1
|
Chang B, Qiu X, Yang Y, Zhou W, Jin B, Wang L. Genome-wide analyses of the GbAP2 subfamily reveal the function of GbTOE1a in salt and drought stress tolerance in Ginkgo biloba. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 342:112027. [PMID: 38354754 DOI: 10.1016/j.plantsci.2024.112027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/03/2024] [Accepted: 02/08/2024] [Indexed: 02/16/2024]
Abstract
The APETALA2 (AP2) transcription factors play crucial roles in plant growth and stage transition. Ginkgo biloba is an important medicinal plant renowned for the rich flavonoid content in its leaves. In this study, 18 GbAP2s were identified from the G. biloba genome and classified into three clusters. We found that the members of the euAP2 cluster, including four TOEs (GbTOE1a/1b/1c/3), exhibited a higher expression level in most samples compared to other members. Specifically, GbTOE1a may have a positive regulatory role in salt and drought stress responses. The overexpression of GbTOE1a in G. biloba calli resulted in a significant increase in the flavonoid content and upregulation of flavonoid biosynthesis genes, including PAL, 4CL, CHS, F3H, FLSs, F3'Hs, OMT, and DFRs. By contrast, the silencing of GbTOE1a in seedlings decreased the flavonoid content and the expression of flavonoid synthesizing genes. In addition, the silenced seedlings exhibited decreased antioxidant levels and a higher sensitivity to salt and drought treatments, suggesting a crucial role of GbTOE1a in G. biloba salt and drought tolerance. To the best of our knowledge, this was the first investigation into the identification and characterization of GbAP2s in G. biloba. Our results lay a foundation for further research on the regulatory role of the AP2 family in flavonoid synthesis and stress responses.
Collapse
Affiliation(s)
- Bang Chang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China.
| | - Xinyu Qiu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China.
| | - Yi Yang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China.
| | - Wanxiang Zhou
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China.
| | - Biao Jin
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China.
| | - Li Wang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
2
|
Sharma Y, Ishu, Shumayla, Dixit S, Singh K, Upadhyay SK. Decoding the features and potential roles of respiratory burst oxidase homologs in bread wheat. CURRENT PLANT BIOLOGY 2024; 37:100315. [DOI: 10.1016/j.cpb.2023.100315] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
|
3
|
Liu Y, Do S, Huynh H, Li JX, Liu YG, Du ZY, Chen MX. Importance of pre-mRNA splicing and its study tools in plants. ADVANCED BIOTECHNOLOGY 2024; 2:4. [PMID: 39883322 PMCID: PMC11740881 DOI: 10.1007/s44307-024-00009-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/06/2023] [Accepted: 12/30/2023] [Indexed: 01/31/2025]
Abstract
Alternative splicing (AS) significantly enriches the diversity of transcriptomes and proteomes, playing a pivotal role in the physiology and development of eukaryotic organisms. With the continuous advancement of high-throughput sequencing technologies, an increasing number of novel transcript isoforms, along with factors related to splicing and their associated functions, are being unveiled. In this review, we succinctly summarize and compare the different splicing mechanisms across prokaryotes and eukaryotes. Furthermore, we provide an extensive overview of the recent progress in various studies on AS covering different developmental stages in diverse plant species and in response to various abiotic stresses. Additionally, we discuss modern techniques for studying the functions and quantification of AS transcripts, as well as their protein products. By integrating genetic studies, quantitative methods, and high-throughput omics techniques, we can discover novel transcript isoforms and functional splicing factors, thereby enhancing our understanding of the roles of various splicing modes in different plant species.
Collapse
Affiliation(s)
- Yue Liu
- National Key Laboratory of Wheat Improvement, College of Life Science, Shandong Agricultural University, Taian, Shandong, China
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, China
| | - Sally Do
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI, 96822, USA
| | - Henry Huynh
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI, 96822, USA
| | - Jing-Xin Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, China
| | - Ying-Gao Liu
- National Key Laboratory of Wheat Improvement, College of Life Science, Shandong Agricultural University, Taian, Shandong, China.
| | - Zhi-Yan Du
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI, 96822, USA.
| | - Mo-Xian Chen
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, China.
| |
Collapse
|
4
|
Liang M, Du Z, Yang Z, Luo T, Ji C, Cui H, Li R. Genome-wide characterization and expression analysis of MADS-box transcription factor gene family in Perilla frutescens. FRONTIERS IN PLANT SCIENCE 2024; 14:1299902. [PMID: 38259943 PMCID: PMC10801092 DOI: 10.3389/fpls.2023.1299902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 12/14/2023] [Indexed: 01/24/2024]
Abstract
MADS-box transcription factors are widely involved in the regulation of plant growth, developmental processes, and response to abiotic stresses. Perilla frutescens, a versatile plant, is not only used for food and medicine but also serves as an economical oil crop. However, the MADS-box transcription factor family in P. frutescens is still largely unexplored. In this study, a total of 93 PfMADS genes were identified in P. frutescens genome. These genes, including 37 Type I and 56 Type II members, were randomly distributed across 20 chromosomes and 2 scaffold regions. Type II PfMADS proteins were found to contain a greater number of motifs, indicating more complex structures and diverse functions. Expression analysis revealed that most PfMADS genes (more than 76 members) exhibited widely expression model in almost all tissues. The further analysis indicated that there was strong correlation between some MIKCC-type PfMADS genes and key genes involved in lipid synthesis and flavonoid metabolism, which implied that these PfMADS genes might play important regulatory role in the above two pathways. It was further verified that PfMADS47 can effectively mediate the regulation of lipid synthesis in Chlamydomonas reinhardtii transformants. Using cis-acting element analysis and qRT-PCR technology, the potential functions of six MIKCC-type PfMADS genes in response to abiotic stresses, especially cold and drought, were studied. Altogether, this study is the first genome-wide analysis of PfMADS. This result further supports functional and evolutionary studies of PfMADS gene family and serves as a benchmark for related P. frutescens breeding studies.
Collapse
Affiliation(s)
- Mengjing Liang
- Institute of Molecular Agriculture and Bioenergy, College of Agriculture, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Zhongyang Du
- Institute of Molecular Agriculture and Bioenergy, College of Agriculture, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Ze Yang
- Institute of Molecular Agriculture and Bioenergy, College of Agriculture, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Tao Luo
- Institute of Molecular Agriculture and Bioenergy, College of Agriculture, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Chunli Ji
- Institute of Molecular Agriculture and Bioenergy, College of Agriculture, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Hongli Cui
- Key Laboratory of Coastal Biology and Biological Resource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, China
| | - Runzhi Li
- Institute of Molecular Agriculture and Bioenergy, College of Agriculture, Shanxi Agricultural University, Jinzhong, Shanxi, China
| |
Collapse
|
5
|
Qin H, Yin W, Luo C, Liu L. The Identification, Characterization, and Functional Analysis of the Sugar Transporter Gene Family of the Rice False Smut Pathogen, Villosiclava virens. Int J Mol Sci 2024; 25:600. [PMID: 38203770 PMCID: PMC10779207 DOI: 10.3390/ijms25010600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/21/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
False smut, caused by Villosiclava virens, is becoming increasingly serious in modern rice production systems, leading to yield losses and quality declines. Successful infection requires efficient acquisition of sucrose, abundant in rice panicles, as well as other sugars. Sugar transporters (STPs) may play an important role in this process. STPs belong to a major facilitator superfamily, which consists of large multigenic families necessary to partition sugars between fungal pathogens and their hosts. This study identified and characterized the STP family of V. viren, and further analyzed their gene functions to uncover their roles in interactions with rice. Through genome-wide and systematic bioinformatics analyses, 35 STPs were identified from V.virens and named from VvSTP1 to VvSTP35. Transmembrane domains, gene structures, and conserved motifs of VvSTPs have been identified and characterized through the bioinformatic analysis. In addition, a phylogenetic analysis revealed relationship between VvSTPs and STPs from the other three reference fungi. According to a qRT-PCR and RNA-sequencing analysis, VvSTP expression responded differently to different sole carbon sources and H2O2 treatments, and changed during the pathogenic process, suggesting that these proteins are involved in interactions with rice and potentially functional in pathogenesis. In total, 12 representative VvSTPs were knocked out through genetic recombination in order to analyze their roles in pathogenicity of V. virens. The knock-out mutants of VvSTPs showed little difference in mycelia growth and conidiation, indicating a single gene in this family cannot influence vegetative growth of V. virens. It is clear, however, that these mutants result in a change in infection efficiency in a different way, indicating that VvSTPs play an important role in the pathogenicity of virens. This study is expected to contribute to a better understanding of how host-derived sugars contribute to V. virens pathogenicity.
Collapse
Affiliation(s)
- Huimin Qin
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China;
| | - Weixiao Yin
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| | - Chaoxi Luo
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| | - Lianmeng Liu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China;
| |
Collapse
|
6
|
Liu Y, Chen S, Chen J, Wang J, Wei M, Tian X, Chen L, Ma J. Comprehensive analysis and expression profiles of the AP2/ERF gene family during spring bud break in tea plant (Camellia sinensis). BMC PLANT BIOLOGY 2023; 23:206. [PMID: 37081399 PMCID: PMC10116778 DOI: 10.1186/s12870-023-04221-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 04/10/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND AP2/ERF transcription factors (AP2/ERFs) are important regulators of plant physiological and biochemical metabolism. Evidence suggests that AP2/ERFs may be involved in the regulation of bud break in woody perennials. Green tea is economically vital in China, and its production value is significantly affected by the time of spring bud break of tea plant. However, the relationship between AP2/ERFs in tea plant and spring bud break remains largely unknown. RESULTS A total of 178 AP2/ERF genes (CsAP2/ERFs) were identified in the genome of tea plant. Based on the phylogenetic analysis, these genes could be classified into five subfamilies. The analysis of gene duplication events demonstrated that whole genome duplication (WGD) or segmental duplication was the primary way of CsAP2/ERFs amplification. According to the result of the Ka/Ks value calculation, purification selection dominated the evolution of CsAP2/ERFs. Furthermore, gene composition and structure analyses of CsAP2/ERFs indicated that different subfamilies contained a variety of gene structures and conserved motifs, potentially resulting in functional differences among five subfamilies. The promoters of CsAP2/ERFs also contained various signal-sensing elements, such as abscisic acid responsive elements, light responsive elements and low temperature responsive elements. The evidence presented here offers a theoretical foundation for the diverse functions of CsAP2/ERFs. Additionally, the expressions of CsAP2/ERFs during spring bud break of tea plant were analyzed by RNA-seq and grouped into clusters A-F according to their expression patterns. The gene expression changes in clusters A and B were more synchronized with the spring bud break of tea plant. Moreover, several potential correlation genes, such as D-type cyclin genes, were screened out through weighted correlation network analysis (WGCNA). Temperature and light treatment experiments individually identified nine candidate CsAP2/ERFs that may be related to the spring bud break of tea plant. CONCLUSIONS This study provides new evidence for role of the CsAP2/ERFs in the spring bud break of tea plant, establishes a theoretical foundation for analyzing the molecular mechanism of the spring bud break of tea plant, and contributes to the improvement of tea cultivars.
Collapse
Affiliation(s)
- Yujie Liu
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
| | - Si Chen
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
| | - Jiedan Chen
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
| | - Junyu Wang
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
| | - Mengyuan Wei
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
| | - Xiaomiao Tian
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
| | - Liang Chen
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China.
| | - Jianqiang Ma
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China.
| |
Collapse
|
7
|
Kavian Z, Sargazi S, Majidpour M, Sarhadi M, Saravani R, Shahraki M, Mirinejad S, Heidari Nia M, Piri M. Association of SLC11A1 polymorphisms with anthropometric and biochemical parameters describing Type 2 Diabetes Mellitus. Sci Rep 2023; 13:6195. [PMID: 37062790 PMCID: PMC10106459 DOI: 10.1038/s41598-023-33239-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 04/10/2023] [Indexed: 04/18/2023] Open
Abstract
Diabetes, a leading cause of death globally, has different types, with Type 2 Diabetes Mellitus (T2DM) being the most prevalent one. It has been established that variations in the SLC11A1 gene impact risk of developing infectious, inflammatory, and endocrine disorders. This study is aimed to investigate the association between the SLC11A1 gene polymorphisms (rs3731864 G/A, rs3731865 C/G, and rs17235416 + TGTG/- TGTG) and anthropometric and biochemical parameters describing T2DM. Eight hundred participants (400 in each case and control group) were genotyped using the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and amplification-refractory mutation system-PCR (ARMS-PCR) methods. Lipid profile, fasting blood sugar (FBS), hemoglobin A1c level, and anthropometric indices were also recorded for each subject. Findings revealed that SLC11A1-rs3731864 G/A, -rs17235416 (+ TGTG/- TGTG) were associated with T2DM susceptibility, providing protection against the disease. In contrast, SLC11A1-rs3731865 G/C conferred an increased risk of T2DM. We also noticed a significant association between SLC11A1-rs3731864 G/A and triglyceride levels in patients with T2DM. In silico evaluations demonstrated that the SLC11A2 and ATP7A proteins also interact directly with the SLC11A1 protein in Homo sapiens. In addition, allelic substitutions for both intronic variants disrupt or create binding sites for splicing factors and serve a functional effect. Overall, our findings highlighted the role of SLC11A1 gene variations might have positive (rs3731865 G/C) or negative (rs3731864 G/A and rs17235416 + TGTG/- TGTG) associations with a predisposition to T2DM.
