L glucose + 34.5 mmol/L mannitol (low glucose + mannitol), or 40 mmol/L glucose (high glucose) for 3 minutes to 48 hours with or without SB203580. Reverse transcription-polymerase chain reaction (RT-PCR) and Western blot were performed to determine mRNA and protein expression, respectively. RESULTS p38 MAPK and cyclic adenosine monophosphate (cAMP)-responsive element binding protein (CREB) activities and mRNA expressions were significantly increased in HPMCs exposed to high glucose compared to low glucose or low glucose + mannitol after 10 minutes and remain at higher levels to 48 hours (P < 0.05), but total p38 MAPK and CREB protein expressions did not differ. MAPK kinase 3/6 (MKK3/6) activity and mRNA expression were also higher in high glucose cells after 3 minutes (P < 0.05), and fibronectin mRNA expression was significantly increased in HPMCs exposed to high glucose after 2 hours (P < 0.05). In contrast, high glucose significantly inhibited MAPK phosphatase-1 (MKP-1) protein and mRNA expression after 10 minutes (P < 0.05). SB203580 (1 micromol/L) pretreatment for 1 hour significantly reduced high glucose-induced CREB activity and fibronectin mRNA expression by 89% and 75%, respectively (P < 0.05). CONCLUSION p38 MAPK activity was increased in HPMCs exposed to high glucose, in parallel with increased MKK3/6 activity and decreased MKP-1 expression, resulting in CREB activation. This activated p38 MAPK pathway may play a role in the pathogenesis of peritoneal fibrosis.
Collapse
Affiliation(s)
- Zhong-Gao Xu
- Departments of Internal Medicine and Surgery, College of Medicine, Institute of Kidney Disease, Yonsei University, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
36
|
Andersen JM, Myhre O, Fonnum F. Discussion of the role of the extracellular signal-regulated kinase-phospholipase A2 pathway in production of reactive oxygen species in Alzheimer's disease. Neurochem Res 2003; 28:319-26. [PMID: 12608704 DOI: 10.1023/a:1022389503105] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
In this paper we show that exposure of a rat brain synaptosome fraction to the amyloid beta peptide fragment betaA(25-35), but not the inverted peptide betaA(35-25), stimulated production of reactive oxygen species (ROS) in a concentration- and time-dependent manner. The ROS formation was attenuated by the tyrosine kinase inhibitor genistein, the mitogen-activated protein kinase inhibitor U0126, and the phospholipase A2 (PLA2) inhibitor 7,7-dimethyl-(5Z,8Z)-eicosadienoic acid. This strongly suggests that betaA(25-35) stimulated ROS production through an extracellular signal-regulated kinase-PLA2-dependent pathway. The interaction between these enzymes and their possible involvement in free radical formation in Alzheimer's disease are discussed.
Collapse
Affiliation(s)
- Jannike M Andersen
- Norwegian Defence Research Establishment, Division for Protection and Materiel, PO Box 25, N-2027 Kjeller, Norway.
| | | | | |
Collapse
|
37
|
Franco DL, Nojek IM, Molinero L, Coso OA, Costas MA. Osmotic stress sensitizes naturally resistant cells to TNF-alpha-induced apoptosis. Cell Death Differ 2002; 9:1090-8. [PMID: 12232797 DOI: 10.1038/sj.cdd.4401074] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2001] [Revised: 03/04/2002] [Accepted: 04/23/2002] [Indexed: 11/09/2022] Open
Abstract
Most cells are naturally resistant to TNF-alpha-induced cell death and become sensitized when NF-kappaB transactivation is blocked or in the presence of protein synthesis inhibitors that prevent the expression of anti-apoptotic genes. In this report we analyzed the role of osmotic stress on TNF-alpha-induced cell death. We found that it sensitizes the naturally resistant HeLa cells to TNF-alpha-induced apoptosis, with the involvement of an increase in the activity of several kinases, the inhibition of Bcl-2 expression, and a late increase on NF-kappaB activation. Cell death occurs regardless of the enhanced NF-kappaB activity, whose inhibition produces an increase in apoptosis. The inhibition of p38 kinase, also involved in NF-kappaB activation, significantly increases the effect of osmotic stress on TNF-alpha-induced cell death.
