1
|
Jung J, Kang J, Kim T. Attenuation of homeostatic sleep response and rest-activity circadian rhythm in vitamin D deficient mice. Chronobiol Int 2023; 40:1097-1110. [PMID: 37661839 DOI: 10.1080/07420528.2023.2253299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/09/2023] [Accepted: 08/24/2023] [Indexed: 09/05/2023]
Abstract
The link between vitamin D deficiency (VDD) and sleep disturbances has long been suggested. However, the direct causality between VDD, sleep disturbances, and circadian rhythm remains unclear. We aimed to characterize sleep-wake behavior and circadian rhythms in an animal model of VDD. VDD was induced by feeding vitamin D-deficient chow, and we analyzed sleep and circadian rhythm parameters. During light period, VDD mice exhibited reduced wake with more frequent wake bouts and increased NREM sleep time. However, during dark period, the wake EEG power spectrum peaked at theta band frequency, and slow-wave energy was suppressed in mice with VDD. Rest-activity analyses revealed increased circadian period, lower wheel counts, and more frequent and short activity bouts during VDD. Combining sleep and circadian data, we found significantly suppressed activities during the hours with a wake duration shorter than 30 minutes. Moreover, mice in VDD state exhibited a negative correlation between wake theta power and hourly wheel-running counts during dark period. Our data point to a direct link between VDD and disturbances in sleep and rest-activity circadian rhythm, featuring frequent wake bouts during the sleeping phase, reduced sleep pressure build-up in dark period, and reduced activity levels due to increased susceptibility to sleepiness.
Collapse
Affiliation(s)
- Jieun Jung
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Jiseung Kang
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Tae Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| |
Collapse
|
2
|
DeLuca GC, Kimball SM, Kolasinski J, Ramagopalan SV, Ebers GC. Review: the role of vitamin D in nervous system health and disease. Neuropathol Appl Neurobiol 2014; 39:458-84. [PMID: 23336971 DOI: 10.1111/nan.12020] [Citation(s) in RCA: 214] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 01/16/2013] [Indexed: 12/13/2022]
Abstract
Vitamin D and its metabolites have pleomorphic roles in both nervous system health and disease. Animal models have been paramount in contributing to our knowledge and understanding of the consequences of vitamin D deficiency on brain development and its implications for adult psychiatric and neurological diseases. The conflation of in vitro, ex vivo, and animal model data provide compelling evidence that vitamin D has a crucial role in proliferation, differentiation, neurotrophism, neuroprotection, neurotransmission, and neuroplasticity. Vitamin D exerts its biological function not only by influencing cellular processes directly, but also by influencing gene expression through vitamin D response elements. This review highlights the epidemiological, neuropathological, experimental and molecular genetic evidence implicating vitamin D as a candidate in influencing susceptibility to a number of psychiatric and neurological diseases. The strength of evidence varies for schizophrenia, autism, Parkinson's disease, amyotrophic lateral sclerosis, Alzheimer's disease, and is especially strong for multiple sclerosis.
Collapse
Affiliation(s)
- G C DeLuca
- Nuffield Department of Clinical Neurosciences (Clinical Neurology), University of Oxford, Oxford, UK.
| | | | | | | | | |
Collapse
|
3
|
Stumpf WE. Whole-body and microscopic autoradiography to determine tissue distribution of biopharmaceuticals -- target discoveries with receptor micro-autoradiography engendered new concepts and therapies for vitamin D. Adv Drug Deliv Rev 2013; 65:1086-97. [PMID: 23391491 DOI: 10.1016/j.addr.2012.11.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 11/27/2012] [Accepted: 11/27/2012] [Indexed: 11/16/2022]
Abstract
Information about the distribution of biopharmaceuticals is basic for understanding their actions. Tissue and cellular localization is a key to function. Autoradiography with radiolabeled compounds has provided valuable information with both low resolution whole-body macro-autoradiography and high resolution microscopic autoradiography (micro-autoradiography). Whole-body macro-autoradiography is a uniform and expedient single method approach, providing convenient dose- and time-related overviews with data similar to those obtained with conventional bioassays - and therefore widely used. However, whole-body macro-autoradiography, like common bioassays, has limitations. High specificity-low capacity sites of binding and deposition frequently remain unrecognized. Lack of cellular resolution can cause false negatives and provide misleading results (e.g., false blood-brain barrier). For micro-autoradiography, different methods are advertised in the literature. Most of them are, however, unsuited for drug localization because of inadequate resolution and frequent artifacts. Most drugs interact with their receptors non-covalently by weak electrostatic forces. Therefore, translocation and loss can occur during tissue preparation. This has complicated the use of micro-autoradiography. Receptor micro-autoradiography has overcome these complications and is a method of choice. It has been validated through several diffusible compounds with known localization, extensively applied. It has contributed numerous discoveries, followed by new concepts and therapies. Pictorial evidence in this review indicates that cellular information is essential, a 'sine qua non' for meaningful drug distribution studies. High resolution cellular microscopic information obtained from autoradiography requires tissue dissection and the necessary precautions for preserving pristine in vivo drug deposition. Receptor micro-autoradiography fulfils these requirements. It reveals crucial information at the subcellular level that cannot currently be obtained with any other type of autoradiography or spectrometric imaging.
