1
|
Jiao X, Hu Q, Tang Y, Zhang T, Zhang J, Wang X, Sun J, Wang J. Abnormal Global Cortical Responses in Drug-Naïve Patients With Schizophrenia Following Orbitofrontal Cortex Stimulation: A Concurrent Transcranial Magnetic Stimulation-Electroencephalography Study. Biol Psychiatry 2024; 96:342-351. [PMID: 38852897 DOI: 10.1016/j.biopsych.2024.05.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 05/16/2024] [Accepted: 05/31/2024] [Indexed: 06/11/2024]
Abstract
BACKGROUND Abnormalities in cortical excitability and plasticity have been considered to underlie the pathophysiology of schizophrenia. Transcranial magnetic stimulation combined with electroencephalography (TMS-EEG) can provide a direct evaluation of cortical responses to TMS. Here, we employed TMS-EEG to investigate cortical responses to orbitofrontal cortex (OFC) stimulation in schizophrenia. METHODS In total, we recruited 92 drug-naïve patients with first-episode schizophrenia and 51 age- and sex-matched healthy individuals. For each participant, one session of 1-Hz repetitive TMS (rTMS) was delivered to the right OFC, and TMS-EEG data were obtained to explore the change in cortical-evoked activities before and immediately after rTMS during the eyes-closed state. The MATRICS Consensus Cognitive Battery was used to assess neurocognitive performance. RESULTS The cortical responses indexed by global mean field amplitudes (i.e., P30, N45, and P60) were larger in patients with schizophrenia than in healthy control participants at baseline. Furthermore, after one session of 1-Hz rTMS over the right OFC, the N100 amplitude was significantly reduced in the healthy control group but not in the schizophrenia group. In the healthy control participants, there was a significant correlation between modulation of P60 amplitude by rTMS and working memory; however, this correlation was absent in patients with schizophrenia. CONCLUSIONS Aberrant global cortical responses following right OFC stimulation were found in patients with drug-naïve first-episode schizophrenia, supporting its significance in the primary pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Xiong Jiao
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Med.-X Engineering Research Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Qiang Hu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Psychiatry, Zhenjiang Mental Health Center, Jiangsu, China
| | - Yingying Tang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Tianhong Zhang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Zhang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Med.-X Engineering Research Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Xijin Wang
- The First Psychiatric Hospital of Harbin, Harbin, Heilongjiang Province, China
| | - Junfeng Sun
- Shanghai Med.-X Engineering Research Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China; Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China.
| | - Jijun Wang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Sciences, Shanghai, China; Institute of Psychology and Behavioral Science, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
2
|
Dębowska W, Więdłocha M, Dębowska M, Kownacka Z, Marcinowicz P, Szulc A. Transcranial magnetic stimulation and ketamine: implications for combined treatment in depression. Front Neurosci 2023; 17:1267647. [PMID: 37954877 PMCID: PMC10637948 DOI: 10.3389/fnins.2023.1267647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/09/2023] [Indexed: 11/14/2023] Open
Abstract
Drug-resistant mental disorders, particularly treatment-resistant depression, pose a significant medical and social problem. To address this challenge, modern psychiatry is constantly exploring the use of novel treatment methods, including biological treatments, such as transcranial magnetic stimulation (TMS), and novel rapid-acting antidepressants, such as ketamine. While both TMS and ketamine demonstrate high effectiveness in reducing the severity of depressive symptoms, some patients still do not achieve the desired improvement. Recent literature suggests that combining these two methods may yield even stronger and longer-lasting results. This review aims to consolidate knowledge in this area and elucidate the potential mechanisms of action underlying the increased efficacy of combined treatment, which would provide a foundation for the development and optimization of future treatment protocols.
Collapse
Affiliation(s)
- Weronika Dębowska
- Department of Psychiatry, Faculty of Health Sciences, Medical University of Warsaw, Warsaw, Poland
| | - Magdalena Więdłocha
- Department of Psychiatry, Faculty of Health Sciences, Medical University of Warsaw, Warsaw, Poland
- KeyClinic, Warsaw, Poland
| | - Marta Dębowska
- Department of Psychiatry, Faculty of Health Sciences, Medical University of Warsaw, Warsaw, Poland
| | - Zuzanna Kownacka
- Department of Psychiatry, Faculty of Health Sciences, Medical University of Warsaw, Warsaw, Poland
| | - Piotr Marcinowicz
- Department of Psychiatry, Faculty of Health Sciences, Medical University of Warsaw, Warsaw, Poland
- KeyClinic, Warsaw, Poland
| | - Agata Szulc
- Department of Psychiatry, Faculty of Health Sciences, Medical University of Warsaw, Warsaw, Poland
- MindHealth, Warsaw, Poland
| |
Collapse
|
3
|
Seitz RJ, Angel HF. Belief formation - A driving force for brain evolution. Brain Cogn 2020; 140:105548. [PMID: 32062327 DOI: 10.1016/j.bandc.2020.105548] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 02/06/2020] [Accepted: 02/06/2020] [Indexed: 01/10/2023]
Abstract
The topic of belief has been neglected in the natural sciences for a long period of time. Recent neuroscience research in non-human primates and humans, however, has shown that beliefs are the neuropsychic product of fundamental brain processes that attribute affective meaning to concrete objects and events, enabling individual goal setting, decision making and maneuvering in the environment. With regard to the involved neural processes they can be categorized as empirical, relational, and conceptual beliefs. Empirical beliefs are about objects and relational beliefs are about events as in tool use and in interactions between subjects that develop below the level of awareness and are up-dated dynamically. Conceptual beliefs are more complex being based on narratives and participation in ritual acts. As neural processes are known to require computational space in the brain, the formation of inceasingly complex beliefs demands extra neural resources. Here, we argue that the evolution of human beliefs is related to the phylogenetic enlargement of the brain including the parietal and medial frontal cortex in humans.
