1
|
Ali NA, Song W, Huang J, Wu D, Zhao X. Recent advances and biotechnological applications of RNA metabolism in plant chloroplasts and mitochondria. Crit Rev Biotechnol 2024; 44:1552-1573. [PMID: 38238104 DOI: 10.1080/07388551.2023.2299789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/22/2023] [Accepted: 11/30/2023] [Indexed: 11/20/2024]
Abstract
The chloroplast and mitochondrion are semi-autonomous organelles that play essential roles in cell function. These two organelles are embellished with prokaryotic remnants and contain many new features emerging from the co-evolution of organelles and the nucleus. A typical plant chloroplast or mitochondrion genome encodes less than 100 genes, and the regulation of these genes' expression is remarkably complex. The regulation of chloroplast and mitochondrion gene expression can be achieved at multiple levels during development and in response to environmental cues, in which, RNA metabolism, including: RNA transcription, processing, translation, and degradation, plays an important role. RNA metabolism in plant chloroplasts and mitochondria combines bacterial-like traits with novel features evolved in the host cell and is regulated by a large number of nucleus-encoded proteins. Among these, pentatricopeptide repeat (PPR) proteins are deeply involved in multiple aspects of the RNA metabolism of organellar genes. Research over the past decades has revealed new insights into different RNA metabolic events in plant organelles, such as the composition of chloroplast and mitochondrion RNA editosomes. We summarize and discuss the most recent knowledge and biotechnological implications of various RNA metabolism processes in plant chloroplasts and mitochondria, with a focus on the nucleus-encoded factors supporting them, to gain a deeper understanding of the function and evolution of these two organelles in plant cells. Furthermore, a better understanding of the role of nucleus-encoded factors in chloroplast and mitochondrion RNA metabolism will motivate future studies on manipulating the plant gene expression machinery with engineered nucleus-encoded factors.
Collapse
Affiliation(s)
- Nadia Ahmed Ali
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Rural Affairs, Key Laboratory of Nuclear Agricultural Sciences of Zhejiang Province, Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Wenjian Song
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Rural Affairs, Key Laboratory of Nuclear Agricultural Sciences of Zhejiang Province, Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Jianyan Huang
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants of Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Dianxing Wu
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Rural Affairs, Key Laboratory of Nuclear Agricultural Sciences of Zhejiang Province, Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Xiaobo Zhao
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Rural Affairs, Key Laboratory of Nuclear Agricultural Sciences of Zhejiang Province, Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
2
|
Liu R, Ma T, Li Y, Lei X, Ji H, Du H, Zhang J, Cao SK. Genomic Identification and Expression Analysis of Regulator of Chromosome Condensation 1-Domain Protein Family in Maize. Int J Mol Sci 2024; 25:11437. [PMID: 39518988 PMCID: PMC11547138 DOI: 10.3390/ijms252111437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/16/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Abiotic stress affects the growth and development of maize (Zea mays). The regulator of chromosome condensation 1 (RCC1)-containing proteins (RCPs) plays crucial roles in plant growth and development and response to abiotic stresses. However, a comprehensive analysis of the maize RCP family has not been reported in detail. This study presents a systematic bioinformatics analysis of the ZmRCP family, identifying a total of 30 members distributed across nine chromosomes. The physicochemical properties and cis-acting elements in the promoters of ZmRCP members are predicted. The results of subcellular localization showed that ZmRCP3 and ZmRCP10 are targeted to mitochondria and ZmRCP2 is localized in the nucleus. A heatmap of expression levels among family members under abiotic stress conditions revealed varying degrees of induced expression, and the expression levels of 10 ZmRCP members were quantified using RT-qPCR under abiotic stress and plant hormone treatments. The results showed that ZmRCP members exhibit induced or inhibited responses to these abiotic stresses and plant hormones. These results contribute to a better understanding of the evolutionary history and potential role of the ZmRCP family in mediating responses to abiotic stress in maize.
Collapse
Affiliation(s)
- Rui Liu
- School of Life Science, Yangtze University, Jingzhou 434025, China; (R.L.); (T.M.); (Y.L.); (X.L.); (H.J.); (H.D.)
| | - Tian Ma
- School of Life Science, Yangtze University, Jingzhou 434025, China; (R.L.); (T.M.); (Y.L.); (X.L.); (H.J.); (H.D.)
| | - Yu Li
- School of Life Science, Yangtze University, Jingzhou 434025, China; (R.L.); (T.M.); (Y.L.); (X.L.); (H.J.); (H.D.)
| | - Xiongbiao Lei
- School of Life Science, Yangtze University, Jingzhou 434025, China; (R.L.); (T.M.); (Y.L.); (X.L.); (H.J.); (H.D.)
| | - Hongjing Ji
- School of Life Science, Yangtze University, Jingzhou 434025, China; (R.L.); (T.M.); (Y.L.); (X.L.); (H.J.); (H.D.)
| | - Hewei Du
- School of Life Science, Yangtze University, Jingzhou 434025, China; (R.L.); (T.M.); (Y.L.); (X.L.); (H.J.); (H.D.)
| | - Jianhua Zhang
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Shi-Kai Cao
- School of Life Science, Yangtze University, Jingzhou 434025, China; (R.L.); (T.M.); (Y.L.); (X.L.); (H.J.); (H.D.)
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
3
|
Zhang H, Wang X, Qu M, Yu H, Yin J, Liu X, Liu Y, Zhang B, Zhang Y, Wei Z, Yang F, Wang J, Shi C, Fan G, Sun J, Long L, Hutchins DA, Bowler C, Lin S, Wang D, Lin Q. Genome of Halimeda opuntia reveals differentiation of subgenomes and molecular bases of multinucleation and calcification in algae. Proc Natl Acad Sci U S A 2024; 121:e2403222121. [PMID: 39302967 PMCID: PMC11441479 DOI: 10.1073/pnas.2403222121] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 08/16/2024] [Indexed: 09/22/2024] Open
Abstract
Algae mostly occur either as unicellular (microalgae) or multicellular (macroalgae) species, both being uninucleate. There are important exceptions, however, as some unicellular algae are multinucleate and macroscopic, some of which inhabit tropical seas and contribute to biocalcification and coral reef robustness. The evolutionary mechanisms and ecological significance of multinucleation and associated traits (e.g., rapid wound healing) are poorly understood. Here, we report the genome of Halimeda opuntia, a giant multinucleate unicellular chlorophyte characterized by interutricular calcification. We achieve a high-quality genome assembly that shows segregation into four subgenomes, with evidence for polyploidization concomitant with historical sea level and climate changes. We further find myosin VIII missing in H. opuntia and three other unicellular multinucleate chlorophytes, suggesting a potential mechanism that may underpin multinucleation. Genome analysis provides clues about how the unicellular alga could survive fragmentation and regenerate, as well as potential signatures for extracellular calcification and the coupling of calcification with photosynthesis. In addition, proteomic alkalinity shifts were found to potentially confer plasticity of H. opuntia to ocean acidification (OA). Our study provides crucial genetic information necessary for understanding multinucleation, cell regeneration, plasticity to OA, and different modes of calcification in algae and other organisms, which has important implications in reef conservation and bioengineering.
Collapse
Affiliation(s)
- Hao Zhang
- Chinese Academy of Sciences Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou510301, China
- Marine Biodiversity and Ecological Evolution Research Center, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou510301, China
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen361102, China
| | - Xin Wang
- Chinese Academy of Sciences Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou510301, China
- Marine Biodiversity and Ecological Evolution Research Center, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou510301, China
| | - Meng Qu
- Chinese Academy of Sciences Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou510301, China
- Marine Biodiversity and Ecological Evolution Research Center, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou510301, China
| | - Haiyan Yu
- Chinese Academy of Sciences Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou510301, China
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen361102, China
| | - Jianping Yin
- Chinese Academy of Sciences Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou510301, China
| | | | - Yuhong Liu
- Chinese Academy of Sciences Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou510301, China
| | - Bo Zhang
- Chinese Academy of Sciences Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou510301, China
| | - Yanhong Zhang
- Chinese Academy of Sciences Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou510301, China
| | - Zhangliang Wei
- Chinese Academy of Sciences Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou510301, China
| | - Fangfang Yang
- Chinese Academy of Sciences Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou510301, China
| | - Jingtian Wang
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen361102, China
| | | | | | - Jun Sun
- College of Marine Science and Technology, China University of Geosciences, Wuhan430074, China
| | - Lijuan Long
- Chinese Academy of Sciences Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou510301, China
| | - David A. Hutchins
- Department of Biological Sciences, Marine and Environmental Biology, University of Southern California, Los Angeles, CA90007
| | - Chris Bowler
- Institut de Biologie de l’Ecole Normale Supérieure, Ecole Normale Supérieure, CNRS, INSERM, Paris Sciences et Lettres Research University, Paris75005, France
| | - Senjie Lin
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen361102, China
- Department of Marine Sciences, University of Connecticut, Groton, CT06340
| | - Dazhi Wang
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen361102, China
| | - Qiang Lin
- Chinese Academy of Sciences Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou510301, China
- Marine Biodiversity and Ecological Evolution Research Center, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou510301, China
- University of Chinese Academy of Sciences, Beijing100049, China
| |
Collapse
|
4
|
Li X, Jiang Y. Research Progress of Group II Intron Splicing Factors in Land Plant Mitochondria. Genes (Basel) 2024; 15:176. [PMID: 38397166 PMCID: PMC10887915 DOI: 10.3390/genes15020176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/16/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
Mitochondria are important organelles that provide energy for the life of cells. Group II introns are usually found in the mitochondrial genes of land plants. Correct splicing of group II introns is critical to mitochondrial gene expression, mitochondrial biological function, and plant growth and development. Ancestral group II introns are self-splicing ribozymes that can catalyze their own removal from pre-RNAs, while group II introns in land plant mitochondria went through degenerations in RNA structures, and thus they lost the ability to self-splice. Instead, splicing of these introns in the mitochondria of land plants is promoted by nuclear- and mitochondrial-encoded proteins. Many proteins involved in mitochondrial group II intron splicing have been characterized in land plants to date. Here, we present a summary of research progress on mitochondrial group II intron splicing in land plants, with a major focus on protein splicing factors and their probable functions on the splicing of mitochondrial group II introns.
Collapse
Affiliation(s)
| | - Yueshui Jiang
- School of Life Sciences, Qufu Normal University, Qufu 273165, China;
| |
Collapse
|
5
|
Wu Y, Xu Z, Chen X, Fu G, Tian J, Jin B. RCC1 functions as a tumor facilitator in clear cell renal cell carcinoma by dysregulating cell cycle, apoptosis, and EZH2 stability. Cancer Med 2023; 12:19889-19903. [PMID: 37747077 PMCID: PMC10587970 DOI: 10.1002/cam4.6594] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/03/2023] [Accepted: 09/14/2023] [Indexed: 09/26/2023] Open
Abstract
BACKGROUND RCC1 functions as a pivotal guanine nucleotide exchange factor and was reported to be involved in mitosis, the assembly of the nuclear envelope, nucleocytoplasmic transport in cell physiological processes. Recent studies reported that RCC1 could regulate immunological pathways and promote the growth of some malignant solid tumors. However, the prognostic value and exact function of RCC1 remain unknown in patients with clear cell renal cell carcinoma (cRCC). METHODS The UALCAN and KM plotter portals were used to analyze the expression profile and related tumor prognosis of RCC1 in ccRCC using data from TCGA. The expression profile of RCC1 was also confirmed in clinical samples using qRT-PCR, western blotting, and immunohistochemistry. The role of RCC1 on ccRCC cells in vitro was confirmed by a series of functional assays. Animal experiments were performed to verify the suppressive effect of RCC1 knockdown on tumor growth in vivo. The correlation of RCC1 expression with that of EZH2 was explored in clinical samples using IHC. The interaction between RCC1 and EZH2 was further verified using a CO-IP assay and a protein stability assay. RESULTS RCC1 was upregulated in ccRCC tissues compared with normal tissues in TCGA dataset and paired clinical samples. RCC1 promoted ccRCC progression by accelerating the cell cycle and suppressing apoptosis. In addition, RCC1 could bind EZH2 and regulate its expression at the posttranscriptional level. RCC1 and EZH2 expression showed a strong correlation in clinical samples. Further investigation proved that RCC1 regulated EZH2 protein stability through the ubiquitin-proteasome pathway. CONCLUSIONS RCC1 could be a potential therapeutic target in ccRCC. The RCC1/EZH2 axis takes part in the development of ccRCC.