Collapse
Affiliation(s)
- Walter E Stumpf
- University of North Carolina at Chapel Hill, 2612 Damascus Church Road, Chapel Hill, NC 27516 USA.
| |
Collapse
|
4
|
Gominak SC, Stumpf WE. The world epidemic of sleep disorders is linked to vitamin D deficiency. Med Hypotheses 2012; 79:132-5. [PMID: 22583560 DOI: 10.1016/j.mehy.2012.03.031] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 03/08/2012] [Accepted: 03/30/2012] [Indexed: 12/21/2022]
Abstract
An observation of sleep improvement with vitamin D supplementation led to a 2 year uncontrolled trial of vitamin D supplementation in 1500 patients with neurologic complaints who also had evidence of abnormal sleep. Most patients had improvement in neurologic symptoms and sleep but only through maintaining a narrow range of 25(OH) vitamin D3 blood levels of 60-80 ng/ml. Comparisons of brain regions associated with sleep-wake regulation and vitamin D target neurons in the diencephalon and several brainstem nuclei suggest direct central effects of vitamin D on sleep. We propose the hypothesis that sleep disorders have become epidemic because of widespread vitamin D deficiency. The therapeutic effects together with the anatomic-functional correspondence warrant further investigation and consideration of vitamin D in the etiology and therapy of sleep disorders.
Collapse
Affiliation(s)
- S C Gominak
- East Texas Medical Center, Neurologic Institute, Tyler, TX 75701, USA.
| | | |
Collapse
|
5
|
Stumpf WE. Drugs in the brain--cellular imaging with receptor microscopic autoradiography. ACTA ACUST UNITED AC 2012; 47:1-26. [PMID: 22240062 DOI: 10.1016/j.proghi.2011.12.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
For cell and tissue localization of drugs, receptor microscopic autoradiography is reviewed, including its development history, multiple testing, extensive applications and significant discoveries. This sensitive high-resolution imaging method is based on the use of radiolabeled compounds (esp. tagged with (3)H or (125)I), preservation through freezing of in vivo localization of tissue constituents, cutting thin frozen sections, and close contact with the recording nuclear emulsion. After extensive testing of the utility of this method, the distribution of radiolabeled compounds has been identified and characterized for estradiol, progestagens, adrenal steroids, thyroid hormone, ecdysteroids, vitamin D, retinoic acid, metabolic indicators glucose and 2-deoxyglucose, as well as extracellular space indicators. Target cells and associated tissues have been characterized with special stains, fluorescing compounds, or combined autoradiography-immunocytochemistry with antibodies to dopamine-beta-hydroxylase, GABA, enkephalin, specific receptor proteins, or other cellular products. Blood-brain barrier and brain entries via capillary endothelium, ependyma, or circumventricular recess organs have been visualized for (3)H-dexamethasone, (210)Pb lead, and (3)H-1,25(OH)(2) vitamin D(3). With this histopharmacologic approach, cellular details and tissue integrative overviews can be assessed in the same preparation. As a result, information has been gained that would have been difficult or impossible otherwise. Maps of brain drug distribution have been developed and relevant target circuits have been recognized. Examples include the stria terminalis that links septal-amygdaloid-thalamic-hypothalamic structures and telencephalic limbic system components which extend as the periventricular autonomic-neuroendocrine ABC (Allocortex-Brainstem-Circuitry) system into the mid- and hindbrain. Discoveries with radiolabeled substances challenged existing paradigms, engendering new concepts and providing seminal incentives for further research toward understanding drug actions. Most notable are discoveries made during the 1980s with vitamin D in the brain together with over 50 target tissues that challenged the century-old doctrine of vitamin D's main role as 'the calcitropic hormone', when the new data made it apparent that the main biological function of this multifunctional sunshine hormone rather is maintenance of life and adapting vital functions to the solar environment. In the brain, vitamin D, in close relation to sex and adrenal steroids, participates in the regulation of the secretion of neuro-endocrines, such as, serotonin, dopamine, nerve growth factor, acetyl choline, with importance in prophylaxis and therapy of neuro-psychiatric disorders. Histochemical imaging with high cellular-subcellular resolution is necessary for obtaining detailed information, as this review indicates. New spectrometric methods, like MALDI-MSI, are unlikely to furnish the same information as receptor microautoradiography does, but can provide important correlative molecular information.
