1
|
Yang Y, Lu D, Wang M, Liu G, Feng Y, Ren Y, Sun X, Chen Z, Wang Z. Endoplasmic reticulum stress and the unfolded protein response: emerging regulators in progression of traumatic brain injury. Cell Death Dis 2024; 15:156. [PMID: 38378666 PMCID: PMC10879178 DOI: 10.1038/s41419-024-06515-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 02/22/2024]
Abstract
Traumatic brain injury (TBI) is a common trauma with high mortality and disability rates worldwide. However, the current management of this disease is still unsatisfactory. Therefore, it is necessary to investigate the pathophysiological mechanisms of TBI in depth to improve the treatment options. In recent decades, abundant evidence has highlighted the significance of endoplasmic reticulum stress (ERS) in advancing central nervous system (CNS) disorders, including TBI. ERS following TBI leads to the accumulation of unfolded proteins, initiating the unfolded protein response (UPR). Protein kinase RNA-like ER kinase (PERK), inositol-requiring protein 1 (IRE1), and activating transcription factor 6 (ATF6) are the three major pathways of UPR initiation that determine whether a cell survives or dies. This review focuses on the dual effects of ERS on TBI and discusses the underlying mechanisms. It is suggested that ERS may crosstalk with a series of molecular cascade responses, such as mitochondrial dysfunction, oxidative stress, neuroinflammation, autophagy, and cell death, and is thus involved in the progression of secondary injury after TBI. Hence, ERS is a promising candidate for the management of TBI.
Collapse
Affiliation(s)
- Yayi Yang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188Shizi Street, Suzhou, 215006, Jiangsu Province, China
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province, China
| | - Dengfeng Lu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | - Menghan Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188Shizi Street, Suzhou, 215006, Jiangsu Province, China
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province, China
| | - Guangjie Liu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | - Yun Feng
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188Shizi Street, Suzhou, 215006, Jiangsu Province, China
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province, China
| | - Yubo Ren
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | - Xiaoou Sun
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188Shizi Street, Suzhou, 215006, Jiangsu Province, China.
| | - Zhouqing Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188Shizi Street, Suzhou, 215006, Jiangsu Province, China.
| | - Zhong Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188Shizi Street, Suzhou, 215006, Jiangsu Province, China.
| |
Collapse
|
2
|
Padula L, Fisher E, Strbo N. "All for One and One for All": The Secreted Heat Shock Protein gp96-Ig Based Vaccines. Cells 2023; 13:72. [PMID: 38201276 PMCID: PMC10778431 DOI: 10.3390/cells13010072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
It has been 50 years since Peter Charles Doherty and Rolf M Zinkernagel proposed the principle of "simultaneous dual recognition", according to which adaptive immune cells recognized "self" and "non-self" simultaneously to establish immunological efficacy. These two scientists shared the 1996 Nobel Prize in Physiology or Medicine for this discovery. Their basic immunological principle became the foundation for the development of numerous vaccine approaches against infectious diseases and tumors, including promising strategies grounded on the use of recombinant gp96-Ig developed by our lab over the last two decades. In this review, we will highlight three major principles of the gp96-Ig vaccine strategy: (1) presentation of pathogenic antigens to T cells (specificity); (2) activation of innate immune responses (adjuvanticity); (3) priming of T cells to home to the epithelial compartments (mucosal immunity). In summary, we provide a paradigm for a vaccine approach that can be rapidly engineered and customized for any future pathogens that require induction of effective tissue-resident memory responses in epithelial tissues.
Collapse
Affiliation(s)
| | | | - Natasa Strbo
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (L.P.); (E.F.)
| |
Collapse
|
3
|
James AW, Bahader GA, Albassan M, Shah ZA. The ER chaperone, BIP protects Microglia from ER stress-mediated Apoptosis in Hyperglycemia. Neurochem Int 2023; 169:105573. [PMID: 37454816 PMCID: PMC10528316 DOI: 10.1016/j.neuint.2023.105573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/27/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023]
Abstract
A major endoplasmic reticulum (ER) chaperone, binding of Immunoglobulin heavy chain protein (BIP) facilitates the assembly of newly synthesized proteins in the ER. Microglia vigorously respond to brain injuries and eliminate the damaged neuronal and apoptotic cells through phagocytosis in the central nervous system. However, the mechanism of BIP-mediated microglial function is not clear in hyperglycemia. We explored the molecular mechanism of BIP in microglial function during hyperglycemic conditions. Hyperglycemia was induced in mice by two consecutive intraperitoneal injections of streptozotocin (STZ 100/kg) and confirmed by measuring the blood glucose from day 2 to day 14. After 14 days of experimental hyperglycemia, mice were sacrificed and brains were collected for ER chaperone expression. In-vitro hyperglycemia was induced by exposing HMC3 cells to 25 mM glucose for 5 days and proteins involved in ER stress, apoptosis, and autophagy were analyzed. In hyperglycemic conditions, BIP protein expression was dramatically reduced in HMC3 cells, which led to increased apoptosis through the activation of CHOP and mitochondrial pro-apoptotic proteins (Bax, Bad, and cleaved caspase-3). The flow cytometry results indicate hyperglycemia-induced apoptosis and reactive oxygen species (ROS) production. Interestingly, the BIP inducer X restored the apoptosis in HMC3 cells by derepressing BIP expression and inhibiting ER stress. These results suggest that the ER chaperone BIP is required for the microglial function and protects from apoptosis in hyperglycemia. A better understanding of BIP's molecular mechanism and role in microglial function may contribute to developing novel therapies for microglia dysfunction-associated neurodegenerative diseases.
Collapse
Affiliation(s)
- Antonisamy William James
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, Toledo, OH, USA
| | - Ghaith A Bahader
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, Toledo, OH, USA
| | - Mohammad Albassan
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, Toledo, OH, USA
| | - Zahoor A Shah
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, Toledo, OH, USA.
| |
Collapse
|
4
|
Zhang S, Tang J, Sun C, Zhang N, Ning X, Li X, Wang J. Dexmedetomidine attenuates hepatic ischemia-reperfusion injury-induced apoptosis via reducing oxidative stress and endoplasmic reticulum stress. Int Immunopharmacol 2023; 117:109959. [PMID: 36881980 DOI: 10.1016/j.intimp.2023.109959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/23/2023] [Accepted: 02/27/2023] [Indexed: 03/07/2023]
Abstract
Dexmedetomidine (DEX) affords a hepatoprotective effect during ischemia-reperfusion (IR) injury (IRI); however, the underlying mechanism remains elusive. In this work, using a rat liver IR model and a BRL-3A cell hypoxia-reoxygenation (HR) model, we explored whether DEX protects the liver against IRI by decreasing oxidative stress (OS), endoplasmic reticulum stress (ERS), and apoptotic pathways. We found that DEX significantly increased SOD and GSH activity while decreasing ROS and MDA levels in BRL-3A cells, successfully preventing HR-induced OS damage. DEX administration reduced JNK, ERK, and P38 phosphorylation and blocked HR-induced MAPK signaling pathway activation. Additionally, DEX administration reduced the expression of GRP78, IRE1α, XBP1, TRAF2, and CHOP, which reduced HR-induced ERS. NAC prevented the MAPK pathway from being activated and inhibited the ERS pathway. Further research showed that DEX significantly reduced HR-induced apoptosis by suppressing the expression of Bax/Bcl-2 and cleaved caspase-3. Similarly, animal studies demonstrated DEX exerted a protective effect of the liver by alleviating histopathological injury and enhancing liver function, mechanically DEX reduced cell apoptosis in liver tissue by reducing oxidative stress and ERS. In conclusion, DEX mitigates OS and ERS during IR, thereby suppressing cell apoptosis, thus providing protection to the liver.
Collapse
Affiliation(s)
- Shixia Zhang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, PR China.
| | - Jilang Tang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, PR China.
| | - Chen Sun
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, PR China.
| | - Nuannuan Zhang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, PR China.
| | - Xiaqing Ning
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, PR China.
| | - Xueqin Li
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, PR China.
| | - Jiaqi Wang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, PR China.
| |
Collapse
|
5
|
Dernovšek J, Tomašič T. Following the design path of isoform-selective Hsp90 inhibitors: Small differences, great opportunities. Pharmacol Ther 2023; 245:108396. [PMID: 37001734 DOI: 10.1016/j.pharmthera.2023.108396] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/03/2023] [Accepted: 03/27/2023] [Indexed: 03/30/2023]
Abstract
The heat shock protein 90 (Hsp90) family consists of four highly conserved isoforms: the mitochondrial TRAP-1, the endoplasmic reticulum-localised Grp94, and the cytoplasmic Hsp90α and Hsp90β. Since the late 1990s, this family has been extensively studied as a potential target for the treatment of cancer, neurological disorders, and infectious diseases. The initial approach was to develop non-selective, so-called pan-Hsp90 ATP-competitive inhibitors of the N-terminal domain. Many of these agents were tested in clinical trials, mainly for the treatment of cancer, but none of them succeeded in the clinic. This was mainly due to the lack of efficacy and various toxicities associated with the induction of heat shock response (HSR). This lack of success has prompted a turn to new approaches of Hsp90 inhibition. Thus, inhibitors selective for a particular isoform of Hsp90 have been developed. These isoform-selective inhibitors do not induce HSR and have a more targeted effect because not all client proteins are equally dependent on all four paralogues of Hsp90. However, it is extremely difficult to develop such selective compounds because the family is highly conserved. Hsp90α and Hsp90β have an amazing 95% identity of the N-terminal ATP binding site, differing only in two amino acid residues. Therefore, the focus of this review is to fully elucidate the key structural features of the selective inhibitor classes in terms of binding site dissimilarities. In addition to a methodological characterisation of the structure-activity relationships, the main advantages of selective inhibition of the TRAP-1, Grp94, Hsp90α and Hsp90β isoforms are discussed.
Collapse
Affiliation(s)
- Jaka Dernovšek
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Tihomir Tomašič
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia.
| |
Collapse
|
6
|
Dagdeviren S, Lee RT, Wu N. Physiological and Pathophysiological Roles of Thioredoxin Interacting Protein: A Perspective on Redox Inflammation and Metabolism. Antioxid Redox Signal 2023; 38:442-460. [PMID: 35754346 PMCID: PMC9968628 DOI: 10.1089/ars.2022.0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 06/12/2022] [Indexed: 11/12/2022]
Abstract
Significance: Thioredoxin interacting protein (TXNIP) is a member of the arrestin fold superfamily with important cellular functions, including cellular transport, mitochondrial energy generation, and protein cycling. It is the only arrestin-domain protein known to covalently bind to thioredoxin and plays roles in glucose metabolism, inflammation, apoptosis, and cancer. Recent Advances: The crystal structure of the TXNIP-thioredoxin complex provided details about this fascinating interaction. Recent studies showed that TXNIP is induced by endoplasmic reticulum (ER) stress, activates NLR family pyrin domain containing 3 (NLRP3) inflammasomes, and can regulate glucose transport into cells. The tumor suppressor role of TXNIP in various cancer types and the role of TXNIP in fructose absorption are now described. Critical Issues: The influence of TXNIP on redox state is more complex than its interaction with thioredoxin. Future Directions: It is incompletely understood which functions of TXNIP are thioredoxin-dependent. It is also unclear whether TXNIP binding can inhibit glucose transporters without endocytosis. TXNIP-regulated control of ER stress should also be investigated further. Antioxid. Redox Signal. 38, 442-460.