Collapse
Affiliation(s)
- Yunfei Wu
- Department of Urology, The First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
- Zhejiang Engineering Research Center for Urinary Bladder Carcinoma Innovation Diagnosis and TreatmentHangzhouChina
| | - Zhijie Xu
- Department of Urology, The First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
- Zhejiang Engineering Research Center for Urinary Bladder Carcinoma Innovation Diagnosis and TreatmentHangzhouChina
| | - Xiaoyi Chen
- Department of Urology, The First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
- Zhejiang Engineering Research Center for Urinary Bladder Carcinoma Innovation Diagnosis and TreatmentHangzhouChina
| | - Guanghou Fu
- Department of Urology, The First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
- Zhejiang Engineering Research Center for Urinary Bladder Carcinoma Innovation Diagnosis and TreatmentHangzhouChina
| | - Junjie Tian
- Department of Urology, The First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
- Zhejiang Engineering Research Center for Urinary Bladder Carcinoma Innovation Diagnosis and TreatmentHangzhouChina
| | - Baiye Jin
- Department of Urology, The First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
- Zhejiang Engineering Research Center for Urinary Bladder Carcinoma Innovation Diagnosis and TreatmentHangzhouChina
| |
Collapse
|
6
|
Dudin O, Wielgoss S, New AM, Ruiz-Trillo I. Regulation of sedimentation rate shapes the evolution of multicellularity in a close unicellular relative of animals. PLoS Biol 2022; 20:e3001551. [PMID: 35349578 PMCID: PMC8963540 DOI: 10.1371/journal.pbio.3001551] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/21/2022] [Indexed: 01/03/2023] Open
Abstract
Significant increases in sedimentation rate accompany the evolution of multicellularity. These increases should lead to rapid changes in ecological distribution, thereby affecting the costs and benefits of multicellularity and its likelihood to evolve. However, how genetic and cellular traits control this process, their likelihood of emergence over evolutionary timescales, and the variation in these traits as multicellularity evolves are still poorly understood. Here, using isolates of the ichthyosporean genus Sphaeroforma-close unicellular relatives of animals with brief transient multicellular life stages-we demonstrate that sedimentation rate is a highly variable and evolvable trait affected by at least 2 distinct physical mechanisms. First, we find extensive (>300×) variation in sedimentation rates for different Sphaeroforma species, mainly driven by size and density during the unicellular-to-multicellular life cycle transition. Second, using experimental evolution with sedimentation rate as a focal trait, we readily obtained, for the first time, fast settling and multicellular Sphaeroforma arctica isolates. Quantitative microscopy showed that increased sedimentation rates most often arose by incomplete cellular separation after cell division, leading to clonal "clumping" multicellular variants with increased size and density. Strikingly, density increases also arose by an acceleration of the nuclear doubling time relative to cell size. Similar size- and density-affecting phenotypes were observed in 4 additional species from the Sphaeroforma genus, suggesting that variation in these traits might be widespread in the marine habitat. By resequencing evolved isolates to high genomic coverage, we identified mutations in regulators of cytokinesis, plasma membrane remodeling, and chromatin condensation that may contribute to both clump formation and the increase in the nuclear number-to-volume ratio. Taken together, this study illustrates how extensive cellular control of density and size drive sedimentation rate variation, likely shaping the onset and further evolution of multicellularity.
Collapse
Affiliation(s)
- Omaya Dudin
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Catalonia, Spain
| | - Sébastien Wielgoss
- Institute of Integrative Biology, Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
| | - Aaron M. New
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain
| | - Iñaki Ruiz-Trillo
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Catalonia, Spain
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Spain
- ICREA, Barcelona, Spain
| |
Collapse
|
7
|
The intricate roles of RCC1 in normal cells and cancer cells. Biochem Soc Trans 2022; 50:83-93. [PMID: 35191966 DOI: 10.1042/bst20210861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/24/2022] [Accepted: 02/02/2022] [Indexed: 11/17/2022]
Abstract
RCC1 (regulator of chromosome condensation 1) is a highly conserved chromatin-binding protein and the only known guanine-nucleotide exchange factor of Ran (a nuclear Ras homolog). RCC1 plays an essential role in the regulation of cell cycle-related activities such as nuclear envelope formation, nuclear pore complex and spindle assembly, and nucleocytoplasmic transport. Over the last decade, increasing evidence has emerged highlighting the potential relevance of RCC1 to carcinogenesis, especially cervical, lung, and breast cancer. In this review, we briefly discuss the roles of RCC1 in both normal and tumor cells based on articles published in recent years, followed by a brief overview of future perspectives in the field.
Collapse
|
8
|
Miceli M, Exertier C, Cavaglià M, Gugole E, Boccardo M, Casaluci RR, Ceccarelli N, De Maio A, Vallone B, Deriu MA. ALS2-Related Motor Neuron Diseases: From Symptoms to Molecules. BIOLOGY 2022; 11:77. [PMID: 35053075 PMCID: PMC8773251 DOI: 10.3390/biology11010077] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/22/2021] [Accepted: 12/29/2021] [Indexed: 11/27/2022]
Abstract
Infantile-onset Ascending Hereditary Spastic Paralysis, Juvenile Primary Lateral Sclerosis and Juvenile Amyotrophic Lateral Sclerosis are all motor neuron diseases related to mutations on the ALS2 gene, encoding for a 1657 amino acids protein named Alsin. This ~185 kDa multi-domain protein is ubiquitously expressed in various human tissues, mostly in the brain and the spinal cord. Several investigations have indicated how mutations within Alsin's structured domains may be responsible for the alteration of Alsin's native oligomerization state or Alsin's propensity to interact with protein partners. In this review paper, we propose a description of differences and similarities characterizing the above-mentioned ALS2-related rare neurodegenerative disorders, pointing attention to the effects of ALS2 mutation from molecule to organ and at the system level. Known cases were collected through a literature review and rationalized to deeply elucidate the neurodegenerative clinical outcomes as consequences of ALS2 mutations.
Collapse
Affiliation(s)
- Marcello Miceli
- PolitoBIOMedLab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Torino, Italy; (M.M.); (M.C.); (M.B.); (R.R.C.); (N.C.); (A.D.M.)
| | - Cécile Exertier
- Dipartimento di Scienze Biochimiche “A. Rossi Fanelli”, Sapienza Università di Roma, 00185 Rome, Italy; (C.E.); (E.G.); (B.V.)
| | - Marco Cavaglià
- PolitoBIOMedLab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Torino, Italy; (M.M.); (M.C.); (M.B.); (R.R.C.); (N.C.); (A.D.M.)
| | - Elena Gugole
- Dipartimento di Scienze Biochimiche “A. Rossi Fanelli”, Sapienza Università di Roma, 00185 Rome, Italy; (C.E.); (E.G.); (B.V.)
| | - Marta Boccardo
- PolitoBIOMedLab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Torino, Italy; (M.M.); (M.C.); (M.B.); (R.R.C.); (N.C.); (A.D.M.)
| | - Rossana Rita Casaluci
- PolitoBIOMedLab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Torino, Italy; (M.M.); (M.C.); (M.B.); (R.R.C.); (N.C.); (A.D.M.)
| | - Noemi Ceccarelli
- PolitoBIOMedLab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Torino, Italy; (M.M.); (M.C.); (M.B.); (R.R.C.); (N.C.); (A.D.M.)
| | - Alessandra De Maio
- PolitoBIOMedLab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Torino, Italy; (M.M.); (M.C.); (M.B.); (R.R.C.); (N.C.); (A.D.M.)
| | - Beatrice Vallone
- Dipartimento di Scienze Biochimiche “A. Rossi Fanelli”, Sapienza Università di Roma, 00185 Rome, Italy; (C.E.); (E.G.); (B.V.)
| | - Marco A. Deriu
- PolitoBIOMedLab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Torino, Italy; (M.M.); (M.C.); (M.B.); (R.R.C.); (N.C.); (A.D.M.)
| |
Collapse
|
9
|
Suszynska M, Ratajska M, Galka-Marciniak P, Ryszkowska A, Wydra D, Debniak J, Jasiak A, Wasag B, Cybulski C, Kozlowski P. Variant identification in BARD1, PRDM9, RCC1, and RECQL in patients with ovarian cancer by targeted next-generation sequencing of DNA pools. Cancer Prev Res (Phila) 2021; 15:151-160. [PMID: 34906988 DOI: 10.1158/1940-6207.capr-21-0295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/27/2021] [Accepted: 12/02/2021] [Indexed: 11/16/2022]
Abstract
Several ovarian cancer susceptibility genes have been discovered, but more are likely to exist. In this study, we aimed to analyze knowledge-based selected genes, i.e., BARD1, PRDM9, RCC1, and RECQL, in which pathogenic germline variants have been reported in patients with breast and/or ovarian cancer. As deep sequencing of DNA samples remains costly, targeted next-generation sequencing of DNA pools was utilized to screen the exons of BARD1, PRDM9, RCC1, and RECQL in ~400 Polish ovarian cancer cases. 25 pools of 16 samples (including several duplicated samples with known variants) were sequenced on the NovaSeq6000 and analyzed with SureCall (Agilent) application. The set of variants was filtrated to exclude spurious variants, and, subsequently, the identified rare genetic variants were validated using Sanger sequencing. No pathogenic mutation was found within the analyzed cohort of ovarian cancer patients. Validation genotyping of filtered rare silent and missense variants revealed that the majority of them were true alterations, especially those with a higher mutation quality value. The high concordance (R2=0.95) of population allele frequency for 44 common SNPs in the European control population (gnomAD) and our experiment confirmed the reliability of pooled sequencing. Mutations in BARD1, PRDM9, RCC1, and RECQL do not contribute substantially to the risk of ovarian cancer. Pooled DNA sequencing is a cost-effective and reliable method for the initial screening of candidate genes; however, it still requires validation of identified rare variants.
Collapse
Affiliation(s)
- Malwina Suszynska
- Department of Molecular Genetics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Magdalena Ratajska
- Department of Pathology, Dunedin School of Medicine, University of Otago
| | - Paulina Galka-Marciniak
- Department of Molecular Genetics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Aleksandra Ryszkowska
- Department of Molecular Genetics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Dariusz Wydra
- Department of Gynaecology, Oncologic Gynaecology and Gynaecological Endocrinology, Medical University of Gdansk
| | - Jaroslaw Debniak
- Department of Gynaecology, Oncologic Gynaecology and Gynaecological Endocrinology, Medical University of Gdansk
| | - Anna Jasiak
- Department of Biology and Medical Genetics, Medical University of Gdansk
| | - Bartosz Wasag
- Department of Biology and Medical Genetics, Medical University of Gdansk
| | | | - Piotr Kozlowski
- Department of Molecular Genetics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| |
Collapse
|
10
|
Deng Y, Yu L, Zhao Y, Peng J, Xu Y, Qin J, Xiao B, Liu S, Li M, Fang Y, Pan Z. RCC1 Expression as a Prognostic Marker in Colorectal Liver Oligometastases. Pathol Oncol Res 2021; 27:1610077. [PMID: 34924821 PMCID: PMC8674189 DOI: 10.3389/pore.2021.1610077] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/10/2021] [Indexed: 12/17/2022]
Abstract
Introduction: Regulator of chromatin condensation 1 (RCC1) is a major guanine-nucleotide exchange factor for Ran GTPase, and it plays key roles in various biological processes. Previous studies have found that RCC1 may play a role in the development of tumors, but little is known about the relationship between RCC1 and colorectal liver oligometastases (CLOs).Methods: One hundred and twenty-nine pairs of matched human CLO samples, including both primary tumor and its liver metastasis specimens, were subjected to immunohistochemistry to determine the location and expression levels of RCC1. Associations between RCC1 and survival as well as gene expression profiling were explored.Results: In this study, we first observed that RCC1 was mildly increased in CLO tumor tissues compared with normal tissues, and the localization was primarily nuclear. In addition, our study found that high RCC1 expression in liver oligometastases was an independent prognostic marker for unfavorable recurrence-free survival and overall survival (p = 0.036 and p = 0.016). Gene expression profiles generated from microarray analysis showed that RCC1 was involved in pathways including “Myc targets,” “E2F targets” and “DNA repair” pathways.Conclusion: Our data indicated that RCC1 was expressed mainly in the nucleus, and strong and significant associations were found between RCC1 expression levels and the survival of CLO patients. These findings indicated that RCC1 may play a role in CLO development.