Collapse
|
6
|
|
7
|
Abstract
Nuclear receptor binding of 1,25(OH)(2)-vitamin D(3) (vitamin D) in skin keratinocytes of epidermis, hair sheaths and sebaceous glands was discovered through receptor microscopic autoradiography. Extended experiments with (3)H-1,25(OH)(2)-vitamin D(3) and its analog (3)H-oxacalcitriol (OCT) now demonstrate nuclear receptor binding in sweat gland epithelium of secretory coils and ducts as well as in myoepithelial cells, as studied in paws of nude mice after i.v. injection. The results suggest genomic regulation of cell proliferation and differentiation, as well as of secretory and excretory functions, indicating potential therapies for impaired secretion as in hypohidrosis of aged and diseased skin.
Collapse
Affiliation(s)
- Nobuo Koike
- Fuji Gotemba Research Laboratories, Chugai Pharmaceutical Company Ltd, Shizuoka, Japan.
| | | |
Collapse
|
8
|
Abstract
PURPOSE OF REVIEW Vitamin D is a seco-steroid hormone with multiple functions in the nervous system. We discuss clinical and experimental evidence of the role of vitamin D in normal and pathological brain functions, and analyze the relative importance of vitamin D-modulated brain mechanisms at different stages of life. We also outline perspectives for the use of vitamin D in clinical nutrition to prevent or treat various brain disorders. RECENT FINDINGS Numerous brain dysfunctions are linked to vitamin D deficits and/or dysfunctions of its receptors. In both animals and humans, vitamin D serves as an important endogenous and/or exogenous regulator of neuroprotection, antiepileptic and anticalcification effects, neuro-immunomodulation, interplay with neurotransmitters and hormones, modulation of behaviors, brain ageing, and some other, less-explored, brain processes. SUMMARY Vitamin D emerges as an important neurosteroid hormone in the brain, with a strong potential for age-specific applications in clinical nutrition.
Collapse
|
9
|
Garcion E, Wion-Barbot N, Montero-Menei CN, Berger F, Wion D. New clues about vitamin D functions in the nervous system. Trends Endocrinol Metab 2002; 13:100-5. [PMID: 11893522 DOI: 10.1016/s1043-2760(01)00547-1] [Citation(s) in RCA: 589] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Accumulating data have provided evidence that 1 alpha,25 dihydroxyvitamin D(3) [1,25-(OH)(2)D(3)] is involved in brain function. Thus, the nuclear receptor for 1,25-(OH)(2)D(3) has been localized in neurons and glial cells. Genes encoding the enzymes involved in the metabolism of this hormone are also expressed in brain cells. The reported biological effects of 1,25-(OH)(2)D(3) in the nervous system include the biosynthesis of neurotrophic factors and at least one enzyme involved in neurotransmitter synthesis. 1,25-(OH)(2)D(3) can also inhibit the synthesis of inducible nitric oxide synthase and increase glutathione levels, suggesting a role for the hormone in brain detoxification pathways. Neuroprotective and immunomodulatory effects of this hormone have been described in several experimental models, indicating the potential value of 1,25-(OH)(2)D(3) pharmacological analogs in neurodegenerative and neuroimmune diseases. In addition, 1,25-(OH)(2)D(3) induces glioma cell death, making the hormone of potential interest in the management of brain tumors. These results reveal previously unsuspected roles for 1,25-(OH)(2)D(3) in brain function and suggest possible areas of future research.
Collapse
|
10
|
Sprinkle RH. The missing politics and unsettled science of the trend toward earlier puberty. Politics Life Sci 2001; 20:43-66. [PMID: 16859323 DOI: 10.1017/s0730938400005177] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The age of puberty in many populations has declined steeply over recent centuries and may be declining still. Consequently, today's children tend to experience the hormonal stresses of rapid development at younger ages than did their ancestors, around whose later, if not more gradual, maturation traditional behavioral expectations formed. Little has been made of this "rush to puberty" outside the life sciences. This article reviews its historical documentation, scholarly appreciation, epidemiological correlations, putative physiological and environmental explanations, sociological implications, and largely latent politics.