Collapse
Affiliation(s)
- Sezin Dagdeviren
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA
| | - Richard T. Lee
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA
| | - Ning Wu
- Van Andel Institute, Grand Rapids, Michigan, USA
| |
Collapse
|
7
|
Michael D, Feldmesser E, Gonen C, Furth N, Maman A, Heyman O, Argoetti A, Tofield A, Baichman-Kass A, Ben-Dov A, Benbenisti D, Hen N, Rotkopf R, Ganci F, Blandino G, Ulitsky I, Oren M. miR-4734 conditionally suppresses ER stress-associated proinflammatory responses. FEBS Lett 2022; 597:1233-1245. [PMID: 36445168 DOI: 10.1002/1873-3468.14548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 11/07/2022] [Accepted: 11/20/2022] [Indexed: 12/02/2022]
Abstract
Prolonged metabolic stress can lead to severe pathologies. In metabolically challenged primary fibroblasts, we assigned a novel role for the poorly characterized miR-4734 in restricting ATF4 and IRE1-mediated upregulation of a set of proinflammatory cytokines and endoplasmic reticulum stress-associated genes. Conversely, inhibition of this miRNA augmented the expression of those genes. Mechanistically, miR-4734 was found to restrict the expression of the transcriptional activator NF-kappa-B inhibitor zeta (NFKBIZ), which is required for optimal expression of the proinflammatory genes and whose mRNA is targeted directly by miR-4734. Concordantly, overexpression of NFKBIZ compromised the effects of miR-4734, underscoring the importance of this direct targeting. As the effects of miR-4734 were evident under stress but not under basal conditions, it may possess therapeutic utility towards alleviating stress-induced pathologies.
Collapse
Affiliation(s)
- Dan Michael
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.,Feinberg Graduate School, Weizmann Institute of Science, Rehovot, Israel
| | - Ester Feldmesser
- Life Science Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Chagay Gonen
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Noa Furth
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Alexander Maman
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Ori Heyman
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Amir Argoetti
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Adin Tofield
- School of Neurobiology, Biochemistry and Biophysics, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Israel
| | - Amichai Baichman-Kass
- Department of Plant Pathology and Microbiology, Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, Israel
| | - Aviyah Ben-Dov
- Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, Israel
| | - Dan Benbenisti
- Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, Israel
| | - Nadav Hen
- Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, Israel
| | - Ron Rotkopf
- Life Science Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Federica Ganci
- IRCSS Regina Elena National Cancer Institute, Rome, Italy
| | | | - Igor Ulitsky
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Moshe Oren
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
8
|
Potential to Eradicate Cancer Stemness by Targeting Cell Surface GRP78. Biomolecules 2022; 12:biom12070941. [PMID: 35883497 PMCID: PMC9313351 DOI: 10.3390/biom12070941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/29/2022] [Accepted: 07/03/2022] [Indexed: 01/27/2023] Open
Abstract
Cancer stemness is proposed to be the main cause of metastasis and tumor relapse after conventional therapy due to the main properties of cancer stem cells. These include unlimited self-renewal, the low percentage in a cell population, asymmetric/symmetric cell division, and the hypothetical different nature for absorbing external substances. As the mechanism of how cancer stemness is maintained remains unknown, further investigation into the basic features of cancer stemness is required. Many articles demonstrated that glucose-regulated protein 78 (GRP78) plays a key role in cancer stemness, suggesting that this molecule is feasible for targeting cancer stem cells. This review summarizes the history of finding cancer stem cells, as well as the functions of GRP78 in cancer stemness, for discussing the possibility of targeting GRP78 to eradicate cancer stemness.
Collapse
|
9
|
Albakova Z, Mangasarova Y, Albakov A, Gorenkova L. HSP70 and HSP90 in Cancer: Cytosolic, Endoplasmic Reticulum and Mitochondrial Chaperones of Tumorigenesis. Front Oncol 2022; 12:829520. [PMID: 35127545 PMCID: PMC8814359 DOI: 10.3389/fonc.2022.829520] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 01/03/2022] [Indexed: 12/12/2022] Open
Abstract
HSP70 and HSP90 are two powerful chaperone machineries involved in survival and proliferation of tumor cells. Residing in various cellular compartments, HSP70 and HSP90 perform specific functions. Concurrently, HSP70 and HSP90 homologs may also translocate from their primary site under various stress conditions. Herein, we address the current literature on the role of HSP70 and HSP90 chaperone networks in cancer. The goal is to provide a comprehensive review on the functions of cytosolic, mitochondrial and endoplasmic reticulum HSP70 and HSP90 homologs in cancer. Given that high expression of HSP70 and HSP90 enhances tumor development and associates with tumor aggressiveness, further understanding of HSP70 and HSP90 chaperone networks may provide clues for the discoveries of novel anti-cancer therapies.
Collapse
Affiliation(s)
- Zarema Albakova
- Department of Biology, Lomonosov Moscow State University, Moscow, Russia
- *Correspondence: Zarema Albakova,
| | | | | | | |
Collapse
|
10
|
Yang F, Lu H, Wu H, Fang T, Berman J, Jiang YY. Aneuploidy Underlies Tolerance and Cross-Tolerance to Drugs in Candida parapsilosis. Microbiol Spectr 2021; 9:e0050821. [PMID: 34612700 PMCID: PMC8510177 DOI: 10.1128/spectrum.00508-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 08/31/2021] [Indexed: 11/20/2022] Open
Abstract
Candida species are the most common human fungal pathogens worldwide. Although C. albicans remains the predominant cause of candidiasis, infections caused by non-albicans Candida species, including C. parapsilosis, are increasing. In C. albicans, genome plasticity has been shown to be a prevalent strategy of adaptation to stresses. However, the role of aneuploidy in C. parapsilosis is largely unknown. In this study, we found that six different aneuploid karyotypes conferred adaptation to the endoplasmic reticulum stress inducer tunicamycin (TUN) in C. parapsilosis. Interestingly, a specific aneuploidy including trisomy of chromosome 6 (Chr6x3) also enabled cross-tolerance to aureobasidin A (AbA), a sphingolipid biosynthesis inhibitor. Consistent with this, selection on AbA identified adaptors with three different aneuploid karyotypes, including Chr6x3, which also enabled cross-tolerance to both AbA and TUN. Therefore, as in other Candida species, recurrent aneuploid karyotypes enable the adaptation of C. parapsilosis to specific stresses, and specific aneuploidies enable cross-adaptation to different stresses. IMPORTANCE Candida parapsilosis is an emerging human fungal pathogen, especially prevalent in neonates. Aneuploidy, having uneven numbers of chromosomes, is a well-known mechanism for adapting to stress in Candida albicans, the most common human fungal pathogen. In this study, we exposed C. parapsilosis to two very different drugs and selected for rare cells that grew in one of the drugs. We found that the majority of isolates that grew in the drugs had acquired an extra copy of one of several aneuploid chromosomes and that specific aneuploid chromosomes appeared in several independent cell clones. Importantly, an extra copy of chromosome 6 was detected following selection in either one of the drugs, and this extra chromosome conferred the ability to grow in both drugs, a property called cross-adaptation, or cross-tolerance. Thus, this study highlights the genome plasticity of C. parapsilosis and the ability of an extra copy of a single chromosome to promote cell growth in the presence of more than one drug.
Collapse
Affiliation(s)
- Feng Yang
- Department of Pharmacy, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Shmunis School of Biomedical and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Hui Lu
- Department of Pharmacy, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Hao Wu
- Department of Pharmacy, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ting Fang
- Department of Pharmacy, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Judith Berman
- Shmunis School of Biomedical and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Yuan-ying Jiang
- Department of Pharmacy, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
11
|
Yang F, Gritsenko V, Slor Futterman Y, Gao L, Zhen C, Lu H, Jiang YY, Berman J. Tunicamycin Potentiates Antifungal Drug Tolerance via Aneuploidy in Candida albicans. mBio 2021; 12:e0227221. [PMID: 34465026 PMCID: PMC8406271 DOI: 10.1128/mbio.02272-21] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 08/02/2021] [Indexed: 12/16/2022] Open
Abstract
How cells exposed to one stress are later able to better survive other types of stress is not well understood. In eukaryotic organisms, physiological and pathological stresses can disturb endoplasmic reticulum (ER) function, resulting in "ER stress." Here, we found that exposure to tunicamycin, an inducer of ER stress, resulted in the acquisition of a specific aneuploidy, chromosome 2 trisomy (Chr2x3), in Candida albicans. Importantly, the resulting aneuploidy also conferred cross-tolerance to caspofungin, a first-line echinocandin antifungal, as well as to hydroxyurea, a common chemotherapeutic agent. Exposure to a range of tunicamycin concentrations induced similar ER stress responses. Extra copies of one Chr2 gene, MKK2, affected both tunicamycin and caspofungin tolerance, while at least 3 genes on chromosome 2 (ALG7, RTA2, and RTA3) affected only tunicamycin and not caspofungin responses. Other Chr2 genes (RNR1 and RNR21) affected hydroxyurea tolerance but neither tunicamycin nor caspofungin tolerance. Deletion of components of the protein kinase C (PKC) or calcineurin pathways affected tolerance to both tunicamycin and caspofungin, supporting the idea that the ER stress response and echinocandin tolerance are regulated by overlapping stress response pathways. Thus, antifungal drug tolerance can arise rapidly via ER stress-induced aneuploidy. IMPORTANCE Candida albicans is a prevalent human fungal commensal and also a pathogen that causes life-threatening systemic infections. Treatment failures are frequent because few therapeutic antifungal drug classes are available and because drug resistance and tolerance limit drug efficacy. We found that C. albicans rapidly overcomes the cellular stress induced by the drug tunicamycin by duplicating chromosome 2. Also, chromosome 2 duplication confers tolerance not only to tunicamycin but also to the following two unrelated drugs: caspofungin, an antifungal drug, and hydroxyurea, a chemotherapeutic. Cross tolerance to the three drugs involves different sets of genes, although some genetic pathways affect the tolerance to two of these three drugs. This work highlights a serious concern, namely, that changes in whole chromosome copy number can occur in response to one type of stress, and yet, they may facilitate the emergence of tolerance to multiple drugs, including the few antifungal drug classes available to treat Candida infections.
Collapse
Affiliation(s)
- Feng Yang
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
- Shmunis School of Biomedical and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Vladimir Gritsenko
- Shmunis School of Biomedical and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Yaniv Slor Futterman
- Shmunis School of Biomedical and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Lu Gao
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Cheng Zhen
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Hui Lu
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yuan-ying Jiang
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Judith Berman
- Shmunis School of Biomedical and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
12
|
Thiopurines activate an antiviral unfolded protein response that blocks influenza A virus glycoprotein accumulation. J Virol 2021; 95:JVI.00453-21. [PMID: 33762409 PMCID: PMC8139708 DOI: 10.1128/jvi.00453-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Influenza A viruses (IAVs) utilize host shutoff mechanisms to limit antiviral gene expression and redirect translation machinery to the synthesis of viral proteins. Previously, we showed that IAV replication is sensitive to protein synthesis inhibitors that block translation initiation and induce formation of cytoplasmic condensates of untranslated messenger ribonucleoprotein complexes called stress granules (SGs). In this study, using an image-based high-content screen, we identified two thiopurines, 6-thioguanine (6-TG) and 6-thioguanosine (6-TGo), that triggered SG formation in IAV-infected cells and blocked IAV replication in a dose-dependent manner without eliciting SG formation in uninfected cells. 6-TG and 6-TGo selectively disrupted the synthesis and maturation of IAV glycoproteins hemagglutinin (HA) and neuraminidase (NA) without affecting the levels of the viral RNAs that encode them. By contrast, these thiopurines had minimal effect on other IAV proteins or the global host protein synthesis. Disruption of IAV glycoprotein accumulation by 6-TG and 6-TGo correlated with activation of unfolded protein response (UPR) sensors activating transcription factor-6 (ATF6), inositol requiring enzyme-1 (IRE1) and PKR-like endoplasmic reticulum kinase (PERK), leading to downstream UPR gene expression. Treatment of infected cells with the chemical chaperone 4-phenylbutyric acid diminished thiopurine-induced UPR activation and partially restored the processing and accumulation of HA and NA. By contrast, chemical inhibition of the integrated stress response downstream of PERK restored accumulation of NA monomers but did not restore processing of viral glycoproteins. Genetic deletion of PERK enhanced the antiviral effect of 6-TG without causing overt cytotoxicity, suggesting that while UPR activation correlates with diminished viral glycoprotein accumulation, PERK could limit the antiviral effects of drug-induced ER stress. Taken together, these data indicate that 6-TG and 6-TGo are effective host-targeted antivirals that trigger the UPR and selectively disrupt accumulation of viral glycoproteins.IMPORTANCESecreted and transmembrane proteins are synthesized in the endoplasmic reticulum (ER), where they are folded and modified prior to transport. Many viruses rely on the ER for the synthesis and processing of viral glycoproteins that will ultimately be incorporated into viral envelopes. Viral burden on the ER can trigger the unfolded protein response (UPR). Much remains to be learned about how viruses co-opt the UPR to ensure efficient synthesis of viral glycoproteins. Here, we show that two FDA-approved thiopurine drugs, 6-TG and 6-TGo, induce the UPR, which represents a previously unrecognized effect of these drugs on cell physiology. This thiopurine-mediated UPR activation blocks influenza virus replication by impeding viral glycoprotein accumulation. Our findings suggest that 6-TG and 6-TGo may have broad antiviral effect against enveloped viruses that require precise tuning of the UPR to support viral glycoprotein synthesis.