Collapse
Affiliation(s)
- Rüdiger J Seitz
- Department of Neurology, Centre of Neurology and Neuropsychiatry, LVR-Klinikum Düsseldorf, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany; Florey Neuroscience Institutes, Melbourne, Australia.
| | - Hans-Ferdinand Angel
- Karl Franzens University Graz, Institute of Catechetic and Pedagogic of Religion, Graz, Austria
| |
Collapse
|
4
|
Leo A, Citraro R, Tallarico M, Iannone M, Fedosova E, Nesci V, De Sarro G, Sarkisova K, Russo E. Cognitive impairment in the WAG/Rij rat absence model is secondary to absence seizures and depressive-like behavior. Prog Neuropsychopharmacol Biol Psychiatry 2019; 94:109652. [PMID: 31095993 DOI: 10.1016/j.pnpbp.2019.109652] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 04/30/2019] [Accepted: 05/12/2019] [Indexed: 01/06/2023]
Abstract
Neuropsychiatric comorbidities are common in patients with epilepsy, remaining still an urgent unmet clinical need. Therefore, the management of epileptic disorders should not only be restricted to the achievement of seizure-freedom but must also be able to counteract its related comorbidities. Experimental animal models of epilepsy represent a valid tool not only to study epilepsy but also its associated comorbidities. The WAG/Rij rat is a well-established genetically-based model of absence epilepsy with depressive-like comorbidity, in which learning and memory impairment was also recently reported. Aim of this study was to clarify whether this cognitive decline is secondary or not to absence seizures and/or depressive-like behavior. The behavioral performance of untreated and ethosuximide-treated (300 mg/kg/day; 17 days) WAG/Rij rats at 6 and 12 months of age were assessed in several tests: forced swimming test, objects recognition test, social recognition test, Morris water maze and passive avoidance. According to our results, it seems that cognitive impairment in this strain, similarly to depressive-like behavior, is secondary to the occurrence of absence seizures, which might be necessary for the expression of cognitive impairment. Furthermore, our results suggest an age-dependent impairment of cognitive performance in WAG/Rij rats, which could be linked to the age-dependent increase of spike wave discharges. Consistently, it is possible that absence seizures, depressive-like behavior and cognitive deficit may arise independently and separately in lifetime from the same underlying network disease, as previously suggested for the behavioral features associated with other epileptic syndromes.
Collapse
Affiliation(s)
- Antonio Leo
- University of Catanzaro, School of Medicine, Science of Health Dept., Catanzaro, Italy
| | - Rita Citraro
- University of Catanzaro, School of Medicine, Science of Health Dept., Catanzaro, Italy.
| | - Martina Tallarico
- University of Catanzaro, School of Medicine, Science of Health Dept., Catanzaro, Italy; CNR, Institute of Neurological Sciences, Pharmacology Section, Roccelletta di Borgia, Catanzaro, Italy
| | - Michelangelo Iannone
- CNR, Institute of Neurological Sciences, Pharmacology Section, Roccelletta di Borgia, Catanzaro, Italy
| | - Ekaterina Fedosova
- Institute of Higher Nervous Activity and Neurophysiology RAS, Moscow, Russia
| | - Valentina Nesci
- University of Catanzaro, School of Medicine, Science of Health Dept., Catanzaro, Italy
| | | | - Karine Sarkisova
- Institute of Higher Nervous Activity and Neurophysiology RAS, Moscow, Russia
| | - Emilio Russo
- University of Catanzaro, School of Medicine, Science of Health Dept., Catanzaro, Italy
| |
Collapse
|
5
|
SALOMONI SAUROE, MARINOVIC WELBER, CARROLL TIMOTHYJ, HODGES PAULW. Motor Strategies Learned during Pain Are Sustained upon Pain-free Reexposure to Task. Med Sci Sports Exerc 2019; 51:2334-2343. [DOI: 10.1249/mss.0000000000002059] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
6
|
Consensus Paper: Towards a Systems-Level View of Cerebellar Function: the Interplay Between Cerebellum, Basal Ganglia, and Cortex. THE CEREBELLUM 2017; 16:203-229. [PMID: 26873754 PMCID: PMC5243918 DOI: 10.1007/s12311-016-0763-3] [Citation(s) in RCA: 258] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Despite increasing evidence suggesting the cerebellum works in concert with the cortex and basal ganglia, the nature of the reciprocal interactions between these three brain regions remains unclear. This consensus paper gathers diverse recent views on a variety of important roles played by the cerebellum within the cerebello-basal ganglia-thalamo-cortical system across a range of motor and cognitive functions. The paper includes theoretical and empirical contributions, which cover the following topics: recent evidence supporting the dynamical interplay between cerebellum, basal ganglia, and cortical areas in humans and other animals; theoretical neuroscience perspectives and empirical evidence on the reciprocal influences between cerebellum, basal ganglia, and cortex in learning and control processes; and data suggesting possible roles of the cerebellum in basal ganglia movement disorders. Although starting from different backgrounds and dealing with different topics, all the contributors agree that viewing the cerebellum, basal ganglia, and cortex as an integrated system enables us to understand the function of these areas in radically different ways. In addition, there is unanimous consensus between the authors that future experimental and computational work is needed to understand the function of cerebellar-basal ganglia circuitry in both motor and non-motor functions. The paper reports the most advanced perspectives on the role of the cerebellum within the cerebello-basal ganglia-thalamo-cortical system and illustrates other elements of consensus as well as disagreements and open questions in the field.
Collapse
|
7
|
Thomschewski A, Höller Y, Höller P, Leis S, Trinka E. High Amplitude EEG Motor Potential during Repetitive Foot Movement: Possible Use and Challenges for Futuristic BCIs That Restore Mobility after Spinal Cord Injury. Front Neurosci 2017; 11:362. [PMID: 28690497 PMCID: PMC5481367 DOI: 10.3389/fnins.2017.00362] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 06/09/2017] [Indexed: 11/23/2022] Open
Abstract
Recent advances in neuroprostheses provide us with promising ideas of how to improve the quality of life in people suffering from impaired motor functioning of upper and lower limbs. Especially for patients after spinal cord injury (SCI), futuristic devices that are controlled by thought via brain-computer interfaces (BCIs) might be of tremendous help in managing daily tasks and restoring at least some mobility. However, there are certain problems arising when trying to implement BCI technology especially in such a heterogenous patient group. A plethora of processes occurring after the injuries change the brain's structure as well as its functionality collectively referred to as neuroplasticity. These changes are very different between individuals, leading to an increasing interest to reveal the exact changes occurring after SCI. In this study we investigated event-related potentials (ERPs) derived from electroencephalography (EEG) signals recorded during the (attempted) execution and imagination of hand and foot movements in healthy subjects and patients with SCI. As ERPs and especially early components are of interest for BCI research we aimed to investigate differences between 22 healthy volunteers and 7 patients (mean age = 51.86, SD = 15.49) suffering from traumatic or non-traumatic SCI since 2–314 months (mean = 116,57, SD = 125,55). We aimed to explore differences in ERP responses as well as the general presence of component that might be of interest to further consider for incorporation into BCI research. In order to match the real-life situation of BCIs for controlling neuroprostheses, we worked on small trial numbers (<25), only. We obtained a focal potential over Pz in ten healthy participants but in none of the patients after lenient artifact rejection. The potential was characterized by a high amplitude, it correlated with the repeated movements (6 times in 6 s) and in nine subjects it significantly differed from a resting condition. Furthermore, there are strong arguments against possible confounding factors leading to the potential's appearance. This phenomenon, occurring when movements are repeatedly conducted, might represent a possible potential to be used in futuristic BCIs and further studies should try to investigate the replicability of its appearance.