Collapse
|
11
|
Langub MC, Herman JP, Malluche HH, Koszewski NJ. Evidence of functional vitamin D receptors in rat hippocampus. Neuroscience 2001; 104:49-56. [PMID: 11311530 DOI: 10.1016/s0306-4522(01)00049-5] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The steroid hormone vitamin D has important biological roles in calcium transport, cell growth, and cell differentiation. Its cellular activities are mediated by high affinity interaction with the vitamin D receptor. In brain, autoradiographic, immunohistologic, and messenger RNA expression studies implicate a number of neuronal systems, including the hippocampus, as potential targets of vitamin D. However, cellular distribution and protein expression, and binding of the receptor to vitamin D response elements have yet to be established in hippocampus. This investigation was undertaken to characterize the vitamin D receptor in rat hippocampus with western blot, immunocytochemistry, and gel shift analyses. The presence of the receptor protein in hippocampus extracts was revealed with western blotting using an anti-rat vitamin D receptor antiserum. In vivo and in vitro immunocytochemical results confirmed the presence of vitamin D receptor in neuronal and glial cells. In the hippocampus, the receptor was localized in pyramidal and granule cell layers, CA1, CA2, and CA3 subfields and in the dentate gyrus. Double labeling for the vitamin D receptor and glial fibrillary acidic protein revealed that glia also expressed the receptor protein. Gel shift analyses evaluated with the murine osteopontin vitamin D response element indicated a specific, bound receptor-containing complex from hippocampal extracts. Altogether, these findings clearly document the localization of vitamin D receptor in rat hippocampus and that hippocampus contains vitamin D receptors capable of specifically binding to DNA. In combination with reports of a neuroprotective role for vitamin D in hippocampal cell survival, these data suggest that the endogenous vitamin D receptor may mitigate processes related to cellular homeostasis, perhaps through a calcium buffering mechanism.
Collapse
Affiliation(s)
- M C Langub
- Department of Internal Medicine, University of Kentucky Medical Center, Lexington, KY 40536-0084, USA.
| | | | | | | |
Collapse
|
12
|
Lindblom N, Hätönen T, Laakso M, Alila-Johansson A, Laipio M, Turpeinen U. Bright light exposure of a large skin area does not affect melatonin or bilirubin levels in humans. Biol Psychiatry 2000; 48:1098-104. [PMID: 11094143 DOI: 10.1016/s0006-3223(00)00905-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
BACKGROUND Light treatment through the eyes is effective in alleviating the symptoms of some psychiatric disorders. A recent report suggested that skin light exposure can affect human circadian rhythms. Bilirubin can serve as a hypothetical blood-borne mediator of skin illumination into the brain. We studied whether bright light directed to a large body area could suppress the pineal melatonin secretion or decrease serum total bilirubin in conditions that could be used for therapeutic purposes. METHODS Seven healthy volunteers participated in two consecutive overnight sessions that were identical except for a light exposure on the chest and abdomen in the second night from 12:00 AM to 6:00 AM (10,000-lux, 32 W/m(2) cool white for six subjects and 3000-lux, 15 W/m(2) blue light for one subject). Hourly blood samples were collected from 7:00 PM to 7:00 AM for melatonin radioimmunoassays. Bilirubin was measured by a modified diazo method in blood samples taken at 12:00 AM and 6:00 AM and in urine samples collected from 7:00 PM to 11:00 PM and from 11:00 PM to 7:00 AM. RESULTS The skin light exposure did not cause any significant changes in serum melatonin or bilirubin levels. The excretion of bilirubin in urine was also the same in both sessions. CONCLUSIONS Significant melatonin suppression by extraocular light does not occur in humans. Robust concentration changes of serum total bilirubin do not have a role in mediating light information from the skin to the central nervous system.
Collapse
Affiliation(s)
- N Lindblom
- Pediatric Neurology, Hospital for Children and Adolescents, University of Helsinki, Helsinki, Finland
| | | | | | | | | | | |
Collapse
|
13
|
Vitamin D: Actions for the new millennium. Indian J Clin Biochem 2000; 15:158-68. [DOI: 10.1007/bf02867555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
|
15
|
Livshits G, Karasik D, Otremski I, Kobyliansky E. Genes play an important role in bone aging. Am J Hum Biol 1998; 10:421-438. [PMID: 28561472 DOI: 10.1002/(sici)1520-6300(1998)10:4<421::aid-ajhb3>3.0.co;2-j] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/1996] [Accepted: 12/27/1996] [Indexed: 11/11/2022] Open
Abstract
Pathological changes in bones like osteoarthritis and osteoporosis are among the most frequent outcomes of age and aging. Presently, little is known about the genetic basis of peak bone mass or rate of bone loss, or on the genetics of bone formation and resorption. This paper reviews modern studies, dealing with the genetic aspects of bone formation and bone aging. The currently most popular measures of bone aging are: osteometric measurements (OSM) including measures of cortical thickness, bone mineral density (BMD), and osteographic scores (OSS) basing on descriptive criteria of bone age. These three are important clinical tools for predicting chronic degenerative disease and estimating biological age of individuals. Despite abundant data on ethnic and racial differences in these bone aging measures, modern knowledge regarding the genetics of the processes came primarily from family studies of BMD which point to strong familial and probably also genetic effects on bone mass. Regardless of the measurement