Collapse
|
13
|
Mavroeidi P, Xilouri M. Neurons and Glia Interplay in α-Synucleinopathies. Int J Mol Sci 2021; 22:4994. [PMID: 34066733 PMCID: PMC8125822 DOI: 10.3390/ijms22094994] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/29/2021] [Accepted: 05/04/2021] [Indexed: 11/16/2022] Open
Abstract
Accumulation of the neuronal presynaptic protein alpha-synuclein within proteinaceous inclusions represents the key histophathological hallmark of a spectrum of neurodegenerative disorders, referred to by the umbrella term a-synucleinopathies. Even though alpha-synuclein is expressed predominantly in neurons, pathological aggregates of the protein are also found in the glial cells of the brain. In Parkinson's disease and dementia with Lewy bodies, alpha-synuclein accumulates mainly in neurons forming the Lewy bodies and Lewy neurites, whereas in multiple system atrophy, the protein aggregates mostly in the glial cytoplasmic inclusions within oligodendrocytes. In addition, astrogliosis and microgliosis are found in the synucleinopathy brains, whereas both astrocytes and microglia internalize alpha-synuclein and contribute to the spread of pathology. The mechanisms underlying the pathological accumulation of alpha-synuclein in glial cells that under physiological conditions express low to non-detectable levels of the protein are an area of intense research. Undoubtedly, the presence of aggregated alpha-synuclein can disrupt glial function in general and can contribute to neurodegeneration through numerous pathways. Herein, we summarize the current knowledge on the role of alpha-synuclein in both neurons and glia, highlighting the contribution of the neuron-glia connectome in the disease initiation and progression, which may represent potential therapeutic target for a-synucleinopathies.
Collapse
Affiliation(s)
| | - Maria Xilouri
- Center of Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece;
| |
Collapse
|
14
|
Popovic R, Celardo I, Yu Y, Costa AC, Loh SHY, Martins LM. Combined Transcriptomic and Proteomic Analysis of Perk Toxicity Pathways. Int J Mol Sci 2021; 22:4598. [PMID: 33925631 PMCID: PMC8124185 DOI: 10.3390/ijms22094598] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/19/2021] [Accepted: 04/23/2021] [Indexed: 12/17/2022] Open
Abstract
In Drosophila, endoplasmic reticulum (ER) stress activates the protein kinase R-like endoplasmic reticulum kinase (dPerk). dPerk can also be activated by defective mitochondria in fly models of Parkinson's disease caused by mutations in pink1 or parkin. The Perk branch of the unfolded protein response (UPR) has emerged as a major toxic process in neurodegenerative disorders causing a chronic reduction in vital proteins and neuronal death. In this study, we combined microarray analysis and quantitative proteomics analysis in adult flies overexpressing dPerk to investigate the relationship between the transcriptional and translational response to dPerk activation. We identified tribbles and Heat shock protein 22 as two novel Drosophila activating transcription factor 4 (dAtf4) regulated transcripts. Using a combined bioinformatics tool kit, we demonstrated that the activation of dPerk leads to translational repression of mitochondrial proteins associated with glutathione and nucleotide metabolism, calcium signalling and iron-sulphur cluster biosynthesis. Further efforts to enhance these translationally repressed dPerk targets might offer protection against Perk toxicity.
Collapse
Affiliation(s)
| | | | | | | | | | - L. Miguel Martins
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge CB2 1QR, UK; (R.P.); (I.C.); (Y.Y.); (A.C.C.); (S.H.Y.L.)
| |
Collapse
|
15
|
Abstract
Glucose-regulating protein 78 (GRP78) is a molecular chaperone in the endoplasmic reticulum (ER) that promotes folding and assembly of proteins, controls the quality of proteins, and regulates ER stress signaling through Ca2+ binding to the ER. In tumors, GRP78 is often upregulated, acting as a central stress sensor that senses and adapts to changes in the tumor microenvironment, mediating ER stress of cancer cells under various stimulations of the microenvironment to trigger the folding protein response. Increasing evidence has shown that GRP78 is closely associated with the progression and poor prognosis of lung cancer, and plays an important role in the treatment of lung cancer. Herein, we reviewed for the first time the functions and mechanisms of GRP78 in the pathological processes of lung cancer, including tumorigenesis, apoptosis, autophagy, progression, and drug resistance, giving a comprehensive understanding of the function of GRP78 in lung cancer. In addition, we also discussed the potential role of GRP78 as a prognostic biomarker and therapeutic target for lung cancer, which is conducive to improving the assessment of lung cancer and the development of new therapeutic interventions.
Collapse
Affiliation(s)
- Shengkai Xia
- Department of Respiratory Medicine, The Second Hospital, Dalian Medical University, No. 467 Zhongshan Road, Dalian, 116023, China
| | - Wenzhe Duan
- Department of Respiratory Medicine, The Second Hospital, Dalian Medical University, No. 467 Zhongshan Road, Dalian, 116023, China
| | - Wenwen Liu
- Cancer Translational Medicine Research Center, The Second Hospital, Dalian Medical University, Dalian, 116023, China
| | - Xinri Zhang
- Department of Respiratory and Critical Care Medicine, The First Hospital, Shanxi Medical University, No. 85 Jiefang South Road, Taiyuan, 030001, Shanxi, China.
| | - Qi Wang
- Department of Respiratory Medicine, The Second Hospital, Dalian Medical University, No. 467 Zhongshan Road, Dalian, 116023, China. .,Cancer Translational Medicine Research Center, The Second Hospital, Dalian Medical University, Dalian, 116023, China.
| |
Collapse
|
16
|
Kim JW, Cho YB, Lee S. Cell Surface GRP94 as a Novel Emerging Therapeutic Target for Monoclonal Antibody Cancer Therapy. Cells 2021; 10:cells10030670. [PMID: 33802964 PMCID: PMC8002708 DOI: 10.3390/cells10030670] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/11/2021] [Accepted: 03/14/2021] [Indexed: 12/15/2022] Open
Abstract
Glucose-regulated protein 94 (GRP94) is an endoplasmic reticulum (ER)-resident member of the heat shock protein 90 (HSP90) family. In physiological conditions, it plays a vital role in regulating biological functions, including chaperoning cellular proteins in the ER lumen, maintaining calcium homeostasis, and modulating immune system function. Recently, several reports have shown the functional role and clinical relevance of GRP94 overexpression in the progression and metastasis of several cancers. Therefore, the current review highlights GRP94’s physiological and pathophysiological roles in normal and cancer cells. Additionally, the unmet medical needs of small chemical inhibitors and the current development status of monoclonal antibodies specifically targeting GRP94 will be discussed to emphasize the importance of cell surface GRP94 as an emerging therapeutic target in monoclonal antibody therapy for cancer.
Collapse
|
17
|
Kacal M, Zhang B, Hao Y, Norberg E, Vakifahmetoglu-Norberg H. Quantitative proteomic analysis of temporal lysosomal proteome and the impact of the KFERQ-like motif and LAMP2A in lysosomal targeting. Autophagy 2021; 17:3865-3874. [PMID: 33446043 PMCID: PMC8632328 DOI: 10.1080/15548627.2021.1876343] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Autophagic pathways are regulated mechanisms that play important roles in lysosome-mediated cellular degradation. Yet, the contribution of different autophagic pathways in lysosomal targeting, and characterization of the extent and specificity in their degradome remains largely uncharacterized. By undertaking a multiplex quantitative mass spectrometry approach, we have previously analyzed the lysosomal proteome during chaperone-mediated autophagy (CMA)-stimulated conditions in cancer cells. Here, we have extended our multiplex quantitative mass spectrometry and bioinformatics analysis on the proteome from isolated lysosomes to gain a comprehensive view of the temporal enriched lysosomal content upon non-macroautophagy-activated conditions. In parallel, we describe the functional dependency of LAMP2A on, and to what degree the presence of KFERQ-like motifs in proteins influences, their lysosomal targeting. These findings establish a framework for a better understanding of the degradome mediated by autophagic pathways beyond macroautophagy, and present characterization of the impact of LAMP2A in lysosomal targeting in cancer cells. Abbreviations: CMA: chaperone-mediated autophagy; ER: endoplasmic reticulum; EIF4A1: eukaryotic translation initiation factor 4A1; eMI: endosomal microautophagy; FC: fold change; GO: gene ontology; ISR: integrated stress response; LAMP2A: lysosomal associated membrane protein 2A; MA: macroautophagy; MI: microautophagy; MS: mass spectrometry; PCA: principal component analysis; TAX1BP1: Tax1 binding protein 1.
Collapse
Affiliation(s)
- Merve Kacal
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Boxi Zhang
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Yuqing Hao
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Erik Norberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
18
|
Using Serological Proteome Analysis to Identify and Evaluate Anti-GRP78 Autoantibody as Biomarker in the Detection of Gastric Cancer. JOURNAL OF ONCOLOGY 2020; 2020:9430737. [PMID: 33381181 PMCID: PMC7762641 DOI: 10.1155/2020/9430737] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 11/05/2020] [Accepted: 11/11/2020] [Indexed: 01/03/2023]
Abstract
The serological biomarkers as noninvasive tests are the most promising way for diagnosing gastric cancer (GC). Serological proteome analysis (SERPA) has been used to identify tumor-associated antigens (TAAs) and the corresponding autoantibodies in many studies. To explore the relationship between gastric cancer development and serum autoantibody anti-GRP78 response found by the method of SERPA with the GC cell line AGS, we included two cohorts (133 GC and 133 normal individuals in test group; 300 GC and 300 normal individuals in validation group) of patients with newly diagnosed GC for verification. All GC and normal controls were matched by age and gender. The autoantibody levels of the sera in two cohorts were measured by immunoassay. Finally, the results showed that 78-kDa glucose-regulated protein (GRP78) was identified in GC by SERPA and the level of anti-GRP78 antibody in GC was higher than that in normal individuals in the two cohorts. Receiver operating characteristic (ROC) curve analysis showed similar diagnostic value of anti-GRP78 antibody in test group (AUC: 0.718) and validation group (AUC: 0.666) to identify GC patients from normal individuals. The AUCs of anti-GRP78 autoantibody in the diagnosis of GC patients with different clinical characteristic ranged from 0.676 to 0.773 in test group and ranged from 0.645 to 0.707 in validation group. In conclusion, autoantibody against GRP78 might be a potential diagnostic biomarker. Further large-scale studies will be needed to validate and improve its performance of the sensitivity, specificity, and AUC value in distinguishing GC from other diseases.