Collapse
Affiliation(s)
- Aljoscha Thomschewski
- Department of Neurology, Christian Doppler Medical Center, Paracelsus Medical UniversitySalzburg, Austria.,Spinal Cord Injury and Tissue Regeneration Center SalzburgSalzburg, Austria.,Department of Psychology, Paris-Lodron University of SalzburgSalzburg, Austria
| | - Yvonne Höller
- Department of Neurology, Christian Doppler Medical Center, Paracelsus Medical UniversitySalzburg, Austria.,Department of Psychology, Paris-Lodron University of SalzburgSalzburg, Austria.,Center for Cognitive Neuroscience SalzburgSalzburg, Austria
| | - Peter Höller
- Department of Neurology, Christian Doppler Medical Center, Paracelsus Medical UniversitySalzburg, Austria.,Spinal Cord Injury and Tissue Regeneration Center SalzburgSalzburg, Austria
| | - Stefan Leis
- Department of Neurology, Christian Doppler Medical Center, Paracelsus Medical UniversitySalzburg, Austria.,Spinal Cord Injury and Tissue Regeneration Center SalzburgSalzburg, Austria
| | - Eugen Trinka
- Department of Neurology, Christian Doppler Medical Center, Paracelsus Medical UniversitySalzburg, Austria.,Spinal Cord Injury and Tissue Regeneration Center SalzburgSalzburg, Austria.,Center for Cognitive Neuroscience SalzburgSalzburg, Austria
| |
Collapse
|
8
|
A specialized face-processing model inspired by the organization of monkey face patches explains several face-specific phenomena observed in humans. Sci Rep 2016; 6:25025. [PMID: 27113635 PMCID: PMC4844965 DOI: 10.1038/srep25025] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 04/08/2016] [Indexed: 11/30/2022] Open
Abstract
Converging reports indicate that face images are processed through specialized neural networks in the brain –i.e. face patches in monkeys and the fusiform face area (FFA) in humans. These studies were designed to find out how faces are processed in visual system compared to other objects. Yet, the underlying mechanism of face processing is not completely revealed. Here, we show that a hierarchical computational model, inspired by electrophysiological evidence on face processing in primates, is able to generate representational properties similar to those observed in monkey face patches (posterior, middle and anterior patches). Since the most important goal of sensory neuroscience is linking the neural responses with behavioral outputs, we test whether the proposed model, which is designed to account for neural responses in monkey face patches, is also able to predict well-documented behavioral face phenomena observed in humans. We show that the proposed model satisfies several cognitive face effects such as: composite face effect and the idea of canonical face views. Our model provides insights about the underlying computations that transfer visual information from posterior to anterior face patches.
Collapse
|
9
|
Motor programme activating therapy influences adaptive brain functions in multiple sclerosis: clinical and MRI study. Int J Rehabil Res 2015; 38:49-54. [PMID: 25325167 DOI: 10.1097/mrr.0000000000000090] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
There is still little scientific evidence for the efficacy of neurofacilitation approaches and their possible influence on brain plasticity and adaptability. In this study, the outcome of a new kind of neurofacilitation approach, motor programme activating therapy (MPAT), was evaluated on the basis of a set of clinical functions and with MRI. Eighteen patients were examined four times with standardized clinical tests and diffusion tensor imaging to monitor changes without therapy, immediately after therapy and 1 month after therapy. Moreover, the strength of effective connectivity was analysed before and after therapy. Patients underwent a 1-h session of MPAT twice a week for 2 months. The data were analysed by nonparametric tests of association and were subsequently statistically evaluated. The therapy led to significant improvement in clinical functions, significant increment of fractional anisotropy and significant decrement of mean diffusivity, and decrement of effective connectivity at supplementary motor areas was observed immediately after the therapy. Changes in clinical functions and diffusion tensor images persisted 1 month after completing the programme. No statistically significant changes in clinical functions and no differences in MRI-diffusion tensor images were observed without physiotherapy. Positive immediate and long-term effects of MPAT on clinical and brain functions, as well as brain microstructure, were confirmed.
Collapse
|
10
|
Jafarian M, Karimzadeh F, Alipour F, Attari F, Lotfinia AA, Speckmann EJ, Zarrindast MR, Gorji A. Cognitive impairments and neuronal injury in different brain regions of a genetic rat model of absence epilepsy. Neuroscience 2015; 298:161-70. [PMID: 25907443 DOI: 10.1016/j.neuroscience.2015.04.033] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 03/26/2015] [Accepted: 04/14/2015] [Indexed: 11/30/2022]
Abstract
Growing numbers of evidence indicate that cognitive impairments are part of clinical profile of childhood absence epilepsy. Little is known on neuropathological changes accompanied by cognitive deficits in absence epilepsy. The aim of the present study was to investigate age-dependent neuropathological changes accompanied by learning and memory impairments in Wistar Albino Glaxo from Rijswijk (WAG/Rij) rat model of absence epilepsy. Experimental groups were divided into four groups of six rats of both WAG/Rij and Wistar strains with 2 and 6 months of age. The learning and memory performances were assessed using passive avoidance paradigm and neuropathological alterations were investigated by the evaluation of the number of dark neurons and apoptotic cells as well as the expression of caspase-3 in the neocortex, the hippocampus, and different regions of the thalamus. Results revealed a decline in learning and spatial memory of 6-month-old WAG/Rij rats compared to age-matched Wistar rats as well as 2-month-old WAG/Rij and Wistar rats. The mean number of dark neurons was significantly higher in the hippocampal CA1 and CA3 areas as well as in the laterodorsal, centromedial, and reticular thalamic nuclei and the somatosensory cortex of 6-month-old WAG/Rij rats. In addition, a higher number of apoptotic cells as well as a higher expression of caspase-3 was observed in the hippocampal CA1 and CA3 regions, the laterodorsal thalamic nucleus, and the somatosensory cortex of 6-month-old WAG/Rij rats compared to other animal groups. These results indicate significant enhancement of neuronal damage and cell death accompanied by memory deficits after seizure attacks in a rat model of absence epilepsy. Seizure-induced neuronal injury and death may underlie cognitive impairments in absence epilepsy.