Collapse
Affiliation(s)
- Zahra Kavian
- Department of Nutrition, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Mahdi Majidpour
- Clinical Immunology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mohammad Sarhadi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Ramin Saravani
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mansour Shahraki
- Department of Nutrition, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran.
- Adolescent Health Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Shekoufeh Mirinejad
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Milad Heidari Nia
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Maryam Piri
- Diabetes Center, Bu-Ali Hospital, Zahedan University of Medical Sciences, Zahedan, Iran
| |
Collapse
|
8
|
Mattick JS. RNA out of the mist. Trends Genet 2023; 39:187-207. [PMID: 36528415 DOI: 10.1016/j.tig.2022.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 11/08/2022] [Accepted: 11/27/2022] [Indexed: 12/23/2022]
Abstract
RNA has long been regarded primarily as the intermediate between genes and proteins. It was a surprise then to discover that eukaryotic genes are mosaics of mRNA sequences interrupted by large tracts of transcribed but untranslated sequences, and that multicellular organisms also express many long 'intergenic' and antisense noncoding RNAs (lncRNAs). The identification of small RNAs that regulate mRNA translation and half-life did not disturb the prevailing view that animals and plant genomes are full of evolutionary debris and that their development is mainly supervised by transcription factors. Gathering evidence to the contrary involved addressing the low conservation, expression, and genetic visibility of lncRNAs, demonstrating their cell-specific roles in cell and developmental biology, and their association with chromatin-modifying complexes and phase-separated domains. The emerging picture is that most lncRNAs are the products of genetic loci termed 'enhancers', which marshal generic effector proteins to their sites of action to control cell fate decisions during development.
Collapse
Affiliation(s)
- John S Mattick
- School of Biotechnology and Biomolecular Sciences, UNSW, Sydney, NSW 2052, Australia; UNSW RNA Institute, UNSW, Sydney, NSW 2052, Australia.
| |
Collapse
|
9
|
Wang X, Zhang J, Zhang J, Zhou C, Han L. Genome-wide characterization of AINTEGUMENTA-LIKE family in Medicago truncatula reveals the significant roles of AINTEGUMENTAs in leaf growth. FRONTIERS IN PLANT SCIENCE 2022; 13:1050462. [PMID: 36407624 PMCID: PMC9669440 DOI: 10.3389/fpls.2022.1050462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
AINTEGUMENTA-LIKE (AIL) transcription factors are widely studied and play crucial roles in plant growth and development. However, the functions of the AIL family in legume species are largely unknown. In this study, 11 MtAIL genes were identified in the model legume Medicago truncatula, of which four of them are MtANTs. In situ analysis showed that MtANT1 was highly expressed in the shoot apical meristem (SAM) and leaf primordium. Characterization of mtant1 mtant2 mtant3 mtant4 quadruple mutants and MtANT1-overexpressing plants revealed that MtANTs were not only necessary but also sufficient for the regulation of leaf size, and indicated that they mainly function in the regulation of cell proliferation during secondary morphogenesis of leaves in M. truncatula. This study systematically analyzed the MtAIL family at the genome-wide level and revealed the functions of MtANTs in leaf growth. Thus, these genes may provide a potential application for promoting the biomass of legume forages.
Collapse
|
10
|
Mou Y, Yuan C, Sun Q, Yan C, Zhao X, Wang J, Wang Q, Shan S, Li C. MIKC-type MADS-box transcription factor gene family in peanut: Genome-wide characterization and expression analysis under abiotic stress. FRONTIERS IN PLANT SCIENCE 2022; 13:980933. [PMID: 36340369 PMCID: PMC9631947 DOI: 10.3389/fpls.2022.980933] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/09/2022] [Indexed: 06/16/2023]
Abstract
Peanut (Arachis hypogaea) is one of the most important economic crops around the world, especially since it provides vegetable oil and high-quality protein for humans. Proteins encoded by MADS-box transcription factors are widely involved in regulating plant growth and development as well as responses to abiotic stresses. However, the MIKC-type MADS-box TFs in peanut remains currently unclear. Hence, in this study, 166 MIKC-type MADS-box genes were identified in both cultivated and wild-type peanut genomes, which were divided into 12 subfamilies. We found a variety of development-, hormone-, and stress-related cis-acting elements in the promoter region of peanut MIKC-type MADS-box genes. The chromosomal distribution of peanut MADS-box genes was not random, and gene duplication contributed to the expansion of the MADS-box gene family. The interaction network of the peanut AhMADS proteins was established. Expression pattern analysis showed that AhMADS genes were specifically expressed in tissues and under abiotic stresses. It was further confirmed via the qRT-PCR technique that five selected AhMADS genes could be induced by abiotic and hormone treatments and presented different expressive profiles under various stresses. Taken together, these findings provide valuable information for the exploration of candidate genes in molecular breeding and further study of AhMADS gene functions.
Collapse
|
11
|
Cao H, Kapranov P. Methods to Analyze the Non-Coding RNA Interactome—Recent Advances and Challenges. Front Genet 2022; 13:857759. [PMID: 35368711 PMCID: PMC8969105 DOI: 10.3389/fgene.2022.857759] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 02/15/2022] [Indexed: 12/03/2022] Open
Abstract
Most of the human genome is transcribed to generate a multitude of non-coding RNAs. However, while these transcripts have generated an immense amount of scientific interest, their biological function remains a subject of an intense debate. Understanding mechanisms of action of non-coding RNAs is a key to addressing the issue of biological relevance of these transcripts. Based on some well-understood non-coding RNAs that function inside the cell by interacting with other molecules, it is generally believed many other non-coding transcripts could also function in a similar fashion. Therefore, development of methods that can map RNA interactome is the key to understanding functionality of the extensive cellular non-coding transcriptome. Here, we review the vast progress that has been made in the past decade in technologies that can map RNA interactions with different sites in DNA, proteins or other RNA molecules; the general approaches used to validate the existence of novel interactions; and the challenges posed by interpreting the data obtained using the interactome mapping methods.
Collapse
|
12
|
Mou Y, Sun Q, Yuan C, Zhao X, Wang J, Yan C, Li C, Shan S. Identification of the LOX Gene Family in Peanut and Functional Characterization of AhLOX29 in Drought Tolerance. FRONTIERS IN PLANT SCIENCE 2022; 13:832785. [PMID: 35356112 PMCID: PMC8959715 DOI: 10.3389/fpls.2022.832785] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
Lipoxygenases (LOXs) are a gene family of nonheme iron-containing dioxygenases that play important roles in plant development and defense responses. To date, a comprehensive analysis of LOX genes and their biological functions in response to abiotic stresses in peanut has not been performed. In this study, a total of 72 putative LOX genes were identified in cultivated (Arachis hypogaea) and wild-type peanut (Arachis duranensis and Arachis ipaensis) and classified into three subfamilies: 9-LOX, type I 13-LOX and type II 13-LOX. The gene structures and protein motifs of these peanut LOX genes were highly conserved among most LOXs. We found that the chromosomal distribution of peanut LOXs was not random and that gene duplication played a crucial role in the expansion of the LOX gene family. Cis-acting elements related to development, hormones, and biotic and abiotic stresses were identified in the promoters of peanut LOX genes. The expression patterns of peanut LOX genes were tissue-specific and stress-inducible. Quantitative real-time PCR results further confirmed that peanut LOX gene expression could be induced by drought, salt, methyl jasmonate and abscisic acid treatments, and these genes exhibited diverse expression patterns. Furthermore, overexpression of AhLOX29 in Arabidopsis enhanced the resistance to drought stress. Compared with wide-type, AhLOX29-overexpressing plants showed significantly decreased malondialdehyde contents, as well as increased chlorophyll degradation, proline accumulation and superoxide dismutase activity, suggesting that the transgenic plants exhibit strengthened capacity to scavenge reactive oxygen species and prevent membrane damage. This systematic study provides valuable information about the functional characteristics of AhLOXs in the regulation of abiotic stress responses of peanut.
Collapse
|
13
|
Aviña-Padilla K, Ramírez-Rafael JA, Herrera-Oropeza GE, Muley VY, Valdivia DI, Díaz-Valenzuela E, García-García A, Varela-Echavarría A, Hernández-Rosales M. Evolutionary Perspective and Expression Analysis of Intronless Genes Highlight the Conservation of Their Regulatory Role. Front Genet 2021; 12:654256. [PMID: 34306008 PMCID: PMC8302217 DOI: 10.3389/fgene.2021.654256] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 06/01/2021] [Indexed: 11/13/2022] Open
Abstract
The structure of eukaryotic genes is generally a combination of exons interrupted by intragenic non-coding DNA regions (introns) removed by RNA splicing to generate the mature mRNA. A fraction of genes, however, comprise a single coding exon with introns in their untranslated regions or are intronless genes (IGs), lacking introns entirely. The latter code for essential proteins involved in development, growth, and cell proliferation and their expression has been proposed to be highly specialized for neuro-specific functions and linked to cancer, neuropathies, and developmental disorders. The abundant presence of introns in eukaryotic genomes is pivotal for the precise control of gene expression. Notwithstanding, IGs exempting splicing events entail a higher transcriptional fidelity, making them even more valuable for regulatory roles. This work aimed to infer the functional role and evolutionary history of IGs centered on the mouse genome. IGs consist of a subgroup of genes with one exon including coding genes, non-coding genes, and pseudogenes, which conform approximately 6% of a total of 21,527 genes. To understand their prevalence, biological relevance, and evolution, we identified and studied 1,116 IG functional proteins validating their differential expression in transcriptomic data of embryonic mouse telencephalon. Our results showed that overall expression levels of IGs are lower than those of MEGs. However, strongly up-regulated IGs include transcription factors (TFs) such as the class 3 of POU (HMG Box), Neurog1, Olig1, and BHLHe22, BHLHe23, among other essential genes including the β-cluster of protocadherins. Most striking was the finding that IG-encoded BHLH TFs fit the criteria to be classified as microproteins. Finally, predicted protein orthologs in other six genomes confirmed high conservation of IGs associated with regulating neural processes and with chromatin organization and epigenetic regulation in Vertebrata. Moreover, this study highlights that IGs are essential modulators of regulatory processes, such as the Wnt signaling pathway and biological processes as pivotal as sensory organ developing at a transcriptional and post-translational level. Overall, our results suggest that IG proteins have specialized, prevalent, and unique biological roles and that functional divergence between IGs and MEGs is likely to be the result of specific evolutionary constraints.