technique or skeletal site selected, heritability estimates of BMD in most studies account for about 60% of the total variation in bone mass. Similarity of heritability estimates in most studies suggests that the same genetic factors operate on both weight-bearing and nonweight-bearing bones. However, genetic heritability may be overestimated in some family studies due to underestimation of common environmental effects. Segregation analysis, performed to date, reveals strong effect of potential major locus on BMD of both compact and trabecular bone, but much remains to be clarified. Genetic factors affecting BMD may be mediated through biochemical turnover of bone. Hence, segregation, linkage, and molecular biology are the staples of any genetic analysis of BMD, while the study of biochemical factors regulating bone turnover should elucidate the full picture of bone formation and aging. Am. J. Hum. Biol. 10:421-438, 1998. © 1998 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Gregory Livshits
- Research Unit, Human Population Biology, Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Tel Aviv, Israel
| | - David Karasik
- Research Unit, Human Population Biology, Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Tel Aviv, Israel
| | - Itshak Otremski
- Department of Traumatology and Orthopaedics, Ichilov Municipal Hospital, Tel Aviv, Israel
| | - Eugene Kobyliansky
- Research Unit, Human Population Biology, Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Tel Aviv, Israel
| |
Collapse
|
16
|
Stumpf WE. Vitamin D sites and mechanisms of action: a histochemical perspective. Reflections on the utility of autoradiography and cytopharmacology for drug targeting. Histochem Cell Biol 1995; 104:417-27. [PMID: 8777727 DOI: 10.1007/bf01464331] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Knowledge about sites and mechanisms of action of vitamin D and its analogs has been greatly advanced by histochemical approaches. High resolution and high sensitivity, combined with the integrative potential of relatively intact histochemical tissue preparations, contributed information that is difficult or impossible to obtain otherwise. In in vivo distribution studies with conventional biochemical assays, target cell populations associated with non-target tissues frequently remain unrecognized without the resolution achieved by cellular autoradiography. Autoradiography, alone or combined with immunohistochemistry when applied to in vivo drug targeting and target characterization, has provided information on cellular-subcellular receptor distribution in over 50 tissues. These discoveries, importantly, contribute to a new understanding of the biological role of vitamin D and challenge the concept of "the calcium homeostatic steroid hormone" as being too narrow. While some of the outstanding effects of vitamin D deficiency and toxicity relate to calcium homeostasis, the vast majority of the target tissues appear not to be primarily related to calcium metabolism, but rather to the activation and regulation of exo- and endocrine secretory and somatotrophic processes such as cell differentiation and proliferation. Also, several highly calcium-dependent tissues such as striated and smooth muscles are not genomic targets for vitamin D. The reviewed data on the diverse and extensive presence of target tissues forecast a high therapeutic potential for vitamin D and especially its low-calcemic analogs, far beyond that which is presently utilized. The evidence provided for vitamin D also testifies to the utility and need to include in vivo cytopharmacology in any target evaluation of bioactive compounds to further the understanding of their mechanisms of action, and to identify preferential targets and their differential therapeutic and toxic potentials.
Collapse
Affiliation(s)
- W E Stumpf
- International Institute of Drug Distribution, Chapel Hill, NC 27516, USA
| |
Collapse
|
17
|
Stumpf WE, Koike N, Hayakawa N, Tokuda K, Nishimiya K, Hirate J, Okazaki A, Kumaki K. Distribution of 1,25-dihydroxyvitamin D3[22-oxa] in vivo receptor binding in adult and developing skin. Arch Dermatol Res 1995; 287:294-303. [PMID: 7598535 DOI: 10.1007/bf01105082] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Because of the therapeutic potential of oxacalcitriol (OCT, 22-oxa-dihydroxyvitamin D3), in vivo studies were conducted in adult and neonatal rats to identify the nuclear receptor sites of action in different tissues of the skin. Results were compared with those for 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) and oestradiol from previous studies. Autoradiograms were prepared from the dorsal skin of adult rats and the skin of the leg and head regions of neonatal rats 1 or 2 h after the injection of 3H-OCT. Specific nuclear concentrations of radioactivity, eliminated by competition with unlabelled OCT or 1,25(OH)2D3, were found in cells of the epidermis, outer hair sheath, hair bulb and sebaceous glands, but were absent or low in most fibroblasts of the dermis and hypodermis. The strongest nuclear binding of OCT was conspicuous in outer hair sheaths, where it was 1.5 to 3.2 times higher than in keratinocytes of the epidermis. The distribution of nuclear receptors for OCT was similar to that for 1,25(OH)2D3 but in part dissimilar to that for oestradiol. Oestradiol binding was found in the epidermis and hair sheaths, and also predominantly in fibroblasts of the dermis and hair dermal papillae. The results suggest genomic regulatory effects of OCT, similar to the effects of vitamin D, on proliferation, differentiation and activity of keratinocytes, growth and maintenance of hair, and proliferation and secretion of sebaceous glands. This may be utilized therapeutically, since OCT has a lower calcaemic effect than 1,25(OH)2D3.