Collapse
Affiliation(s)
- Yuxiang Deng
- Department of Colorectal Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Long Yu
- Department of Colorectal Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yujie Zhao
- Department of Radiation Oncology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Jianhong Peng
- Department of Colorectal Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yanbo Xu
- Department of Colorectal Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - JiaYi Qin
- Department of Colorectal Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Binyi Xiao
- Department of Colorectal Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Songran Liu
- Department of Pathology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Mei Li
- Department of Pathology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yujing Fang
- Department of Colorectal Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- *Correspondence: Zhizhong Pan, ; Yujing Fang,
| | - Zhizhong Pan
- Department of Colorectal Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- *Correspondence: Zhizhong Pan, ; Yujing Fang,
| |
Collapse
|
11
|
Zykova T, Maltseva M, Goncharov F, Boldyreva L, Pokholkova G, Kolesnikova T, Zhimulev I. The Organization of Pericentromeric Heterochromatin in Polytene Chromosome 3 of the Drosophilamelanogaster Line with the Rif11; SuURES Su(var)3-906 Mutations Suppressing Underreplication. Cells 2021; 10:2809. [PMID: 34831030 PMCID: PMC8616060 DOI: 10.3390/cells10112809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/11/2021] [Accepted: 10/14/2021] [Indexed: 11/17/2022] Open
Abstract
Although heterochromatin makes up 40% of the Drosophila melanogaster genome, its organization remains little explored, especially in polytene chromosomes, as it is virtually not represented in them due to underreplication. Two all-new approaches were used in this work: (i) with the use of a newly synthesized Drosophila line that carries three mutations, Rif11, SuURES and Su(var)3-906, suppressing the underreplication of heterochromatic regions, we obtained their fullest representation in polytene chromosomes and described their structure; (ii) 20 DNA fragments with known positions on the physical map as well as molecular genetic features of the genome (gene density, histone marks, heterochromatin proteins, origin recognition complex proteins, replication timing sites and satellite DNAs) were mapped in the newly polytenized heterochromatin using FISH and bioinformatics data. The borders of the heterochromatic regions and variations in their positions on arm 3L have been determined for the first time. The newly polytenized heterochromatic material exhibits two main types of morphology: a banding pattern (locations of genes and short satellites) and reticular chromatin (locations of large blocks of satellite DNA). The locations of the banding and reticular polytene heterochromatin was determined on the physical map.
Collapse
Affiliation(s)
- Tatyana Zykova
- Laboratory of Molecular Cytogenetics, Institute of Molecular and Cellular Biology SB RAS, 630090 Novosibirsk, Russia; (T.Z.); (M.M.); (F.G.); (L.B.); (G.P.); (T.K.)
| | - Mariya Maltseva
- Laboratory of Molecular Cytogenetics, Institute of Molecular and Cellular Biology SB RAS, 630090 Novosibirsk, Russia; (T.Z.); (M.M.); (F.G.); (L.B.); (G.P.); (T.K.)
| | - Fedor Goncharov
- Laboratory of Molecular Cytogenetics, Institute of Molecular and Cellular Biology SB RAS, 630090 Novosibirsk, Russia; (T.Z.); (M.M.); (F.G.); (L.B.); (G.P.); (T.K.)
| | - Lidia Boldyreva
- Laboratory of Molecular Cytogenetics, Institute of Molecular and Cellular Biology SB RAS, 630090 Novosibirsk, Russia; (T.Z.); (M.M.); (F.G.); (L.B.); (G.P.); (T.K.)
| | - Galina Pokholkova
- Laboratory of Molecular Cytogenetics, Institute of Molecular and Cellular Biology SB RAS, 630090 Novosibirsk, Russia; (T.Z.); (M.M.); (F.G.); (L.B.); (G.P.); (T.K.)
| | - Tatyana Kolesnikova
- Laboratory of Molecular Cytogenetics, Institute of Molecular and Cellular Biology SB RAS, 630090 Novosibirsk, Russia; (T.Z.); (M.M.); (F.G.); (L.B.); (G.P.); (T.K.)
- Laboratory of Structural, Functional and Comparative Genomics Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Igor Zhimulev
- Laboratory of Molecular Cytogenetics, Institute of Molecular and Cellular Biology SB RAS, 630090 Novosibirsk, Russia; (T.Z.); (M.M.); (F.G.); (L.B.); (G.P.); (T.K.)
- Laboratory of Structural, Functional and Comparative Genomics Novosibirsk State University, 630090 Novosibirsk, Russia
| |
Collapse
|
12
|
Phosphorylation of RCC1 on Serine 11 Facilitates G1/S Transition in HPV E7-Expressing Cells. Biomolecules 2021; 11:biom11070995. [PMID: 34356619 PMCID: PMC8301946 DOI: 10.3390/biom11070995] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/01/2021] [Accepted: 07/01/2021] [Indexed: 11/25/2022] Open
Abstract
Persistent infection of high-risk human papillomavirus (HR-HPV) plays a causal role in cervical cancer. Regulator of chromosome condensation 1 (RCC1) is a critical cell cycle regulator, which undergoes a few post-translational modifications including phosphorylation. Here, we showed that serine 11 (S11) of RCC1 was phosphorylated in HPV E7-expressing cells. However, S11 phosphorylation was not up-regulated by CDK1 in E7-expressing cells; instead, the PI3K/AKT/mTOR pathway promoted S11 phosphorylation. Knockdown of AKT or inhibition of the PI3K/AKT/mTOR pathway down-regulated phosphorylation of RCC1 S11. Furthermore, S11 phosphorylation occurred throughout the cell cycle, and reached its peak during the mitosis phase. Our previous data proved that RCC1 was necessary for the G1/S cell cycle progression, and in the present study we showed that the RCC1 mutant, in which S11 was mutated to alanine (S11A) to mimic non-phosphorylation status, lost the ability to facilitate G1/S transition in E7-expressing cells. Moreover, RCC1 S11 was phosphorylated by the PI3K/AKT/mTOR pathway in HPV-positive cervical cancer SiHa and HeLa cells. We conclude that S11 of RCC1 is phosphorylated by the PI3K/AKT/mTOR pathway and phosphorylation of RCC1 S11 facilitates the abrogation of G1 checkpoint in HPV E7-expressing cells. In short, our study explores a new role of RCC1 S11 phosphorylation in cell cycle regulation.
Collapse
|
13
|
Mathieu NA, Levin RH, Spratt DE. Exploring the Roles of HERC2 and the NEDD4L HECT E3 Ubiquitin Ligase Subfamily in p53 Signaling and the DNA Damage Response. Front Oncol 2021; 11:659049. [PMID: 33869064 PMCID: PMC8044464 DOI: 10.3389/fonc.2021.659049] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/16/2021] [Indexed: 12/27/2022] Open
Abstract
Cellular homeostasis is governed by the precise expression of genes that control the translation, localization, and termination of proteins. Oftentimes, environmental and biological factors can introduce mutations into the genetic framework of cells during their growth and division, and these genetic abnormalities can result in malignant transformations caused by protein malfunction. For example, p53 is a prominent tumor suppressor protein that is capable of undergoing more than 300 posttranslational modifications (PTMs) and is involved with controlling apoptotic signaling, transcription, and the DNA damage response (DDR). In this review, we focus on the molecular mechanisms and interactions that occur between p53, the HECT E3 ubiquitin ligases WWP1, SMURF1, HECW1 and HERC2, and other oncogenic proteins in the cell to explore how irregular HECT-p53 interactions can induce tumorigenesis.
Collapse
Affiliation(s)
- Nicholas A Mathieu
- Gustaf H. Carlson School of Chemistry and Biochemistry, Clark University, Worcester, MA, United States
| | - Rafael H Levin
- Gustaf H. Carlson School of Chemistry and Biochemistry, Clark University, Worcester, MA, United States
| | - Donald E Spratt
- Gustaf H. Carlson School of Chemistry and Biochemistry, Clark University, Worcester, MA, United States
| |
Collapse
|
14
|
Kolhe N, Kulkarni A, Zinjarde S, Acharya C. Transcriptome Response of the Tropical Marine Yeast Yarrowia lipolytica on Exposure to Uranium. Curr Microbiol 2021; 78:2033-2043. [PMID: 33772621 DOI: 10.1007/s00284-021-02459-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 03/11/2021] [Indexed: 11/30/2022]
Abstract
In our earlier investigation, we reported the consequences of uranium (U)-induced oxidative stress and cellular defense mechanisms alleviating uranium toxicity in the marine yeast Yarrowia lipolytica NCIM 3589. However, there is lack of information on stress response towards uranium toxicity at molecular level in this organism. To gain an insight on this, transcriptional response of Y. lipolytica after exposure to 50 µM uranium was investigated by RNA sequencing at the global level in this study. The de novo transcriptome analysis (in triplicates) revealed 56 differentially expressed genes with significant up-regulation and down-regulation of 33 and 23 transcripts, respectively, in U-exposed yeast cells as compared to the control, U-unexposed cells. Highly up-regulated genes under U-treated condition were identified to be primarily involved in transport, DNA damage repair and oxidative stress. The major reaction of Y. lipolytica to uranium exposure was the activation of oxidative stress response mechanisms to protect the important biomolecules of the cells. On the other hand, genes involved in cell wall and cell cycle regulation were significantly down-regulated. Overall, the transcriptional profiling by RNA sequencing to stress-inducing concentration of uranium sheds light on the various responses of Y. lipolytica for coping with uranium toxicity, providing a foundation for understanding the molecular interactions between uranium and this marine yeast.
Collapse
Affiliation(s)
- Nilesh Kolhe
- Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Pune, 411007, India.,Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| | - Abhijeet Kulkarni
- Bioinformatics Centre, Savitribai Phule Pune University, Pune, 411007, India
| | - Smita Zinjarde
- Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Pune, 411007, India.
| | - Celin Acharya
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India. .,Homi Bhabha National Institute, Anushakti Nagar, Trombay, Mumbai, 400094, India.
| |
Collapse
|
15
|
Cao SK, Liu R, Sayyed A, Sun F, Song R, Wang X, Xiu Z, Li X, Tan BC. Regulator of Chromosome Condensation 1-Domain Protein DEK47 Functions on the Intron Splicing of Mitochondrial Nad2 and Seed Development in Maize. FRONTIERS IN PLANT SCIENCE 2021; 12:695249. [PMID: 34408760 PMCID: PMC8365749 DOI: 10.3389/fpls.2021.695249] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/12/2021] [Indexed: 05/10/2023]
Abstract
In flowering plants, mitochondrial genes contain approximately 20-26 introns. Splicing of these introns is essential for mitochondrial gene expression and function. Recent studies have revealed that both nucleus- and mitochondrion-encoded factors are required for intron splicing, but the mechanism of splicing remains largely unknown. Elucidation of the mechanism necessitates a complete understanding of the splicing factors. Here, we report the identification of a regulator of chromosome condensation 1 (RCC1)-domain protein DEK47 that is required for mitochondrial intron splicing and seed development in maize. Loss of function in Dek47 severely arrests embryo and endosperm development, resulting in a defective kernel (dek) phenotype. DEK47 harbors seven RCC1 domains and is targeted to mitochondria. Null mutation of DEK47 causes a deficiency in the splicing of all four nad2 introns, abolishing the production of mature nad2 transcript and resulting in the disassembly and severely reduced activity of mitochondrial complex I. In response, the expression of the alternative oxidase AOX2 is sharply increased in dek47. These results indicate that Dek47 is required for the splicing of all the nad2 introns in mitochondria, and essential for complex I assembly, and kernel development in maize.
Collapse
Affiliation(s)
- Shi-Kai Cao
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Rui Liu
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Aqib Sayyed
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Feng Sun
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Ruolin Song
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Xiaomin Wang
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Zhihui Xiu
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Xiaojie Li
- Agricultural Genomics Institute, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Bao-Cai Tan
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
- *Correspondence: Bao-Cai Tan,
| |
Collapse
|
16
|
Ren X, Jiang K, Zhang F. The Multifaceted Roles of RCC1 in Tumorigenesis. Front Mol Biosci 2020; 7:225. [PMID: 33102517 PMCID: PMC7522611 DOI: 10.3389/fmolb.2020.00225] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 08/11/2020] [Indexed: 01/31/2023] Open
Abstract
RCC1 (regulator of chromosome condensation 1) is the only known guanine nucleotide exchange factor of Ran, a nuclear Ras-like G protein. RCC1 combines with chromatin and Ran to establish a concentration gradient of RanGTP, thereby participating in a series of cell physiological activities. In this review, we discuss the structure of RCC1 and describe how RCC1 affects the formation and function of the nuclear envelope, spindle formation, and nuclear transport. We mainly focus on the effect of RCC1 on the cell cycle during tumorigenesis and the recent research progress that has been made in relation to different tumor types.