Collapse
Affiliation(s)
- Katia Aviña-Padilla
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
- Centro de Investigacioìn y de Estudios Avanzados del IPN, Unidad Irapuato, Guanajuato, Mexico
| | | | - Gabriel Emilio Herrera-Oropeza
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London, United Kingdom
| | | | - Dulce I. Valdivia
- Centro de Investigacioìn y de Estudios Avanzados del IPN, Unidad Irapuato, Guanajuato, Mexico
| | - Erik Díaz-Valenzuela
- Centro de Investigacioìn y de Estudios Avanzados del IPN, Unidad Irapuato, Guanajuato, Mexico
| | - Andrés García-García
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | | | | |
Collapse
|
14
|
Nian L, Liu X, Yang Y, Zhu X, Yi X, Haider FU. Genome-wide identification, phylogenetic, and expression analysis under abiotic stress conditions of LIM gene family in Medicago sativa L. PLoS One 2021; 16:e0252213. [PMID: 34191816 PMCID: PMC8244919 DOI: 10.1371/journal.pone.0252213] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 05/12/2021] [Indexed: 12/20/2022] Open
Abstract
The LIM (Lin-11, Isl-1 and Mec-3 domains) family is a key transcription factor widely distributed in animals and plants. The LIM proteins in plants are involved in the regulation of a variety of biological processes, including cytoskeletal organization, the development of secondary cell walls, and cell differentiation. It has been identified and analyzed in many species. However, the systematic identification and analysis of the LIM genes family have not yet been reported in alfalfa (Medicago sativa L.). Based on the genome-wide data of alfalfa, a total of 21 LIM genes were identified and named MsLIM01-MsLIM21. Comprehensive analysis of the chromosome location, physicochemical properties of the protein, evolutionary relationship, conserved motifs, and responses to abiotic stresses of the LIM gene family in alfalfa using bioinformatics methods. The results showed that these MsLIM genes were distributed unequally on 21 of the 32 chromosomes in alfalfa. Gene duplication analysis showed that segmental duplications were the major contributors to the expansion of the alfalfa LIM family. Based on phylogenetic analyses, the LIM gene family of alfalfa can be divided into four subfamilies: αLIM subfamily, βLIM subfamily, γLIM subfamily, and δLIM subfamily, and approximately all the LIM genes within the same subfamily shared similar gene structure. The 21 MsLIM genes of alfalfa contain 10 Motifs, of which Motif1 and Motif3 are the conserved motifs shared by these genes. Furthermore, the analysis of cis-regulatory elements indicated that regulatory elements related to transcription, cell cycle, development, hormone, and stress response are abundant in the promoter sequence of MsLIM genes. Real-time quantitative PCR demonstrated that MsLIM gene expression is induced by low temperature and salt. The present study serves as a basic foundation for future functional studies on the alfalfa LIM family.
Collapse
Affiliation(s)
- Lili Nian
- College of Forestry, Gansu Agricultural University, Lanzhou, China
| | - Xuelu Liu
- College of Forestry, Gansu Agricultural University, Lanzhou, China
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou, China
| | - Yingbo Yang
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou, China
| | - Xiaolin Zhu
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Xianfeng Yi
- The Animal Husbandry Research Institute of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Fasih Ullah Haider
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
15
|
Patil G. Evolution of fibrinogen domain related proteins in Aedes aegypti: Their expression during Arbovirus infections. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Lai DL, Yan J, Fan Y, Li Y, Ruan JJ, Wang JZ, Fan Y, Cheng XB, Cheng JP. Genome-wide identification and phylogenetic relationships of the Hsp70 gene family of Aegilops tauschii, wild emmer wheat ( Triticum dicoccoides) and bread wheat ( Triticum aestivum). 3 Biotech 2021; 11:301. [PMID: 34194894 DOI: 10.1007/s13205-021-02639-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 01/03/2021] [Indexed: 12/22/2022] Open
Abstract
Heat shock protein 70 (Hsp70) plays an important role in plant development. It is closely related to the physiological process of cell development and the response to abiotic and biological stress. However, the classification and evolution of Hsp70 genes in bread wheat, wild emmer wheat and Aegilops tauschii are still unclear. Therefore, this study conducted a comprehensive bioinformatics analysis of Hsp70 gene in three species. Among these three species, 113, 79 and 36 Hsp70 genes were identified. They are divided into six subfamilies. Group vi-1 is different from Arabidopsis thaliana. It may be the result of early evolutionary segregation. The number of exons in different subfamilies (from 1 to 13) was different, but the distribution patterns of exons / introns in the same subfamily were similar. The results of Hsp70 promoter region analysis showed that the cis-regulatory elements of A. tauschii and wild emmer wheat were different from those of wheat. In addition, CpG island proportion of wild emmer Hsp70 was higher than that of wheat, which may be the molecular basis of heat resistance of wild wheat relative to cultivated wheat. Further comprehensive analysis of chromosome location and repeat events of Hsp70 gene showed that whole-genome duplication and tandem duplication events contributed to the evolution and expansion of Hsp70 gene in wheat. The results of non-synonymous substitution and synonymous substitution analysis showed that Hsp70 genes of three species had undergone purification selection. The expression profile analysis showed that Hsp70 gene was highly expressed in the roots during the vegetative growth period. In addition, TaHsp70 gene was highly expressed under various stress. The identification, classification and evolution of Hsp70 in wheat and its relatives provided a basis for further research on its evolution and its molecular mechanism in response to stress. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-02639-5.
Collapse
Affiliation(s)
- Di-Li Lai
- College of Agriculture, Guizhou University, Guiyang, 550025 People's Republic of China
| | - Jun Yan
- School of Pharmacy and Bioengineering, Chengdu University, Chengdu, 610106 People's Republic of China
| | - Yu Fan
- College of Agriculture, Guizhou University, Guiyang, 550025 People's Republic of China
| | - Yao Li
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137 People's Republic of China
| | - Jing-Jun Ruan
- College of Agriculture, Guizhou University, Guiyang, 550025 People's Republic of China
| | - Jun-Zhen Wang
- Research Station of Alpine Crops, Xichang Institute of Agricultural Sciences, Liangshan, 616150 People's Republic of China
| | - Yue Fan
- College of Agriculture, Guizhou University, Guiyang, 550025 People's Republic of China
| | - Xiao-Bin Cheng
- Department of Environmental and Life Sciences, Sichuan MinZu College, Kangding, 626001 People's Republic of China
| | - Jian-Ping Cheng
- College of Agriculture, Guizhou University, Guiyang, 550025 People's Republic of China
| |
Collapse
|
17
|
Riaz MW, Lu J, Shah L, Yang L, Chen C, Mei XD, Xue L, Manzoor MA, Abdullah M, Rehman S, Si H, Ma C. Expansion and Molecular Characterization of AP2/ERF Gene Family in Wheat ( Triticum aestivum L.). Front Genet 2021; 12:632155. [PMID: 33868370 PMCID: PMC8044323 DOI: 10.3389/fgene.2021.632155] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/04/2021] [Indexed: 01/02/2023] Open
Abstract
The AP2/ERF is a large protein family of transcription factors, playing an important role in signal transduction, plant growth, development, and response to various stresses. AP2/ERF super-family is identified and functionalized in a different plant but no comprehensive and systematic analysis in wheat (Triticum aestivum L.) has been reported. However, a genome-wide and functional analysis was performed and identified 322 TaAP2/ERF putative genes from the wheat genome. According to the phylogenetic and structural analysis, TaAP2/ERF genes were divided into 12 subfamilies (Ia, Ib, Ic, IIa, IIb, IIc, IIIa, IIIb, IIIc, IVa, IVb, and IVc). Furthermore, conserved motifs and introns/exons analysis revealed may lead to functional divergence within clades. Cis-Acting analysis indicated that many elements were involved in stress-related and plant development. Chromosomal location showed that 320 AP2/ERF genes were distributed among 21 chromosomes and 2 genes were present in a scaffold. Interspecies microsynteny analysis revealed that maximum orthologous between Arabidopsis, rice followed by wheat. Segment duplication events have contributed to the expansion of the AP2/ERF family and made this family larger than rice and Arabidopsis. Additionally, AP2/ERF genes were differentially expressed in wheat seedlings under the stress treatments of heat, salt, and drought, and expression profiles were verified by qRT-PCR. Remarkably, the RNA-seq data exposed that AP2/ERF gene family might play a vital role in stress-related. Taken together, our findings provided useful and helpful information to understand the molecular mechanism and evolution of the AP2/ERF gene family in wheat.
Collapse
Affiliation(s)
- Muhammad Waheed Riaz
- College of Agronomy, Anhui Agricultural University, Hefei, China.,Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, China
| | - Jie Lu
- College of Agronomy, Anhui Agricultural University, Hefei, China.,Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, China
| | - Liaqat Shah
- Department of Botany, Mir Chakar Khan Rind University, Sibi, Pakistan
| | - Liu Yang
- College of Agronomy, Anhui Agricultural University, Hefei, China.,Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, China
| | - Can Chen
- College of Agronomy, Anhui Agricultural University, Hefei, China.,Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, China
| | - Xu Dong Mei
- College of Agronomy, Anhui Agricultural University, Hefei, China.,Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, China
| | - Liu Xue
- College of Agronomy, Anhui Agricultural University, Hefei, China.,Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, China
| | | | - Muhammad Abdullah
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Shamsur Rehman
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Hongqi Si
- College of Agronomy, Anhui Agricultural University, Hefei, China.,Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, China
| | - Chuanxi Ma
- College of Agronomy, Anhui Agricultural University, Hefei, China.,Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, China.,National United Engineering Laboratory for Crop Stress Resistance Breeding, Hefei, China.,Anhui Key Laboratory of Crop Biology, Hefei, China
| |
Collapse
|
18
|
Liau WS, Samaddar S, Banerjee S, Bredy TW. On the functional relevance of spatiotemporally-specific patterns of experience-dependent long noncoding RNA expression in the brain. RNA Biol 2021; 18:1025-1036. [PMID: 33397182 DOI: 10.1080/15476286.2020.1868165] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The majority of transcriptionally active RNA derived from the mammalian genome does not code for protein. Long noncoding RNA (lncRNA) is the most abundant form of noncoding RNA found in the brain and is involved in many aspects of cellular metabolism. Beyond their fundamental role in the nucleus as decoys for RNA-binding proteins associated with alternative splicing or as guides for the epigenetic regulation of protein-coding gene expression, recent findings indicate that activity-induced lncRNAs also regulate neural plasticity. In this review, we discuss how lncRNAs may exert molecular control over brain function beyond their known roles in the nucleus. We propose that subcellular localization is a critical feature of experience-dependent lncRNA activity in the brain, and that lncRNA-mediated control over RNA metabolism at the synapse serves to regulate local mRNA stability and translation, thereby influencing neuronal function, learning and memory.