Collapse
Affiliation(s)
- W E Stumpf
- Research Laboratories, Chugai Pharmaceutical Company, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Affiliation(s)
- J D Maxwell
- Department of Biochemical Medicine, St George's Hospital Medical School, London
| |
Collapse
|
19
|
Stumpf WE, Koike N, Hayakawa N, Tokuda K, Nishimiya K, Tsuchiya Y, Hirate J, Okazaki A, Kumaki K. 1,25-Dihydroxyvitamin D3 and 22-oxa-1,25-dihydroxyvitamin D3 in vivo nuclear receptor binding in developing bone during endochondral and intramembranous ossification. HISTOCHEMISTRY 1994; 102:183-94. [PMID: 7868361 DOI: 10.1007/bf00268895] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Target cells for 3H-labeled 1 alpha, 25(OH)2 vitamin D3 [1,25(OH)2D3, vitamin D] and its analog 3H-labeled 22-oxa-1 alpha, 25(OH)2 vitamin D3 (OCT) have been identified during endochondral and intramembranous ossification in developing, undecalcified, unembedded bone, using thaw-mount autoradiography. Two-day-old neonatal rats were injected with [3H]1,25(OH)2D3 or [3H]OCT; after 2 h leg, spine, and head were frozen and sectioned. In the epiphyseal-metaphyseal region specific nuclear concentrations of [3H]1,25(OH)2D3 and [3H]OCT were observed in identical cell populations, being low in cells of the articular and resting zone, intermediate in the proliferating zone, and highest in hypertrophic chondrocytes and in osteoblasts and precursor cells. In the primary spongiosa intertrabecular spaces there were a large number of cells with nuclear labeling--probably osteoblasts and precursor cells. In contrast, in the secondary spongiosa intertrabecular spaces, apparent blood-forming cells were mostly unlabeled. Osteoblasts along bone spicules and compact bone in long bones, vertebrae, and head also showed strong nuclear labeling, as did cells of the periosteum. These data suggest that 1,25(OH)2D3 and OCT regulate development, differentiation, and activities of chondrocytes and osteoblasts, including differentiation of resting chondrocytes into proliferating and hypertrophic chondrocytes that involve "chondroclastic" enlargement of lacunae and "trans-differentiation" of surviving hypertrophic chondrocytes; differentiation of stroma cells into osteoblasts; and in periosteum and other regions of intramembranous ossification differentiation of precursor cells and osteoblasts. Nuclear receptor binding and their selective and hierarchical distribution during cell differentiation appear to correspond to multiple genomic effects toward growth, regeneration and repair. The findings indicate a physiological significance and therapeutic potential of 1,25(OH)2D3 and in particular of its less hypercalcemic analog OCT.
Collapse
Affiliation(s)
- W E Stumpf
- Research Laboratories, Chugai Pharmaceutical Company, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Distribution of the nuclear receptor for vitamin D in female and male zebra finches, Taeniopygia guttata. Cell Tissue Res 1994; 276:333-45. [DOI: 10.1007/bf00306118] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
21
|
Bidmon HJ, Stumpf WE. Distribution of target cells for 1,25-dihydroxyvitamin D3 in the brain of the yellow bellied turtle Trachemys scripta. Brain Res 1994; 640:277-85. [PMID: 8004456 DOI: 10.1016/0006-8993(94)91883-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Five h after injection of tritiated 1,25-dihydroxyvitamin D3 into Trachemys scripta, neurons with nuclear concentrations of radioactivity were identified in distinct regions within the central nervous system. Coinjection of a 100-fold excess of non-labeled 1,25-dihydroxyvitamin D3 abolished or reduced the specific nuclear binding of tracer. Target neurons were present in ventral periventricular brain regions including tuberculum olfactorium, nucleus accumbens, cortex piriformis, primordium hippocampi, nucleus striae terminalis, dorsal ventricular ridge, amygdala, nucleus infundibularis and tectum opticum. With the exception of the nucleus infundibularis and the tectum opticum, target neurons can be continuously followed from the ventrolateral nucleus accumbens throughout the nucleus striae terminalis into the amygdala. The general distribution of target neurons is similar to that described for rodents but more restricted to the above regions. The results show that target neurons for vitamin D are located in brain regions including several components of the limbic and thalamic systems in which gonadal steroids as well as aminergic and peptidergic messengers exert their actions. Vitamin D, the heliogenic steroid hormone, may therefore be involved in the orchestration of season-specific processes such as reproduction and related behaviors.