Collapse
Affiliation(s)
- M Jafarian
- School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Shefa Neuroscience Research Centre, Khatam Alanbia Hospital, Tehran, Iran
| | - F Karimzadeh
- Shefa Neuroscience Research Centre, Khatam Alanbia Hospital, Tehran, Iran
| | - F Alipour
- Shefa Neuroscience Research Centre, Khatam Alanbia Hospital, Tehran, Iran
| | - F Attari
- Shefa Neuroscience Research Centre, Khatam Alanbia Hospital, Tehran, Iran
| | - A A Lotfinia
- Shefa Neuroscience Research Centre, Khatam Alanbia Hospital, Tehran, Iran
| | - E-J Speckmann
- Epilepsy Research Center, Klinik für Neurochirurgie, Department of Neurology, Institute of Neurophysiology, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - M-R Zarrindast
- School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - A Gorji
- Shefa Neuroscience Research Centre, Khatam Alanbia Hospital, Tehran, Iran; Epilepsy Research Center, Klinik für Neurochirurgie, Department of Neurology, Institute of Neurophysiology, Westfälische Wilhelms-Universität Münster, Münster, Germany.
| |
Collapse
|
11
|
Zhou HH, Tang Y, Zhang XY, Luo CX, Gao LY, Wu HY, Chang L, Zhu DY. Delayed Administration of Tat-HA-NR2B9c Promotes Recovery After Stroke in Rats. Stroke 2015; 46:1352-8. [PMID: 25851770 DOI: 10.1161/strokeaha.115.008886] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 03/16/2015] [Indexed: 12/24/2022]
Abstract
BACKGROUND AND PURPOSE Previous studies reported that Tat-NR2B9c, a peptide disrupting the N-methyl-d-aspartate receptor-postsynaptic density protein-95 interaction, reduced ischemic damage in the acute phase after stroke. However, its effect in the subacute phase is unknown. The aim of this study is to determine whether disrupting the N-methyl-d-aspartate receptor-postsynaptic density protein-95 interaction in the subacute phase promotes recovery after stroke. METHODS Studies were performed on Sprague-Dawley rats or nNOS(-/-) mice, and experimental ischemic stroke was induced by middle cerebral artery occlusion. Animals were treated with drugs starting at day 4 after ischemia. Sensorimotor functions and spatial learning and memory ability were assessed after drug treatment. Then, rats were euthanized for morphological observation and biochemical tests. RESULTS Disrupting the N-methyl-d-aspartate receptor-postsynaptic density protein-95 interaction with Tat-HA-NR2B9c significantly ameliorated the ischemia-induced impairments of spatial memory and sensorimotor functions in rats during subacute stage but did not improve stroke outcome in nNOS(-/-) mice. Consistent with the functional recovery, Tat-HA-NR2B9c substantially increased neurogenesis in the dentate gyrus and dendritic spine density of mature neurons in the motor cortex of rats, meanwhile, reversed the ischemia-induced formation of S-nitrosylation-cyclin-dependent kinase 5 and increased cyclin-dependent kinase 5 activity in ipsilateral hippocampus. However, directly blocking N-methyl-d-aspartate receptors with MK-801 or Ro 25-6981 did not show the beneficial effects above. CONCLUSIONS Dissociating N-methyl-d-aspartate receptor-postsynaptic density protein-95 coupling by Tat-HA-NR2B9c in the subacute phase after stroke promotes functional recovery, probably because of that it increases neurogenesis and dendritic spine density of mature neurons via regulating cyclin-dependent kinase 5 in the ischemic brain.
Collapse
Affiliation(s)
- Hai-Hui Zhou
- From the Department of Pharmacology, School of Pharmacy (H.-H.Z., Y.T., X.-Y.Z., C.-X.L., L.-Y.G., H.-Y.W., L.C., D.-Y.Z.), Institution of Stem Cells and Neuroregeneration (C.-X.L., H.-Y.W., D.-Y.Z.), Nanjing Medical University, Nanjing, China
| | - Ying Tang
- From the Department of Pharmacology, School of Pharmacy (H.-H.Z., Y.T., X.-Y.Z., C.-X.L., L.-Y.G., H.-Y.W., L.C., D.-Y.Z.), Institution of Stem Cells and Neuroregeneration (C.-X.L., H.-Y.W., D.-Y.Z.), Nanjing Medical University, Nanjing, China
| | - Xin-Yong Zhang
- From the Department of Pharmacology, School of Pharmacy (H.-H.Z., Y.T., X.-Y.Z., C.-X.L., L.-Y.G., H.-Y.W., L.C., D.-Y.Z.), Institution of Stem Cells and Neuroregeneration (C.-X.L., H.-Y.W., D.-Y.Z.), Nanjing Medical University, Nanjing, China
| | - Chun-Xia Luo
- From the Department of Pharmacology, School of Pharmacy (H.-H.Z., Y.T., X.-Y.Z., C.-X.L., L.-Y.G., H.-Y.W., L.C., D.-Y.Z.), Institution of Stem Cells and Neuroregeneration (C.-X.L., H.-Y.W., D.-Y.Z.), Nanjing Medical University, Nanjing, China
| | - Li-Yan Gao
- From the Department of Pharmacology, School of Pharmacy (H.-H.Z., Y.T., X.-Y.Z., C.-X.L., L.-Y.G., H.-Y.W., L.C., D.-Y.Z.), Institution of Stem Cells and Neuroregeneration (C.-X.L., H.-Y.W., D.-Y.Z.), Nanjing Medical University, Nanjing, China
| | - Hai-Yin Wu
- From the Department of Pharmacology, School of Pharmacy (H.-H.Z., Y.T., X.-Y.Z., C.-X.L., L.-Y.G., H.-Y.W., L.C., D.-Y.Z.), Institution of Stem Cells and Neuroregeneration (C.-X.L., H.-Y.W., D.-Y.Z.), Nanjing Medical University, Nanjing, China
| | - Lei Chang
- From the Department of Pharmacology, School of Pharmacy (H.-H.Z., Y.T., X.-Y.Z., C.-X.L., L.-Y.G., H.-Y.W., L.C., D.-Y.Z.), Institution of Stem Cells and Neuroregeneration (C.-X.L., H.-Y.W., D.-Y.Z.), Nanjing Medical University, Nanjing, China
| | - Dong-Ya Zhu
- From the Department of Pharmacology, School of Pharmacy (H.-H.Z., Y.T., X.-Y.Z., C.-X.L., L.-Y.G., H.-Y.W., L.C., D.-Y.Z.), Institution of Stem Cells and Neuroregeneration (C.-X.L., H.-Y.W., D.-Y.Z.), Nanjing Medical University, Nanjing, China.