Collapse
Affiliation(s)
- Wei-Siang Liau
- Cognitive Neuroepigenetics Laboratory, Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | | | | | - Timothy W Bredy
- Cognitive Neuroepigenetics Laboratory, Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| |
Collapse
|
19
|
Petibon C, Malik Ghulam M, Catala M, Abou Elela S. Regulation of ribosomal protein genes: An ordered anarchy. WILEY INTERDISCIPLINARY REVIEWS-RNA 2020; 12:e1632. [PMID: 33038057 PMCID: PMC8047918 DOI: 10.1002/wrna.1632] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/08/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023]
Abstract
Ribosomal protein genes are among the most highly expressed genes in most cell types. Their products are generally essential for ribosome synthesis, which is the cornerstone for cell growth and proliferation. Many cellular resources are dedicated to producing ribosomal proteins and thus this process needs to be regulated in ways that carefully balance the supply of nascent ribosomal proteins with the demand for new ribosomes. Ribosomal protein genes have classically been viewed as a uniform interconnected regulon regulated in eukaryotic cells by target of rapamycin and protein kinase A pathway in response to changes in growth conditions and/or cellular status. However, recent literature depicts a more complex picture in which the amount of ribosomal proteins produced varies between genes in response to two overlapping regulatory circuits. The first includes the classical general ribosome‐producing program and the second is a gene‐specific feature responsible for fine‐tuning the amount of ribosomal proteins produced from each individual ribosomal gene. Unlike the general pathway that is mainly controlled at the level of transcription and translation, this specific regulation of ribosomal protein genes is largely achieved through changes in pre‐mRNA splicing efficiency and mRNA stability. By combining general and specific regulation, the cell can coordinate ribosome production, while allowing functional specialization and diversity. Here we review the many ways ribosomal protein genes are regulated, with special focus on the emerging role of posttranscriptional regulatory events in fine‐tuning the expression of ribosomal protein genes and its role in controlling the potential variation in ribosome functions. This article is categorized under:Translation > Ribosome Biogenesis Translation > Ribosome Structure/Function Translation > Translation Regulation
Collapse
Affiliation(s)
- Cyrielle Petibon
- Département de microbiologie et d'infectiologie, Universite de Sherbrooke, Faculté de Médecine et des Sciences de la Santé, Sherbrooke, Quebec, Canada
| | - Mustafa Malik Ghulam
- Département de microbiologie et d'infectiologie, Universite de Sherbrooke, Faculté de Médecine et des Sciences de la Santé, Sherbrooke, Quebec, Canada
| | - Mathieu Catala
- Département de microbiologie et d'infectiologie, Universite de Sherbrooke, Faculté de Médecine et des Sciences de la Santé, Sherbrooke, Quebec, Canada
| | - Sherif Abou Elela
- Département de microbiologie et d'infectiologie, Universite de Sherbrooke, Faculté de Médecine et des Sciences de la Santé, Sherbrooke, Quebec, Canada
| |
Collapse
|
20
|
Liang H, Zhang Y, Deng J, Gao G, Ding C, Zhang L, Yang R. The Complete Chloroplast Genome Sequences of 14 Curcuma Species: Insights Into Genome Evolution and Phylogenetic Relationships Within Zingiberales. Front Genet 2020; 11:802. [PMID: 32849804 PMCID: PMC7396571 DOI: 10.3389/fgene.2020.00802] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/06/2020] [Indexed: 11/13/2022] Open
Abstract
Zingiberaceae is taxonomically complex family where species are perennial herb. However, lack of chloroplast genomic information severely hinders our understanding of Zingiberaceae species in the research of evolution and phylogenetic relationships. In this study, the complete chloroplast (cp) genomes of fourteen Curcuma species were assembled and characterized using next-generation sequencing. We compared the genome features, repeat sequences, sequence divergence, and constructed the phylogenetic relationships of the 25 Zingiberaceae species. In each Zingiberaceae species, the 25 complete chloroplast genomes ranging from 155,890 bp (Zingiber spectabile) to 164,101 bp (Lanxangia tsaoko) contained 111 genes consisting of 77 protein coding genes, 4 ribosomal RNAs and 30 transfer RNAs. These chloroplast genomes are similar to most angiosperm that consisted of a four-part circular DNA molecules. Moreover, the characteristics of the long repeats sequences and simple sequence repeats (SSRs) were found. Six divergent hotspots regions (matK-trnk, Rps16-trnQ, petN-psbM, rpl32, ndhA, and ycf1) were identified in the 25 Zingiberaceae chloroplast genomes, which could be potential molecular markers. In addition to Wurfbainia longiligularis, the ψycf1 was discovered among the 25 Zingiberaceae species. The shared protein coding genes from 52 Zingiberales plants and four other family species as out groups were used to construct phylogenetic trees distinguished by maximum parsimony (MP), maximum likelihood (ML) and Bayesian inference (BI) and showed that Musaceae was the basal group in Zingiberales, and Curcuma had a close relationship with Stahlianthu. Besides this, Curcuma flaviflora was clustered together with Zingiber. Its distribution area (Southeast Asia) overlaps with the latter. Maybe hybridization occur in related groups within the same region. This may explain why Zingiberaceae species have a complex phylogeny, and more samples and genetic data were necessary to confirm their relationship. This study provide the reliable information and high-quality chloroplast genomes and genome resources for future Zingiberaceae research.
Collapse
Affiliation(s)
- Heng Liang
- College of Life Science, Sichuan Agricultural University, Yaan, China
| | - Yan Zhang
- College of Life Science, Sichuan Agricultural University, Yaan, China
| | - Jiabin Deng
- School of Geography and Tourism, Guizhou Education University, Guiyang, China
| | - Gang Gao
- College of Life Sciences and Food Engineering, Yibin University, Yibin, China
| | - Chunbang Ding
- College of Life Science, Sichuan Agricultural University, Yaan, China
| | - Li Zhang
- College of Science, Sichuan Agricultural University, Yaan, China
| | - Ruiwu Yang
- College of Life Science, Sichuan Agricultural University, Yaan, China
| |
Collapse
|
21
|
Mg 2+ vs Ca 2+ bound active site of group II intron- A MD study. J Mol Graph Model 2020; 97:107546. [PMID: 32018058 DOI: 10.1016/j.jmgm.2020.107546] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/25/2019] [Accepted: 01/21/2020] [Indexed: 11/20/2022]
Abstract
Group II introns are enzymes which undergo self-splicing and remove itself from pre-messenger RNA. X-ray structures of group II intron of Oceanobacillus iheyensis at various stages of the self-splicing pathway (pre-hydrolytic, post-hydrolytic, and ligand-free state) revealed intricate atomic interaction network in the active site of the intron. It has been confirmed that a heteronuclear metal ion cluster consisting of four metal ions (K1, K2 sites with K+ and M1, M2 sites with Mg2+) are crucial for function. Substitution of Mg2+ by Ca2+ results in loss of enzymatic activity. The X-ray structures not only opens up the possibility of modelling Mg2+ and Ca2+ bound active site of group II intron and quantitatively estimate the energetics of Mg2+ vs Ca2+ preference but also explore the relative structural and dynamical differences in response to divalent metal ion substitution. Thus, using X-ray structures as a template we performed molecular dynamics simulations to compare structural and dynamical differences between Mg2+ and Ca2+ bound active site of group II intron at various stages of the splicing pathway (i.e., pre-hydrolytic, post-hydrolytic, and ligand-free state). Quantitative estimation of Mg2+ vs Ca2+ selectivity at the M1, M2 sites confirmed Mg2+ preference at intron active sites relative to Ca2+. Ca2+ is relatively more hydrated in the intron active site relative to Mg2+. The local environment (bound nucleophilic water, interaction with scissile phosphate) around M2 is strikingly different between Mg2+ and Ca2+ bound pre-hydrolytic state. In the post-hydrolytic state, the exon part of the hydrolysis product is involved in direct interaction with the M1, whereas the intron part is highly flexible in our MD trajectories. Solvent exposure of M1, M2 sites are least in the pre-hydrolytic state, highest in the ligand-free state, and intermediate in the post-hydrolytic state.
Collapse
|
22
|
Parenteau J, Abou Elela S. Introns: Good Day Junk Is Bad Day Treasure. Trends Genet 2019; 35:923-934. [PMID: 31668856 DOI: 10.1016/j.tig.2019.09.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/28/2019] [Accepted: 09/19/2019] [Indexed: 02/01/2023]
Abstract
Introns are ubiquitous in eukaryotic transcripts. They are often viewed as junk RNA but the huge energetic burden of transcribing, removing, and degrading them suggests a significant evolutionary advantage. Ostensibly, an intron functions within the host pre-mRNA to regulate its splicing, transport, and degradation. However, recent studies have revealed an entirely new class of trans-acting functions where the presence of intronic RNA in the cell impacts the expression of other genes in trans. Here, we review possible new mechanisms of intron functions, with a focus on the role of yeast introns in regulating the cell growth response to starvation.
Collapse
Affiliation(s)
- Julie Parenteau
- Département de microbiologie et d'infectiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - Sherif Abou Elela
- Département de microbiologie et d'infectiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada.
| |
Collapse
|
23
|
Zhao Y, Ma R, Xu D, Bi H, Xia Z, Peng H. Genome-Wide Identification and Analysis of the AP2 Transcription Factor Gene Family in Wheat ( Triticum aestivum L.). FRONTIERS IN PLANT SCIENCE 2019; 10:1286. [PMID: 31681381 PMCID: PMC6797823 DOI: 10.3389/fpls.2019.01286] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 09/13/2019] [Indexed: 05/23/2023]
Abstract
The AP2 transcription factors play important roles in regulating plant growth and development. However, limited data are available on the contributions of AP2 transcription factors in wheat (Triticum aestivum L.). In the present study, a total of 62 AP2 genes were identified in wheat from a genome-wide search against the latest wheat genome data. Phylogenetic and sequence alignment analyses divided the wheat AP2 genes into 3 clusters, euAP2, euANT, and basalANT. Chromosomal distribution, gene structure and duplication, and motif composition were subsequently investigated. The 62 TaAP2 genes were unevenly distributed on 21 chromosomes. Twenty-four homologous gene sets among A, B, and D sub-genomes were detected, which contributed to the expansion of the wheat AP2 gene family. The expression levels of TaAP2 genes were examined using the WheatExp database; most detected genes exhibited tissue-specific expression patterns. The transcript levels of 9 randomly selected TaAP2 genes were validated through qPCR analyses. Overexpression of TaAP2-10-5D, the most likely homolog of Arabidopsis ANT gene, increased organ sizes in Arabidopsis. Our results extend our knowledge of the AP2 gene family in wheat, and contribute to further functional characterization of AP2s during wheat development with the ultimate goal of improving crop production.
Collapse
Affiliation(s)
- Yue Zhao
- College of Life Science, Henan Agricultural University, Zhengzhou, China
| | - Renyi Ma
- College of Life Science, Henan Agricultural University, Zhengzhou, China
| | - Dongliang Xu
- College of Life Science, Henan Agricultural University, Zhengzhou, China
| | - Huihui Bi
- College of Agronomy/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| | - Zongliang Xia
- College of Life Science, Henan Agricultural University, Zhengzhou, China
| | - Huiru Peng
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| |
Collapse
|
24
|
Cui Y, Chen X, Nie L, Sun W, Hu H, Lin Y, Li H, Zheng X, Song J, Yao H. Comparison and Phylogenetic Analysis of Chloroplast Genomes of Three Medicinal and Edible Amomum Species. Int J Mol Sci 2019; 20:ijms20164040. [PMID: 31430862 PMCID: PMC6720276 DOI: 10.3390/ijms20164040] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/15/2019] [Accepted: 08/17/2019] [Indexed: 01/05/2023] Open
Abstract
Amomum villosum is an important medicinal and edible plant with several pharmacologically active volatile oils. However, identifying A. villosum from A. villosum var. xanthioides and A. longiligulare which exhibit similar morphological characteristics to A. villosum, is difficult. The main goal of this study, therefore, is to mine genetic resources and improve molecular methods that could be used to distinguish these species. A total of eight complete chloroplasts (cp) genomes of these Amomum species which were collected from the main producing areas in China were determined to be 163,608–164,069 bp in size. All genomes displayed a typical quadripartite structure with a pair of inverted repeat (IR) regions (29,820–29,959 bp) that separated a large single copy (LSC) region (88,680–88,857 bp) from a small single copy (SSC) region (15,288–15,369 bp). Each genome encodes 113 different genes with 79 protein-coding genes, 30 tRNA genes, and four rRNA genes. More than 150 SSRs were identified in the entire cp genomes of these three species. The Sanger sequencing results based on 32 Amomum samples indicated that five highly divergent regions screened from cp genomes could not be used to distinguish Amomum species. Phylogenetic analysis showed that the cp genomes could not only accurately identify Amomum species, but also provide a solid foundation for the establishment of phylogenetic relationships of Amomum species. The availability of cp genome resources and the comparative analysis is beneficial for species authentication and phylogenetic analysis in Amomum.
Collapse
Affiliation(s)
- Yingxian Cui
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Engineering Research Center of Chinese Medicine Resources, Ministry of Education, Beijing 100193, China
| | - Xinlian Chen
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Engineering Research Center of Chinese Medicine Resources, Ministry of Education, Beijing 100193, China
| | - Liping Nie
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Engineering Research Center of Chinese Medicine Resources, Ministry of Education, Beijing 100193, China
| | - Wei Sun
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Haoyu Hu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yulin Lin
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Engineering Research Center of Chinese Medicine Resources, Ministry of Education, Beijing 100193, China
| | - Haitao Li
- Yunnan Branch, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Jinghong 666100, China
| | - Xilong Zheng
- Hainan Branch, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Wanning 571533, China
| | - Jingyuan Song
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Engineering Research Center of Chinese Medicine Resources, Ministry of Education, Beijing 100193, China
| | - Hui Yao
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
- Engineering Research Center of Chinese Medicine Resources, Ministry of Education, Beijing 100193, China.
| |
Collapse
|
25
|
Ling Z, Brockmöller T, Baldwin IT, Xu S. Evolution of Alternative Splicing in Eudicots. FRONTIERS IN PLANT SCIENCE 2019; 10:707. [PMID: 31244865 PMCID: PMC6581728 DOI: 10.3389/fpls.2019.00707] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 05/13/2019] [Indexed: 05/30/2023]
Abstract
Alternative pre-mRNA splicing (AS) is prevalent in plants and is involved in many interactions between plants and environmental stresses. However, the patterns and underlying mechanisms of AS evolution in plants remain unclear. By analyzing the transcriptomes of four eudicot species, we revealed that the divergence of AS is largely due to the gains and losses of AS events among orthologous genes. Furthermore, based on a subset of AS, in which AS can be directly associated with specific transcripts, we found that AS that generates transcripts containing premature termination codons (PTC), are likely more conserved than those that generate non-PTC containing transcripts. This suggests that AS coupled with nonsense-mediated decay (NMD) might play an important role in affecting mRNA levels post-transcriptionally. To understand the mechanisms underlying the divergence of AS, we analyzed the key determinants of AS using a machine learning approach. We found that the presence/absence of alternative splice site (SS) within the junction, the distance between the authentic SS and the nearest alternative SS, the size of exon-exon junctions were the major determinants for both alternative 5' donor site and 3' acceptor site among the studied species, suggesting a relatively conserved AS mechanism. The comparative analysis further demonstrated that variations of the identified AS determinants significantly contributed to the AS divergence among closely related species in both Solanaceae and Brassicaceae taxa. Together, these results provide detailed insights into the evolution of AS in plants.