Collapse
|
19
|
Dores-Silva PR, Cauvi DM, Coto ALS, Kiraly VTR, Borges JC, De Maio A. Interaction of HSPA5 (Grp78, BIP) with negatively charged phospholipid membranes via oligomerization involving the N-terminal end domain. Cell Stress Chaperones 2020; 25:979-991. [PMID: 32725381 PMCID: PMC7385938 DOI: 10.1007/s12192-020-01134-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/25/2020] [Accepted: 06/30/2020] [Indexed: 02/07/2023] Open
Abstract
Heat shock proteins (HSPs) are ubiquitous polypeptides expressed in all living organisms that participate in several basic cellular processes, including protein folding, from which their denomination as molecular chaperones originated. There are several HSPs, including HSPA5, also known as 78-kDa glucose-regulated protein (GRP78) or binding immunoglobulin protein (BIP) that is an ER resident involved in the folding of polypeptides during their translocation into this compartment prior to the transition to the Golgi network. HSPA5 is detected on the surface of cells or secreted into the extracellular environment. Surface HSPA5 has been proposed to have various roles, such as receptor-mediated signal transduction, a co-receptor for soluble ligands, as well as a participant in tumor survival, proliferation, and resistance. Recently, surface HSPA5 has been reported to be a potential receptor of some viruses, including the novel SARS-CoV-2. In spite of these observations, the association of HSPA5 within the plasma membrane is still unclear. To gain information about this process, we studied the interaction of HSPA5 with liposomes made of different phospholipids. We found that HSPA5 has a high affinity for negatively charged phospholipids, such as palmitoyl-oleoyl phosphoserine (POPS) and cardiolipin (CL). The N-terminal and C-terminal domains of HSPA5 were independently capable of interacting with negatively charged phospholipids, but to a lesser extent than the full-length protein, suggesting that both domains are required for the maximum insertion into membranes. Interestingly, we found that the interaction of HSPA5 with negatively charged liposomes promotes an oligomerization process via intermolecular disulfide bonds in which the N-terminus end of the protein plays a critical role.
Collapse
Affiliation(s)
- Paulo Roberto Dores-Silva
- Division of Trauma, Critical Care, Burns and Acute Care Surgery, Department of Surgery, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
- São Carlos Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - David M Cauvi
- Division of Trauma, Critical Care, Burns and Acute Care Surgery, Department of Surgery, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Amanda L S Coto
- São Carlos Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Vanessa T R Kiraly
- São Carlos Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Júlio C Borges
- São Carlos Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Antonio De Maio
- Division of Trauma, Critical Care, Burns and Acute Care Surgery, Department of Surgery, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA.
- Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
20
|
Wang M, Liu S, Zhou B, Wang J, Ping H, Xing N. RRBP1 is highly expressed in bladder cancer and is associated with migration and invasion. Oncol Lett 2020; 20:203. [PMID: 32963609 PMCID: PMC7491031 DOI: 10.3892/ol.2020.12066] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 07/28/2020] [Indexed: 12/15/2022] Open
Abstract
Ribosome-binding protein 1 (RRBP1) is a marker for colorectal, lung, esophageal and prostate cancer. However, the association between RRBP1 and bladder cancer is not completely understood. The present study aimed to evaluate the expression and function of RRBP1 in bladder cancer. The association between RRBP1 expression and clinicopathological characteristics, as well as the prognosis of bladder cancer was analyzed. RRBP1 expression was further analyzed in bladder cancer cell lines via reverse transcription-quantitative PCR and western blotting. RRBP1 knockdown was established using short hairpin RNAs to investigate the function of RRBP1 in T24 cells. Compared with healthy bladder tissue, RRBP1 expression levels were significantly upregulated in bladder cancer tissue. High RRBP1 expression was associated with tumor stage, lymph node metastasis and shorter overall survival time. RRBP1 protein was highly expressed in bladder cancer cell lines compared with normal SV-HUC-1 cells. Compared with the control group, RRBP1 knockdown inhibited T24 migration and invasion by downregulating the expression of C-C chemokine receptor type 7 (CCR7) protein. In conclusion, the present study indicated that RRBP1 was associated with bladder cancer migration, invasion and prognosis, and CCR7 might serve a role in the process.
Collapse
Affiliation(s)
- Mingshuai Wang
- Department of Urology, Institute of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | - Sai Liu
- Department of Urology, Institute of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | - Bolin Zhou
- Department of Urology, Institute of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | - Jianwen Wang
- Department of Urology, Institute of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | - Hao Ping
- Department of Urology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P.R. China
| | - Nianzeng Xing
- Department of Urology, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| |
Collapse
|
21
|
Norovirus infection results in eIF2α independent host translation shut-off and remodels the G3BP1 interactome evading stress granule formation. PLoS Pathog 2020; 16:e1008250. [PMID: 31905230 PMCID: PMC6964919 DOI: 10.1371/journal.ppat.1008250] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 01/16/2020] [Accepted: 12/04/2019] [Indexed: 12/14/2022] Open
Abstract
Viral infections impose major stress on the host cell. In response, stress pathways can rapidly deploy defence mechanisms by shutting off the protein synthesis machinery and triggering the accumulation of mRNAs into stress granules to limit the use of energy and nutrients. Because this threatens viral gene expression, viruses need to evade these pathways to propagate. Human norovirus is responsible for gastroenteritis outbreaks worldwide. Here we examined how norovirus interacts with the eIF2α signaling axis controlling translation and stress granules. While norovirus infection represses host cell translation, our mechanistic analyses revealed that eIF2α signaling mediated by the stress kinase GCN2 is uncoupled from translational stalling. Moreover, infection results in a redistribution of the RNA-binding protein G3BP1 to replication complexes and remodelling of its interacting partners, allowing the avoidance from canonical stress granules. These results define novel strategies by which norovirus undergo efficient replication whilst avoiding the host stress response and manipulating the G3BP1 interactome. Viruses have evolved elegant strategies to evade host responses that restrict viral propagation by targeting the protein synthesis machinery and stress granules, which are membrane-less RNA granules with antiviral properties. Previous studies have unravelled how viruses, including norovirus the leading cause of gastroenteritis, regulate the activity of translation factors to affect the antiviral response. Furthermore, stress granules evasion strategies have been linked to targeting the scaffolding protein G3BP1. Here we dissect how murine norovirus, the main model for norovirus, evades the cellular stress responses. Our work challenges the dogma that translational control during infection is mainly mediated by eIF2α and demonstrate that norovirus evades this stress pathway. We further show that norovirus evades the stress granule response in a novel way by isolating and characterising the G3BP1 interactome for the first time in the context of a viral infection. We conclude that norovirus infection results in a redistribution of G3BP1 and its cellular partners to replication complexes, thereby preventing the assembly of stress granules. Overall, we define a novel evasion strategy by which norovirus escapes stress granule formation by rewiring the G3BP1 interactome.
Collapse
|
22
|
Wang WA, Agellon LB, Michalak M. Organellar Calcium Handling in the Cellular Reticular Network. Cold Spring Harb Perspect Biol 2019; 11:cshperspect.a038265. [PMID: 31358518 DOI: 10.1101/cshperspect.a038265] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ca2+ is an important intracellular messenger affecting diverse cellular processes. In eukaryotic cells, Ca2+ is handled by a myriad of Ca2+-binding proteins found in organelles that are organized into the cellular reticular network (CRN). The network is comprised of the endoplasmic reticulum, Golgi apparatus, lysosomes, membranous components of the endocytic and exocytic pathways, peroxisomes, and the nuclear envelope. Membrane contact sites between the different components of the CRN enable the rapid movement of Ca2+, and communication of Ca2+ status, within the network. Ca2+-handling proteins that reside in the CRN facilitate Ca2+ sensing, buffering, and cellular signaling to coordinate the many processes that operate within the cell.
Collapse
Affiliation(s)
- Wen-An Wang
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2S7, Canada
| | - Luis B Agellon
- School of Human Nutrition, McGill University, Ste. Anne de Bellevue, Quebec H9X 3V9, Canada
| | - Marek Michalak
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2S7, Canada
| |
Collapse
|
23
|
Abstract
ABSTRACT
For most of the proteins synthesized in the endoplasmic reticulum (ER), disulfide bond formation accompanies protein folding in a process called oxidative folding. Oxidative folding is catalyzed by a number of enzymes, including the family of protein disulfide isomerases (PDIs), as well as other proteins that supply oxidizing equivalents to PDI family proteins, like ER oxidoreductin 1 (Ero1). Oxidative protein folding in the ER is a basic vital function, and understanding its molecular mechanism is critical for the application of plants as protein production tools. Here, I review the recent research and progress related to the enzymes involved in oxidative folding in the plant ER. Firstly, nine groups of plant PDI family proteins are introduced. Next, the enzymatic properties of plant Ero1 are described. Finally, the cooperative folding by multiple PDI family proteins and Ero1 is described.
Collapse
Affiliation(s)
- Reiko Urade
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Osaka, Japan
| |
Collapse
|
24
|
Turan B. A Brief Overview from the Physiological and Detrimental Roles of Zinc Homeostasis via Zinc Transporters in the Heart. Biol Trace Elem Res 2019; 188:160-176. [PMID: 30091070 DOI: 10.1007/s12011-018-1464-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 07/26/2018] [Indexed: 12/15/2022]
Abstract
Zinc (mostly as free/labile Zn2+) is an essential structural constituent of many proteins, including enzymes in cellular signaling pathways via functioning as an important signaling molecule in mammalian cells. In cardiomyocytes at resting condition, intracellular labile Zn2+ concentration ([Zn2+]i) is in the nanomolar range, whereas it can increase dramatically under pathological conditions, including hyperglycemia, but the mechanisms that affect its subcellular redistribution is not clear. Therefore, overall, very little is known about the precise mechanisms controlling the intracellular distribution of labile Zn2+, particularly via Zn2+ transporters during cardiac function under both physiological and pathophysiological conditions. Literature data demonstrated that [Zn2+]i homeostasis in mammalian cells is primarily coordinated by Zn2+ transporters classified as ZnTs (SLC30A) and ZIPs (SLC39A). To identify the molecular mechanisms of diverse functions of labile Zn2+ in the heart, the recent studies focused on the discovery of subcellular localization of these Zn2+ transporters in parallel to the discovery of novel physiological functions of [Zn2+]i in cardiomyocytes. The present review summarizes the current understanding of the role of [Zn2+]i changes in cardiomyocytes under pathological conditions, and under high [Zn2+]i and how Zn2+ transporters are important for its subcellular redistribution. The emerging importance and the promise of some Zn2+ transporters for targeted cardiac therapy against pathological stimuli are also provided. Taken together, the review clearly outlines cellular control of cytosolic Zn2+ signaling by Zn2+ transporters, the role of Zn2+ transporters in heart function under hyperglycemia, the role of Zn2+ under increased oxidative stress and ER stress, and their roles in cancer are discussed.
Collapse
Affiliation(s)
- Belma Turan
- Department of Biophysics, Faculty of Medicine, Ankara University, Ankara, Turkey.
| |
Collapse
|
25
|
Pagare PP, Wang H, Wang XY, Zhang Y. Understanding the role of glucose regulated protein 170 (GRP170) as a nucleotide exchange factor through molecular simulations. J Mol Graph Model 2018; 85:160-170. [PMID: 30205291 PMCID: PMC6197907 DOI: 10.1016/j.jmgm.2018.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 08/03/2018] [Accepted: 09/02/2018] [Indexed: 01/10/2023]
Abstract
Glucose Regulated Protein 170 (GRP170), also called Oxygen Regulated Protein 150 (ORP150), is a major molecular chaperone resident in the endoplasmic reticulum (ER). It belongs to the heat shock protein (HSP70) super family and can be induced by conditions such as hypoxia, ischemia and interferences in calcium homeostasis. It was recently reported that GRP170 may act as a nucleotide exchange factor (NEF) for GRP78 or binding immunoglobulin protein (BiP), and the ER canonical HSP70. However, little is known about the mechanism underlying its NEF activity. In this study, two homology models of GRP170 were constructed based on the X-ray crystal structures of ADP and ATP bound HSP110, a cytosolic homolog of GRP170, in order to characterize the differences in the binding modes of both ligands. It was observed that the differences in the binding modes of ADP and ATP led to a conformation change in the substrate binding domain which could potentially influence the binding of its substrates such as BiP. Our findings help understand the effect of nucleotide binding on the function of this chaperone protein as a NEF as well as the structural differences between GRP170 and its family members.