Collapse
Affiliation(s)
- Xuanqi Ren
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Kai Jiang
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Feng Zhang
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| |
Collapse
|
17
|
Lin S, Yu L, Zhang H. Transcriptomic Responses to Thermal Stress and Varied Phosphorus Conditions in Fugacium kawagutii. Microorganisms 2019; 7:microorganisms7040096. [PMID: 30987028 PMCID: PMC6517890 DOI: 10.3390/microorganisms7040096] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 03/18/2019] [Accepted: 03/30/2019] [Indexed: 01/08/2023] Open
Abstract
Coral reef-associated Symbiodiniaceae live in tropical and oligotrophic environments and are prone to heat and nutrient stress. How their metabolic pathways respond to pulses of warming and phosphorus (P) depletion is underexplored. Here, we conducted RNA-seq analysis to investigate transcriptomic responses to thermal stress, phosphate deprivation, and organic phosphorus (OP) replacement in Fugacium kawagutii. Using dual-algorithm (edgeR and NOIseq) to remedy the problem of no replicates, we conservatively found 357 differentially expressed genes (DEGs) under heat stress, potentially regulating cell wall modulation and the transport of iron, oxygen, and major nutrients. About 396 DEGs were detected under P deprivation and 671 under OP utilization, both mostly up-regulated and potentially involved in photosystem and defensome, despite different KEGG pathway enrichments. Additionally, we identified 221 genes that showed relatively stable expression levels across all conditions (likely core genes), mostly catalytic and binding proteins. This study reveals a wide range of, and in many cases previously unrecognized, molecular mechanisms in F. kawagutii to cope with heat stress and phosphorus-deficiency stress. Their quantitative expression dynamics, however, requires further verification with triplicated experiments, and the data reported here only provide clues for generating testable hypotheses about molecular mechanisms underpinning responses and adaptation in F. kawagutii to temperature and nutrient stresses.
Collapse
Affiliation(s)
- Senjie Lin
- Department of Marine Sciences, University of Connecticut, Groton, CT 06340, USA.
| | - Liying Yu
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, Fujian, China.
| | - Huan Zhang
- Department of Marine Sciences, University of Connecticut, Groton, CT 06340, USA.
| |
Collapse
|
18
|
Qiao L, Zheng J, Tian Y, Zhang Q, Wang X, Chen JJ, Zhang W. Regulator of chromatin condensation 1 abrogates the G1 cell cycle checkpoint via Cdk1 in human papillomavirus E7-expressing epithelium and cervical cancer cells. Cell Death Dis 2018; 9:583. [PMID: 29789527 PMCID: PMC5964113 DOI: 10.1038/s41419-018-0584-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 03/31/2018] [Accepted: 04/06/2018] [Indexed: 01/01/2023]
Abstract
Regulator of chromatin condensation 1 (RCC1) is a major guanine-nucleotide exchange factor for Ran GTPase and plays key roles in nucleo-cytoplasmic transport, mitosis, and nuclear envelope assembly. RCC1 is known to be a critical cell cycle regulator whose loss causes G1 phase arrest, but the molecular basis for this regulation is poorly understood. Furthermore, little is known about the relationship between RCC1 and carcinomas. Human papillomavirus (HPV) infection is highly associated with the development of cervical cancer. The expression and function of RCC1 in HPV-related cervical cancer and cell cycle regulation have not yet been explored. In this study, we first observed that RCC1 immunostaining was mildly increased in cervical cancer tissues and significantly upregulated in HPV E7-expressing cells; this localization was primarily nuclear. We showed that the transcription factor c-Jun transcriptionally upregulates RCC1 via a direct interaction with the RCC1 promoter. Moreover, siRNA-mediated knockdown of RCC1 inhibited G1/S cell cycle progression and DNA synthesis, while overexpression of RCC1 abrogated the G1 checkpoint. RCC1 knockdown downregulated the protein levels of the transcription factor E2F1, especially nuclear E2F1, by promoting its degradation in HPV E7-expressing cells. Overexpression of E2F1 rescued RCC1 knockdown-mediated inhibition of G1/S progression. Additionally, we showed that cyclin-dependent kinase 1 (Cdk1), a known target of E2F1, is involved in G1 checkpoint regulation, as Cdk1 knockdown hindered G1/S progression, while Cdk1 overexpression rescued RCC1 knockdown-mediated effect on G1 cell cycle progression. Furthermore, RCC1 knockdown reduced HPV E7 protein levels, which may in turn downregulate E2F1. Our study explores the function of RCC1 in G1/S cell cycle progression and suggests that RCC1 may be involved in HPV E7-mediated genomic instability.
Collapse
Affiliation(s)
- Lijun Qiao
- Cancer Research Center and Department of Microbiology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Jingyi Zheng
- Department of Microbiology and Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Yonghao Tian
- Department of Orthopedic Surgery, Qilu Hospital Affiliated Shandong University, Jinan, Shandong, China
| | - Qishu Zhang
- Cancer Research Center and Department of Microbiology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Xiao Wang
- Institute of Pathobiology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Jason J Chen
- Cancer Research Center and Department of Microbiology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Weifang Zhang
- Department of Microbiology and Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
19
|
Riahi A, Radmanesh H, Schürmann P, Bogdanova N, Geffers R, Meddeb R, Kharrat M, Dörk T. Exome sequencing and case-control analyses identify RCC1 as a candidate breast cancer susceptibility gene. Int J Cancer 2018; 142:2512-2517. [PMID: 29363114 DOI: 10.1002/ijc.31273] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 11/29/2017] [Accepted: 01/05/2018] [Indexed: 01/03/2023]
Abstract
Breast cancer is a genetic disease but the known genes explain a minority of cases. To elucidate the molecular basis of breast cancer in the Tunisian population, we performed exome sequencing on six BRCA1/BRCA2 mutation-negative patients with familial breast cancer and identified a novel frameshift mutation in RCC1, encoding the Regulator of Chromosome Condensation 1. Subsequent genotyping detected the 19-bp deletion in additional 5 out of 153 (3%) breast cancer patients but in none of 400 female controls (p = 0.0015). The deletion was enriched in patients with a positive family history (5%, p = 0.0009) and co-segregated with breast cancer in the initial pedigree. The mutant allele was lost in 4/6 breast tumors from mutation carriers which may be consistent with the hypothesis that RCC1 dysfunction provides a selective disadvantage at the stage of tumor progression. In summary, we propose RCC1 as a likely breast cancer susceptibility gene in the Tunisian population.
Collapse
Affiliation(s)
- Aouatef Riahi
- Gynaecology Research Unit, Hannover Medical School, Hannover, Germany.,Laboratoire Génétique Humaine, Faculté de Médecine de Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Hoda Radmanesh
- Gynaecology Research Unit, Hannover Medical School, Hannover, Germany.,Medical Genetic Research Center (MGRC), School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Peter Schürmann
- Gynaecology Research Unit, Hannover Medical School, Hannover, Germany
| | - Natalia Bogdanova
- Gynaecology Research Unit, Hannover Medical School, Hannover, Germany.,Hannover Medical School, Radiation Oncology Research Unit, Hannover, Germany
| | - Robert Geffers
- Genome Analytics Unit, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Rym Meddeb
- Laboratoire Génétique Humaine, Faculté de Médecine de Tunis, University Tunis El Manar, Tunis, Tunisia.,Department of Hereditary and Congenital Disorders, Charles Nicolle Hospital, Tunis, Tunisia
| | - Maher Kharrat
- Laboratoire Génétique Humaine, Faculté de Médecine de Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Thilo Dörk
- Gynaecology Research Unit, Hannover Medical School, Hannover, Germany
| |
Collapse
|
20
|
LaBonia GJ, Ludwig KR, Mousseau CB, Hummon AB. iTRAQ Quantitative Proteomic Profiling and MALDI-MSI of Colon Cancer Spheroids Treated with Combination Chemotherapies in a 3D Printed Fluidic Device. Anal Chem 2018; 90:1423-1430. [PMID: 29227110 PMCID: PMC5820028 DOI: 10.1021/acs.analchem.7b04969] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
For a patient with metastatic colorectal cancer there are limited clinical options aside from chemotherapy. Unfortunately, the development of new chemotherapeutics is a long and costly process. New methods are needed to identify promising drug candidates earlier in the drug development process. Most chemotherapies are administered to patients in combinations. Here, an in vitro platform is used to assess the penetration and metabolism of combination chemotherapies in three-dimensional colon cancer cell cultures, or spheroids. Colon carcinoma HCT 116 cells were cultured and grown into three-dimensional cell culture spheroids. These spheroids were then dosed with a common combination chemotherapy, FOLFIRI (folinic acid, 5-fluorouracil, and irinotecan) in a 3D printed fluidic device. This fluidic device allows for the dynamic treatment of spheroids across a semipermeable membrane. Following dosing, the spheroids were harvested for quantitative proteomic profiling to examine the effects of the combination chemotherapy on the colon cancer cells. Spheroids were also imaged to assess the spatial distribution of administered chemotherapeutics and metabolites with MALDI-imaging mass spectrometry. Following treatment, we observed penetration of folinic acid to the core of spheroids and metabolism of the drug in the outer proliferating region of the spheroid. Proteomic changes identified included an enrichment of several cancer-associated pathways. This innovative dosing device, along with the proteomic evaluation with iTRAQ-MS/MS, provides a robust platform that could have a transformative impact on the preclinical evaluation of drug candidates. This system is a high-throughput and cost-effective approach to examine novel drugs and drug combinations prior to animal testing.
Collapse
MESH Headings
- Antineoplastic Agents/pharmacology
- Cell Culture Techniques/methods
- Colonic Neoplasms/drug therapy
- Colonic Neoplasms/metabolism
- Drug Screening Assays, Antitumor/instrumentation
- Drug Screening Assays, Antitumor/methods
- Equipment Design
- HCT116 Cells
- High-Throughput Screening Assays/instrumentation
- High-Throughput Screening Assays/methods
- Humans
- Microfluidic Analytical Techniques/instrumentation
- Microfluidic Analytical Techniques/methods
- Printing, Three-Dimensional
- Proteomics/instrumentation
- Proteomics/methods
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/instrumentation
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods
- Spheroids, Cellular/drug effects
- Spheroids, Cellular/metabolism
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Gabriel J. LaBonia
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Katelyn R. Ludwig
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA
| | - C. Bruce Mousseau
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Amanda B. Hummon
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
21
|
Xiong W, Zhai M, Yu X, Wei L, Mao J, Liu J, Xie J, Li B. Comparative RNA-sequencing analysis of ER-based HSP90 functions and signal pathways in Tribolium castaneum. Cell Stress Chaperones 2018; 23:29-43. [PMID: 28681272 PMCID: PMC5741579 DOI: 10.1007/s12192-017-0821-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 06/10/2017] [Accepted: 06/14/2017] [Indexed: 12/18/2022] Open
Abstract
Tribolium castaneum, the red flour beetle, is a major agriculture pest that damages stored grains and cereal products. Heat-shock protein 90 of T. castaneum (Tchsp90) has been reported to play pivotal roles in heat stress response, development, reproduction, and life span. However, the signaling pathway of Tchsp90 remains unclear. Thus, the global transcriptome profiles between RNA interference (RNAi)-treated insects (ds-Tchsp90) and control insects of T. castaneum were investigated and compared by RNA sequencing. In all, we obtained 14,145,451 sequence reads, which assembled into 13,243 genes. Among these genes, 461 differentially expressed genes (DEGs) were identified between the ds-Tchsp90 and control samples. These DEGs were classified into 44 gene ontology (GO) functional groups, including the cellular process, the response to stimulus, the immune system process, the development process, and reproduction. Interestingly, knocking down the expression of Tchsp90 suppressed both the DNA replication and cell division signaling pathways, which most likely modulated the effects of Tchsp90 on development, reproduction, and life span. Moreover, the DEGs encoding AnnexinB9, frizzled-4, sno, Fem1B, TSL, and CSW might be related to the regulation of the development and reproduction of ds-Tchsp90 insects. The DEGs including TLR6, PGRP2, defensin1, and defensin2 were involved in heat stress and immune response simultaneously, which suggested that cross talk might exist between immunity and stress response. Additionally, RNAi of Tchsp90 altered large-scale serine protease (sp) gene expression patterns and amplified the SP signaling pathway to regulate the development and reproduction as well as the stress response and innate immunity in T. castaneum. All these results shed new light onto the regulatory mechanism of Tchsp90 involved in insect physiology and could further facilitate research into appropriate and sustainable pest control management.