Collapse
Affiliation(s)
- Zhihao Ling
- Max Planck Institute for Chemical Ecology, Jena, Germany
| | | | - Ian T. Baldwin
- Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Shuqing Xu
- Plant Adaptation-in-action Group, Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| |
Collapse
|
26
|
Villarreal LP, Witzany G. That is life: communicating RNA networks from viruses and cells in continuous interaction. Ann N Y Acad Sci 2019; 1447:5-20. [PMID: 30865312 DOI: 10.1111/nyas.14040] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/13/2019] [Accepted: 01/31/2019] [Indexed: 02/06/2023]
Abstract
All the conserved detailed results of evolution stored in DNA must be read, transcribed, and translated via an RNA-mediated process. This is required for the development and growth of each individual cell. Thus, all known living organisms fundamentally depend on these RNA-mediated processes. In most cases, they are interconnected with other RNAs and their associated protein complexes and function in a strictly coordinated hierarchy of temporal and spatial steps (i.e., an RNA network). Clearly, all cellular life as we know it could not function without these key agents of DNA replication, namely rRNA, tRNA, and mRNA. Thus, any definition of life that lacks RNA functions and their networks misses an essential requirement for RNA agents that inherently regulate and coordinate (communicate to) cells, tissues, organs, and organisms. The precellular evolution of RNAs occurred at the core of the emergence of cellular life and the question remained of how both precellular and cellular levels are interconnected historically and functionally. RNA networks and RNA communication can interconnect these levels. With the reemergence of virology in evolution, it became clear that communicating viruses and subviral infectious genetic parasites are bridging these two levels by invading, integrating, coadapting, exapting, and recombining constituent parts in host genomes for cellular requirements in gene regulation and coordination aims. Therefore, a 21st century understanding of life is of an inherently social process based on communicating RNA networks, in which viruses and cells continuously interact.
Collapse
Affiliation(s)
- Luis P Villarreal
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California
| | | |
Collapse
|
27
|
Kumar A, Satpati P. Principle of K+/Na+ selectivity in the active site of group II intron at various stages of self-splicing pathway. J Mol Graph Model 2018; 84:1-9. [DOI: 10.1016/j.jmgm.2018.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 04/16/2018] [Accepted: 05/10/2018] [Indexed: 10/16/2022]
|
28
|
The State of Long Non-Coding RNA Biology. Noncoding RNA 2018; 4:ncrna4030017. [PMID: 30103474 PMCID: PMC6162524 DOI: 10.3390/ncrna4030017] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 07/30/2018] [Accepted: 08/07/2018] [Indexed: 12/15/2022] Open
Abstract
Transcriptomic studies have demonstrated that the vast majority of the genomes of mammals and other complex organisms is expressed in highly dynamic and cell-specific patterns to produce large numbers of intergenic, antisense and intronic long non-protein-coding RNAs (lncRNAs). Despite well characterized examples, their scaling with developmental complexity, and many demonstrations of their association with cellular processes, development and diseases, lncRNAs are still to be widely accepted as major players in gene regulation. This may reflect an underappreciation of the extent and precision of the epigenetic control of differentiation and development, where lncRNAs appear to have a central role, likely as organizational and guide molecules: most lncRNAs are nuclear-localized and chromatin-associated, with some involved in the formation of specialized subcellular domains. I suggest that a reassessment of the conceptual framework of genetic information and gene expression in the 4-dimensional ontogeny of spatially organized multicellular organisms is required. Together with this and further studies on their biology, the key challenges now are to determine the structure–function relationships of lncRNAs, which may be aided by emerging evidence of their modular structure, the role of RNA editing and modification in enabling epigenetic plasticity, and the role of RNA signaling in transgenerational inheritance of experience.
Collapse
|
29
|
Cesar ASM, Regitano LCA, Reecy JM, Poleti MD, Oliveira PSN, de Oliveira GB, Moreira GCM, Mudadu MA, Tizioto PC, Koltes JE, Fritz-Waters E, Kramer L, Garrick D, Beiki H, Geistlinger L, Mourão GB, Zerlotini A, Coutinho LL. Identification of putative regulatory regions and transcription factors associated with intramuscular fat content traits. BMC Genomics 2018; 19:499. [PMID: 29945546 PMCID: PMC6020320 DOI: 10.1186/s12864-018-4871-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 06/14/2018] [Indexed: 12/21/2022] Open
Abstract
Background Integration of high throughput DNA genotyping and RNA-sequencing data allows for the identification of genomic regions that control gene expression, known as expression quantitative trait loci (eQTL), on a whole genome scale. Intramuscular fat (IMF) content and carcass composition play important roles in metabolic and physiological processes in mammals because they influence insulin sensitivity and consequently prevalence of metabolic diseases such as obesity and type 2 diabetes. However, limited information is available on the genetic variants and mechanisms associated with IMF deposition in mammals. Thus, our hypothesis was that eQTL analyses could identify putative regulatory regions and transcription factors (TFs) associated with intramuscular fat (IMF) content traits. Results We performed an integrative eQTL study in skeletal muscle to identify putative regulatory regions and factors associated with intramuscular fat content traits. Data obtained from skeletal muscle samples of 192 animals was used for association analysis between 461,466 SNPs and the transcription level of 11,808 genes. This yielded 1268 cis- and 10,334 trans-eQTLs, among which we identified nine hotspot regions that each affected the expression of > 119 genes. These putative regulatory regions overlapped with previously identified QTLs for IMF content. Three of the hotspots respectively harbored the transcription factors USF1, EGR4 and RUNX1T1, which are known to play important roles in lipid metabolism. From co-expression network analysis, we further identified modules significantly correlated with IMF content and associated with relevant processes such as fatty acid metabolism, carbohydrate metabolism and lipid metabolism. Conclusion This study provides novel insights into the link between genotype and IMF content as evident from the expression level. It thereby identifies genomic regions of particular importance and associated regulatory factors. These new findings provide new knowledge about the biological processes associated with genetic variants and mechanisms associated with IMF deposition in mammals. Electronic supplementary material The online version of this article (10.1186/s12864-018-4871-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Aline S M Cesar
- Department of Animal Science, University of São Paulo, Piracicaba, SP, 13418-900, Brazil.,Department of Animal Science, Iowa State University, Ames, IA, 50011, USA
| | | | - James M Reecy
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA
| | - Mirele D Poleti
- Department of Animal Science, University of São Paulo, Piracicaba, SP, 13418-900, Brazil
| | | | | | - Gabriel C M Moreira
- Department of Animal Science, University of São Paulo, Piracicaba, SP, 13418-900, Brazil
| | | | - Polyana C Tizioto
- Department of Animal Science, University of São Paulo, Piracicaba, SP, 13418-900, Brazil
| | - James E Koltes
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA
| | - Elyn Fritz-Waters
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA
| | - Luke Kramer
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA
| | - Dorian Garrick
- School of Agriculture, Massey University, Ruakura, Hamilton, New Zealand
| | - Hamid Beiki
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA
| | | | - Gerson B Mourão
- Department of Animal Science, University of São Paulo, Piracicaba, SP, 13418-900, Brazil
| | | | - Luiz L Coutinho
- Department of Animal Science, University of São Paulo, Piracicaba, SP, 13418-900, Brazil.
| |
Collapse
|
30
|
Schaefke B, Sun W, Li YS, Fang L, Chen W. The evolution of posttranscriptional regulation. WILEY INTERDISCIPLINARY REVIEWS-RNA 2018; 9:e1485. [PMID: 29851258 DOI: 10.1002/wrna.1485] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/23/2018] [Accepted: 04/26/2018] [Indexed: 12/13/2022]
Abstract
"DNA makes RNA makes protein." After transcription, mRNAs undergo a series of intertwining processes to be finally translated into functional proteins. The "posttranscriptional" regulation (PTR) provides cells an extended option to fine-tune their proteomes. To meet the demands of complex organism development and the appropriate response to environmental stimuli, every step in these processes needs to be finely regulated. Moreover, changes in these regulatory processes are important driving forces underlying the evolution of phenotypic differences across different species. The major PTR mechanisms discussed in this review include the regulation of splicing, polyadenylation, decay, and translation. For alternative splicing and polyadenylation, we mainly discuss their evolutionary dynamics and the genetic changes underlying the regulatory differences in cis-elements versus trans-factors. For mRNA decay and translation, which, together with transcription, determine the cellular RNA or protein abundance, we focus our discussion on how their divergence coordinates with transcriptional changes to shape the evolution of gene expression. Then to highlight the importance of PTR in the evolution of higher complexity, we focus on their roles in two major phenomena during eukaryotic evolution: the evolution of multicellularity and the division of labor between different cell types and tissues; and the emergence of diverse, often highly specialized individual phenotypes, especially those concerning behavior in eusocial insects. This article is categorized under: RNA Evolution and Genomics > RNA and Ribonucleoprotein Evolution Translation > Translation Regulation RNA Processing > Splicing Regulation/Alternative Splicing.
Collapse
Affiliation(s)
- Bernhard Schaefke
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Wei Sun
- Department of Biology, Southern University of Science and Technology, Shenzhen, China.,Department of Pharmaceutical Chemistry and Cardiovascular Research Institute, University of California San Francisco, San Francisco
| | - Yi-Sheng Li
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Liang Fang
- Department of Biology, Southern University of Science and Technology, Shenzhen, China.,Medi-X Institute, SUSTech Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, China
| | - Wei Chen
- Department of Biology, Southern University of Science and Technology, Shenzhen, China.,Medi-X Institute, SUSTech Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
31
|
Pek JW. Stable Intronic Sequence RNAs Engage in Feedback Loops. Trends Genet 2018; 34:330-332. [DOI: 10.1016/j.tig.2018.01.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 01/10/2018] [Indexed: 01/27/2023]
|
32
|
Yuan B, Ji W, Fan B, Zhang B, Zhao Y, Li J. Association analysis between thrombospondin-2 gene polymorphisms and intervertebral disc degeneration in a Chinese Han population. Medicine (Baltimore) 2018; 97:e9586. [PMID: 29480856 PMCID: PMC5943876 DOI: 10.1097/md.0000000000009586] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The aim of this study is to determine the contribution of 2 single nucleotide polymorphisms (SNPs) in thrombospondin 2 (THBS2) gene to the development of intervertebral disc degeneration (IDD) in a Chinese Han population.We studied 138 patients with radiographically proven IDD and 136 healthy volunteers with no history of back problems. Magnetic resonance images (MRIs) were obtained for all the patients and controls. Image evaluation for IDD was performed to evaluate the severity of IDD. All patients and controls were genotyped for rs6422747 and rs6422748. Associations between genotypes and development of IDD were analyzed.We found that 2 SNPs in the intron region of THBS2 gene (rs6422747 and rs6422748) were associated with susceptibility of IDD. However, they were not related with severity of IDD, including the total number of degenerative disc and level of IDD. G allele in both SNPs was associated with a higher risk of IDD.The 2 SNPs (rs6422747 and rs6422748) in the THBS2 gene were associated with susceptibility of IDD but not severity of IDD in a Chinese Han population. Our results indicated that THBS2 gene polymorphisms might be the risk factors for IDD. More studies with larger sample size need to be perfected to make sure the functions of THBS2 gene polymorphisms in IDD development.