| |
Collapse
|
12
|
Evinger CL. Animal Models of Focal Dystonia. Mov Disord 2015. [DOI: 10.1016/b978-0-12-405195-9.00026-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
13
|
Bao Y, Szymaszek A, Wang X, Oron A, Pöppel E, Szelag E. Temporal order perception of auditory stimuli is selectively modified by tonal and non-tonal language environments. Cognition 2013; 129:579-85. [PMID: 24060605 DOI: 10.1016/j.cognition.2013.08.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 08/15/2013] [Accepted: 08/19/2013] [Indexed: 11/28/2022]
Abstract
The close relationship between temporal perception and speech processing is well established. The present study focused on the specific question whether the speech environment could influence temporal order perception in subjects whose language backgrounds are distinctively different, i.e., Chinese (tonal language) vs. Polish (non-tonal language). Temporal order thresholds were measured for both monaurally presented clicks and binaurally presented tone pairs. Whereas the click experiment showed similar order thresholds for the two language groups, the experiment with tone pairs resulted in different observations: while Chinese demonstrated better performance in discriminating the temporal order of two "close frequency" tone pairs (600 Hz and 1200 Hz), Polish subjects showed a reversed pattern, i.e., better performance for "distant frequency" tone pairs (400 Hz and 3000 Hz). These results indicate on the one hand a common temporal mechanism for perceiving the order of two monaurally presented stimuli, and on the other hand neuronal plasticity for perceiving the order of frequency-related auditory stimuli. We conclude that the auditory brain is modified with respect to temporal processing by long-term exposure to a tonal or a non-tonal language. As a consequence of such an exposure different cognitive modes of operation (analytic vs. holistic) are selected: the analytic mode is adopted for "distant frequency" tone pairs in Chinese and for "close frequency" tone pairs in Polish subjects, whereas the holistic mode is selected for "close frequency" tone pairs in Chinese and for "distant frequency" tone pairs in Polish subjects, reflecting a double dissociation of function.
Collapse
Affiliation(s)
- Yan Bao
- Department of Psychology & Key Laboratory of Machine Perception (MoE), Peking University, Beijing 100871, PR China; Human Science Center & Institute of Medical Psychology, Ludwig Maximilian University Munich, 80336 München, Germany.
| | | | | | | | | | | |
Collapse
|
14
|
Zhuo M. Cortical depression and potentiation: basic mechanisms for phantom pain. Exp Neurobiol 2012; 21:129-35. [PMID: 23319872 PMCID: PMC3538176 DOI: 10.5607/en.2012.21.4.129] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 10/30/2012] [Indexed: 01/07/2023] Open
Abstract
People experience the feeling of the missing body part long after it has been removed after amputation are known as phantom limb sensations. These sensations can be painful, sometimes becoming chronic and lasting for several years (or called phantom pain). Medical treatment for these individuals is limited. Recent neurobiological investigations of brain plasticity after amputation have revealed new insights into the changes in the brain that may cause phantom limb sensations and phantom pain. In this article, I review recent progresses of the cortical plasticity in the anterior cingulate cortex (ACC), a critical cortical area for pain sensation, and explore how they are related to abnormal sensory sensations such as phantom pain. An understanding of these alterations may guide future research into medical treatment for these disorders.
Collapse
Affiliation(s)
- Min Zhuo
- Department of Physiology, Faculty of Medicine, Centre for the Study of Pain, University of Toronto, Medical Sciences Building, King's College Circle, Toronto, Ontario, Canada. ; Center for Neuron and Disease, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
15
|
Immunohistochemical evidence of cone-based ultraviolet vision in divergent bat species and implications for its evolution. Comp Biochem Physiol B Biochem Mol Biol 2012; 161:398-403. [DOI: 10.1016/j.cbpb.2012.01.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2011] [Revised: 01/10/2012] [Accepted: 01/10/2012] [Indexed: 11/22/2022]
|
16
|
Ingham D, Tucker KJ, Tsao H, Hodges PW. The effect of pain on training-induced plasticity of the corticomotor system. Eur J Pain 2012; 15:1028-34. [DOI: 10.1016/j.ejpain.2011.04.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Revised: 02/20/2011] [Accepted: 04/05/2011] [Indexed: 11/30/2022]
|
17
|
Fractional anisotropy and mean diffusivity in the corpus callosum of patients with multiple sclerosis: the effect of physiotherapy. Neuroradiology 2011; 53:917-26. [PMID: 21556863 DOI: 10.1007/s00234-011-0879-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Accepted: 04/20/2011] [Indexed: 01/21/2023]
Abstract
INTRODUCTION Modulation of neurodegeneration by physical activity is an active topic in contemporary research. The purpose of this study was to investigate changes in the brain's microstructure in multiple sclerosis (MS) after facilitation physiotherapy. METHODS Eleven patients with MS were examined using motor and neuropsychological testing and multimodal MRI at the beginning of the study, with second baseline measurement after 1 month without any therapy, and after a 2-month period of facilitation physiotherapy. Eleven healthy controls were examined at the beginning of the study and after 1 month. Fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (λ (ax)), and radial diffusivity (λ (rad)) were calculated for the whole corpus callosum (CC) in the midsagittal slice of T1W 3D MPRAGE spatially normalized images. Data were analyzed using linear mixed-effect models, paired, and two-sample tests. RESULTS At the baseline, patients with MS showed significantly lower values in FA (p < 0.001), and significantly higher values in MD (p < 0.001), λ (ax) (p = 0.003), and λ (rad) (p < 0.001) compared to control subjects. The FA, MD, λ (ax), and λ (rad) did not change between the first and second baseline examinations in either group. Differences 2 months after initiating facilitation physiotherapy were in FA, MD, and in λ (rad) significantly higher than differences in healthy controls (p < 0.001 for FA, p = 0.02 for MD, and p = 0.002 for λ (rad)). In MS patients, FA in the CC significantly increased (p < 0.001), MD and λ (rad) significantly decreased (p = 0.014 and p = 0.002), and thus approached the values in healthy controls. CONCLUSION The results of the study show that facilitation physiotherapy influences brain microstructure measured by DTI.