Collapse
Affiliation(s)
- D L Franco
- Laboratorio de Fisiología y Biología Molecular, Departamento de Cs. Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón II, C1428EHA Bs. As., Argentina
| | | | | | | | | |
Collapse
|
38
|
Rennefahrt UEE, Illert B, Kerkhoff E, Troppmair J, Rapp UR. Constitutive JNK activation in NIH 3T3 fibroblasts induces a partially transformed phenotype. J Biol Chem 2002; 277:29510-8. [PMID: 12039958 DOI: 10.1074/jbc.m203010200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The c-Jun N-terminal kinases (JNKs) (also known as stress-activated protein kinases or SAPKs), members of the mitogen-activated protein kinase (MAPK) family, regulate gene expression in response to a variety of physiological and unphysiological stimuli. Gene knockout experiments and the use of dominant interfering mutants have pointed to a role for JNKs in the processes of cell differentiation and survival as well as oncogenic transformation. Direct analysis of the transforming potential of JNKs has been hampered so far by the lack of constitutively active forms of these kinases. Recently, such mutants have become available by fusion of the MAPK with its direct upstream activator kinase. We have generated a constitutively active SAPK beta-MKK7 hybrid protein and, using this constitutively active kinase, we are able to demonstrate the transforming potential of activated JNK, which is weaker than that of classical oncogenes such as Ras or Raf. The inducible expression of SAPK beta-MKK7 caused morphological transformation of NIH 3T3 fibroblasts. Additionally, these cells formed small foci of transformed cells and grew anchorage-independent in soft agar. Furthermore, similar to oncogenic Ras and Raf, the expression of activated SAPK beta resulted in the disassembly of F-actin stress fibers. Our data suggest that constitutive JNK activation elicits major aspects of cellular transformation but is unable to induce the complete set of changes which are required to establish the fully transformed phenotype.
Collapse
Affiliation(s)
- Ulrike E E Rennefahrt
- Institut für Medizinische Strahlenkunde und Zellforschung, Universität Würzburg, 97078 Würzburg, Germany
| | | | | | | | | |
Collapse
|
39
|
Wu J, Suzuki H, Akhand AA, Zhou YW, Hossain K, Nakashima I. Modes of activation of mitogen-activated protein kinases and their roles in cepharanthine-induced apoptosis in human leukemia cells. Cell Signal 2002; 14:509-15. [PMID: 11897491 DOI: 10.1016/s0898-6568(01)00278-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We previously showed that cepharanthine (CEP), a biscoclaurine alkaloid, induces caspase-dependent and Fas-independent apoptosis in Jurkat and K562 human leukemia cells. In the present study, we investigated the effect of CEP on three groups of human mitogen-activated protein kinases (MAPKs) in relation to CEP-induced apoptosis. CEP, at the concentration required for and at the time of induction of apoptosis, activated MAPKs p38 in both Jurkat and K562 cells and activated extracellular signal-regulated kinases (ERKs) only in K562 cells. However, CEP treatment did not trigger c-Jun NH(2)-terminal kinases (JNKs) activation. CEP increased the expression and phosphorylation levels of c-Jun and ATF-2 transcription factors. zVAD-fmk, a general caspase inhibitor, did not inhibit CEP-triggered p38 activation in Jurkat and K562 cells or ERK activation in K562 cells. Unexpectedly, pretreatment with a specific p38 inhibitor, SB203580, promoted CEP-induced apoptosis and caspase activation in Jurkat and K562 cells, whereas pretreatment with an MEK-1 inhibitor PD98059 inhibited CEP-induced apoptosis and caspase activation in K562 cells. A selective tyrosine kinase inhibitor, herbimycin A, which completely inhibited CEP-triggered ERKs activation, clearly promoted CEP-induced c-Jun expression and phosphorylation. Our results suggest that each of the three groups of MAP family members is uniquely involved in the CEP-mediated signal cascades in two different leukemia cell lines for inducing/regulating caspase activation and DNA fragmentation.