Collapse
Affiliation(s)
| | - Wei Ji
- Department of Orthopaedics
| | - Bing Fan
- Health Examination Center, Qilu Hospital of Shandong University (Qingdao), Qingdao, Shandong Province, P.R. China
| | | | | | | |
Collapse
|
33
|
Mohanta TK, Kumar P, Bae H. Genomics and evolutionary aspect of calcium signaling event in calmodulin and calmodulin-like proteins in plants. BMC PLANT BIOLOGY 2017; 17:38. [PMID: 28158973 PMCID: PMC5291997 DOI: 10.1186/s12870-017-0989-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 01/08/2017] [Indexed: 05/20/2023]
Abstract
BACKGROUND Ca2+ ion is a versatile second messenger that operate in a wide ranges of cellular processes that impact nearly every aspect of life. Ca2+ regulates gene expression and biotic and abiotic stress responses in organisms ranging from unicellular algae to multi-cellular higher plants through the cascades of calcium signaling processes. RESULTS In this study, we deciphered the genomics and evolutionary aspects of calcium signaling event of calmodulin (CaM) and calmodulin like- (CML) proteins. We studied the CaM and CML gene family of 41 different species across the plant lineages. Genomic analysis showed that plant encodes more calmodulin like-protein than calmodulins. Further analyses showed, the majority of CMLs were intronless, while CaMs were intron rich. Multiple sequence alignment showed, the EF-hand domain of CaM contains four conserved D-x-D motifs, one in each EF-hand while CMLs contain only one D-x-D-x-D motif in the fourth EF-hand. Phylogenetic analysis revealed that, the CMLs were evolved earlier than CaM and later diversified. Gene expression analysis demonstrated that different CaM and CMLs genes were express differentially in different tissues in a spatio-temporal manner. CONCLUSION In this study we provided in detailed genome-wide identifications and characterization of CaM and CML protein family, phylogenetic relationships, and domain structure. Expression study of CaM and CML genes were conducted in Glycine max and Phaseolus vulgaris. Our study provides a strong foundation for future functional research in CaM and CML gene family in plant kingdom.
Collapse
Affiliation(s)
- Tapan Kumar Mohanta
- Free Major of Natural Science, College of Basic Studies, Yeungnam University, Gyeongsan, Gyeongsangbuk-do 38541 Republic of Korea
| | - Pradeep Kumar
- School of Biotechnology, Yeungnam University, Gyeongsan, Gyeongsangbuk-do 38541 Republic of Korea
| | - Hanhong Bae
- School of Biotechnology, Yeungnam University, Gyeongsan, Gyeongsangbuk-do 38541 Republic of Korea
| |
Collapse
|
34
|
Abstract
Protein-coding RNAs represent only a small fraction of the transcriptional output in higher eukaryotes. The remaining RNA species encompass a broad range of molecular functions and regulatory roles, a consequence of the structural polyvalence of RNA polymers. Albeit several classes of small noncoding RNAs are relatively well characterized, the accessibility of affordable high-throughput sequencing is generating a wealth of novel, unannotated transcripts, especially long noncoding RNAs (lncRNAs) that are derived from genomic regions that are antisense, intronic, intergenic, and overlapping protein-coding loci. Parsing and characterizing the functions of noncoding RNAs-lncRNAs in particular-is one of the great challenges of modern genome biology. Here we discuss concepts and computational methods for the identification of structural domains in lncRNAs from genomic and transcriptomic data. In the first part, we briefly review how to identify RNA structural motifs in individual lncRNAs. In the second part, we describe how to leverage the evolutionary dynamics of structured RNAs in a computationally efficient screen to detect putative functional lncRNA motifs using comparative genomics.
Collapse
Affiliation(s)
- Martin A Smith
- RNA Biology and Plasticity Laboratory, Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, NSW, 2010, Australia. .,St-Vincent's Clinical School, Faculty of Medicine, UNSW Australia, Sydney, NSW, 2052, Australia.
| | - John S Mattick
- RNA Biology and Plasticity Laboratory, Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, NSW, 2010, Australia.,St-Vincent's Clinical School, Faculty of Medicine, UNSW Australia, Sydney, NSW, 2052, Australia
| |
Collapse
|
35
|
Osman I, Tay MLI, Pek JW. Stable intronic sequence RNAs (sisRNAs): a new layer of gene regulation. Cell Mol Life Sci 2016; 73:3507-19. [PMID: 27147469 PMCID: PMC11108444 DOI: 10.1007/s00018-016-2256-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 04/22/2016] [Accepted: 04/26/2016] [Indexed: 02/05/2023]
Abstract
Upon splicing, introns are rapidly degraded. Hence, RNAs derived from introns are commonly deemed as junk sequences. However, the discoveries of intronic-derived small nucleolar RNAs (snoRNAs), small Cajal body associated RNAs (scaRNAs) and microRNAs (miRNAs) suggested otherwise. These non-coding RNAs are shown to play various roles in gene regulation. In this review, we highlight another class of intron-derived RNAs known as stable intronic sequence RNAs (sisRNAs). sisRNAs have been observed since the 1980 s; however, we are only beginning to understand their biological significance. Recent studies have shown or suggested that sisRNAs regulate their own host's gene expression, function as molecular sinks or sponges, and regulate protein translation. We propose that sisRNAs function as an additional layer of gene regulation in the cells.
Collapse
Affiliation(s)
- Ismail Osman
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| | - Mandy Li-Ian Tay
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| | - Jun Wei Pek
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore.
| |
Collapse
|
36
|
Wang M, Yue H, Feng K, Deng P, Song W, Nie X. Genome-wide identification, phylogeny and expressional profiles of mitogen activated protein kinase kinase kinase (MAPKKK) gene family in bread wheat (Triticum aestivum L.). BMC Genomics 2016; 17:668. [PMID: 27549916 PMCID: PMC4994377 DOI: 10.1186/s12864-016-2993-7] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 08/03/2016] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Mitogen-activated protein kinase kinase kinases (MAPKKKs) are the important components of MAPK cascades, which play the crucial role in plant growth and development as well as in response to diverse stresses. Although this family has been systematically studied in many plant species, little is known about MAPKKK genes in wheat (Triticum aestivum L.), especially those involved in the regulatory network of stress processes. RESULTS In this study, we identified 155 wheat MAPKKK genes through a genome-wide search method based on the latest available wheat genome information, of which 29 belonged to MEKK, 11 to ZIK and 115 to Raf subfamily, respectively. Then, chromosome localization, gene structure and conserved protein motifs and phylogenetic relationship as well as regulatory network of these TaMAPKKKs were systematically investigated and results supported the prediction. Furthermore, a total of 11 homologous groups between A, B and D sub-genome and 24 duplication pairs among them were detected, which contributed to the expansion of wheat MAPKKK gene family. Finally, the expression profiles of these MAPKKKs during development and under different abiotic stresses were investigated using the RNA-seq data. Additionally, 10 tissue-specific and 4 salt-responsive TaMAPKKK genes were selected to validate their expression level through qRT-PCR analysis. CONCLUSIONS This study for the first time reported the genome organization, evolutionary features and expression profiles of the wheat MAPKKK gene family, which laid the foundation for further functional analysis of wheat MAPKKK genes, and contributed to better understanding the roles and regulatory mechanism of MAPKKKs in wheat.
Collapse
Affiliation(s)
- Meng Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, 3 Taicheng Road, Yangling, 712100 Shaanxi China
| | - Hong Yue
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, 3 Taicheng Road, Yangling, 712100 Shaanxi China
| | - Kewei Feng
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, 3 Taicheng Road, Yangling, 712100 Shaanxi China
| | - Pingchuan Deng
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, 3 Taicheng Road, Yangling, 712100 Shaanxi China
| | - Weining Song
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, 3 Taicheng Road, Yangling, 712100 Shaanxi China
- Australia-China Joint Research Centre for Abiotic and Biotic Stress Management in Agriculture, Horticulture and Forestry, Yangling, 712100 Shaanxi China
| | - Xiaojun Nie
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, 3 Taicheng Road, Yangling, 712100 Shaanxi China
| |
Collapse
|
37
|
Kawaguchi R, Kiryu H. Parallel computation of genome-scale RNA secondary structure to detect structural constraints on human genome. BMC Bioinformatics 2016; 17:203. [PMID: 27153986 PMCID: PMC4858847 DOI: 10.1186/s12859-016-1067-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 04/29/2016] [Indexed: 02/08/2023] Open
Abstract
Background RNA secondary structure around splice sites is known to assist normal splicing by promoting spliceosome recognition. However, analyzing the structural properties of entire intronic regions or pre-mRNA sequences has been difficult hitherto, owing to serious experimental and computational limitations, such as low read coverage and numerical problems. Results Our novel software, “ParasoR”, is designed to run on a computer cluster and enables the exact computation of various structural features of long RNA sequences under the constraint of maximal base-pairing distance. ParasoR divides dynamic programming (DP) matrices into smaller pieces, such that each piece can be computed by a separate computer node without losing the connectivity information between the pieces. ParasoR directly computes the ratios of DP variables to avoid the reduction of numerical precision caused by the cancellation of a large number of Boltzmann factors. The structural preferences of mRNAs computed by ParasoR shows a high concordance with those determined by high-throughput sequencing analyses. Using ParasoR, we investigated the global structural preferences of transcribed regions in the human genome. A genome-wide folding simulation indicated that transcribed regions are significantly more structural than intergenic regions after removing repeat sequences and k-mer frequency bias. In particular, we observed a highly significant preference for base pairing over entire intronic regions as compared to their antisense sequences, as well as to intergenic regions. A comparison between pre-mRNAs and mRNAs showed that coding regions become more accessible after splicing, indicating constraints for translational efficiency. Such changes are correlated with gene expression levels, as well as GC content, and are enriched among genes associated with cytoskeleton and kinase functions. Conclusions We have shown that ParasoR is very useful for analyzing the structural properties of long RNA sequences such as mRNAs, pre-mRNAs, and long non-coding RNAs whose lengths can be more than a million bases in the human genome. In our analyses, transcribed regions including introns are indicated to be subject to various types of structural constraints that cannot be explained from simple sequence composition biases. ParasoR is freely available at https://github.com/carushi/ParasoR. Electronic supplementary material The online version of this article (doi:10.1186/s12859-016-1067-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Risa Kawaguchi
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan.
| | - Hisanori Kiryu
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
| |
Collapse
|
38
|
Yang J, Jiang F, Guo H, Soniya T, Yan CX, Tian ZF, Shi BY. Studies of genetic variability of the hepatocyte nuclear factor-1α gene in an Indian maturity-onset diabetes of the young family. Cell Biosci 2016; 6:29. [PMID: 27148439 PMCID: PMC4855895 DOI: 10.1186/s13578-016-0095-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Accepted: 04/19/2016] [Indexed: 11/28/2022] Open
Abstract
Maturity-onset diabetes of the young (MODY), one of the specific types of diabetes mellitus, is a monogenetic disorder characterized by an autosomal dominant (AD) inheritance and β-cell dysfunction. To study an Indian family with clinical diagnosis of MODY and detect the genetic mutations in the aspect of molecular mechanism, seven blood samples were obtained from the diabetic patients of this pedigree and genomic DNA was extracted from peripheral leukocytes. The exon1, exon2 and exon4 of hepatocyte nuclear factor-1α (HNF-1α) gene were amplified by polymerase chain reaction. Then the products were sequenced and compared with standard sequences on gene bank. As a result, two mutations were detected in exon1. That was CTC → CTG (Leu → Leu) in codon17 and ATC → CTC (Ile → Leu) in codon27. I27L was speculated to have a close relationship with the glycometabolism and the pathogenesis of diabetes mellitus together with the putative novel mutation existed in this Indian pedigree. Meanwhile, one mutation of GGG → GGC (Gly → Gly) in codon288 of exon4 was detected in the proband. No mutations were found in exon2 but a G → T base substitution in the intron4 region among all seven samples was detected. It may have some potential effects on the onset of diabetes in this family, but we do not have any evidence right now. Although it requires further investigation on the function of mutations found in the intron region, our research may provide some clue for this issue and it deserves more attention.