Collapse
Affiliation(s)
- H J Bidmon
- Institut für Neuroanatomie, Heinrich-Heine-Universität, Düsseldorf, FRG
| | | |
Collapse
|
22
|
Schleicher G, Bartke A, Bidmon HJ, Stumpf WE. 1,25(OH)2 vitamin D3 binding sites in male sex organs of the Siberian hamster (Phodopus sungorus). An autoradiographic study. J Steroid Biochem Mol Biol 1993; 46:331-5. [PMID: 9831481 DOI: 10.1016/0960-0760(93)90222-i] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Using autoradiography, binding sites for 1,25(OH)2 vitamin D3 are found in certain genital organs of male Siberian hamsters (Phodopus sungorus), in particular in basal epithelial cells and fibroblasts of the lamina propria of prostate glands. Scattered labeled cells are also present in the epithelium of coagulation and urethral glands. In contrast to the findings in mice, under the conditions of the experiment, 1,25(OH)2 vitamin D3 binding sites are not recognizable in other accessory sex glands and gonads. The frequency of basal epithelial cells with [3H]1,25(OH)2 vitamin D3 nuclear binding is higher in regressed dorsal prostate glands of animals living in short photoperiods. The data suggest that 1,25(OH)2 vitamin D3 may promote proliferation and differentiation in basal epithelial cells, modulated by the seasonal and functional status of the animal.
Collapse
Affiliation(s)
- G Schleicher
- Universität (GHS) Essen, Abteilung für Pädiatrische Endokrinologie, Zentrum für Kinder- und Jugendmedizin, Germany
| | | | | | | |
Collapse
|
23
|
Stio M, Lunghi B, Iantomasi T, Vincenzini MT, Treves C. Effect of vitamin D deficiency and 1,25-dihydroxyvitamin D3 on metabolism and D-glucose transport in rat cerebral cortex. J Neurosci Res 1993; 35:559-66. [PMID: 8397307 DOI: 10.1002/jnr.490350512] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We previously demonstrated that feeding rats Steenbock and Black's rickets-inducing diet produces remarkable changes in the metabolic pattern of the intestinal mucosa, kidney, and liver and in some membrane transport systems of intestinal mucosa and kidney. 1,25-Dihydroxyvitamin D3 administration to rachitic rats did not always prove to be effective in restoring normal values. We have now investigated the effect of 1,25-dihydroxyvitamin D3 on the levels of some metabolites in rat cerebral cortex, on the activity of some enzymes, and on the transport of 2-deoxy-D-glucose and D-glucose in synaptosomes. Our experiments were carried out on three rat groups: control, rachitic, and rachitic treated with 1,25-dihydroxyvitamin D3. The decrease in phosphorus content and the increase in citrate concentration observed in rachitic rat cerebral cortex were corrected by 1,25-dihydroxyvitamin D3 treatment. The activity of acetylcholinesterase, glucose-6-phosphate dehydrogenase, and acyl phosphatase significantly increased in rachitic rat synaptosomes, as well as NAD(+)-dependent isocitrate dehydrogenase in cerebral cortex mitochondria; the administration of 1,25-dihydroxyvitamin D3 to rachitic rats restored enzyme levels to normal. The transport of 2-deoxy-D-glucose and D-glucose in rachitic rat synaptosomes was lower than in the control group and returned to control values in consequence of 1,25-dihydroxyvitamin D3 treatment. The results reported here support the hypothesis of a participation of 1,25-dihydroxyvitamin D3 in some aspects of cerebral cortex metabolism.
Collapse
Affiliation(s)
- M Stio
- Department of Biochemical Sciences, University of Florence, Italy
| | | | | | | | | |
Collapse
|
24
|
Stumpf WE, Pérez-Delgado MM, Li L, Bidmon HJ, Tuohimaa P. Vitamin D3 (soltriol) nuclear receptors in abdominal scent gland and skin of Siberian hamster (Phodopus sungorus) localized by autoradiography and immunohistochemistry. HISTOCHEMISTRY 1993; 100:115-9. [PMID: 8244763 DOI: 10.1007/bf00572897] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In vivo autoradiography with [3H]1,25-dihydroxycholecalciferol (vitamin D, soltriol) and immunostaining with antibodies to vitamin D receptor were applied to identify specific binding sites in the abdominal scent gland of male Siberian hamster (Phodopus sungorus). Nuclear concentration of radiolabeled hormone and receptor antibodies was observed in the corresponding cell types including basal cells of sebaceous glands, cells of the outer hair sheaths and hair bulbs, and also keratinocytes in the epidermis. Cells of the hair dermal papillae and fibroblasts of the dermis did not show nuclear labeling. There was good correspondence between the autoradiographic and immunohistochemical data. The results indicate the presence of receptors for vitamin D-soltriol and suggest a seasonal regulation of scent gland marking activities by this steroid hormone of sunlight in cooperation with the sex steroid testosterone.