Collapse
Affiliation(s)
- Jianghong Wu
- Department of Immunology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | | | | | | | | | | |
Collapse
|
40
|
Reuben PM, Brogley MA, Sun Y, Cheung HS. Molecular mechanism of the induction of metalloproteinases 1 and 3 in human fibroblasts by basic calcium phosphate crystals. Role of calcium-dependent protein kinase C alpha. J Biol Chem 2002; 277:15190-8. [PMID: 11836255 DOI: 10.1074/jbc.m200278200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Synovial fluid basic calcium phosphate (BCP) crystals are common in osteoarthritis and are often associated with destructive arthropathies involving cartilage degeneration. These crystals are mitogenic and induce oncogene expression and matrix metalloproteinase (MMP) synthesis and secretion in human fibroblasts. To date, BCP crystal-elicited signal transduction pathways have not been completely studied. Because protein kinase C (PKC) is known to play an important role in signal transduction, we investigated the participation of this pathway in the BCP crystal induction of MMP-1 and MMP-3 mRNA and protein expressions in human fibroblasts. Using reverse transcription/polymerase chain reaction (RT-PCR) and Northern and Western blotting techniques, we show here that BCP crystal stimulation of MMP-1 and MMP-3 mRNA and protein expressions in human fibroblasts is dependent upon the calcium-dependent PKC signal transduction pathway and that the PKC alpha isozyme is specifically involved in the pathway. We have previously shown that BCP crystal induction of MMP-1 and MMP-3 is also dependent on the p44/42 mitogen-activated protein kinase (p44/42 MAPK) signal transduction pathway. We now show that these two pathways operate independently and seem to complement each other. This leads to our hypothesis that the two pathways initially function independently, ultimately leading to an increase in mitogenesis and MMP synthesis, and may converge downstream of PKC and p44/42 MAPK to mediate BCP crystal-induced cellular responses.
Collapse
Affiliation(s)
- Paul M Reuben
- Department of Medicine, University of Miami School of Medicine, Miami, Florida 33101, USA
| | | | | | | |
Collapse
|
41
|
Takahashi H, Honma M, Ishida-Yamamoto A, Namikawa K, Kiyama H, Iizuka H. Expression of human cystatin A by keratinocytes is positively regulated via the Ras/MEKK1/MKK7/JNK signal transduction pathway but negatively regulated via the Ras/Raf-1/MEK1/ERK pathway. J Biol Chem 2001; 276:36632-8. [PMID: 11451947 DOI: 10.1074/jbc.m102021200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cystatin A, a cysteine proteinase inhibitor, is a cornified cell envelope constituent expressed in the upper epidermis. We previously reported that a potent protein kinase C activator, 12-O-tetradecanoylphorbol-13-acetate, increases human cystatin A expression by the activation of AP-1 proteins. Here, we delineate the signaling cascade responsible for this regulation. Co-transfection of the cystatin A promoter into normal human keratinocytes together with a dominant active form of ras increased the promoter activity by 3-fold. In contrast, a dominant negative form of ras suppressed basal cystatin A promoter activity. Further analyses disclosed that transfection of dominant negative forms of raf-1, MEK1, ERK1, ERK2, or wild-type MEKK1 all increased cystatin A promoter activity in normal human keratinocytes, whereas wild-type raf-1, ERK1, ERK2, or dominant negative forms of MEKK1, MKK7, or JNK1 suppressed the promoter activity. The increased or decreased promoter activity reflected the expression of cystatin A on mRNA and protein levels. These effects were not observed when a cystatin A promoter with a T2 (-272 to -278) deletion was used. In contrast, transfection of dominant negative forms of MKK3, MKK4, or p38 did not affect cystatin A promoter activity. Immunohistochemical analyses revealed that phosphorylated active extracellular signal-regulated kinases and c-Jun N-terminal kinase were expressed in the nuclei of basal cells and cells in the suprabasal-granular cell layer, respectively. These results indicate that the expression of cystatin A is regulated via mitogen-activated protein kinase pathways positively by Ras/MEKK1/MKK7/JNK and negatively by Ras/Raf/MEK1/ERK.