Collapse
Affiliation(s)
- Wenfeng Xiong
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023 China
| | - Mengfan Zhai
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023 China
| | - Xiaojuan Yu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023 China
| | - Luting Wei
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023 China
| | - Jinjuan Mao
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023 China
| | - Juanjuan Liu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023 China
| | - Jia Xie
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023 China
| | - Bin Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023 China
| |
Collapse
|
22
|
Krishnan R, Kumar V, Ananth V, Singh S, Nair AS, Dhar PK. Computational identification of novel microRNAs and their targets in the malarial vector, Anopheles stephensi. SYSTEMS AND SYNTHETIC BIOLOGY 2015; 9:11-7. [PMID: 25972985 DOI: 10.1007/s11693-014-9159-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 12/10/2014] [Accepted: 12/15/2014] [Indexed: 11/28/2022]
Abstract
MicroRNAs are a ~22 nucleotide small non-coding RNAs found in animals, plants and viruses. They regulate key cellular processes by enhancing, degrading or silencing protein coding targets. Currently most of the data on miRNA is available from Drosophila . Given their important post-transcriptional role in several organisms, there is a need to understand the miRNA mediated processes in normal and abnormal conditions. Here we report four novel microRNAs ast - mir - 2502, ast - mir - 2559, ast - mir - 3868 and ast - mir - 9891 in Anopheles stephensi identified from a set of 3,052 transcriptome sequences, showing average minimum free energy of -31.8 kcal/mol of duplex formation with mRNA indicating their functional relevance. Phylogenetic study shows conservation of sequence signatures within the Class Insecta. Furthermore, 26 potential targets of these four miRNAs have been predicted that play an important role in the mosquito life-cycle. This work leads to novel leads and experimental possibilities for improved understanding of gene regulatory processes in mosquito.
Collapse
Affiliation(s)
- Remya Krishnan
- Department of Computational Biology and Bioinformatics, University of Kerala, Trivandrum, Kerala India
| | - Vinod Kumar
- Department of Computational Biology and Bioinformatics, University of Kerala, Trivandrum, Kerala India
| | - Vivek Ananth
- Synthetic Biology Group, Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Greater Noida, U.P. India
| | - Shailja Singh
- Synthetic Biology Group, Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Greater Noida, U.P. India ; Department of Parasitology and Mycology, Institut Pasteur, Paris, France
| | - Achuthsankar S Nair
- Department of Computational Biology and Bioinformatics, University of Kerala, Trivandrum, Kerala India
| | - Pawan K Dhar
- Department of Computational Biology and Bioinformatics, University of Kerala, Trivandrum, Kerala India ; Synthetic Biology Group, Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Greater Noida, U.P. India
| |
Collapse
|
23
|
Neumayer G, Belzil C, Gruss OJ, Nguyen MD. TPX2: of spindle assembly, DNA damage response, and cancer. Cell Mol Life Sci 2014; 71:3027-47. [PMID: 24556998 PMCID: PMC11114040 DOI: 10.1007/s00018-014-1582-7] [Citation(s) in RCA: 147] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 01/28/2014] [Accepted: 01/30/2014] [Indexed: 10/25/2022]
Abstract
For more than 15 years, TPX2 has been studied as a factor critical for mitosis and spindle assembly. These functions of TPX2 are attributed to its Ran-regulated microtubule-associated protein properties and to its control of the Aurora A kinase. Overexpressed in cancers, TPX2 is being established as marker for the diagnosis and prognosis of malignancies. During interphase, TPX2 resides preferentially in the nucleus where its function had remained elusive until recently. The latest finding that TPX2 plays a role in amplification of the DNA damage response, combined with the characterization of TPX2 knockout mice, open new perspectives to understand the biology of this protein. This review provides an historic overview of the discovery of TPX2 and summarizes its cytoskeletal and signaling roles with relevance to cancer therapies. Finally, the review aims to reconcile discrepancies between the experimental and pathological effects of TPX2 overexpression and advances new roles for compartmentalized TPX2.
Collapse
Affiliation(s)
- Gernot Neumayer
- Department of Clinical Neurosciences, Department of Cell Biology and Anatomy, Department of Biochemistry and Molecular Biology, Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, T2N 4N1, Canada,
| | | | | | | |
Collapse
|
24
|
Shinzato C, Mungpakdee S, Satoh N, Shoguchi E. A genomic approach to coral-dinoflagellate symbiosis: studies of Acropora digitifera and Symbiodinium minutum. Front Microbiol 2014; 5:336. [PMID: 25071748 PMCID: PMC4083563 DOI: 10.3389/fmicb.2014.00336] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 06/17/2014] [Indexed: 12/16/2022] Open
Abstract
Far more intimate knowledge of scleractinian coral biology is essential in order to understand how diverse coral-symbiont endosymbioses have been established. In particular, molecular and cellular mechanisms enabling the establishment and maintenance of obligate endosymbiosis with photosynthetic dinoflagellates require further clarification. By extension, such understanding may also shed light upon environmental conditions that promote the collapse of this mutualism. Genomic data undergird studies of all symbiotic processes. Here we review recent genomic data derived from the scleractinian coral, Acropora digitifera, and the endosymbiotic dinoflagellate, Symbiodinium minutum. We discuss Acropora genes involved in calcification, embryonic development, innate immunity, apoptosis, autophagy, UV resistance, fluorescence, photoreceptors, circadian clocks, etc. We also detail gene loss in amino acid metabolism that may explain at least part of the Acropora stress-response. Characteristic features of the Symbiodinium genome are also reviewed, focusing on the expansion of certain gene families, the molecular basis for permanently condensed chromatin, unique spliceosomal splicing, and unusual gene arrangement. Salient features of the Symbiodinium plastid and mitochondrial genomes are also illuminated. Although many questions regarding these interdependent genomes remain, we summarize information necessary for future studies of coral-dinoflagellate endosymbiosis.
Collapse
Affiliation(s)
- Chuya Shinzato
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University Okinawa, Japan
| | - Sutada Mungpakdee
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University Okinawa, Japan
| | - Nori Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University Okinawa, Japan
| | - Eiichi Shoguchi
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University Okinawa, Japan
| |
Collapse
|
25
|
International Glossina Genome Initiative. Genome sequence of the tsetse fly (Glossina morsitans): vector of African trypanosomiasis. Science 2014; 344:380-6. [PMID: 24763584 PMCID: PMC4077534 DOI: 10.1126/science.1249656] [Citation(s) in RCA: 200] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Tsetse flies are the sole vectors of human African trypanosomiasis throughout sub-Saharan Africa. Both sexes of adult tsetse feed exclusively on blood and contribute to disease transmission. Notable differences between tsetse and other disease vectors include obligate microbial symbioses, viviparous reproduction, and lactation. Here, we describe the sequence and annotation of the 366-megabase Glossina morsitans morsitans genome. Analysis of the genome and the 12,308 predicted protein-encoding genes led to multiple discoveries, including chromosomal integrations of bacterial (Wolbachia) genome sequences, a family of lactation-specific proteins, reduced complement of host pathogen recognition proteins, and reduced olfaction/chemosensory associated genes. These genome data provide a foundation for research into trypanosomiasis prevention and yield important insights with broad implications for multiple aspects of tsetse biology.
Collapse
|
26
|
Brown GG, Colas des Francs-Small C, Ostersetzer-Biran O. Group II intron splicing factors in plant mitochondria. FRONTIERS IN PLANT SCIENCE 2014; 5:35. [PMID: 24600456 PMCID: PMC3927076 DOI: 10.3389/fpls.2014.00035] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Accepted: 01/27/2014] [Indexed: 05/03/2023]
Abstract
Group II introns are large catalytic RNAs (ribozymes) which are found in bacteria and organellar genomes of several lower eukaryotes, but are particularly prevalent within the mitochondrial genomes (mtDNA) in plants, where they reside in numerous critical genes. Their excision is therefore essential for mitochondria biogenesis and respiratory functions, and is facilitated in vivo by various protein cofactors. Typical group II introns are classified as mobile genetic elements, consisting of the self-splicing ribozyme and its intron-encoded maturase protein. A hallmark of maturases is that they are intron specific, acting as cofactors which bind their own cognate containing pre-mRNAs to facilitate splicing. However, the plant organellar introns have diverged considerably from their bacterial ancestors, such as they lack many regions which are necessary for splicing and also lost their evolutionary related maturase ORFs. In fact, only a single maturase has been retained in the mtDNA of various angiosperms: the matR gene encoded in the fourth intron of the NADH-dehydrogenase subunit 1 (nad1 intron 4). Their degeneracy and the absence of cognate ORFs suggest that the splicing of plant mitochondria introns is assisted by trans-acting cofactors. Interestingly, in addition to MatR, the nuclear genomes of angiosperms also harbor four genes (nMat 1-4), which are closely related to maturases and contain N-terminal mitochondrial localization signals. Recently, we established the roles of two of these paralogs in Arabidopsis, nMAT1 and nMAT2, in the splicing of mitochondrial introns. In addition to the nMATs, genetic screens led to the identification of other genes encoding various factors, which are required for the splicing and processing of mitochondrial introns in plants. In this review we will summarize recent data on the splicing and processing of mitochondrial introns and their implication in plant development and physiology, with a focus on maturases and their accessory splicing cofactors.
Collapse
Affiliation(s)
| | | | - Oren Ostersetzer-Biran
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of JerusalemJerusalem, Israel
- *Correspondence: Oren Ostersetzer-Biran, Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 91904, Israel e-mail:
| |
Collapse
|
27
|
Shoguchi E, Shinzato C, Kawashima T, Gyoja F, Mungpakdee S, Koyanagi R, Takeuchi T, Hisata K, Tanaka M, Fujiwara M, Hamada M, Seidi A, Fujie M, Usami T, Goto H, Yamasaki S, Arakaki N, Suzuki Y, Sugano S, Toyoda A, Kuroki Y, Fujiyama A, Medina M, Coffroth M, Bhattacharya D, Satoh N. Draft Assembly of the Symbiodinium minutum Nuclear Genome Reveals Dinoflagellate Gene Structure. Curr Biol 2013; 23:1399-408. [DOI: 10.1016/j.cub.2013.05.062] [Citation(s) in RCA: 305] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2012] [Revised: 05/29/2013] [Accepted: 05/31/2013] [Indexed: 10/26/2022]
|
28
|
Yamanaka M, Ishizaki Y, Nakagawa T, Taoka A, Fukumori Y. Purification and Characterization of Coacervate-Forming Cuticular Proteins from Papilio xuthus Pupae. Zoolog Sci 2013; 30:534-42. [DOI: 10.2108/zsj.30.534] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Masahiro Yamanaka
- Division of Life Sciences, Graduate school of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Yumi Ishizaki
- School of Natural System, College of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Taro Nakagawa
- School of Natural System, College of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Azuma Taoka
- School of Natural System, College of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Yoshihiro Fukumori
- School of Natural System, College of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| |
Collapse
|
29
|
Chen F, Palem J, Balish M, Figliozzi R, Ajavon A, Hsia SV. A Novel Thyroid Hormone Mediated Regulation of HSV-1 Gene Expression and Replication is Specific to Neuronal Cells and Associated with Disruption of Chromatin Condensation. ACTA ACUST UNITED AC 2013; 1. [PMID: 25346944 DOI: 10.15226/2374-6866/1/1/00106] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Previously we showed that thyroid hormone (T3) regulated the Herpes Simplex Virus Type -1 (HSV-1) gene expression and replication through its nuclear receptor TR via histone modification and chromatin remodeling in a neuroblastoma cell line neuro-2a cells (N2a). This observation suggested that T3 regulation may be neuron-specific and have implication in HSV-1 latency and reactivation. In this study, our in vitro latency/reactivation model demonstrated that removal of T3 can de-repress the HSV-1 replication and favor reactivation. Transfection studies and infection assays indicated that HSV-1 thymidine kinase (TK), a key viral gene during reactivation, was repressed by TR/T3 in cells with neuronal origin but not in non-neuronal cells. Additional studies showed that RCC1 (Regulator of Chromosome Condensation 1) was sequestered but efficiently detected upon viral infection in N2a cells. Western blot analyses indicated that addition of T3 repressed the RCC1 expression upon infection. It is likely that diminution of RCC1 upon infection in neuronal cells under the influence of TR/T3 may lead to repression of viral replication/gene expression thus promote latency. Together these results demonstrated that TR/T3 mediated regulation is specific to neuronal cells and differential chromosome condensation may play a critical role in this process.