Collapse
Affiliation(s)
- W E Stumpf
- Department of Cell Biology and Anatomy, University of North Carolina at Chapel Hill 27599-7090
| | | | | | | | | |
Collapse
|
25
|
Stumpf WE, Bidmon HJ, Li L, Pilgrim C, Bartke A, Mayerhofer A, Heiss C. Nuclear receptor sites for vitamin D-soltriol in midbrain and hindbrain of Siberian hamster (Phodopus sungorus) assessed by autoradiography. HISTOCHEMISTRY 1992; 98:155-64. [PMID: 1333462 DOI: 10.1007/bf00315874] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Autoradiograms were prepared from midbrains and hindbrains of male and female Siberian hamsters (Phodopus sungorus), kept under short-day or long-day illumination, after injection of tritium-labeled 1,25-dihydroxycholecalciferol (vitamin D, soltriol). Concentration and retention of radioactivity was noted in nuclei of certain neurons, glial cells, and ependymal cells, and in choroid epithelium. Labeled neurons of varying intensity were found throughout the brainstem in distinct populations at characteristic topographical sites, which include cranial nerve motor nuclei, the nucleus (n.) reticularis tegmenti pontis, the caudoventral region of the n. raphe dorsalis, the n. trapezoides, the n. vestibularis lateralis and n. vestibularis superior, neurons in the various nuclei of the sensory trigeminus, accessory optic nuclei, scattered neurons in nuclei of the reticular formation, the n. ambiguus, certain cells in the area postrema, and many others. Glial cells with nuclear labeling, probably microglia, were scattered predominantly in or near myelinated nerve fascicles. The choroid epithelium showed strong nuclear labeling throughout the ventricle. Nuclear labeling of ependyma was variable and weak, mainly at ventral and lateral extensions (recesses) of the ventricle. The extensive presence of nuclear binding in select neural structures indicates that vitamin D exerts specific genomic effects on cell populations that are known to be involved in the regulation of motor, sensory, autonomic, neuroendocrine, metabolic, and immune functions. The results of these studies, in conjunction with those from other brain and peripheral tissues, recognize vitamin D-soltriol as a steroid hormone with a wide scope of hormone-specific target cells, similar to estrogen, androgen, and adrenal steroids, and which are topographically distinct and characteristic for its functions as the steroid hormone of sunlight.
Collapse
Affiliation(s)
- W E Stumpf
- Department of Cell Biology and Anatomy, University of North Carolina, Chapel Hill 27599-7090
| | | | | | | | | | | | | |
Collapse
|
26
|
Musiol IM, Stumpf WE, Bidmon HJ, Heiss C, Mayerhofer A, Bartke A. Vitamin D nuclear binding to neurons of the septal, substriatal and amygdaloid area in the Siberian hamster (Phodopus sungorus) brain. Neuroscience 1992; 48:841-8. [PMID: 1321365 DOI: 10.1016/0306-4522(92)90272-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Autoradiographic experiments were performed on brains of Siberian hamsters (Phodopus sungorus) injected with tritiated 1,25-dihydroxycholecalciferol. Nuclear labeling was prevented in the presence of excess unlabeled hormone. Strong nuclear concentration of radioactivity was observed in neurons of the nucleus basalis of Meynert, the medial septal nucleus, the nucleus of the diagonal band of Broca and the central amygdaloid group. The latter has been defined as consisting of the central nucleus of the amygdala, its extension into the sublenticular part of the substantia innominata of Reichert, and the lateral division of the bed nucleus of the stria terminalis. All these structures have been reported to be involved in memory and other cognitive processes, and to be affected by age-dependent neurodegenerative disorders such as Alzheimer's disease. Corresponding localization of 1,25-dihydroxycholecalciferol receptor sites in these select basal forebrain nuclei of the Siberian hamster may implicate vitamin D (soltriol), the steroid hormone of sunlight, in memory processing.
Collapse
Affiliation(s)
- I M Musiol
- Department of Cell Biology and Anatomy, University of North Carolina, Chapel Hill 27599-7090
| | | | | | | | | | | |
Collapse
|
27
|
Neveu I, Jehan F, Wion D. Alteration in the levels of 1,25-(OH)2D3 and corticosterone found in experimental diabetes reduces nerve growth factor (NGF) gene expression in vitro. Life Sci 1992; 50:1769-72. [PMID: 1598065 DOI: 10.1016/0024-3205(92)90060-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Circulating concentrations of corticosterone and 1,25-(OH)2D3 have been reported to be respectively increased and decreased in the streptozotocin-treated rats. Using the cell line L929 cultured in a steroid-free medium, we show that the alteration in the levels of corticosterone and 1,25-(OH)2D3 found in vivo in experimental diabetes is able to decrease the synthesis of NGF by these cells. This finding raises a possible relationship between the balance in the concentration of these steroids and some aspects of the neuropathic complications found in experimental diabetes.
Collapse
Affiliation(s)
- I Neveu
- INSERM U 298 CHRU Angers, France
| | | | | |
Collapse
|