Collapse
Affiliation(s)
- H Takahashi
- Department of Dermatology, Asahikawa Medical College, Asahikawa, Hokkaido 078-8510, Japan.
| | | | | | | | | | | |
Collapse
|
42
|
Kang SW, Adler SG, Lapage J, Natarajan R. p38 MAPK and MAPK kinase 3/6 mRNA and activities are increased in early diabetic glomeruli. Kidney Int 2001; 60:543-52. [PMID: 11473637 DOI: 10.1046/j.1523-1755.2001.060002543.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND The p38 mitogen-activated protein kinase (MAPK) pathway is activated by several stress factors, potentially leading to cellular apoptosis and growth. Little is known about the pattern of glomerular p38 MAPK pathway activation during the course of diabetic nephropathy (DN). We examined the activity and expression of the p38 MAPK pathway members, p38 MAPK, MKK3/6, cAMP-responsive element binding protein (CREB), and MAPK phosphatase-1 (MKP-1), in experimental DN in rats over the course of four months. METHODS Control (C; N = 16) and diabetic (DM; N = 16) rats were studied. Four rats from each group were sacrificed monthly, and competitive reverse transcription-polymerase chain reaction and Western blot were performed with microdissected and sieved glomeruli, respectively. RESULTS Glomerular p38 MAPK mRNA expression was significantly higher in DM than C (P < 0.01) throughout the four-month period. Western blot revealed an average 3.1-fold increase in p38 MAPK protein throughout the study period (P < 0.05). However, p38 MAPK activity was significantly increased only in one- and two-month diabetic glomeruli. Glomerular MKK3/6 and CREB mRNA as well as activity were significantly increased only in one- and two-month DM compared with C. MKP-1 mRNA showed a similar pattern. CONCLUSIONS Glomerular p38 MAPK activity was increased in early DN. Parallel to this, we also showed, to our knowledge for the first time, that there were increased MKK3/6 and CREB activities and mRNA expression. This activated p38 MAPK pathway in diabetic glomeruli may, in part, play a role in the pathogenesis of early hypertrophy and extracellular matrix accumulation.
Collapse
Affiliation(s)
- S W Kang
- Division of Nephrology and Hypertension, Department of Internal Medicine, Harbor-UCLA Research and Education Institute, Torrance, California, USA
| | | | | | | |
Collapse
|
43
|
Mizuno H, Nishida E. The ERK MAP kinase pathway mediates induction of SGK (serum- and glucocorticoid-inducible kinase) by growth factors. Genes Cells 2001; 6:261-8. [PMID: 11260269 DOI: 10.1046/j.1365-2443.2001.00418.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND The ERK MAP kinase pathway plays a pivotal role in growth factor-induced gene expression. However, genes whose expression is induced by the ERK pathway are not fully defined. RESULTS We have identified SGK (serum- and glucocorticoid-inducible kinase) as an ERK-inducible gene by the subtractive screening of Raf-inducible genes. SGK is known to be similar in primary structure to AKT/PKB, PKC and PKA. Treatment of quiescent NIH-3T3 cells with FGF, PDGF or TPA, which induced the sustained activation of ERKs, resulted in the strong induction of SGK, whereas treatment with EGF, which induced the transient activation of ERKs, did not induce a strong expression of SGK. The induction of SGK was blocked by pre-treatment with a specific MEK inhibitor U0126, and expression of constitutively active MEK was able to induce SGK. Treatment with cycloheximide or vanadate prolonged the increased expression of SGK by FGF, concomitant with a more prolonged activation of ERKs. CONCLUSION Growth factor-induced activation of the ERK MAP kinase pathway is necessary and sufficient for the induction of SGK.