Collapse
|
18
|
Zai L, Ferrari C, Dice C, Subbaiah S, Havton LA, Coppola G, Geschwind D, Irwin N, Huebner E, Strittmatter SM, Benowitz LI. Inosine augments the effects of a Nogo receptor blocker and of environmental enrichment to restore skilled forelimb use after stroke. J Neurosci 2011; 31:5977-88. [PMID: 21508223 PMCID: PMC3101108 DOI: 10.1523/jneurosci.4498-10.2011] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Revised: 02/17/2011] [Accepted: 02/19/2011] [Indexed: 01/28/2023] Open
Abstract
Stroke is the leading cause of disability in much of the world, with few treatment options available. Following unilateral stroke in rats, inosine, a naturally occurring purine nucleoside, stimulates the growth of projections from the undamaged hemisphere into denervated areas of the spinal cord and improves skilled use of the impaired forelimb. Inosine augments neurons' intrinsic growth potential by activating Mst3b, a component of the signal transduction pathway through which trophic factors regulate axon outgrowth. The present study investigated whether inosine would complement the effects of treatments that promote plasticity through other mechanisms. Following unilateral stroke in the rat forelimb motor area, inosine combined with NEP1-40, a Nogo receptor antagonist, doubled the number of axon branches extending from neurons in the intact hemisphere into the denervated side of the spinal cord compared with either treatment alone, and restored rats' level of skilled reaching using the impaired forepaw to preoperative levels. Similar functional improvements were seen when inosine was combined with environmental enrichment (EE). The latter effect was associated with changes in gene expression in layer 5 pyramidal neurons of the undamaged cortex well beyond those seen with inosine or EE alone. Inosine is now in clinical trials for other indications, making it an attractive candidate for the treatment of stroke patients.
Collapse
Affiliation(s)
- Laila Zai
- Laboratories for Neuroscience Research in Neurosurgery and
- F. M. Kirby Neurobiology Center, Children's Hospital, Boston, Massachusetts 02115
- Department of Surgery, Harvard Medical School, Boston, Massachusetts 02115
| | | | - Carlie Dice
- Laboratories for Neuroscience Research in Neurosurgery and
| | - Sathish Subbaiah
- Laboratories for Neuroscience Research in Neurosurgery and
- Department of Surgery, Harvard Medical School, Boston, Massachusetts 02115
| | | | - Giovanni Coppola
- Department of Neurology and
- Neurogenetics Program, University of California, Los Angeles, Los Angeles, California 90095, and
| | - Daniel Geschwind
- Department of Neurology and
- Neurogenetics Program, University of California, Los Angeles, Los Angeles, California 90095, and
| | - Nina Irwin
- Laboratories for Neuroscience Research in Neurosurgery and
- F. M. Kirby Neurobiology Center, Children's Hospital, Boston, Massachusetts 02115
- Department of Surgery, Harvard Medical School, Boston, Massachusetts 02115
| | - Eric Huebner
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut 06520
| | | | - Larry I. Benowitz
- Laboratories for Neuroscience Research in Neurosurgery and
- F. M. Kirby Neurobiology Center, Children's Hospital, Boston, Massachusetts 02115
- Program in Neuroscience and
- Department of Surgery, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
19
|
Sun QQ, Zhang Z. Whisker experience modulates long-term depression in neocortical γ-aminobutyric acidergic interneurons in barrel cortex. J Neurosci Res 2010; 89:73-85. [DOI: 10.1002/jnr.22530] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
20
|
Chipchase LS, Schabrun SM, Hodges PW. Peripheral electrical stimulation to induce cortical plasticity: a systematic review of stimulus parameters. Clin Neurophysiol 2010; 122:456-463. [PMID: 20739217 DOI: 10.1016/j.clinph.2010.07.025] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Revised: 07/16/2010] [Accepted: 07/30/2010] [Indexed: 11/28/2022]
Abstract
Peripheral electrical stimulation (ES) is commonly used as an intervention to facilitate movement and relieve pain in a variety of conditions. It is widely accepted that ES induces rapid plastic change in the motor cortex. This leads to the exciting possibility that ES could be used to drive cortical plasticity in movement disorders, such as stroke, and conditions where pain affects motor control. This paper aimed to critically review the literature to determine which parameters induced cortical plasticity in healthy individuals using ES. A literature search located papers that assessed plasticity in the primary motor cortex of adult humans. Studies that evaluated plasticity using change in the amplitude of potentials evoked by transcranial magnetic stimulation of the motor cortex were included. Details from each study including sample size, ES parameters and reported findings were extracted and compared. Where data were available, Cohen's standardised mean differences (SMD) were calculated. Nineteen studies were located. Of the parameters evaluated, variation of the intensity of peripheral ES appeared to have the most consistent effect on modulation of excitability of corticomotor pathway to stimulated muscles. There was a trend for stimulation above motor threshold to increase excitability (SMD 0.79 mV, CI -0.10 to 1.64). Stimulation below motor threshold, but sufficient to induce sensory perception, produced conflicting results. Further studies with consistent methodology and larger subject numbers are needed before definitive conclusions can be drawn. There also appeared to be a time effect. That is, longer periods of ES induced more sustained changes in cortical excitability. There is insufficient evidence to determine the effect of other stimulation parameters such as frequency and waveform. Further research is needed to confirm whether modulation of these parameters affects plastic change.
Collapse
Affiliation(s)
- L S Chipchase
- School of Health and Rehabilitations Sciences (Physiotherapy), The University of Queensland, Brisbane, Queensland 4072, Australia.
| | - S M Schabrun
- School of Health and Rehabilitations Sciences (Physiotherapy), The University of Queensland, Brisbane, Queensland 4072, Australia; NHMRC Centre of Clinical Research Excellence in Spinal Pain, Injury and Health, The University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia
| | - P W Hodges
- School of Health and Rehabilitations Sciences (Physiotherapy), The University of Queensland, Brisbane, Queensland 4072, Australia; NHMRC Centre of Clinical Research Excellence in Spinal Pain, Injury and Health, The University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia
| |
Collapse
|
21
|
Representational change, generality versus specificity, and nature versus nurture: Perennial issues in cognitive research. Behav Brain Sci 2010. [DOI: 10.1017/s0140525x00036815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
22
|
|
23
|
Arguments against linguistic “modularization”. Behav Brain Sci 2010. [DOI: 10.1017/s0140525x00036724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
24
|
|
25
|
|
26
|
|
27
|
|
28
|
Beyond connectionist versus classical Al: A control theoretic perspective on development and cognitive science. Behav Brain Sci 2010. [DOI: 10.1017/s0140525x00036761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
29
|
Developmental psychology for the twenty-first century. Behav Brain Sci 2010. [DOI: 10.1017/s0140525x00036712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
30
|
Representational redescription, memory, and connectionism. Behav Brain Sci 2010. [DOI: 10.1017/s0140525x00036773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
31
|
Abstract
AbstractBeyond modularityattempts a synthesis of Fodor's anticonstructivist nativism and Piaget's antinativist constructivism. Contra Fodor, I argue that: (1) the study of cognitive development is essential to cognitive science, (2) the module/central processing dichotomy is too rigid, and (3) the mind does not begin with prespecified modules; rather, development involves a gradual process of “modularization.” Contra Piaget, I argue that: (1) development rarely involves stagelike domain-general change and (2) domainspecific predispositions give development a small but significant kickstart by focusing the infant's attention on proprietary inputs. Development does not stop at efficient learning. A fundamental aspect of human development (“representational redescription”) is the hypothesized process by which information that isina cognitive system becomes progressively explicit knowledgetothat system. Development thus involves two complementary processes of progressive modularization and progressive “explicitation.” Empirical findings on the child as linguist, physicist, mathematician, psychologist, and notator are discussed in support of the theoretical framework. Each chapter concentrates first on the initial state of the infant mind/brain and on subsequent domain-specific learning in infancy and early childhood. It then goes on to explore data on older children's problem solving and theory building, with particular focus on evolving cognitive flexibility. Emphasis is placed throughout on the status of representations underlying different capacities and on the multiple levels at which knowledge is stored and accessible. Finally, consideration is given to the need for more formal developmental models, and a comparison is made between representational redescription and connectionist simulations of development. In conclusion, I consider what is special about human cognition by speculating on the status of representations underlying the structure of behavior in other species.