Collapse
Affiliation(s)
- Feng Chen
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland Eastern Shore, Princess Anne, MD 21853 Maryland, United States
| | - Jay Palem
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland Eastern Shore, Princess Anne, MD 21853 Maryland, United States
| | - Matthew Balish
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland Eastern Shore, Princess Anne, MD 21853 Maryland, United States
| | - Robert Figliozzi
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland Eastern Shore, Princess Anne, MD 21853 Maryland, United States
| | - Amakoe Ajavon
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland Eastern Shore, Princess Anne, MD 21853 Maryland, United States
| | - S Victor Hsia
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland Eastern Shore, Princess Anne, MD 21853 Maryland, United States
| |
Collapse
|
30
|
Hayashi H, Kimura K, Kimura A. Localized accumulation of tubulin during semi-open mitosis in the Caenorhabditis elegans embryo. Mol Biol Cell 2012; 23:1688-99. [PMID: 22398724 PMCID: PMC3338436 DOI: 10.1091/mbc.e11-09-0815] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The assembly of microtubules inside the cell is controlled both spatially and temporally. During mitosis, microtubule assembly must be activated locally at the nascent spindle region for mitotic spindle assembly to occur efficiently. In this paper, we report that mitotic spindle components, such as free tubulin subunits, accumulated in the nascent spindle region, independent of spindle formation in the Caenorhabditis elegans embryo. This accumulation coincided with nuclear envelope permeabilization, suggesting that permeabilization might trigger the accumulation. When permeabilization was induced earlier by knockdown of lamin, tubulin also accumulated earlier. The boundaries of the region of accumulation coincided with the remnant nuclear envelope, which remains after nuclear envelope breakdown in cells that undergo semi-open mitosis, such as those of C. elegans. Ran, a small GTPase protein, was required for tubulin accumulation. Fluorescence recovery after photobleaching analysis revealed that the accumulation was accompanied by an increase in the immobile fraction of free tubulin inside the remnant nuclear envelope. We propose that this newly identified mechanism of accumulation of free tubulin-and probably of other molecules-at the nascent spindle region contributes to efficient assembly of the mitotic spindle in the C. elegans embryo.
Collapse
Affiliation(s)
- Hanako Hayashi
- Department of Genetics (Sokendai-Mishima), School of Life Science, Graduate University for Advanced Studies (Sokendai), Yata 1111, Mishima, Shizuoka 411-8540, Japan
| | | | | |
Collapse
|
31
|
Al-Hakim AK, Bashkurov M, Gingras AC, Durocher D, Pelletier L. Interaction proteomics identify NEURL4 and the HECT E3 ligase HERC2 as novel modulators of centrosome architecture. Mol Cell Proteomics 2012; 11:M111.014233. [PMID: 22261722 DOI: 10.1074/mcp.m111.014233] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Centrosomes are composed of a centriole pair surrounded by an intricate proteinaceous matrix referred to as pericentriolar material. Although the mechanisms underpinning the control of centriole duplication are now well understood, we know relatively little about the control of centrosome size and shape. Here we used interaction proteomics to identify the E3 ligase HERC2 and the neuralized homologue NEURL4 as novel interaction partners of the centrosomal protein CP110. Using high resolution imaging, we find that HERC2 and NEURL4 localize to the centrosome and that interfering with their function alters centrosome morphology through the appearance of aberrant filamentous structures that stain for a subset of pericentriolar material proteins including pericentrin and CEP135. Using an RNA interference-resistant transgene approach in combination with structure-function analyses, we show that the association between CP110 and HERC2 depends on nonoverlapping regions of NEURL4. Whereas CP110 binding to NEURL4 is dispensable for the regulation of pericentriolar material architecture, its association with HERC2 is required to maintain normal centrosome integrity. NEURL4 is a substrate of HERC2, and together these results indicate that the NEURL4-HERC2 complex participates in the ubiquitin-dependent regulation of centrosome architecture.
Collapse
Affiliation(s)
- Abdallah K Al-Hakim
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | | | | | | | | |
Collapse
|
32
|
Landsberg MJ, Jones SA, Rothnagel R, Busby JN, Marshall SDG, Simpson RM, Lott JS, Hankamer B, Hurst MRH. 3D structure of the Yersinia entomophaga toxin complex and implications for insecticidal activity. Proc Natl Acad Sci U S A 2011; 108:20544-9. [PMID: 22158901 PMCID: PMC3251104 DOI: 10.1073/pnas.1111155108] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Toxin complex (Tc) proteins are a class of bacterial protein toxins that form large, multisubunit complexes. Comprising TcA, B, and C components, they are of great interest because many exhibit potent insecticidal activity. Here we report the structure of a novel Tc, Yen-Tc, isolated from the bacterium Yersinia entomophaga MH96, which differs from the majority of bacterially derived Tcs in that it exhibits oral activity toward a broad range of insect pests, including the diamondback moth (Plutella xylostella). We have determined the structure of the Yen-Tc using single particle electron microscopy and studied its mechanism of toxicity by comparative analyses of two variants of the complex exhibiting different toxicity profiles. We show that the A subunits form the basis of a fivefold symmetric assembly that differs substantially in structure and subunit arrangement from its most well characterized homologue, the Xenorhabdus nematophila toxin XptA1. Histopathological and quantitative dose response analyses identify the B and C subunits, which map to a single, surface-accessible region of the structure, as the sole determinants of toxicity. Finally, we show that the assembled Yen-Tc has endochitinase activity and attribute this to putative chitinase subunits that decorate the surface of the TcA scaffold, an observation that may explain the oral toxicity associated with the complex.
Collapse
Affiliation(s)
- Michael J. Landsberg
- Institute for Molecular Bioscience, University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Sandra A. Jones
- Innovative Farming Systems, AgResearch, Lincoln Research Centre, Christchurch 8140, New Zealand
| | - Rosalba Rothnagel
- Institute for Molecular Bioscience, University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Jason N. Busby
- AgResearch Structural Biology Laboratory, School of Biological Sciences, University of Auckland, Auckland 1142, New Zealand; and
| | - Sean D. G. Marshall
- Innovative Farming Systems, AgResearch, Lincoln Research Centre, Christchurch 8140, New Zealand
| | - Robert M. Simpson
- New Zealand Institute for Plant and Food Research, Palmerston North 4474, New Zealand
| | - J. Shaun Lott
- AgResearch Structural Biology Laboratory, School of Biological Sciences, University of Auckland, Auckland 1142, New Zealand; and
| | - Ben Hankamer
- Institute for Molecular Bioscience, University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Mark R. H. Hurst
- Innovative Farming Systems, AgResearch, Lincoln Research Centre, Christchurch 8140, New Zealand
| |
Collapse
|
33
|
Woods MW, Kelly JN, Hattlmann CJ, Tong JGK, Xu LS, Coleman MD, Quest GR, Smiley JR, Barr SD. Human HERC5 restricts an early stage of HIV-1 assembly by a mechanism correlating with the ISGylation of Gag. Retrovirology 2011; 8:95. [PMID: 22093708 PMCID: PMC3228677 DOI: 10.1186/1742-4690-8-95] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Accepted: 11/17/2011] [Indexed: 11/12/2022] Open
Abstract
Background The identification and characterization of several interferon (IFN)-induced cellular HIV-1 restriction factors, defined as host cellular proteins or factors that restrict or inhibit the HIV-1 life cycle, have provided insight into the IFN response towards HIV-1 infection and identified new therapeutic targets for HIV-1 infection. To further characterize the mechanism underlying restriction of the late stages of HIV-1 replication, we assessed the ability of IFNbeta-induced genes to restrict HIV-1 Gag particle production and have identified a potentially novel host factor called HECT domain and RCC1-like domain-containing protein 5 (HERC5) that blocks a unique late stage of the HIV-1 life cycle. Results HERC5 inhibited the replication of HIV-1 over multiple rounds of infection and was found to target a late stage of HIV-1 particle production. The E3 ligase activity of HERC5 was required for blocking HIV-1 Gag particle production and correlated with the post-translational modification of Gag with ISG15. HERC5 interacted with HIV-1 Gag and did not alter trafficking of HIV-1 Gag to the plasma membrane. Electron microscopy revealed that the assembly of HIV-1 Gag particles was arrested at the plasma membrane, at an early stage of assembly. The mechanism of HERC5-induced restriction of HIV-1 particle production is distinct from the mechanism underlying HIV-1 restriction by the expression of ISG15 alone, which acts at a later step in particle release. Moreover, HERC5 restricted murine leukemia virus (MLV) Gag particle production, showing that HERC5 is effective in restricting Gag particle production of an evolutionarily divergent retrovirus. Conclusions HERC5 represents a potential new host factor that blocks an early stage of retroviral Gag particle assembly. With no apparent HIV-1 protein that directly counteracts it, HERC5 may represent a new candidate for HIV/AIDS therapy.
Collapse
Affiliation(s)
- Matthew W Woods
- The University of Western Ontario, Schulich School of Medicine and Dentistry, Center for Human Immunology, Department of Microbiology and Immunology, Dental Sciences Building Room 3006b, London, Ontario, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Banerjee S, Basu S, Sarkar S. Comparative genomics reveals selective distribution and domain organization of FYVE and PX domain proteins across eukaryotic lineages. BMC Genomics 2010; 11:83. [PMID: 20122178 PMCID: PMC2837644 DOI: 10.1186/1471-2164-11-83] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Accepted: 02/02/2010] [Indexed: 01/01/2023] Open
Abstract
Background Phosphatidylinositol 3-phosphate is involved in regulation of several key cellular processes, mainly endocytosis, signaling, nuclear processes, cytoskeletal remodelling, cell survival, membrane trafficking, phagosome maturation and autophagy. In most cases effector proteins bind to this lipid, using either FYVE or PX domain. These two domains are distributed amongst varied life forms such as virus, protists, fungi, viridiplantae and metazoa. As the binding ligand is identical for both domains, the goal of this study was to understand if there is any selectivity for either of these domains in different taxa. Further, to understand the different cellular functions that these domains may be involved in, we analyzed the taxonomic distribution of additional domains that associate with FYVE and PX. Results There is selectivity for either FYVE or PX in individual genomes where both domains are present. Fungi and metazoa encode more PX, whereas streptophytes in viridiplantae encode more FYVE. Excess of FYVE in streptophytes results from proteins containing RCC1and DZC domains and FYVE domains in these proteins have a non-canonical ligand-binding site. Within a taxonomic group the selected domain associates with a higher number of other domains and is thus expected to discharge a larger number of cellular functions. Also, while certain associated domains are present in all taxonomic groups, most of them are unique to a specific group indicating that while certain common functions are discharged by these domains in all taxonomic groups, some functions appear to be group specific. Conclusions Although both FYVE and PX bind to PtdIns(3)P, genomes of different taxa show distinct selectivity of encoding either of the two. Higher numbers of taxonomic group specific domains co-occur with the more abundant domain (FYVE/PX) indicating that group-specific rare domain architectures might have emerged to accomplish certain group-specific functions.