Collapse
Affiliation(s)
- Jing Yang
- />Department of Endocrinology, The First Affiliated Hospital of Xi’an Jiaotong University School of Medicine, Xi’an, 710061 People’s Republic of China
| | - Feng Jiang
- />Department of Endocrinology, The First Affiliated Hospital of Xi’an Jiaotong University School of Medicine, Xi’an, 710061 People’s Republic of China
| | - Hui Guo
- />Department of Endocrinology, The First Affiliated Hospital of Xi’an Jiaotong University School of Medicine, Xi’an, 710061 People’s Republic of China
| | - Thadimacca Soniya
- />Department of Endocrinology, The First Affiliated Hospital of Xi’an Jiaotong University School of Medicine, Xi’an, 710061 People’s Republic of China
| | - Chun-xia Yan
- />Department of Forensic Medicine, Xi’an Jiaotong University School of Medicine, Xi’an, 710061 People’s Republic of China
| | - Zhu-fang Tian
- />Department of Endocrinology, The First Affiliated Hospital of Xi’an Jiaotong University School of Medicine, Xi’an, 710061 People’s Republic of China
| | - Bing-yin Shi
- />Department of Endocrinology, The First Affiliated Hospital of Xi’an Jiaotong University School of Medicine, Xi’an, 710061 People’s Republic of China
| |
Collapse
|
39
|
Abstract
Dynamic gene expression during cellular differentiation is tightly coordinated by transcriptional and post-transcriptional mechanisms. An emerging theme is the central role of long noncoding RNAs (lncRNAs) in the regulation of this specificity. Recent advances demonstrate that lncRNAs are expressed in a lineage-specific manner and control the development of several cell types in the hematopoietic system. Moreover, specific lncRNAs are induced to modulate innate and adaptive immune responses. lncRNAs can function via RNA-DNA, RNA-RNA, and RNA-protein target interactions. As a result, they affect several stages of gene regulation, including chromatin modification, mRNA biogenesis, and protein signaling. We discuss recent advances, future prospects, and challenges in understanding the roles of lncRNAs in immunity and immune-mediated diseases.
Collapse
Affiliation(s)
- Ansuman T Satpathy
- Howard Hughes Medical Institute and Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Howard Y Chang
- Howard Hughes Medical Institute and Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
40
|
Raabe CA, Brosius J. Does every transcript originate from a gene? Ann N Y Acad Sci 2015; 1341:136-48. [PMID: 25847549 DOI: 10.1111/nyas.12741] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 02/05/2015] [Accepted: 02/11/2015] [Indexed: 12/20/2022]
Abstract
Outdated gene definitions favored regions corresponding to mature messenger RNAs, in particular, the open reading frame. In eukaryotes, the intergenic space was widely regarded nonfunctional and devoid of RNA transcription. Original concepts were based on the assumption that RNA expression was restricted to known protein-coding genes and a few so-called structural RNA genes, such as ribosomal RNAs or transfer RNAs. With the discovery of introns and, more recently, sensitive techniques for monitoring genome-wide transcription, this view had to be substantially modified. Tiling microarrays and RNA deep sequencing revealed myriads of transcripts, which cover almost entire genomes. The tremendous complexity of non-protein-coding RNA transcription has to be integrated into novel gene definitions. Despite an ever-growing list of functional RNAs, questions concerning the mass of identified transcripts are under dispute. Here, we examined genome-wide transcription from various angles, including evolutionary considerations, and suggest, in analogy to novel alternative splice variants that do not persist, that the vast majority of transcripts represent raw material for potential, albeit rare, exaptation events.
Collapse
Affiliation(s)
- Carsten A Raabe
- Institute of Experimental Pathology, ZMBE, University of Münster, Münster, Germany
| | | |
Collapse
|
41
|
Genome-wide identification of MAPK, MAPKK, and MAPKKK gene families and transcriptional profiling analysis during development and stress response in cucumber. BMC Genomics 2015; 16:386. [PMID: 25976104 PMCID: PMC4432876 DOI: 10.1186/s12864-015-1621-2] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 05/05/2015] [Indexed: 12/02/2022] Open
Abstract
Background The mitogen-activated protein kinase (MAPK) cascade consists of three types of reversibly phosphorylated kinases, namely, MAPK, MAPK kinase (MAPKK/MEK), and MAPK kinase kinase (MAPKKK/MEKK), playing important roles in plant growth, development, and defense response. The MAPK cascade genes have been investigated in detail in model plants, including Arabidopsis, rice, and tomato, but poorly characterized in cucumber (Cucumis sativus L.), a major popular vegetable in Cucurbitaceae crops, which is highly susceptible to environmental stress and pathogen attack. Results A genome-wide analysis revealed the presence of at least 14 MAPKs, 6 MAPKKs, and 59 MAPKKKs in the cucumber genome. Phylogenetic analyses classified all the CsMAPK and CsMAPKK genes into four groups, whereas the CsMAPKKK genes were grouped into the MEKK, RAF, and ZIK subfamilies. The expansion of these three gene families was mainly contributed by segmental duplication events. Furthermore, the ratios of non-synonymous substitution rates (Ka) and synonymous substitution rates (Ks) implied that the duplicated gene pairs had experienced strong purifying selection. Real-time PCR analysis demonstrated that some MAPK, MAPKK and MAPKKK genes are preferentially expressed in specific organs or tissues. Moreover, the expression levels of most of these genes significantly changed under heat, cold, drought, and Pseudoperonospora cubensis treatments. Exposure to abscisic acid and jasmonic acid markedly affected the expression levels of these genes, thereby implying that they may play important roles in the plant hormone network. Conclusion A comprehensive genome-wide analysis of gene structure, chromosomal distribution, and evolutionary relationship of MAPK cascade genes in cucumber are present here. Further expression analysis revealed that these genes were involved in important signaling pathways for biotic and abiotic stress responses in cucumber, as well as the response to plant hormones. Our first systematic description of the MAPK, MAPKK, and MAPKKK families in cucumber will help to elucidate their biological roles in plant. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1621-2) contains supplementary material, which is available to authorized users.
Collapse
|
42
|
Evaluation of the p53 Arg72Pro polymorphism and its association with cancer risk: a HuGE review and meta-analysis. Genet Res (Camb) 2015; 97:e7. [PMID: 25882871 DOI: 10.1017/s0016672315000075] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Codon 72 is a hotspot of polymorphisms in the TP53 gene, which encodes a hub protein in the protein-protein interaction network of p53. It is thus a central player in the apoptotic pathway, preventing cancer. A large number of articles have been published exploring its association with an increased susceptibility to most common cancers. However, these studies have produced inconclusive results, which may be due to their small sample sizes or study designs. To comprehensively evaluate the potential correlation between the TP53 Pro72Arg polymorphism and cancer risk and to better characterize the Pro72Arg polymorphism, we performed a systematic HuGE review and meta-analysis of candidate studies through online resources, according to the proposal of MOOSE and the PRISMA statement. The identified articles were carefully examined according to the inclusion criteria. Pooled odds ratios were calculated on the basis of different genetic models, while heterogeneity was assessed through a chi-based Q-test and I2. After applying the inclusion filters, we obtained a pool of 54 eligible studies, representing 18 718 cases and 21 261 controls. Overall, non-significant cancer risk was observed in all the genetic models but their observed heterogeneity was extremely significant. In subgroup analysis, an increased susceptibility was observed in the case of colorectal cancer, while in cancers of the female reproductive system, significantly increased risk was detected in all the genetic models except the dominant model. In another subgroup analysis, significantly increased cancer risk was observed among Asians in homozygous and recessive models, while in Americans increased cancer risk was observed only in dominant and recessive models. No association was observed in the rest of the populations. In conclusion, pooled subgroup analysis on the basis of ethnicity proved that the TP53 Arg72Pro polymorphism is associated with an increased risk of cancer in Asians and Americans only and is not associated in other populations. It can therefore be concluded that this meta-analysis of available data suggests partial confirmation of the association between the TP53 Arg72Pro polymorphism and cancer risk susceptibility.
Collapse
|
43
|
Zhu L, Zhu J, Liu Y, Chen Y, Li Y, Huang L, Chen S, Li T, Dang Y, Chen T. Methamphetamine induces alterations in the long non-coding RNAs expression profile in the nucleus accumbens of the mouse. BMC Neurosci 2015; 16:18. [PMID: 25884509 PMCID: PMC4399149 DOI: 10.1186/s12868-015-0157-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 03/13/2015] [Indexed: 01/01/2023] Open
Abstract
Background Repeated exposure to addictive drugs elicits long-lasting cellular and molecular changes. It has been reported that the aberrant expression of long non-coding RNAs (lncRNAs) is involved in cocaine and heroin addiction, yet the expression profile of lncRNAs and their potential effects on methamphetamine (METH)-induced locomotor sensitization are largely unknown. Results Using high-throughput strand-specific complementary DNA sequencing technology (ssRNA-seq), here we examined the alterations in the lncRNAs expression profile in the nucleus accumbens (NAc) of METH-sensitized mice. We found that the expression levels of 6246 known lncRNAs (6215 down-regulated, 31 up-regulated) and 8442 novel lncRNA candidates (8408 down-regulated, 34 up-regulated) were significantly altered in the METH-sensitized mice. Based on characterizations of the genomic contexts of the lncRNAs, we further showed that there were 5139 differentially expressed lncRNAs acted via cis mechanisms, including sense intronic (4295 down-regulated and one up-regulated), overlapping (25 down-regulated and one up-regulated), natural antisense transcripts (NATs, 148 down-regulated and eight up-regulated), long intergenic non-coding RNAs (lincRNAs, 582 down-regulated and five up-regulated), and bidirectional (72 down-regulated and two up-regulated). Moreover, using the program RNAplex, we identified 3994 differentially expressed lncRNAs acted via trans mechanisms. Gene ontology (GO) and KEGG pathway enrichment analyses revealed that the predicted cis- and trans- associated genes were significantly enriched during neuronal development, neuronal plasticity, learning and memory, and reward and addiction. Conclusions Taken together, our results suggest that METH can elicit global changes in lncRNA expressions in the NAc of sensitized mice that might be involved in METH-induced locomotor sensitization and addiction. Electronic supplementary material The online version of this article (doi:10.1186/s12868-015-0157-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Li Zhu
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China. .,The Key Laboratory of Health Ministry for Forensic Science, Xi'an Jiaotong University, Shaanxi, PR China.
| | - Jie Zhu
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China. .,The Key Laboratory of Health Ministry for Forensic Science, Xi'an Jiaotong University, Shaanxi, PR China.
| | - Yufeng Liu
- Beijing Genomics Institute, Shenzhen, 518083, PR China.
| | - Yanjiong Chen
- Departments of Immunology and Pathogenic Biology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China.
| | - Yanlin Li
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China. .,The Key Laboratory of Health Ministry for Forensic Science, Xi'an Jiaotong University, Shaanxi, PR China.
| | - Liren Huang
- Beijing Genomics Institute, Shenzhen, 518083, PR China.
| | - Sisi Chen
- Beijing Genomics Institute, Shenzhen, 518083, PR China.
| | - Tao Li
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China. .,The Key Laboratory of Health Ministry for Forensic Science, Xi'an Jiaotong University, Shaanxi, PR China.
| | - Yonghui Dang
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China. .,The Key Laboratory of Health Ministry for Forensic Science, Xi'an Jiaotong University, Shaanxi, PR China.
| | - Teng Chen
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China. .,The Key Laboratory of Health Ministry for Forensic Science, Xi'an Jiaotong University, Shaanxi, PR China.
| |
Collapse
|
44
|
Mohanta TK, Arora PK, Mohanta N, Parida P, Bae H. Identification of new members of the MAPK gene family in plants shows diverse conserved domains and novel activation loop variants. BMC Genomics 2015; 16:58. [PMID: 25888265 PMCID: PMC4363184 DOI: 10.1186/s12864-015-1244-7] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 01/15/2015] [Indexed: 11/30/2022] Open
Abstract
Background Mitogen Activated Protein Kinase (MAPK) signaling is of critical importance in plants and other eukaryotic organisms. The MAPK cascade plays an indispensible role in the growth and development of plants, as well as in biotic and abiotic stress responses. The MAPKs are constitute the most downstream module of the three tier MAPK cascade and are phosphorylated by upstream MAP kinase kinases (MAPKK), which are in turn are phosphorylated by MAP kinase kinase kinase (MAPKKK). The MAPKs play pivotal roles in regulation of many cytoplasmic and nuclear substrates, thus regulating several biological processes. Results A total of 589 MAPKs genes were identified from the genome wide analysis of 40 species. The sequence analysis has revealed the presence of several N- and C-terminal conserved domains. The MAPKs were previously believed to be characterized by the presence of TEY/TDY activation loop motifs. The present study showed that, in addition to presence of activation loop TEY/TDY motifs, MAPKs are also contain MEY, TEM, TQM, TRM, TVY, TSY, TEC and TQY activation loop motifs. Phylogenetic analysis of all predicted MAPKs were clustered into six different groups (group A, B, C, D, E and F), and all predicted MAPKs were assigned with specific names based on their orthology based evolutionary relationships with Arabidopsis or Oryza MAPKs. Conclusion We conducted global analysis of the MAPK gene family of plants from lower eukaryotes to higher eukaryotes and analyzed their genomic and evolutionary aspects. Our study showed the presence of several new activation loop motifs and diverse conserved domains in MAPKs. Advance study of newly identified activation loop motifs can provide further information regarding the downstream signaling cascade activated in response to a wide array of stress conditions, as well as plant growth and development. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1244-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tapan Kumar Mohanta
- School of Biotechnology, Yeungnam University, Daehak Gyeongsan, Gyeonsangbook, 712749, Republic of Korea.