Collapse
|
32
|
|
33
|
|
34
|
|
35
|
|
36
|
|
37
|
|
38
|
|
39
|
|
40
|
|
41
|
Modal knowledge and transmodularity. Behav Brain Sci 2010. [DOI: 10.1017/s0140525x00036876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
42
|
Abstract
With increasing clinical experience, peripheral nerve surgeons have come to appreciate the important role that cortical plasticity and motor relearning play in functional recovery following a nerve transfer. Neurostimulation (transcranial magnetic stimulation), and neuroimaging (functional MRI, structural MRI, magnetoencephalography) measure different aspects of cortical physiology and when used together are powerful tools in the study of cortical plasticity. The mechanisms of cortical plasticity, according to current and widely accepted opinions, involve the unmasking of previously ineffective connections or the sprouting of intact afferents from adjacent cortical or subcortical territories. Although significant strides have been made in our understanding of cortical plasticity following nerve transfer and during motor relearning, a great deal remains that we do not understand. Cortical plasticity and its manipulation may one day become important contributors to improve functional outcome following nerve transfer.
Collapse
|
43
|
Abstract
AbstractThe term plasticity is often confined to changes due to learning. We believe, however, that the rapid lability of human behavior as different mental contents receive attention represents an important form of plasticity. Recent research in temperament and cognitive neuroscience provides an account of the development of a specific neural system involved in attentional self-regulation. In this paper, we concentrate on a network involved in orienting. We describe what is currently known about this network and its development during the first years of life. This network interacts with other attentional networks that come to control orienting to remembered events as well as those currently present. Orienting reflects processes that are both deeply biological and also open to cultural influences through learning. Attention is influenced by the current emotional state and is also important in achieving control over the emotional state. We present evidence on how learning influences eye position between 4 and 18 months of life and indicate influences of orienting on important aspects of infant behavior. Like any biological system, problems can arise in these mechanisms. We speculate on how individual differences in distress proneness and orienting may relate to the development of psychopathology.
Collapse
|
44
|
|
45
|
Leon MI, Poytress BS, Weinberger NM. Avoidance learning facilitates temporal processing in the primary auditory cortex. Neurobiol Learn Mem 2008; 90:347-57. [PMID: 18603453 DOI: 10.1016/j.nlm.2008.05.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Revised: 05/08/2008] [Accepted: 05/10/2008] [Indexed: 10/21/2022]
Abstract
The primary auditory cortex is now known to be involved in learning and memory, as well as auditory perception. For example, spectral tuning often shifts toward or to the frequency of the conditioned stimulus during associative learning. As previous research has focused on tonal frequency, less is known about how learning might alter temporal parameters of response in the auditory cortex. This study addressed the effects of learning on the fidelity of temporal processing. Adult male rats were trained to avoid shock that was signaled by an 8.0 kHz tone. A novel control group received non-contingent tone and shock with shock probability decreasing over days to match the reduced number of shocks received by the avoidance group as they mastered the task. An untrained (nai ve) group served as a baseline. Following training, neuronal responses to white noise and a broad spectrum of tones were determined across the primary auditory cortex in a terminal experiment with subjects under general anesthesia. Avoidance conditioning significantly improved the precision of spike-timing: the coefficient of variation of 1st spike latency was significantly reduced in avoidance animals compared to controls and nai ves, both for tones and for noise. Additionally, avoidance learning was accompanied by a reduction of the latency of peak response, by 2.0-2.5 ms relative to nai ves and approximately 1.0 ms relative to controls. The shock-matched controls also exhibited significantly shorter peak latency of response than nai ves, demonstrating the importance of this non-avoidance control. Plasticity of temporal processing showed no evidence of frequency specificity and developed independently of the non-temporal parameters magnitude of response, frequency tuning and neural threshold, none of which were facilitated. The facilitation of temporal processing suggests that avoidance learning may increase synaptic strength either within the auditory cortex, in the subcortical auditory system, or both.
Collapse
Affiliation(s)
- Matthew I Leon
- Center for the Neurobiology of Learning and Memory, Department of Neurobiology and Behavior, 309 Qureshey Research Laboratory, University of California, Irvine, CA 92697-3800, USA
| | | | | |
Collapse
|
46
|
Sun QQ. The missing piece in the 'use it or lose it' puzzle: is inhibition regulated by activity or does it act on its own accord? Rev Neurosci 2007; 18:295-310. [PMID: 18019611 DOI: 10.1515/revneuro.2007.18.3-4.295] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
We have gained enormous insight into the mechanisms underlying both activity-dependent and (to a lesser degree) -independent plasticity of excitatory synapses. Recently, cortical inhibition has been shown to play a vital role in the formation of critical periods for sensory plasticity. As such, sculpting of neuronal circuits by inhibition may be a common mechanism by which activity organizes or reorganizes brain circuits. Disturbances in the balance of excitation and inhibition in the neocortex provoke abnormal activities, such as epileptic seizures and abnormal cortical development. However, both the process of experience-dependent postnatal maturation of neocortical inhibitory networks and its underlying mechanisms remain elusive. Mechanisms that match excitation and inhibition are central to achieving balanced function at the level of individual circuits. The goal of this review is to reinforce our understanding of the mechanisms by which developing inhibitory networks are able to adapt to sensory inputs, and to maintain their balance with developing excitatory networks. Discussion is centered on the following questions related to experience-dependent plasticity of neocortical inhibitory networks: 1) What are the roles of GABAergic inhibition in the postnatal maturation of neocortical circuits? 2) Does the maturation of neocortical inhibitory circuits proceed in an activity-dependent manner or do they develop independently of sensory inputs? 3) Does activity regulate inhibitory networks in the same way it regulates excitatory networks? 4) What are the molecular and cellular mechanisms that underlie the activity-dependent maturation of inhibitory networks? 5) What are the functional advantages of experience-dependent plasticity of inhibitory networks to network processing in sensory cortices?