Collapse
Affiliation(s)
- H Mizuno
- Department of Biophysics, Graduate School of Science, and Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | | |
Collapse
|
44
|
Mueller H, Flury N, Eppenberger-Castori S, Kueng W, David F, Eppenberger U. Potential prognostic value of mitogen-activated protein kinase activity for disease-free survival of primary breast cancer patients. Int J Cancer 2000; 89:384-8. [PMID: 10956414 DOI: 10.1002/1097-0215(20000720)89:4<384::aid-ijc11>3.0.co;2-r] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Signaling through pathways involving mitogen-activated protein kinases (MAP kinases) has been implicated in the pathogenesis of cancer. Thus, the activity of MAP kinase is essential in the malignant potential of human breast tumors. p42/44(MAPK) was significantly higher expressed in tumor samples than in matching normal tissues adjacent to the tumor. p42/44(MAPK) protein expression correlated with enhanced MAP kinase activity only in a subset of tumors, indicating that over-expression of MAP kinases does not reflect the activation status of these enzymes. MAP kinase activity was significantly elevated in 131 tissue samples from primary breast tumors when compared to 18 normal tissues adjacent to tumors. A trend for higher MAP kinase activity in primary tumors of node-positive patients was observed when compared with tumors from node-negative patients. Similarly, higher MAP kinase activities were observed in specimens from patients who had a relapse within the follow-up time of 40 months when compared with patients with no relapse. A survival analysis demonstrated that the MAP kinase activity in primary breast tumors is potentially prognostic for relapse-free survival of patients.
Collapse
Affiliation(s)
- H Mueller
- Departments of Research and Gynecology, University Women's Clinics, Kantonsspital Basel, and Stiftung Tumorbank Basel, Switzerland.
| | | | | | | | | | | |
Collapse
|
45
|
Gerashchenko BI, Murata-Hori M, Hosoya H. Myosin regulatory light chain as a critical substrate of cell death: a hypothesis. Med Hypotheses 2000; 54:850-2. [PMID: 10859700 DOI: 10.1054/mehy.1999.0967] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
As known, gamma-interferon-induced cell death in HeLa cells can be mediated via the recently identified protein kinase, death associated protein (DAP) kinase which is localized to the microfilament system of the cytoskeleton. However, the downstream or upstream effectors of DAP kinase remain uncertain. In the present work, we hypothesize that the most probable substrate for DAP kinase is regulatory light chain of myosin II, by phosphorylating which the kinase can transduct death signals.
Collapse
Affiliation(s)
- B I Gerashchenko
- Department of Biological Science, Faculty of Science, Hiroshima University, Higashi-Hiroshima, Japan.