Collapse
Affiliation(s)
- Sumana Banerjee
- Department of Biological Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur, Nadia 741252, West Bengal, India
| | | | | |
Collapse
|
35
|
Frankel MB, Knoll LJ. Functional analysis of key nuclear trafficking components reveals an atypical Ran network required for parasite pathogenesis. Mol Microbiol 2008; 70:410-20. [PMID: 18761691 PMCID: PMC2577059 DOI: 10.1111/j.1365-2958.2008.06419.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Protozoan parasites represent major public health challenges. Many aspects of their cell biology are distinct from their animal hosts, providing potential therapeutic targets. Toxoplasma gondii is a protozoan parasite that contains a divergent regulator of chromosome condensation 1 (TgRCC1) that is required for virulence and efficient nuclear trafficking. RCC1 proteins function as a guanine exchange factor for Ras-related nuclear protein (Ran), an abundant GTPase responsible for the majority of nucleocytoplasmic transport. Here we show that while there are dramatic differences from well-conserved RCC1 proteins, TgRCC1 associates with chromatin, interacts with Ran and complements a mammalian temperature-sensitive RCC1 mutant cell line. During the investigation of TgRCC1, we observed several unprecedented phenotypes for TgRan, despite a high level of sequence conservation. The cellular distribution of TgRan is found throughout the parasite cell, whereas Ran in late branching eukaryotes is predominantly nuclear. Additionally, T. gondii tolerates at least low-level expression of dominant lethal Ran mutants. Wild type parasites expressing dominant negative TgRan grew similarly to wild type in standard tissue culture conditions, but were attenuated in serum-starved host cells and mice. These growth characteristics paralleled the TgRCC1 mutant and highlight the importance of the nuclear transport pathway for virulence of eukaryotic pathogens.
Collapse
Affiliation(s)
- Matthew B. Frankel
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, 1300 University Avenue, Madison, WI 53706, USA
| | - Laura J. Knoll
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, 1300 University Avenue, Madison, WI 53706, USA
| |
Collapse
|
36
|
Spatuzza C, Schiavone M, Di Salle E, Janda E, Sardiello M, Fiume G, Fierro O, Simonetta M, Argiriou N, Faraonio R, Capparelli R, Quinto I, Scala G. Physical and functional characterization of the genetic locus of IBtk, an inhibitor of Bruton's tyrosine kinase: evidence for three protein isoforms of IBtk. Nucleic Acids Res 2008; 36:4402-16. [PMID: 18596081 PMCID: PMC2490745 DOI: 10.1093/nar/gkn413] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2008] [Revised: 06/12/2008] [Accepted: 06/13/2008] [Indexed: 11/29/2022] Open
Abstract
Bruton's tyrosine kinase (Btk) is required for B-cell development. Btk deficiency causes X-linked agammaglobulinemia (XLA) in humans and X-linked immunodeficiency (Xid) in mice. Btk lacks a negative regulatory domain and may rely on cytoplasmic proteins to regulate its activity. Consistently, we identified an inhibitor of Btk, IBtk, which binds to the PH domain of Btk and down-regulates the Btk kinase activity. IBtk is an evolutionary conserved protein encoded by a single genomic sequence at 6q14.1 cytogenetic location, a region of recurrent chromosomal aberrations in lymphoproliferative disorders; however, the physical and functional organization of IBTK is unknown. Here, we report that the human IBTK locus includes three distinct mRNAs arising from complete intron splicing, an additional polyadenylation signal and a second transcription start site that utilizes a specific ATG for protein translation. By northern blot, 5'RACE and 3'RACE we identified three IBTKalpha, IBTKbeta and IBTKgamma mRNAs, whose transcription is driven by two distinct promoter regions; the corresponding IBtk proteins were detected in human cells and mouse tissues by specific antibodies. These results provide the first characterization of the human IBTK locus and may assist in understanding the in vivo function of IBtk.
Collapse
Affiliation(s)
- Carmen Spatuzza
- Department of Experimental and Clinical Medicine, University of Catanzaro ‘Magna Graecia’, 88100 Catanzaro, Department of Biochemistry and Medical Biotechnology, University of Naples ‘Federico II’, Telethon Institute of Genetics and Medicine, 80131 Naples, Institute of Food Sciences, CNR, Avellino and Department of Biotechnological Sciences, University of Naples ‘Federico II’, Naples, Italy
| | - Marco Schiavone
- Department of Experimental and Clinical Medicine, University of Catanzaro ‘Magna Graecia’, 88100 Catanzaro, Department of Biochemistry and Medical Biotechnology, University of Naples ‘Federico II’, Telethon Institute of Genetics and Medicine, 80131 Naples, Institute of Food Sciences, CNR, Avellino and Department of Biotechnological Sciences, University of Naples ‘Federico II’, Naples, Italy
| | - Emanuela Di Salle
- Department of Experimental and Clinical Medicine, University of Catanzaro ‘Magna Graecia’, 88100 Catanzaro, Department of Biochemistry and Medical Biotechnology, University of Naples ‘Federico II’, Telethon Institute of Genetics and Medicine, 80131 Naples, Institute of Food Sciences, CNR, Avellino and Department of Biotechnological Sciences, University of Naples ‘Federico II’, Naples, Italy
| | - Elzbieta Janda
- Department of Experimental and Clinical Medicine, University of Catanzaro ‘Magna Graecia’, 88100 Catanzaro, Department of Biochemistry and Medical Biotechnology, University of Naples ‘Federico II’, Telethon Institute of Genetics and Medicine, 80131 Naples, Institute of Food Sciences, CNR, Avellino and Department of Biotechnological Sciences, University of Naples ‘Federico II’, Naples, Italy
| | - Marco Sardiello
- Department of Experimental and Clinical Medicine, University of Catanzaro ‘Magna Graecia’, 88100 Catanzaro, Department of Biochemistry and Medical Biotechnology, University of Naples ‘Federico II’, Telethon Institute of Genetics and Medicine, 80131 Naples, Institute of Food Sciences, CNR, Avellino and Department of Biotechnological Sciences, University of Naples ‘Federico II’, Naples, Italy
| | - Giuseppe Fiume
- Department of Experimental and Clinical Medicine, University of Catanzaro ‘Magna Graecia’, 88100 Catanzaro, Department of Biochemistry and Medical Biotechnology, University of Naples ‘Federico II’, Telethon Institute of Genetics and Medicine, 80131 Naples, Institute of Food Sciences, CNR, Avellino and Department of Biotechnological Sciences, University of Naples ‘Federico II’, Naples, Italy
| | - Olga Fierro
- Department of Experimental and Clinical Medicine, University of Catanzaro ‘Magna Graecia’, 88100 Catanzaro, Department of Biochemistry and Medical Biotechnology, University of Naples ‘Federico II’, Telethon Institute of Genetics and Medicine, 80131 Naples, Institute of Food Sciences, CNR, Avellino and Department of Biotechnological Sciences, University of Naples ‘Federico II’, Naples, Italy
| | - Marco Simonetta
- Department of Experimental and Clinical Medicine, University of Catanzaro ‘Magna Graecia’, 88100 Catanzaro, Department of Biochemistry and Medical Biotechnology, University of Naples ‘Federico II’, Telethon Institute of Genetics and Medicine, 80131 Naples, Institute of Food Sciences, CNR, Avellino and Department of Biotechnological Sciences, University of Naples ‘Federico II’, Naples, Italy
| | - Notis Argiriou
- Department of Experimental and Clinical Medicine, University of Catanzaro ‘Magna Graecia’, 88100 Catanzaro, Department of Biochemistry and Medical Biotechnology, University of Naples ‘Federico II’, Telethon Institute of Genetics and Medicine, 80131 Naples, Institute of Food Sciences, CNR, Avellino and Department of Biotechnological Sciences, University of Naples ‘Federico II’, Naples, Italy
| | - Raffaella Faraonio
- Department of Experimental and Clinical Medicine, University of Catanzaro ‘Magna Graecia’, 88100 Catanzaro, Department of Biochemistry and Medical Biotechnology, University of Naples ‘Federico II’, Telethon Institute of Genetics and Medicine, 80131 Naples, Institute of Food Sciences, CNR, Avellino and Department of Biotechnological Sciences, University of Naples ‘Federico II’, Naples, Italy
| | - Rosanna Capparelli
- Department of Experimental and Clinical Medicine, University of Catanzaro ‘Magna Graecia’, 88100 Catanzaro, Department of Biochemistry and Medical Biotechnology, University of Naples ‘Federico II’, Telethon Institute of Genetics and Medicine, 80131 Naples, Institute of Food Sciences, CNR, Avellino and Department of Biotechnological Sciences, University of Naples ‘Federico II’, Naples, Italy
| | - Ileana Quinto
- Department of Experimental and Clinical Medicine, University of Catanzaro ‘Magna Graecia’, 88100 Catanzaro, Department of Biochemistry and Medical Biotechnology, University of Naples ‘Federico II’, Telethon Institute of Genetics and Medicine, 80131 Naples, Institute of Food Sciences, CNR, Avellino and Department of Biotechnological Sciences, University of Naples ‘Federico II’, Naples, Italy
| | - Giuseppe Scala
- Department of Experimental and Clinical Medicine, University of Catanzaro ‘Magna Graecia’, 88100 Catanzaro, Department of Biochemistry and Medical Biotechnology, University of Naples ‘Federico II’, Telethon Institute of Genetics and Medicine, 80131 Naples, Institute of Food Sciences, CNR, Avellino and Department of Biotechnological Sciences, University of Naples ‘Federico II’, Naples, Italy
| |
Collapse
|
37
|
Ran GTPase guanine nucleotide exchange factor RCC1 is phosphorylated on serine 11 by cdc2 kinase in vitro. Mol Biol Rep 2008; 36:717-23. [PMID: 18568422 DOI: 10.1007/s11033-008-9234-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2007] [Accepted: 03/17/2008] [Indexed: 10/22/2022]
Abstract
RCC1, a guanine nucleotide exchange factor for Ran GTPase, plays essential roles in the growth and viability of mammalian cells. Here, we examined the phosphorylation of specific serine and threonine residues of RCC1 in vivo and showed that RCC1 is indeed phosphorylated. Analysis by two-dimensional (2D) gel electrophoresis suggested that serine 11 (S11) of hamster RCC1 is phosphorylated in vivo. A point mutation of S11 of hamster RCC1 resulted in a decrease in the number of 2D gel spots, indicating a lack of phosphorylation at the mutant residue. S11 phosphorylation in vitro depended on cyclin B-cdc2 kinase. An RCC1 mutant in which all N-terminal serine and threonine residues were substituted with glutamate residues to mimic phosphorylation at these residues showed decreased binding to the karyopherin, KPNA4, compared with wild type RCC1. We conclude that RCC1 undergoes post-translational phosphorylation.
Collapse
|
38
|
Stevens TJ, Paoli M. RCC1-like repeat proteins: a pangenomic, structurally diverse new superfamily of beta-propeller domains. Proteins 2008; 70:378-87. [PMID: 17680689 DOI: 10.1002/prot.21521] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The beta-propeller fold is a phylogenetically widespread, common protein architecture able to support a range of different functions such as catalysis, ligand binding and transport, regulation and protein binding. Interestingly, it appears that the beta-propeller topology is also compatible with strikingly diverse sequences. Amongst this diversity, there are three large groups of proteins with related sequences and very important cellular and intercellular regulatory functions: WD, kelch, and YWTD proteins. A common characteristic between these protein families is that their sequences, while distinct, all contain internal repeats 40-45 residues long. Through a pangenomic analysis using internal repeat profiles derived from the structurally known propeller modules of the eukaryotic protein RCC1 and the related prokaryotic protein BLIP-II, we have defined a new superfamily of propeller repeats, the RCC1-like repeats (RLRs). These sequences turn out to be more phylogenetically widespread than other large groups of propeller proteins, occurring in both prokaryotic and eukaryotic genomes. Interestingly, our research showed that RLR domains with different numbers of repeats exist, ranging from 3 to 7, and possibly more. A novel, intriguing finding is the discovery of sequences with 3 repeats, as well as proteins with 10 modular units, though in the latter case it is not clear whether these are made of two 5-bladed domains or a single, novel 10-bladed propeller. In addition, the results indicate that circular permutation events may have taken place in the evolution of these proteins. It is now established that the group of RLR proteins is extremely numerous and is characterized by unique, remarkable features which place it in a position of special interest as an important superfamily of proteins in nature.