Collapse
Affiliation(s)
- Piyusha P Pagare
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 East Leigh Street, Richmond, VA, 23298, USA
| | - Huiqun Wang
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 East Leigh Street, Richmond, VA, 23298, USA
| | - Xiang-Yang Wang
- Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA; Institute of Molecular Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA; Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Yan Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 East Leigh Street, Richmond, VA, 23298, USA; Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, 23298, USA.
| |
Collapse
|
26
|
Causey DR, Pohl MAN, Stead DA, Martin SAM, Secombes CJ, Macqueen DJ. High-throughput proteomic profiling of the fish liver following bacterial infection. BMC Genomics 2018; 19:719. [PMID: 30285610 PMCID: PMC6167799 DOI: 10.1186/s12864-018-5092-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 09/19/2018] [Indexed: 02/07/2023] Open
Abstract
Background High-throughput proteomics was used to determine the role of the fish liver in defense responses to bacterial infection. This was done using a rainbow trout (Oncorhynchus mykiss) model following infection with Aeromonas salmonicida, the causative agent of furunculosis. The vertebrate liver has multifaceted functions in innate immunity, metabolism, and growth; we hypothesize this tissue serves a dual role in supporting host defense in parallel to metabolic adjustments that promote effective immune function. While past studies have reported mRNA responses to A. salmonicida in salmonids, the impact of bacterial infection on the liver proteome remains uncharacterized in fish. Results Rainbow trout were injected with A. salmonicida or PBS (control) and liver extracted 48 h later for analysis on a hybrid quadrupole-Orbitrap mass spectrometer. A label-free method was used for protein abundance profiling, which revealed a strong innate immune response along with evidence to support parallel rewiring of metabolic and growth systems. 3076 proteins were initially identified against all proteins (n = 71,293 RefSeq proteins) annotated in a single high-quality rainbow trout reference genome, of which 2433 were maintained for analysis post-quality filtering. Among the 2433 proteins, 109 showed significant differential abundance following A. salmonicida challenge, including many upregulated complement system and acute phase response proteins, in addition to molecules with putative functions that may support metabolic re-adjustments. We also identified novel expansions in the complement system due to gene and whole genome duplication events in salmonid evolutionary history, including eight C3 proteins showing differential changes in abundance. Conclusions This study provides the first high-throughput proteomic examination of the fish liver in response to bacterial challenge, revealing novel markers for the host defense response, and evidence of metabolic remodeling in conjunction with activation of innate immunity. Electronic supplementary material The online version of this article (10.1186/s12864-018-5092-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dwight R Causey
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | - Moritz A N Pohl
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | - David A Stead
- Aberdeen Proteomics, University of Aberdeen, The Rowett Institute, Aberdeen, UK
| | | | | | - Daniel J Macqueen
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK.
| |
Collapse
|
27
|
Manalo RVM, Medina PMB. The endoplasmic reticulum stress response in disease pathogenesis and pathophysiology. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2018. [DOI: 10.1016/j.ejmhg.2017.07.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
28
|
Wang Y, Wang JH, Zhang XL, Wang XL, Yang L. Endoplasmic reticulum chaperone glucose-regulated protein 78 in gastric cancer: An emerging biomarker. Oncol Lett 2018; 15:6087-6093. [PMID: 29616092 DOI: 10.3892/ol.2018.8114] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 06/15/2017] [Indexed: 12/17/2022] Open
Abstract
The endoplasmic reticulum (ER) is the principal organelle responsible for the synthesis, initial post-translational modification, folding, export and secretion of proteins. It is also responsible for the maintenance of cellular homeostasis. In response to cellular stress conditions including glucose deprivation, hypoxia and changes in calcium homeostasis, ER stress machinery is activated and triggers the unfolded protein response, resulting in the restoration of homeostasis or activation of cell death. Glucose-regulated protein 78 (GRP78), a molecular chaperone, may be induced by ER stress at the transcriptional and translational level. A number of studies have demonstrated that GRP78 serves an important role in tumor cell proliferation, metastasis, angiogenesis and drug-resistance. The present review systematically describes the association between GRP78 expression and gastric cancer pathogenesis, and emphasizes that GRP78 is a novel diagnostic and therapeutic biomarker of gastric cancer.
Collapse
Affiliation(s)
- Yan Wang
- Department of Medical Oncology, Nantong University Affiliated Tumor Hospital, Nantong, Jiangsu 226361, P.R. China
| | - Jian-Hong Wang
- Department of Medical Oncology, Nantong University Affiliated Tumor Hospital, Nantong, Jiangsu 226361, P.R. China
| | - Xun-Lei Zhang
- Department of Medical Oncology, Nantong University Affiliated Tumor Hospital, Nantong, Jiangsu 226361, P.R. China
| | - Xiao-Li Wang
- Department of Medical Oncology, Nantong University Affiliated Tumor Hospital, Nantong, Jiangsu 226361, P.R. China
| | - Lei Yang
- Department of Medical Oncology, Nantong University Affiliated Tumor Hospital, Nantong, Jiangsu 226361, P.R. China
| |
Collapse
|
29
|
Hydrogen-rich saline protects against small-scale liver ischemia-reperfusion injury by inhibiting endoplasmic reticulum stress. Life Sci 2018; 194:7-14. [DOI: 10.1016/j.lfs.2017.12.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 12/13/2017] [Accepted: 12/14/2017] [Indexed: 12/11/2022]
|
30
|
Chen HY, Chang JTC, Chien KY, Lee YS, You GR, Cheng AJ. The Endogenous GRP78 Interactome in Human Head and Neck Cancers: A Deterministic Role of Cell Surface GRP78 in Cancer Stemness. Sci Rep 2018; 8:536. [PMID: 29323121 PMCID: PMC5765009 DOI: 10.1038/s41598-017-14604-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 10/09/2017] [Indexed: 12/04/2022] Open
Abstract
Cell surface glucose regulated protein 78 (GRP78), an endoplasmic reticulum (ER) chaperone, was suggested to be a cancer stem cell marker, but the influence of this molecule on cancer stemness is poorly characterized. In this study, we developed a mass spectrometry platform to detect the endogenous interactome of GRP78 and investigated its role in cancer stemness. The interactome results showed that cell surface GRP78 associates with multiple molecules. The influence of cell population heterogeneity of head and neck cancer cell lines (OECM1, FaDu, and BM2) according to the cell surface expression levels of GRP78 and the GRP78 interactome protein, Progranulin, was investigated. The four sorted cell groups exhibited distinct cell cycle distributions, asymmetric/symmetric cell divisions, and different relative expression levels of stemness markers. Our results demonstrate that cell surface GRP78 promotes cancer stemness, whereas drives cells toward a non-stemlike phenotype when it chaperones Progranulin. We conclude that cell surface GRP78 is a chaperone exerting a deterministic influence on cancer stemness.
Collapse
Affiliation(s)
- Hsin-Ying Chen
- Graduate Institute of Biomedical Sciences, Chang Gung University College of Medicine, Tao-Yuan, Taiwan
| | | | - Kun-Yi Chien
- Graduate Institute of Biomedical Sciences, Chang Gung University College of Medicine, Tao-Yuan, Taiwan.,Proteomics Core Laboratory, Molecular Medicine Research Center, Chang Gung University, Tao-Yuan, Taiwan
| | - Yun-Shien Lee
- Genomic Medicine Research Core Laboratory, Chang Gung Memorial Hospital, Tao-Yuan, Taiwan.,Department of Biotechnology, Ming Chuan University, Tao-Yuan, Taiwan
| | - Guo-Rung You
- Graduate Institute of Biomedical Sciences, Chang Gung University College of Medicine, Tao-Yuan, Taiwan
| | - Ann-Joy Cheng
- Graduate Institute of Biomedical Sciences, Chang Gung University College of Medicine, Tao-Yuan, Taiwan. .,Department of Radiation Oncology, Chang Gung Memorial Hospital, Tao-Yuan, Taiwan. .,Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan.
| |
Collapse
|
31
|
Lassen LB, Reimer L, Ferreira N, Betzer C, Jensen PH. Protein Partners of α-Synuclein in Health and Disease. Brain Pathol 2018; 26:389-97. [PMID: 26940507 DOI: 10.1111/bpa.12374] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 01/04/2016] [Accepted: 01/11/2016] [Indexed: 12/30/2022] Open
Abstract
α-synuclein is normally situated in the nerve terminal but it accumulates and aggregates in axons and cell bodies in synucleinopathies such as Parkinson's disease. The conformational changes occurring during α-synucleins aggregation process affects its interactions with other proteins and its subcellular localization. This review focuses on interaction partners of α-synuclein within different compartments of the cell with a focus on those preferentially binding aggregated α-synuclein. The aggregation state of α-synuclein also affects its catabolism and we hypothesize impaired macroautophagy is involved neuronal excretion of α-synuclein species responsible for the prion-like spreading of α-synuclein pathology.
Collapse
Affiliation(s)
- Louise Berkhoudt Lassen
- DANDRITE-Danish Research Institute of Translational Neuroscience & Department of Biomedicine, University of Aarhus, Aarhus, Denmark
| | - Lasse Reimer
- DANDRITE-Danish Research Institute of Translational Neuroscience & Department of Biomedicine, University of Aarhus, Aarhus, Denmark
| | - Nelson Ferreira
- DANDRITE-Danish Research Institute of Translational Neuroscience & Department of Biomedicine, University of Aarhus, Aarhus, Denmark
| | - Cristine Betzer
- DANDRITE-Danish Research Institute of Translational Neuroscience & Department of Biomedicine, University of Aarhus, Aarhus, Denmark
| | - Poul Henning Jensen
- DANDRITE-Danish Research Institute of Translational Neuroscience & Department of Biomedicine, University of Aarhus, Aarhus, Denmark
| |
Collapse
|
32
|
Ellgaard L, Sevier CS, Bulleid NJ. How Are Proteins Reduced in the Endoplasmic Reticulum? Trends Biochem Sci 2018; 43:32-43. [PMID: 29153511 PMCID: PMC5751730 DOI: 10.1016/j.tibs.2017.10.006] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 10/23/2017] [Accepted: 10/24/2017] [Indexed: 12/16/2022]
Abstract
The reversal of thiol oxidation in proteins within the endoplasmic reticulum (ER) is crucial for protein folding, degradation, chaperone function, and the ER stress response. Our understanding of this process is generally poor but progress has been made. Enzymes performing the initial reduction of client proteins, as well as the ultimate electron donor in the pathway, have been identified. Most recently, a role for the cytosol in ER protein reduction has been revealed. Nevertheless, how reducing equivalents are transferred from the cytosol to the ER lumen remains an open question. We review here why proteins are reduced in the ER, discuss recent data on catalysis of steps in the pathway, and consider the implications for redox homeostasis within the early secretory pathway.
Collapse
Affiliation(s)
- Lars Ellgaard
- Department of Biology, University of Copenhagen, 2200 Copenhagen, Denmark.
| | - Carolyn S Sevier
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853-2703, USA.
| | - Neil J Bulleid
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK.
| |
Collapse
|
33
|
Shafeeq T, UlAbdin Z, Lee KY. Induction of stress- and immune-associated genes in the Indian meal moth Plodia interpunctella against envenomation by the ectoparasitoid Bracon hebetor. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2017; 96:e21405. [PMID: 28730731 DOI: 10.1002/arch.21405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Envenomation is an important process in parasitism by parasitic wasps; it suppresses the immune and development of host insects. However, the molecular mechanisms of host responses to envenomation are not yet clear. This study aimed to determine the transcription-level responses of the Indian meal moth Plodia interpunctella against envenomation of the ectoparasitoid Bracon hebetor. Quantitative real-time reverse-transcription PCR was used to determine the transcriptional changes of 13 selected genes, which are associated with development, metabolism, stress, or immunity, in the feeding and wandering fifth instar larvae over a 4-day period after envenomation. The effects of envenomation on the feeding-stage larvae were compared with those of starvation in the transcriptional levels of the 13 genes. Most selected genes were altered in their expression by either envenomation or starvation. In particular, a heat shock protein, hsp70, was highly upregulated in envenomated larvae in both the feeding and wandering stages as well as in starved larvae. Further, some genes were upregulated by envenomation in a stage-specific manner. For example, hsp25 was upregulated after envenomation in the feeding larvae, but hsp90 and an immune-associated gene, hemolin, were upregulated in the wandering larvae. However, both envenomation and starvation resulted in the downregulation of genes associated with development and metabolism. Taken together, P. interpunctella upregulated stress- and immune-responsive genes, but downregulated genes associated with development and metabolism after envenomation. This study provides important information for understanding the molecular mechanisms of host responses to parasitism.