| | - Pankaj Kumar Arora
- School of Biotechnology, Yeungnam University, Daehak Gyeongsan, Gyeonsangbook, 712749, Republic of Korea.
| | - Nibedita Mohanta
- Department of Biotechnology, North Orissa University, Sri Ramchandra Vihar, Takatpur, Baripada, Mayurbhanj, Orissa, 757003, India.
| | - Pratap Parida
- Center for Studies in Biotechnology, Dibrugarh University, Dibrugarh, Assam, 786004, India.
| | - Hanhong Bae
- School of Biotechnology, Yeungnam University, Daehak Gyeongsan, Gyeonsangbook, 712749, Republic of Korea.
| |
Collapse
|
45
|
Association of EFEMP1 gene polymorphisms with the risk of glioma: A hospital-based case-control study in a Chinese Han population. J Neurol Sci 2015; 349:54-9. [PMID: 25638659 DOI: 10.1016/j.jns.2014.12.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 11/28/2014] [Accepted: 12/16/2014] [Indexed: 12/13/2022]
Abstract
BACKGROUND EGF-containing fibulin-like extracellular matrix protein1 (EFEMP1) gene was relative with the formation and development of tumors and had an anti-angiogenic function. Recently, many studies investigating the function of EFEMP1 gene, including its roles in prostate cancer and glioma, have been reported. EFEMP1 suppressed glioma growth by modulating EGFR and AKT signaling pathway or promoted growth through the regulation of Notch pathway were identified. However, the susceptibility of EFEMP1and glioma has not been well studied to date. Here, the authors were aimed to investigate whether the single nucleotide polymorphisms (SNPs) of EFEMP1 were associated with glioma susceptibility. METHODS The authors genotyped 14 common tagging SNPs of EFEMP1 gene via the Sequenom Mass ARRYiPLEX platform and assessed their association with glioma risk in a hospital-based case-control study in a Chinese Han population (979 cases and 1007 controls). RESULTS Four SNPs were significant associated with glioma risk (rs1346787, P=0.004, adjusted OR=1.49; rs3791679, P=0.014, adjusted OR=1.27; rs1346786, P=0.002, adjusted OR=1.41; rs3791675, P=0.011, adjusted OR=1.27). In further stratified analysis, all the significant SNPs except rs1346787 were associated with both low-grade gliomas and glioblastoma (GBM). In haplotype analysis, 4 haplotype blocks were identified and 2 of them were revealed significant associated with glioma, the haplotype "AA" (adjusted OR=1.44, P=0.005) in block 1 and haplotype "GG" (adjusted OR=1.65, P=0.0004) in block 2 had a 44% and 65% increased glioma risk respectively, compared with corresponding non-carriers. The results of haplotype analysis were significantly consistent with the single-locus analysis. CONCLUSIONS The authors' results suggested that common genetic variants in EFEMP1 gene were associated with glioma and contributed to glioma susceptibility, which might help to reveal the mechanism of gliomas and provide new insight for the diagnosis and treatment.
Collapse
|
46
|
Haemmerle M, Gutschner T. Long non-coding RNAs in cancer and development: where do we go from here? Int J Mol Sci 2015; 16:1395-405. [PMID: 25580533 PMCID: PMC4307309 DOI: 10.3390/ijms16011395] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 12/30/2014] [Indexed: 11/28/2022] Open
Abstract
Recent genome-wide expression profiling studies have uncovered a huge amount of novel, long non-protein-coding RNA transcripts (lncRNA). In general, these transcripts possess a low, but tissue-specific expression, and their nucleotide sequences are often poorly conserved. However, several studies showed that lncRNAs can have important roles for normal tissue development and regulate cellular pluripotency as well as differentiation. Moreover, lncRNAs are implicated in the control of multiple molecular pathways leading to gene expression changes and thus, ultimately modulate cell proliferation, migration and apoptosis. Consequently, deregulation of lncRNA expression contributes to carcinogenesis and is associated with human diseases, e.g., neurodegenerative disorders like Alzheimer’s Disease. Here, we will focus on some major challenges of lncRNA research, especially loss-of-function studies. We will delineate strategies for lncRNA gene targeting in vivo, and we will briefly discuss important consideration and pitfalls when investigating lncRNA functions in knockout animal models. Finally, we will highlight future opportunities for lncRNAs research by applying the concept of cross-species comparison, which might contribute to novel disease biomarker discovery and might identify lncRNAs as potential therapeutic targets.
Collapse
Affiliation(s)
- Monika Haemmerle
- Department of Gynecologic Oncology and Reproductive Medicine, the University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA.
| | - Tony Gutschner
- Department of Genomic Medicine, the University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA.
| |
Collapse
|
47
|
Bioinformatics tools for discovery and functional analysis of single nucleotide polymorphisms. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 827:287-310. [PMID: 25387971 DOI: 10.1007/978-94-017-9245-5_17] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
With the high speed DNA sequencing of genome, databases of genome data continue to grow, and the understanding of genetic variation between individuals grows as well. Single nucleotide polymorphisms (SNPs), a main type of genetic variation, are increasingly important resource for understanding the structure and function of the human genome and become a valuable resource for investigating the genetic basis of disease. During the past years, in addition to experimental approaches to characterize specific variants, intense bioinformatics techniques were applied to understand effects of these genetic changes. In the genetics studies, one intends to understand the molecular basis of disease, and computational methods are becoming increasingly important for SNPs selection, prediction and understanding the downstream effects of genetic variation. The review provides systematic information on the available resources and methods for SNPs discovery and analysis. We also report some new results on DNA sequence-based prediction of SNPs in human cytochrome P450, which serves as an example of computational methods to predict and discovery SNPs. Additionally, annotation and prediction of functional SNPs, as well as a comprehensive list of existing tools and online recourses, are reviewed and described.
Collapse
|
48
|
Kaur S, Sambyal V, Guleria K, Manjari M, Sudan M, Uppal MS, Singh NR, Singh G, Singh H. Analysis of TP53 polymorphisms in North Indian sporadic esophageal cancer patients. Asian Pac J Cancer Prev 2014; 15:8413-22. [PMID: 25339039 DOI: 10.7314/apjcp.2014.15.19.8413] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND To investigate the relationship of five TP53 polymorphisms (p.P47S, p.R72P, PIN3 ins16bp, p.R213R and r.13494g>a) with the esophageal cancer (EC) risk in North Indians. MATERIALS AND METHODS Genotyping of p.P47S, p.R72P, PIN3 ins16bp, p.R213R and r.13494g>a polymorphisms of TP53 in 136 sporadic EC patients and 136 controls using polymerase chain reaction and PCR-RFLP. RESULTS The frequencies of genotype RR, RP and PP of p.R72P polymorphism were 16.91 vs 26.47%, 58.82 vs 49.27% and 24.27 vs 24.27% among patients and controls respectively. We observed significantly increased frequency of RP genotype in cases as compared to controls (OR=1.87, 95% CI, 1.01-3.46, p=0.05). The frequencies of genotype A1A1, A1A2 and A2A2 of PIN3 ins16bp polymorphism were 69.12 vs 70.59%, 27.20 vs 25% and 3.68 vs 4.41% among patients and controls. There was no significant difference among genotype and allele distribution between patients and controls. The frequencies of genotype GG, GA and AA of r.13494g>a polymorphism were 62.50 vs 64.70%, 34.56 vs 30.15% and 2.94 vs 5.15% among patients and controls respectively. No significant difference between genotype and allele frequency was observed in the patients and controls. For p.P47S and p.R213R polymorphisms, all the cases and controls had homozygous wild type genotype. The RP-A1A1-GG genotype combination shows significant risk for EC (OR=2.01, 95%CI: 1.01-3.99, p=0.05). CONCLUSIONS Among the five TP53 polymorphisms investigated, only p.R72P polymorphism may contributes to EC susceptibility.
Collapse
Affiliation(s)
- Sukhpreet Kaur
- Human Cytogenetics Laboratory, Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, India E-mail :
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Akkuratov EE, Walters L, Saha-Mandal A, Khandekar S, Crawford E, Zirbel CL, Leisner S, Prakash A, Fedorova L, Fedorov A. Bioinformatics analysis of plant orthologous introns: identification of an intronic tRNA-like sequence. Gene 2014; 548:81-90. [DOI: 10.1016/j.gene.2014.07.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Revised: 06/26/2014] [Accepted: 07/07/2014] [Indexed: 11/26/2022]
|
50
|
Hu D, Zhang S, Zhao Y, Wang S, Wang Q, Song X, Lu D, Mao Y, Chen H. Association of genetic variants in the retinoblastoma binding protein 6 gene with the risk of glioma: a case-control study in a Chinese Han population. J Neurosurg 2014; 121:1209-18. [PMID: 25127414 DOI: 10.3171/2014.6.jns132240] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT The retinoblastoma binding protein 6 (RBBP6) gene plays an important role in the induction of apoptosis and regulation of the cell cycle, and interacts with both p53 and retinoblastoma protein in carcinogenesis. Recently, many studies investigating the function of the RBBP6 gene, including its roles in lung cancer and breast cancer, have been reported. However, the association between RBBP6 variants and glioma was unknown. Therefore, to uncover the association between single nucleotide polymorphisms (SNPs) of RBBP6 and glioma, a hospital-based case-control study was performed in a Chinese Han population. METHODS Ten common tagging SNPs of the RBBP6 gene (covering 100% of all SNPs) were genotyped with the Sequenom MassARRY iPLEX platform, including 992 cases and 1008 controls, according to the HapMap database based on a pairwise linkage disequilibrium r(2) threshold of 0.8, minor allele frequency of 0.05, and Hardy-Weinberg equilibrium of 0.05. RESULTS The authors found that 4 SNPs were significantly associated with glioma (rs2033214, p = 0.013, adjusted OR 2.46, 95% CI 1.18-5.14; rs11860248, p = 8.64 × 10-(6), adjusted OR 1.59, 95% CI 1.23-2.05; rs9933544, p = 3.65 × 10(-4), adjusted OR 1.39, 95% CI 1.13-1.87; rs13332653, p = 0.004, adjusted OR 1.49, 95% CI 1.14-1.95). Stratification analyses revealed that rs2033214 was only significantly associated with low-grade gliomas; rs9933544 and rs13332653 were only significantly associated with glioblastoma multiforme; and rs11860248 was significantly associated with both low-grade gliomas and glioblastoma multiforme, compared with the common wild-type homozygous genotype. Further stratified analysis revealed that rs11860248 was more pronounced in certain subgroups: adults, males, histological types, and family history of cancer. What's more, the haplotype and diplotype analyses consistently revealed that the subjects carrying 1 copy of haplotype CCGCC had a 53% increased glioma risk compared with their corresponding noncarriers (p = 0.018, adjusted OR 1.53, 95% CI 1.08-2.17). CONCLUSIONS The authors' results suggested that RBBP6 gene variants are associated with glioma and contribute to glioma susceptibility, which was first reported elsewhere. Individuals with the so-called risk alleles might have an increased risk of glioma. These results might provide new insight into the occurrence of glioma.
Collapse
Affiliation(s)
- Dezhi Hu
- State Key Laboratory of Genetic Engineering, Fudan-VARI Genetic Epidemiology Center and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences andInstitutes for Biomedical Sciences, Fudan University, and
| | | | | | | | | | | | | | | | | |
Collapse
|