Collapse
Affiliation(s)
- Qian-Quan Sun
- Laboratory of Neural Development and Learning, Department of Zoology and Physiology and Neuroscience Program, University of Wyoming, Laramie, WY, USA.
| |
Collapse
|
47
|
Chao ZC, Bakkum DJ, Potter SM. Region-specific network plasticity in simulated and living cortical networks: comparison of the center of activity trajectory (CAT) with other statistics. J Neural Eng 2007; 4:294-308. [PMID: 17873432 PMCID: PMC2577565 DOI: 10.1088/1741-2560/4/3/015] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Electrically interfaced cortical networks cultured in vitro can be used as a model for studying the network mechanisms of learning and memory. Lasting changes in functional connectivity have been difficult to detect with extracellular multi-electrode arrays using standard firing rate statistics. We used both simulated and living networks to compare the ability of various statistics to quantify functional plasticity at the network level. Using a simulated integrate-and-fire neural network, we compared five established statistical methods to one of our own design, called center of activity trajectory (CAT). CAT, which depicts dynamics of the location-weighted average of spatiotemporal patterns of action potentials across the physical space of the neuronal circuitry, was the most sensitive statistic for detecting tetanus-induced plasticity in both simulated and living networks. By reducing the dimensionality of multi-unit data while still including spatial information, CAT allows efficient real-time computation of spatiotemporal activity patterns. Thus, CAT will be useful for studies in vivo or in vitro in which the locations of recording sites on multi-electrode probes are important.
Collapse
Affiliation(s)
- Zenas C Chao
- Laboratory for Neuroengineering, Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA 30332-0535, USA
| | | | | |
Collapse
|
48
|
Butler AJ, Wolf SL. Putting the brain on the map: use of transcranial magnetic stimulation to assess and induce cortical plasticity of upper-extremity movement. Phys Ther 2007; 87:719-36. [PMID: 17429003 DOI: 10.2522/ptj.20060274] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The plasticity of the brain is an increasingly important topic for physical therapists interested in childhood development, learning, and repair following injury. The study of plasticity directly in the human nervous system presents numerous challenges, such as the ability to assess neuronal function in vivo because of physical impediments, such as the skull, skin, and dura. Transcranial magnetic stimulation (TMS), however, has become a suitable, noninvasive, and painless technique that can be applied to detect changes in cortical excitability as an indicator of neurological changes. Furthermore, repetitive trains of TMS themselves can induce plasticity. This article discusses the use of TMS to investigate and manipulate plasticity in the human nervous system.
Collapse
Affiliation(s)
- Andrew J Butler
- Department of Rehabilitation Medicine, Center for Rehabilitation Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | | |
Collapse
|
49
|
Kadohisa M, Wilson DA. Separate encoding of identity and similarity of complex familiar odors in piriform cortex. Proc Natl Acad Sci U S A 2006; 103:15206-11. [PMID: 17005727 PMCID: PMC1622801 DOI: 10.1073/pnas.0604313103] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Piriform cortical circuits are hypothesized to form perceptions from responses to specific odorant features, but the anterior piriform cortex (aPCX) and posterior piriform cortex (pPCX) differ markedly in their anatomical organization, differences that could lead to distinct roles in odor encoding. Here, we tested whether experience with a complex odorant mixture would modify encoding of the mixture and its components in aPCX and pPCX. Rats were exposed to an odorant mixture and its components in a go/no-go rewarded odor discrimination task. After reaching behavioral performance criterion, single-unit recordings were made from the aPCX and pPCX in these rats and in odor-naïve, control, urethane-anesthetized rats. After odor experience, aPCX neurons were more narrowly tuned to the test odorants, and there was a decorrelation in aPCX population responses to the mixture and its components, suggesting a more distinct encoding of the familiar mixture from its components. In contrast, pPCX neurons were more broadly tuned to the familiar odorants, and pPCX population responses to the mixture and its components became more highly correlated, suggesting a pPCX encoding of similarity between familiar stimuli. The results suggest aPCX and pPCX play different roles in the processing of familiar odors and are consistent with an experience-dependent encoding (perceptual learning) of synthetic odorant identity in aPCX and an experience-dependent encoding of odor similarity or odor quality in pPCX.
Collapse
Affiliation(s)
- Mikiko Kadohisa
- Department of Zoology, University of Oklahoma, Norman, OK 73019, USA.
| | | |
Collapse
|
50
|
Bütefisch CM, Kleiser R, Seitz RJ. Post-lesional cerebral reorganisation: evidence from functional neuroimaging and transcranial magnetic stimulation. ACTA ACUST UNITED AC 2006; 99:437-54. [PMID: 16723211 DOI: 10.1016/j.jphysparis.2006.03.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Reorganisation of cerebral representations has been hypothesised to underlie the recovery from ischaemic brain infarction. The mechanisms can be investigated non-invasively in the human brain using functional neuroimaging and transcranial magnetic stimulation (TMS). Functional neuroimaging showed that reorganisation is a dynamic process beginning after stroke manifestation. In the acute stage, the mismatch between a large perfusion deficit and a smaller area with impaired water diffusion signifies the brain tissue that potentially enables recovery subsequent to early reperfusion as in thrombolysis. Single-pulse TMS showed that the integrity of the cortico-spinal tract system was critical for motor recovery within the first four weeks, irrespective of a concomitant affection of the somatosensory system. Follow-up studies over several months revealed that ischaemia results in atrophy of brain tissue adjacent to and of brain areas remote from the infarct lesion. In patients with hemiparetic stroke activation of premotor cortical areas in both cerebral hemispheres was found to underlie recovery of finger movements with the affected hand. Paired-pulse TMS showed regression of perilesional inhibition as well as intracortical disinhibition of the motor cortex contralateral to the infarction as mechanisms related to recovery. Training strategies can employ post-lesional brain plasticity resulting in enhanced perilesional activations and modulation of large-scale bihemispheric circuits.
Collapse
|