Collapse
Affiliation(s)
- Tahir Shafeeq
- Division of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, Republic of Korea
- Institute of Plant Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Zain UlAbdin
- Department of Entomology, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Kyeong-Yeoll Lee
- Division of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, Republic of Korea
- Institute of Plant Medicine, Kyungpook National University, Daegu, Republic of Korea
- Institute of Agricultural Science and Technology, Kyungpook National University, Daegu, Republic of Korea
- Sustainable Agriculture Research Center, Kyungpook National University, Gunwi, Republic of Korea
| |
Collapse
|
34
|
Chen X, Gao Y, Li D, Cao Y, Hao B. LncRNA-TP53TG1 Participated in the Stress Response Under Glucose Deprivation in Glioma. J Cell Biochem 2017; 118:4897-4904. [PMID: 28569381 DOI: 10.1002/jcb.26175] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 05/31/2017] [Indexed: 12/12/2022]
Abstract
Gliomas are the most common brain tumors of the center nervous system. And long non-coding RNAs (lncRNAs) are non-protein coding transcripts, which have been considered as one type of gene expression regulator for cancer development. In this study, we investigated the role of lncRNA-TP53TG1 in response to glucose deprivation in human gliomas. The expression levels of TP53TG1 in glioma tissues and cells were analyzed by qRT-PCR. In addition, the influence of TP53TG1 on glucose metabolism related genes at the mRNA level during both high and low glucose treatment was detected by qRT-PCR. MTT, clonogenicity assays, and flow cytometry were performed to detect the cell proliferation and cell apoptosis. Furthermore, the migration of glioma cells was examined by Transwell assays. The expression of TP53TG1 was significantly higher in human glioma tissues or cell lines compared with normal brain tissue or NHA. Moreover, TP53TG1 and some tumor glucose metabolism related genes, such as GRP78, LDHA, and IDH1 were up-regulated significantly in U87 and LN18 cells under glucose deprivation. In addition, knockdown of TP53TG1 decreased cell proliferation and migration and down-regulated GRP78 and IDH1 expression levels and up-regulated PKM2 levels in U87 cells under glucose deprivation. However, over-expression of TP53TG1 showed the opposite tendency. Moreover, the effects of TP53TG1 were more remarkable in low glucose than that in high glucose. Our data showed that TP53TG1 under glucose deprivation may promote cell proliferation and migration by influencing the expression of glucose metabolism related genes in glioma. J. Cell. Biochem. 118: 4897-4904, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Xin Chen
- Department of Brain and Spine Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Yang Gao
- Department of Brain and Spine Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Deheng Li
- Department of Brain and Spine Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Yiqun Cao
- Department of Brain and Spine Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Bin Hao
- Department of Brain and Spine Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| |
Collapse
|
35
|
Gao Z, Luo G, Ni B. Progress in mass spectrometry-based proteomic research of tumor hypoxia (Review). Oncol Rep 2017; 38:676-684. [PMID: 28656308 DOI: 10.3892/or.2017.5748] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 05/31/2017] [Indexed: 11/06/2022] Open
Abstract
A hypoxic microenvironment effects various signaling pathways in the human body, including those that are critical for normal physiology and those that support tumorigenesis or cancer progression. A hypoxic tumor microenvironment, in particular, modulates cell migration, invasion and resistance to radiotherapy and chemotherapy. Development of the mass spectrometry (MS) technique has allowed for expansion of proteomic study to a wide variety of fields, with the study of tumor hypoxia being among the latest to enjoy its benefits. In such studies, changes in the proteome of tumor tissue or cells induced by the hypoxic conditions are analyzed. A multitude of hypoxic regulatory proteins have already been identified, increasing our understanding of the mechanisms underlying tumor occurrence and development and representing candidate reference markers for tumor diagnosis and therapy. The present review provides the first summary of the collective studies on tumor microenvironment hypoxia that have been completed using MS-based proteomic techniques, providing a systematic discussion of the benefits and current challenges of the various applications.
Collapse
Affiliation(s)
- Zhiqi Gao
- Department of Pathophysiology and High Altitude Pathology/Key Laboratory of High Altitude Environment Medicine (Third Military Medical University), Ministry of Education/Key Laboratory of High Altitude Medicine, College of High Altitude Military Medicine, Third Military Medical University, Chongqing 400038, P.R. China
| | - Gang Luo
- Department of Pathophysiology and High Altitude Pathology/Key Laboratory of High Altitude Environment Medicine (Third Military Medical University), Ministry of Education/Key Laboratory of High Altitude Medicine, College of High Altitude Military Medicine, Third Military Medical University, Chongqing 400038, P.R. China
| | - Bing Ni
- Department of Pathophysiology and High Altitude Pathology/Key Laboratory of High Altitude Environment Medicine (Third Military Medical University), Ministry of Education/Key Laboratory of High Altitude Medicine, College of High Altitude Military Medicine, Third Military Medical University, Chongqing 400038, P.R. China
| |
Collapse
|
36
|
BAP1 inhibits the ER stress gene regulatory network and modulates metabolic stress response. Proc Natl Acad Sci U S A 2017; 114:3192-3197. [PMID: 28275095 DOI: 10.1073/pnas.1619588114] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The endoplasmic reticulum (ER) is classically linked to metabolic homeostasis via the activation of unfolded protein response (UPR), which is instructed by multiple transcriptional regulatory cascades. BRCA1 associated protein 1 (BAP1) is a tumor suppressor with de-ubiquitinating enzyme activity and has been implicated in chromatin regulation of gene expression. Here we show that BAP1 inhibits cell death induced by unresolved metabolic stress. This prosurvival role of BAP1 depends on its de-ubiquitinating activity and correlates with its ability to dampen the metabolic stress-induced UPR transcriptional network. BAP1 inhibits glucose deprivation-induced reactive oxygen species and ATP depletion, two cellular events contributing to the ER stress-induced cell death. In line with this, Bap1 KO mice are more sensitive to tunicamycin-induced renal damage. Mechanically, we show that BAP1 represses metabolic stress-induced UPR and cell death through activating transcription factor 3 (ATF3) and C/EBP homologous protein (CHOP), and reveal that BAP1 binds to ATF3 and CHOP promoters and inhibits their transcription. Taken together, our results establish a previously unappreciated role of BAP1 in modulating the cellular adaptability to metabolic stress and uncover a pivotal function of BAP1 in the regulation of the ER stress gene-regulatory network. Our study may also provide new conceptual framework for further understanding BAP1 function in cancer.
Collapse
|
37
|
Moon JY, Lee JH, Oh C, Kang H, Park JM. Endoplasmic reticulum stress responses function in the HRT-mediated hypersensitive response in Nicotiana benthamiana. MOLECULAR PLANT PATHOLOGY 2016; 17:1382-1397. [PMID: 26780303 PMCID: PMC6638521 DOI: 10.1111/mpp.12369] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 01/10/2016] [Accepted: 01/11/2016] [Indexed: 05/08/2023]
Abstract
HRT is a plant coiled-coil, nucleotide-binding and leucine-rich repeat (CC-NB-LRR) disease resistance protein that triggers the hypersensitive response (HR) on recognition of Turnip crinkle virus (TCV) coat protein (CP). The molecular mechanism and significance of HR-mediated cell death for TCV resistance have not been fully elucidated. To identify the genes involved in HRT/TCV CP-mediated HR in Nicotiana benthamiana, we performed virus-induced gene silencing (VIGS) of 459 expressed sequence tags (ESTs) of pathogen-responsive Capsicum annuum genes. VIGS of CaBLP5, which encodes an endoplasmic reticulum (ER)-associated immunoglobulin-binding protein (BiP), silenced NbBiP4 and NbBiP5 and significantly reduced HRT-mediated HR. The induction of ER stress-responsive genes and the accumulation of ER-targeted BiPs in response to HRT-mediated HR suggest that ER is involved in HR in N. benthamiana. BiP4/5 silencing significantly down-regulated HRT at the mRNA and protein levels, and affected SGT1 and HSP90 expression. Co-expression of TCV CP in BiP4/5-silenced plants completely abolished HRT induction. Transient expression of TCV CP alone induced selected ER stress-responsive gene transcripts only in Tobacco rattle virus (TRV)-infected plants, and most of these genes were induced by HRT/TCV CP, except for bZIP60, which was induced specifically in response to HRT/TCV CP. TCV CP-mediated induction of ER stress-responsive genes still occurred in BiP4/5-silenced plants, but HRT/TCV CP-mediated induction of these genes was defective. Tunicamycin, a chemical that inhibits protein N-glycosylation, inhibited HRT-mediated HR, suggesting that ER has a role in HR regulation. These results indicate that BiP and ER, which modulate pattern recognition receptors in innate immunity, also regulate R protein-mediated resistance.
Collapse
Affiliation(s)
- Ju Yeon Moon
- Molecular Biofarming Research CenterKRIBBDaejeon305‐600South Korea
- Department of Biosystems and BioengineeringUSTDaejeon305‐350South Korea
| | - Jeong Hee Lee
- Molecular Biofarming Research CenterKRIBBDaejeon305‐600South Korea
| | - Chang‐Sik Oh
- Department of HorticultureKyung Hee UniversityYongin446‐701South Korea
| | - Hong‐Gu Kang
- Department of BiologyTexas State UniversitySan MarcosTX78666USA
| | - Jeong Mee Park
- Molecular Biofarming Research CenterKRIBBDaejeon305‐600South Korea
- Department of Biosystems and BioengineeringUSTDaejeon305‐350South Korea
| |
Collapse
|
38
|
Patel MR, Kozuch SD, Cultrara CN, Yadav R, Huang S, Samuni U, Koren J, Chiosis G, Sabatino D. RNAi Screening of the Glucose-Regulated Chaperones in Cancer with Self-Assembled siRNA Nanostructures. NANO LETTERS 2016; 16:6099-6108. [PMID: 27669096 PMCID: PMC5378679 DOI: 10.1021/acs.nanolett.6b02274] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The emerging field of RNA nanotechnology has been used to design well-programmed, self-assembled nanostructures for applications in chemistry, biology, and medicine. At the forefront of its utility in cancer is the unrestricted ability to self-assemble multiple siRNAs within a single nanostructure formulation for the RNAi screening of a wide range of oncogenes while potentiating the gene therapy of malignant tumors. In our RNAi nanotechnology approach, V- and Y-shape RNA templates were designed and constructed for the self-assembly of discrete, higher-ordered siRNA nanostructures targeting the oncogenic glucose regulated chaperones. The GRP78-targeting siRNAs self-assembled into genetically encoded spheres, triangles, squares, pentagons and hexagons of discrete sizes and shapes according to TEM imaging. Furthermore, gel electrophoresis, thermal denaturation, and CD spectroscopy validated the prerequisite siRNA hybrids for their RNAi application. In a 24 sample siRNA screen conducted within the AN3CA endometrial cancer cells known to overexpress oncogenic GRP78 activity, the self-assembled siRNAs targeting multiple sites of GRP78 expression demonstrated more potent and long-lasting anticancer activity relative to their linear controls. Extending the scope of our RNAi screening approach, the self-assembled siRNA hybrids (5 nM) targeting of GRP-75, 78, and 94 resulted in significant (50-95%) knockdown of the glucose regulated chaperones, which led to synergistic effects in tumor cell cycle arrest (50-80%) and death (50-60%) within endometrial (AN3CA), cervical (HeLa), and breast (MDA-MB-231) cancer cell lines. Interestingly, a nontumorigenic lung (MRC5) cell line displaying normal glucose regulated chaperone levels was found to tolerate siRNA treatment and demonstrated less toxicity (5-20%) relative to the cancer cells that were found to be addicted to glucose regulated chaperones. These remarkable self-assembled siRNA nanostructures may thus encompass a new class of potent siRNAs that may be useful in screening important oncogene targets while improving siRNA therapeutic efficacy and specificity in cancer.