| | | | | |
Collapse
|
46
|
Jaiswal RK, Jaiswal N, Bruder SP, Mbalaviele G, Marshak DR, Pittenger MF. Adult human mesenchymal stem cell differentiation to the osteogenic or adipogenic lineage is regulated by mitogen-activated protein kinase. J Biol Chem 2000; 275:9645-52. [PMID: 10734116 DOI: 10.1074/jbc.275.13.9645] [Citation(s) in RCA: 582] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Adult human mesenchymal stem cells are primary, multipotent cells capable of differentiating to osteocytic, chondrocytic, and adipocytic lineages when stimulated under appropriate conditions. To characterize the molecular mechanisms that regulate osteogenic differentiation, we examined the contribution of mitogen-activated protein kinase family members, ERK, JNK, and p38. Treatment of these stem cells with osteogenic supplements resulted in a sustained phase of ERK activation from day 7 to day 11 that coincided with differentiation, before decreasing to basal levels. Activation of JNK occurred much later (day 13 to day 17) in the osteogenic differentiation process. This JNK activation was associated with extracellular matrix synthesis and increased calcium deposition, the two hallmarks of bone formation. Inhibition of ERK activation by PD98059, a specific inhibitor of the ERK signaling pathway, blocked the osteogenic differentiation in a dose-dependent manner, as did transfection with a dominant negative form of MAP kinase kinase (MEK-1). Significantly, the blockage of osteogenic differentiation resulted in the adipogenic differentiation of the stem cells and the expression of adipose-specific mRNAs peroxisome proliferator-activated receptor gamma2, aP2, and lipoprotein lipase. These observations provide a potential mechanism involving MAP kinase activation in osteogenic differentiation of adult stem cells and suggest that commitment of hMSCs into osteogenic or adipogenic lineages is governed by activation or inhibition of ERK, respectively.
Collapse
Affiliation(s)
- R K Jaiswal
- Osiris Therapeutics Inc., Baltimore, Maryland 21231, USA
| | | | | | | | | | | |
Collapse
|
47
|
Akashi M, Nishida E. Involvement of the MAP kinase cascade in resetting of the mammalian circadian clock. Genes Dev 2000. [DOI: 10.1101/gad.14.6.645] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Although the suprachiasmatic nucleus (SCN) is the major pacemaker in mammals, the peripheral cells or immortalized cells also contain a circadian clock. The SCN and the periphery may use different entraining signals—light and some humoral factors, respectively. We show that induction of the circadian oscillation of gene expression is triggered by TPA treatment of NIH-3T3 fibroblasts, which is inhibited by a MEK inhibitor, and that prolonged activation of the MAPK cascade is sufficient to trigger circadian gene expression. Therefore, such prolonged activation of MAPK by entraining cues may be involved in the resetting of the circadian clock.
Collapse
|
48
|
Van Linden AA, Cottin V, Leu C, Riches DW. Phosphorylation of the membrane proximal region of tumor necrosis factor receptor CD120a (p55) at ERK consensus sites. J Biol Chem 2000; 275:6996-7003. [PMID: 10702263 DOI: 10.1074/jbc.275.10.6996] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The interaction of tumor necrosis factor-alpha with its receptor CD120a (p55) initiates downstream signaling cascades that include the activation of the mitogen-activated protein kinase (MAPK), p42(mapk/erk2). The membrane proximal region of CD120a (p55) is Ser-, Thr-, and Pro-rich and contains four mitogen-activated protein kinase consensus phosphorylation sites. In recent work, we showed that CD120a (p55) itself is a target of phosphorylation by p42(mapk/erk2), and after phosphorylation, the receptor is redistributed from the cell surface and Golgi complex to intracellular tubular structures associated with elements of the endoplasmic reticulum. The goal of this study was to define the specific amino acid residues that are phosphorylated. Deletional mutagenesis of the cytoplasmic domain of CD120a (p55) indicated that two sites located between residues 207-254 and 250-300 were phosphorylated predominantly on Thr and Ser residues, respectively. Site-directed mutagenesis of Ser and Thr residues contained within the extracellular signal-regulated kinase (ERK) consensus sequences indicated that the preferred residues were Thr-236 and Ser-270. Primary phosphorylation at these sites appeared to enable subsequent phosphorylation at Ser-240 and Ser-244, although the level of phosphorylation of these latter two sites was less than the preferred sites. Through the use of specific ligation of CD120a (p55) alone and mice deficient in CD120a (p55), CD120b (p75), or both receptors, CD120a (p55) was shown to be necessary and sufficient for the induction of kinase activity. These findings thus suggest that the phosphorylation of Thr-236 and Ser-270 within the membrane proximal region of CD120a (p55) are the preferred sites of phosphorylation by p42(mapk/erk2) and may set in motion phosphorylation at other sites.