Collapse
Affiliation(s)
- Mayurbhai R. Patel
- Program in Chemical Biology and Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
- Department of Chemistry and Biochemistry, Seton Hall University, South Orange, New Jersey 07079, United States
| | - Stephen D. Kozuch
- Department of Chemistry and Biochemistry, Seton Hall University, South Orange, New Jersey 07079, United States
| | - Christopher N. Cultrara
- Department of Chemistry and Biochemistry, Seton Hall University, South Orange, New Jersey 07079, United States
| | - Reeta Yadav
- Department of Chemistry and Biochemistry, Queens College, City University of New York, 65-30 Kissena Blvd., Flushing, New York 11367, United States
- Ph.D. Programs in Chemistry and Biochemistry, The Graduate Center of the City University of New York, New York City, New York 10016, United States
| | - Suiying Huang
- Department of Chemistry and Biochemistry, Queens College, City University of New York, 65-30 Kissena Blvd., Flushing, New York 11367, United States
- Ph.D. Programs in Chemistry and Biochemistry, The Graduate Center of the City University of New York, New York City, New York 10016, United States
| | - Uri Samuni
- Department of Chemistry and Biochemistry, Queens College, City University of New York, 65-30 Kissena Blvd., Flushing, New York 11367, United States
- Ph.D. Programs in Chemistry and Biochemistry, The Graduate Center of the City University of New York, New York City, New York 10016, United States
| | - John Koren
- Program in Chemical Biology and Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Gabriela Chiosis
- Program in Chemical Biology and Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - David Sabatino
- Department of Chemistry and Biochemistry, Seton Hall University, South Orange, New Jersey 07079, United States
- Corresponding Author.
| |
Collapse
|
39
|
Melatonin-Mediated Intracellular Insulin during 2-Deoxy-d-glucose Treatment Is Reduced through Autophagy and EDC3 Protein in Insulinoma INS-1E Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:2594703. [PMID: 27493704 PMCID: PMC4967467 DOI: 10.1155/2016/2594703] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 06/21/2016] [Indexed: 11/17/2022]
Abstract
2-DG triggers glucose deprivation without altering other nutrients or metabolic pathways and then activates autophagy via activation of AMPK and endoplasmic reticulum (ER) stress. We investigated whether 2-DG reduced intracellular insulin increased by melatonin via autophagy/EDC3 in insulinoma INS-1E cells. p-AMPK and GRP78/BiP level were significantly increased by 2-DG in the presence/absence of melatonin, but IRE1α level was reduced in 2-DG treatment. Levels of p85α, p110, p-Akt (Ser473, Thr308), and p-mTOR (Ser2481) were also significantly reduced by 2-DG in the presence/absence of melatonin. Mn-SOD increased with 2-DG plus melatonin compared to groups treated with/without melatonin alone. Bcl-2 was decreased and Bax increased with 2-DG plus melatonin. LC3II level increased with 2-DG treatment in the presence/absence of melatonin. Intracellular insulin production increased in melatonin plus 2-DG but reduced in treatment with 2-DG with/without melatonin. EDC3 was increased by 2-DG in the presence/absence of melatonin. Rapamycin, an mTOR inhibitor, increased GRP78/BiP and EDC3 levels in a dose-dependent manner and subsequently resulted in a decrease in intracellular production of insulin. These results suggest that melatonin-mediated insulin synthesis during 2-DG treatment involves autophagy and EDC3 protein in rat insulinoma INS-1E cells and subsequently results in a decrease in intracellular production of insulin.
Collapse
|
40
|
Kita K, Sugita K, Sato C, Sugaya S, Sato T, Kaneda A. Extracellular Release of Annexin A2 is Enhanced upon Oxidative Stress Response via the p38 MAPK Pathway after Low-Dose X-Ray Irradiation. Radiat Res 2016; 186:79-91. [DOI: 10.1667/rr14277.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Kazuko Kita
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Inohana, Chuou-ku, Chiba 260-8670, Japan and
| | - Katsuo Sugita
- Department of Clinical Medicine, Faculty of Education, Chiba University, Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Chihomi Sato
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Inohana, Chuou-ku, Chiba 260-8670, Japan and
| | - Shigeru Sugaya
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Inohana, Chuou-ku, Chiba 260-8670, Japan and
| | - Tetsuo Sato
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Inohana, Chuou-ku, Chiba 260-8670, Japan and
| | - Atsushi Kaneda
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Inohana, Chuou-ku, Chiba 260-8670, Japan and
| |
Collapse
|
41
|
Chen H, Song Q, Diao X, Zhou H. Proteomic and metabolomic analysis on the toxicological effects of Benzo[a]pyrene in pearl oyster Pinctada martensii. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 175:81-9. [PMID: 26999675 DOI: 10.1016/j.aquatox.2016.03.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 03/08/2016] [Accepted: 03/09/2016] [Indexed: 05/15/2023]
Abstract
Benzo[a]pyrene (BaP) is one of the typical toxic polycyclic aromatic hydrocarbons (PAHs) that are widely present in marine environment. BaP has diverse toxic effects, including teratogenic, carcinogenic, mutagenic effects and so on, in various organisms. In this work, we focused on the differential proteomic and metabolomic responses in the digestive gland of pearl oyster Pinctada martensii exposed to two doses of BaP (1 and 10μg/L). Metabolic responses revealed that the high dose of BaP (10μg/L) mainly caused disturbances in osmotic regulation and energy metabolism in the digestive gland. Proteomic responses indicated that both doses of BaP induced disturbances in energy metabolism, cytoskeleton, cell injury, oxidative stress and signal transduction based on the differential proteomic biomarkers. Overall, these results demonstrated a number of potential biomarkers that were characterized by an integrated proteomic and metabolomic approach and provided a useful insight into the toxicological effects on pearl oyster P. martensii.
Collapse
Affiliation(s)
- Hao Chen
- College of Environment and Plant Protection, Hainan University, Haikou 570228, China; Haikou Key Laboratory of Environmental Toxicology, Haikou 570228, China.
| | - Qinqin Song
- College of Agriculture, Hainan University, Haikou 570228, China.
| | - Xiaoping Diao
- College of Agriculture, Hainan University, Haikou 570228, China; Haikou Key Laboratory of Environmental Toxicology, Haikou 570228, China.
| | - Hailong Zhou
- College of Agriculture, Hainan University, Haikou 570228, China; Haikou Key Laboratory of Environmental Toxicology, Haikou 570228, China.
| |
Collapse
|
42
|
Wang X, Zhang T, Mao H, Mi Y, Zhong B, Wei L, Liu X, Hu C. Grass carp (Ctenopharyngodon idella) ATF6 (activating transcription factor 6) modulates the transcriptional level of GRP78 and GRP94 in CIK cells. FISH & SHELLFISH IMMUNOLOGY 2016; 52:65-73. [PMID: 26988288 DOI: 10.1016/j.fsi.2016.03.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 03/14/2016] [Accepted: 03/14/2016] [Indexed: 06/05/2023]
Abstract
ATF transcription factors are stress proteins containing alkaline area-leucine zipper and play an important role in endoplasmic reticulum stress. ATF6 is a protective protein which regulates the adaptation of cells to ER stress by modulating the transcription of UPR (Unfolded Protein Response) target genes, including GRP78 and GRP94. In the present study, a grass carp (Ctenopharyngodon idella) ATF6 full-length cDNA (named CiATF6, KT279356) has been cloned and identified. CiATF6 is 4176 bp in length, comprising 159 nucleotides of 5'-untranslated sequence, a 1947 nucleotides open reading frame and 2170 nucleotides of 3'-untranslated sequences. The largest open reading frame of CiATF6 translates into 648 aa with a typical DNA binding domain (BRLZ domain) and shares significant homology to the known ATF6 counterparts. Phylogenetic reconstruction confirmed its closer evolutionary relationship with other fish counterparts, especially with Zebrafish ATF6. RT-PCR showed that CiATF6 was ubiquitously expressed and significantly up-regulated after stimulation with thermal stress in all tested grass carp tissues. In order to know more about the role of CiATF6 in ER stress, recombinant CiATF6N with His-tag was over-expressed in Rosetta Escherichia coli, and the expressed protein was purified by affinity chromatography with Ni-NTA His-Bind Resin. In vitro, gel mobility shift assays were employed to analyze the interaction of CiATF6 protein with the promoters of grass carp GRP78 and GRP94, respectively. The result has shown that CiATF6 could bind to these promoters with high affinity by means of its BRLZ mainly. To further study the transcriptional regulatory mechanism of CiATF6, Dual-luciferase reporter assays were applied. Recombinant plasmids of pGL3-GRP78P and pGL3-CiGRP94P were constructed and transiently co-transfected with pcDNA3.1-CiATF6 (pcDN3.1-CiATF6-nBRLZ, respectively) into C. idella kidney (CIK) cells. The result has shown that CiATF6 could activate CiGRP78 and CiGRP94 promoters.
Collapse
Affiliation(s)
- Xiangqin Wang
- Department of Bioscience, College of Life Science, Nanchang University, Nanchang, 330031, China
| | - Tao Zhang
- Department of Bioscience, College of Life Science, Nanchang University, Nanchang, 330031, China
| | - Huiling Mao
- Department of Bioscience, College of Life Science, Nanchang University, Nanchang, 330031, China.
| | - Yichuan Mi
- Department of Bioscience, College of Life Science, Nanchang University, Nanchang, 330031, China
| | - Bin Zhong
- Department of Bioscience, College of Life Science, Nanchang University, Nanchang, 330031, China
| | - Lili Wei
- Jiangxi Agricultural University, Nanchang, 330045, China
| | - Xiancheng Liu
- Department of Bioscience, College of Life Science, Nanchang University, Nanchang, 330031, China
| | - Chengyu Hu
- Department of Bioscience, College of Life Science, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
43
|
Bi HT, Yuan FH, Yuan K, Weng SP, He JG, Chen YH. Identification and functional characterization of a glucose regulated protein 94 gene in Litopenaeus vannamei and its responsiveness in WSSV infection. Mol Immunol 2016; 73:29-36. [PMID: 27037893 DOI: 10.1016/j.molimm.2016.03.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 03/22/2016] [Accepted: 03/23/2016] [Indexed: 10/22/2022]
Abstract
In the current study, a cDNA of glucose regulated protein 94 (LvGRP94) was cloned from Litopenaeus vannamei. Subcellular localization assay revealed that LvGRP94 expressed in endoplasmic reticulum (ER). And results of reported gene assays demonstrated that the promoter of LvGRP94 was activated by L. vannamei leucine zipper domain transcription factor X-box binding protein 1 (LvXBP1) or heat shock treatment. Furthermore, LvGRP94 was found to highly express in hemocytes as well as in epidermis by real-time RT-PCR. In addition, it was shown that LvGRP94 inhibited by LvXBP1 knocked-down in the hemocytes, was induced by white spot syndrome virus (WSSV) infection, or unfolded protein response (UPR) pathway activation. Importantly, decreasing LvGRP94 reduced the cumulative mortality of WSSV-infected shrimps and WSSV copies in shrimp muscle. These results suggested that LvGRP94 might involve in shrimp UPR pathway as well as WSSV infection.