Collapse
Affiliation(s)
- A A Van Linden
- Program in Cell Biology, Department of Pediatrics, National Jewish Medical and Research Center, Denver, Colorado 80206, USA
| | | | | | | |
Collapse
|
49
|
Shimizu T, Kato T, Tachibana A, Sasaki MS. Coordinated regulation of radioadaptive response by protein kinase C and p38 mitogen-activated protein kinase. Exp Cell Res 1999; 251:424-32. [PMID: 10471327 DOI: 10.1006/excr.1999.4582] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Eukaryotic cells are known to have an inducible or adaptive response that enhances radioresistance after a low priming dose of radiation. This radioadaptive response seems to present a novel cellular defense mechanism. However, its molecular processing and signaling mechanisms are largely unknown. Here, we studied the role of protein kinase C (PKC) and mitogen-activated protein kinase (MAPK) in the expression of radioadaptive response in cultured mouse cells. Protein immunoblot analysis using isoform-specific antibodies showed an immediate activation of PKC-alpha upon X-irradiation as indicated by a translocation from cytosol to membrane. A low priming dose caused a prolonged translocation, while a nonadaptive high dose dramatically downregulated the total PKC level. Low-dose X-rays also activated the p38 MAPK. The activation of p38 MAPK and resistance to chromosome aberration formation were blocked by SB203580, an inhibitor of p38 MAPK, and Calphostin C, an inhibitor of PKC. Furthermore, it was demonstrated that p38 MAPK was physically associated with delta1 isoform of phospholipase C (PLC-delta1), which hydrolyzed phosphatidylinositol bisphosphate into diacylglycerol, an activator of PKC, and that SB203580 also blocked the activation of PKC-alpha. These results indicate the presence of a novel mechanism for coordinated regulation of adaptive response to low-dose X-rays by a nexus of PKC-alpha/p38 MAPK/PLC-delta1 circuitry feedback signaling pathway with its breakage operated by downregulation of labile PKC-alpha at high doses or excess stimuli.
Collapse
Affiliation(s)
- T Shimizu
- Radiation Biology Center, Kyoto University, Kyoto, Yoshida-konoecho, Sakyo-ku, 606-8501, Japan
| | | | | | | |
Collapse
|
50
|
Saluja I, O'Regan MH, Song D, Phillis JW. Activation of cPLA2, PKC, and ERKs in the rat cerebral cortex during ischemia/reperfusion. Neurochem Res 1999; 24:669-77. [PMID: 10344596 DOI: 10.1023/a:1021004525979] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Release of the excitotoxic amino acid, glutamate, into the extracellular space during ischemia/reperfusion contributes to neuronal injury and death. To gain insights into the signal transduction pathways involved in glutamate release we examined the time course of changes in enzyme levels and activities of cPLA2, PKC and ERKs in the rat cerebral cortex after four vessel (4VO) ischemia followed by reperfusion. Measurement both by enzymatic assay and Western blot analysis showed significant increases in the activity and protein levels of cPLA2 during 10-20 min of ischemia. Activity remained elevated at 10 min and 20 min of reperfusion, whereas cPLA levels had returned to base line levels after 20 min of reperfusion. PKC activity increased significantly in the particulate, but not in the cytosolic, fractions both during ischemia and reperfusion. Increases in PKCgamma levels were recorded in the particulate fraction during ischemia and reperfusion, and in the cytosolic fraction during ischemia. Western blot analysis with a phosphospecific antibody for characterization of MAPK (ERKs) activation revealed significantly increased phosphorylation of ERK1 and ERK2 in the particulate fraction, of ERK2 in the cytosolic fraction, during ischemia and of both enzymes in the particulate and cytosolic fractions after 10 min of reperfusion. The relevance of the results to glutamate release is discussed.
Collapse
Affiliation(s)
- I Saluja
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | | | | | | |
Collapse
|