Collapse
Affiliation(s)
- Hai-Tao Bi
- School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China; State Key Laboratory for Biocontrol/MOE Key Laboratory of Aquatic Product Safety/Institute of Aquatic Economic Animals and Guangdong Provice Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China
| | - Feng-Hua Yuan
- School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China; State Key Laboratory for Biocontrol/MOE Key Laboratory of Aquatic Product Safety/Institute of Aquatic Economic Animals and Guangdong Provice Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China
| | - Kai Yuan
- School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China; State Key Laboratory for Biocontrol/MOE Key Laboratory of Aquatic Product Safety/Institute of Aquatic Economic Animals and Guangdong Provice Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China
| | - Shao-Ping Weng
- School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China; State Key Laboratory for Biocontrol/MOE Key Laboratory of Aquatic Product Safety/Institute of Aquatic Economic Animals and Guangdong Provice Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China
| | - Jian-Guo He
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering/School of Marine Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China; School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China; State Key Laboratory for Biocontrol/MOE Key Laboratory of Aquatic Product Safety/Institute of Aquatic Economic Animals and Guangdong Provice Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China
| | - Yi-Hong Chen
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering/School of Marine Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China; State Key Laboratory for Biocontrol/MOE Key Laboratory of Aquatic Product Safety/Institute of Aquatic Economic Animals and Guangdong Provice Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China.
| |
Collapse
|
44
|
ER Chaperone BiP/GRP78 Is Required for Myelinating Cell Survival and Provides Protection during Experimental Autoimmune Encephalomyelitis. J Neurosci 2016; 35:15921-33. [PMID: 26631473 DOI: 10.1523/jneurosci.0693-15.2015] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Myelinating cells synthesize large amounts of membrane protein through the secretory pathway, which makes these cells particularly sensitive to perturbations of the endoplasmic reticulum (ER). Ig binding protein (BiP), also known as glucose-regulated protein 78 (GRP78), is a critical ER chaperone that also plays a pivotal role in controlling the cellular response to ER stress. To examine the potential importance of BiP to myelinating cells, we used a conditional knock-out approach to BiP gene inactivation in oligodendrocytes during development, in adulthood, and in response to experimental autoimmune encephalomyelitis (EAE), an animal model of the inflammatory demyelinating disorder multiple sclerosis (MS). During development, mice lacking functional BiP gene expression in oligodendrocytes developed tremors and ataxia and died before reaching maturity. When BiP gene inactivation in oligodendrocytes was initiated in adulthood, the mice displayed severe neurological symptoms including tremors and hind-limb paralysis. The inactivation of BiP in oligodendrocytes during development or in adulthood resulted in oligodendrocyte loss and corresponding severe myelin abnormalities. Mice heterozygous for the oligodendrocyte-specific inactivation of BiP, which were phenotypically normal without evidence of neuropathology, displayed an exacerbated response to EAE that correlated with an increased loss of oligodendrocytes. Furthermore, mice in which the BiP gene was specifically inactivated in developing Schwann cells displayed tremor that progressed to hindlimb paralysis, which correlated with diminished numbers of myelinating Schwann cells and severe PNS hypomyelination. These studies demonstrate that BiP is critical for myelinating cell survival and contributes to the protective response of oligodendrocyte against inflammatory demyelination.
Collapse
|
45
|
Shenk T, Alwine JC. Human Cytomegalovirus: Coordinating Cellular Stress, Signaling, and Metabolic Pathways. Annu Rev Virol 2016; 1:355-74. [PMID: 26958726 DOI: 10.1146/annurev-virology-031413-085425] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Viruses face a multitude of challenges when they infect a host cell. Cells have evolved innate defenses to protect against pathogens, and an infecting virus may induce a stress response that antagonizes viral replication. Further, the metabolic, oxidative, and cell cycle state may not be conducive to the viral infection. But viruses are fabulous manipulators, inducing host cells to use their own characteristic mechanisms and pathways to provide what the virus needs. This article centers on the manipulation of host cell metabolism by human cytomegalovirus (HCMV). We review the features of the metabolic program instituted by the virus, discuss the mechanisms underlying these dramatic metabolic changes, and consider how the altered program creates a synthetic milieu that favors efficient HCMV replication and spread.
Collapse
Affiliation(s)
- Thomas Shenk
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544
| | - James C Alwine
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104;
| |
Collapse
|
46
|
Zuo D, Subjeck J, Wang XY. Unfolding the Role of Large Heat Shock Proteins: New Insights and Therapeutic Implications. Front Immunol 2016; 7:75. [PMID: 26973652 PMCID: PMC4771732 DOI: 10.3389/fimmu.2016.00075] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 02/15/2016] [Indexed: 11/13/2022] Open
Abstract
Heat shock proteins (HSPs) of eukaryotes are evolutionarily conserved molecules present in all the major intracellular organelles. They mainly function as molecular chaperones and participate in maintenance of protein homeostasis in physiological state and under stressful conditions. Despite their relative abundance, the large HSPs, i.e., Hsp110 and glucose-regulated protein 170 (Grp170), have received less attention compared to other conventional HSPs. These proteins are distantly related to the Hsp70 and belong to Hsp70 superfamily. Increased sizes of Hsp110 and Grp170, due to the presence of a loop structure, result in their exceptional capability in binding to polypeptide substrates or non-protein ligands, such as pathogen-associated molecules. These interactions that occur in the extracellular environment during tissue injury or microbial infection may lead to amplification of an immune response engaging both innate and adaptive immune components. Here, we review the current advances in understanding these large HSPs as molecular chaperones in proteostasis control and immune modulation as well as their therapeutic implications in treatment of cancer and neurodegeneration. Given their unique immunoregulatory activities, we also discuss the emerging evidence of their potential involvement in inflammatory and immune-related diseases.
Collapse
Affiliation(s)
- Daming Zuo
- Department of Immunology, Southern Medical University, Guangzhou, China; State Key Laboratory of Organ Failure Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - John Subjeck
- Department of Cellular Stress Biology, Roswell Park Cancer Institute , Buffalo, NY , USA
| | - Xiang-Yang Wang
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, USA; VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
47
|
Schwarz DS, Blower MD. The endoplasmic reticulum: structure, function and response to cellular signaling. Cell Mol Life Sci 2016; 73:79-94. [PMID: 26433683 PMCID: PMC4700099 DOI: 10.1007/s00018-015-2052-6] [Citation(s) in RCA: 938] [Impact Index Per Article: 104.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 09/21/2015] [Accepted: 09/22/2015] [Indexed: 02/06/2023]
Abstract
The endoplasmic reticulum (ER) is a large, dynamic structure that serves many roles in the cell including calcium storage, protein synthesis and lipid metabolism. The diverse functions of the ER are performed by distinct domains; consisting of tubules, sheets and the nuclear envelope. Several proteins that contribute to the overall architecture and dynamics of the ER have been identified, but many questions remain as to how the ER changes shape in response to cellular cues, cell type, cell cycle state and during development of the organism. Here we discuss what is known about the dynamics of the ER, what questions remain, and how coordinated responses add to the layers of regulation in this dynamic organelle.
Collapse
Affiliation(s)
- Dianne S Schwarz
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
- New England Biolabs, Ipswich, MA, 01938, USA
| | - Michael D Blower
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, 02114, USA.
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
48
|
Ko AR, Kim JY, Hyun HW, Kim JE. Endoplasmic reticulum (ER) stress protein responses in relation to spatio-temporal dynamics of astroglial responses to status epilepticus in rats. Neuroscience 2015; 307:199-214. [PMID: 26335380 DOI: 10.1016/j.neuroscience.2015.08.061] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 08/24/2015] [Accepted: 08/25/2015] [Indexed: 12/31/2022]
Abstract
In the present study, we investigated whether endoplasmic reticulum (ER) stress is associated with neuronal- and astroglial-death in the hippocampus using LiCl-pilocarpine-induced status epilepticus (SE) rat model. Glucose-related protein (GRP) 78 and protein disulfide isomerase (PDI) expressions were transiently increased in CA1 neurons and dentate granule cells, and subsequently decreased in these cells following SE. GRP94 and calnexin (CNX) expression was gradually reduced in CA1 neurons, not in dentate granule cells. Phospho-protein kinase RNA (PKR)-like ER kinase (pPERK), phospho-eukaryotic initiation factor 2α (peIF2A) and CCAAT/enhancer-binding protein homologous protein (CHOP) immunoreactivities were observed in 17%, 12% and 7% of degenerating CA1 neurons, respectively. GRP 78 and PDI expressions were also up-regulated in reactive astrocytes within the CA1-3 regions. In the molecular layer of the dentate gyrus, PDI-positive astrocytes showed TUNEL signal, nuclear apoptosis inducing factor translocation and pPERK/peIF2A/CHOP immunoreactivities. Four weeks after SE, clasmatodendritic astrocytes showed pPERK peIF2A and CNX immunoreactivities without CHOP expression. These findings indicate that SE-induced ER stress may be associated with astroglial apoptosis and autophagic astroglial death in the regional-specific pattern.
Collapse
Affiliation(s)
- A-R Ko
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chuncheon, Kangwon-Do 200-702, South Korea
| | - J Y Kim
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chuncheon, Kangwon-Do 200-702, South Korea
| | - H-W Hyun
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chuncheon, Kangwon-Do 200-702, South Korea
| | - J-E Kim
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chuncheon, Kangwon-Do 200-702, South Korea.
| |
Collapse
|
49
|
Hardy B, Raiter A. GRP78 expression beyond cellular stress: A biomarker for tumor manipulation. World J Immunol 2015; 5:78-85. [DOI: 10.5411/wji.v5.i2.78] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Revised: 01/14/2015] [Accepted: 06/08/2015] [Indexed: 02/05/2023] Open
Abstract
Physiological stress takes place in the endoplasmic reticulum (ER) of cells where activation and up-regulation of genes and proteins are primarily induced to enhance pro-survival mechanisms such as the unfolded protein response (UPR). A dominant protein in the UPR response is the heat shock GRP78 protein. Although GRP78 is primarily located in the ER, under certain conditions it is transported to the cell surface, where it acts as a receptor inducing pathways of cell signaling such as proliferation or apoptosis. In the prolonged chronic stress transportation of the GRP78 from the ER to the cell membrane is a major event where in addition to the presentation of the GRP78 as a receptor to various ligands, it also marks the cells that will proceed to apoptotic pathways. In the normal cell that under stress acquires cell surface GRP78 and in the tumor cell that already presents cell surface GRP78, cell surface GRP78 is an apoptotic flag. The internalization of GRP78 from the cell surface in normal cells by ligands such as peptides will enhance cell survival and alleviate cardiovascular ischemic diseases. The absence of cell surface GRP78 in the tumor cells portends proliferative and metastatic tumors. Pharmacological induction of cell surface GRP78 will induce the process of apoptosis and might be used as a therapeutic modality for cancer treatment.
Collapse
|
50
|
Dekker SL, Kampinga HH, Bergink S. DNAJs: more than substrate delivery to HSPA. Front Mol Biosci 2015; 2:35. [PMID: 26176011 PMCID: PMC4485348 DOI: 10.3389/fmolb.2015.00035] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 06/12/2015] [Indexed: 11/20/2022] Open
Abstract
Proteins are essential components of cellular life, as building blocks, but also to guide and execute all cellular processes. Proteins require a three-dimensional folding, which is constantly being challenged by their environment. Challenges including elevated temperatures or redox changes can alter this fold and result in misfolding of proteins or even aggregation. Cells are equipped with several pathways that can deal with protein stress. Together, these pathways are referred to as the protein quality control network. The network comprises degradation and (re)folding pathways that are intertwined due to the sharing of components and by the overlap in affinity for substrates. Here, we will give examples of this sharing and intertwinement of protein degradation and protein folding and discuss how the fate of a substrate is determined. We will focus on the ubiquitylation of substrates and the role of Hsp70 co-chaperones of the DNAJ class in this process.
Collapse
Affiliation(s)
- Suzanne L Dekker
- Department of Cell Biology, University Medical Center Groningen, University of Groningen Groningen, Netherlands
| | - Harm H Kampinga
- Department of Cell Biology, University Medical Center Groningen, University of Groningen Groningen, Netherlands
| | - Steven Bergink
- Department of Cell Biology, University Medical Center Groningen, University of Groningen Groningen, Netherlands
| |
Collapse
|