Collapse
Affiliation(s)
- Tim J Stevens
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | | |
Collapse
|
39
|
Frankel MB, Mordue DG, Knoll LJ. Discovery of parasite virulence genes reveals a unique regulator of chromosome condensation 1 ortholog critical for efficient nuclear trafficking. Proc Natl Acad Sci U S A 2007; 104:10181-6. [PMID: 17535896 PMCID: PMC1891257 DOI: 10.1073/pnas.0701893104] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Eukaryotic parasites are a leading cause of morbidity and mortality worldwide, yet little is known about the genetic basis of their virulence. Here, we present a forward genetic screen to study pathogenesis in the protozoan parasite Toxoplasma gondii. By using modified signature-tagged mutagenesis, the growth of 6,300 T. gondii insertional mutants was compared in cell culture and murine infection to identify genes required specifically in vivo. One of the 39 avirulent mutants is disrupted in a divergent ortholog of the regulator of chromosome condensation 1 (RCC1), which is critical for nuclear trafficking in model systems. Although this RCC1 mutant grows similar to wild type in standard tissue culture conditions, it is growth-impaired under nutrient limitation. Genetic complementation of mutant parasites with the T. gondii RCC1 gene fully restores both virulence in mice and growth under low-nutrient conditions. Further analysis shows that there is a significant defect in nuclear trafficking in the RCC1 mutant. These findings suggest that the rate of nuclear transport is a critical factor affecting growth in low-nutrient conditions in vivo and in vitro. Additionally, we observed that although RCC1 proteins are highly conserved in organisms from humans to yeast, no protozoan parasite encodes a characteristic RCC1. This protein divergence may represent a unique mechanism of nucleocytoplasmic transport. This study illustrates the power of this forward genetics approach to identify atypical virulence mechanisms.
Collapse
Affiliation(s)
- Matthew B. Frankel
- Department of Medical Microbiology and Immunology, University of Wisconsin, 1300 University Avenue, Madison, WI 53706
| | - Dana G. Mordue
- Department of Medical Microbiology and Immunology, University of Wisconsin, 1300 University Avenue, Madison, WI 53706
| | - Laura J. Knoll
- Department of Medical Microbiology and Immunology, University of Wisconsin, 1300 University Avenue, Madison, WI 53706
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
40
|
Abstract
It has been nearly 20 years since the discovery of the first component of the Ran-GTPase pathway. Since then, nearly 100 articles, more than half of which have been published in the past three years, have reported the identification of additional components of the system and the existence of their structural and functional homologues in organisms ranging from yeast to man. The Ran system affects a vast array of nuclear processes including RNA metabolism, DNA replication, chromosome condensation and decondensation, and nucleocytoplasmic transport of protein and RNA. The current challenge is to identify the molecular targets that link the Ran-GTPase system to this collection o f nuclear processes.
Collapse
Affiliation(s)
- S Sazer
- Verna and Marrs McLean Dept of Biochemistry, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| |
Collapse
|
41
|
Anway MD, Li Y, Ravindranath N, Dym M, Griswold MD. Expression of testicular germ cell genes identified by differential display analysis. JOURNAL OF ANDROLOGY 2003; 24:173-84. [PMID: 12634303 DOI: 10.1002/j.1939-4640.2003.tb02660.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Using differential display reverse transcriptase-polymerase chain reaction (DDRT-PCR) we identified transcripts encoding for the RNA helicase mDEAH9, Ran binding protein 5 (RanBP5), and 3 novel complementary DNAs designated GC3, GC12, and GC14 in developing testicular germ cells. Sources of RNA for the initial DDRT-PCR screen were purified mouse type A spermatogonia, adult mouse wild-type testis, and W/W(v) mutant mouse testis. We identified cDNA fragments for mDEAH9, RanBP5, GC3, GC12, and GC14 in testis and type A spermatogonia samples from wild-type mice, but not in samples from the W/W(v) mouse testis. These same transcripts were absent in Northern blots of testis RNA from mice treated with busulfan 30 days prior, but were present in testis RNA from wild-type mice at 5, 15, 25, and 40 days of age. The mDEAH9 gene was expressed in many tissues, whereas RanBP5 and GC12 genes were expressed predominantly in the testis with much lower expression in other tissues. The expression of GC3 and GC14 were limited to the testis as evidenced by Northern blot and RT-PCR analyses. The mDEAH9 transcript was not detected in cultured interstitial cells but was found at low levels in cultured immature Sertoli cells, whereas the RanBP5, GC3, GC12, and GC14 transcripts were not detected in either cultured testicular interstitial cells or cultured Sertoli cells. RT-PCR analyses of isolated spermatogonia, pachytene spermatocytes, and round spermatids revealed that mDEAH9, RanBP5, GC3, GC12, and GC14 genes were expressed in all 3 cellular populations. In situ hybridization analyses of testis samples from 40-day-old mice localized expression of mDEAH9, RanBP5, GC3, GC12, and GC14 to the seminiferous tubules. RanBP5 expression appeared to be regulated during the cycle of the seminiferous epithelium, with the highest expression in stages III through VII. Expression of GC14 was greatest in the meiotic germ cell populations.
Collapse
Affiliation(s)
- Matthew D Anway
- Center for Reproductive Biology, School of Molecular Biosciences, Washington State University, Pullman, Washington, USA
| | | | | | | | | |
Collapse
|
42
|
Narayanan A, Eifert J, Marfatia KA, Macara IG, Corbett AH, Terns RM, Terns MP. Nuclear RanGTP is not required for targeting small nucleolar RNAs to the nucleolus. J Cell Sci 2003; 116:177-86. [PMID: 12456727 DOI: 10.1242/jcs.00176] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The small GTPase Ran is the central regulator of macromolecular transport between the cytoplasm and the nucleus. Recent work has suggested that RanGTP also plays an important role in regulating some intra-nuclear processes. In this study, we have investigated whether RanGTP is required for the intra-nuclear transport of RNAs. Specifically, we directly analyzed the nucleolar localization of Box C/D and Box H/ACA small nucleolar RNAs (snoRNAs) in mammalian (tsBN2) cells, Saccharomyces cerevisiae and Xenopus oocytes under conditions that deplete nuclear RanGTP and prevent RNA export to the cytoplasm. Our data suggest that depletion of nuclear RanGTP does not significantly alter the nucleolar localization of U3 snoRNA in tsBN2 cells. Complementary studies in the budding yeast S. cerevisiae using conditional Ran mutants as well as mutants in Ran regulatory proteins also indicate that disruption of the Ran gradient or of Ran itself does not detectably affect the nucleolar localization of snoRNAs. Finally, microinjection into Xenopus oocytes was used to clearly demonstrate that a specific pool of snoRNAs could still be efficiently targeted to the nucleolus even when the RanGTP gradient was disrupted by microinjection of mutant Ran proteins. Taken together, our data from three phylogenetically distinct experimental systems suggest that nuclear RanGTP, which is essential for trafficking of RNAs between the nuclear and cytoplasmic compartments, is not required for nuclear retention or nucleolar localization of snoRNAs.
Collapse
Affiliation(s)
- Aarthi Narayanan
- Department of Biochemistry and Molecular Biology, University of Georgia, Life Sciences Building, Athens, GA 30602, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
Phosphoinositide signalling systems exist in all eukaryotes. A high degree of evolutionary conservation is found at the functional level, but distinct phylogenetic differences are also becoming evident. Although the nuclear phosphoinositide system is likely to be a primordial forerunner of the plasma membrane system, relatively little is known about it. However, nuclear phosphoinositides might have far more diverse roles than hitherto envisaged and interact specifically with regulatory proteins containing phosphoinositide-binding domains. A novel family of proteins, so far only identified in plants, display domain structures that might link phosphoinositide metabolism to nuclear function in an unexpected way.
Collapse
Affiliation(s)
- Bjørn K Drøbak
- Cell Signalling Group, Dept of Disease and Stress Biology, John Innes Centre, Colney Lane, NR4 7UH, Norwich, UK.
| | | |
Collapse
|
44
|
Jensen RB, La Cour T, Albrethsen J, Nielsen M, Skriver K. FYVE zinc-finger proteins in the plant model Arabidopsis thaliana: identification of PtdIns3P-binding residues by comparison of classic and variant FYVE domains. Biochem J 2001; 359:165-73. [PMID: 11563980 PMCID: PMC1222132 DOI: 10.1042/0264-6021:3590165] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Classic FYVE zinc-finger domains recognize the phosphoinositide signal PtdIns3P and share the basic (R/K)(1)(R/K)HHCR(6) (single-letter amino acid codes) consensus sequence. This domain is present in predicted PtdIns3P 5-kinases and lipases from Arabidopsis thaliana. Other Arabidopsis proteins, named PRAF, consist of a pleckstrin homology (PH) domain, a regulator of chromosome condensation (RCC1) guanine nucleotide exchange factor repeat domain, and a variant FYVE domain containing an Asn residue and a Tyr residue at positions corresponding to the PtdIns3P-interacting His(4) and Arg(6) of the basic motif. Dot-blot and liposome-binding assays were used in vitro to examine the phospholipid-binding ability of isolated PRAF domains. Whereas the PH domain preferentially bound PtdIns(4,5)P(2), the variant FYVE domain showed a weaker charge-dependent binding of phosphoinositides. In contrast, specificity for PtdIns3P was obtained by mutagenic conversion of the variant into a classic FYVE domain (Asn(4),Tyr(6)-->His(4),Arg(6)). Separate substitutions of the variant residues were not sufficient to impose preferential binding of PtdIns3P, suggesting a co-operative effect of these residues in binding. A biochemical function for PRAF was indicated by its ability to catalyse guanine nucleotide exchange on some of the small GTPases of the Rab family, permitting a discussion of the biological roles of plant FYVE proteins and their regulation by phosphoinositides.
Collapse
Affiliation(s)
- R B Jensen
- Institute of Molecular Biology, University of Copenhagen, Øster Farimagsgade 2A, 1353 Copenhagen K, Denmark
| | | | | | | | | |
Collapse
|
45
|
Clément M, Fournier H, Ouspenski II, de Repentigny L, Belhumeur P. Molecular cloning of CaYRB1, the Candida albicans RanBP1/YRB1 homologue. Yeast 2001; 18:915-22. [PMID: 11447597 DOI: 10.1002/yea.734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The yeast Ran binding protein 1 (Yrb1p) is a small protein of 23 kDa that is highly conserved among eukaryotes. It stimulates the GTPase activity of Gsp1p in the presence of the GTPase activating protein Rna1p. In addition to its role in nucleocytoplasmic transport of macromolecules, YRB1/RanBP1 could be involved in the regulation of microtubules structure and dynamics. Since microtubules are tightly associated with morphological changes, we have been interested to study the role and function of YRB1 in the pathogenic fungus Candida albicans, where there is regulated change in cellular morphology. The gene product of CaYRB1 encodes a 212 amino acid protein displaying 73% homology to the S. cerevisiae homologue. The bacterially expressed gene product has an apparent molecular weight of 35.7 kDa. We show that it can complement a S. cerevisiae yrb1 null mutant and that its mRNA does not appear to be regulated in response to conditions inducing morphological changes in C. albicans.
Collapse
Affiliation(s)
- M Clément
- Department of Microbiology and Immunology, Université de Montréal, C.P. 6128, succ. Centre-Ville, Montréal, Quebec H3C 3J7, Canada
| | | | | | | | | |
Collapse
|
46
|
Gruss OJ, Carazo-Salas RE, Schatz CA, Guarguaglini G, Kast J, Wilm M, Le Bot N, Vernos I, Karsenti E, Mattaj IW. Ran induces spindle assembly by reversing the inhibitory effect of importin alpha on TPX2 activity. Cell 2001; 104:83-93. [PMID: 11163242 DOI: 10.1016/s0092-8674(01)00193-3] [Citation(s) in RCA: 483] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The small GTPase Ran, bound to GTP, is required for the induction of spindle formation by chromosomes in M phase. High concentrations of Ran.GTP are proposed to surround M phase chromatin. We show that the action of Ran.GTP in spindle formation requires TPX2, a microtubule-associated protein previously known to target a motor protein, Xklp2, to microtubules. TPX2 is normally inactivated by binding to the nuclear import factor, importin alpha, and is displaced from importin alpha by the action of Ran.GTP. TPX2 is required for Ran.GTP and chromatin-induced microtubule assembly in M phase extracts and mediates spontaneous microtubule assembly when present in excess over free importin alpha. Thus, components of the nuclear transport machinery serve to regulate spindle formation in M phase.
Collapse
Affiliation(s)
- O J Gruss
- European Molecular Biology Laboratory, Meyerhofstrasse 1, D-69117 Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
RCC1, the chromatin-bound guanine-nucleotide exchange factor (GEF) for the small nuclear GTPase, Ran, is required for coordinating the onset of mitosis with S-phase completion in mammalian cells. Other defects in the Ran-GTPase network also result in disruption of cell-cycle processes such as DNA replication, exit from mitosis and, at least in budding yeast, accurate chromosome segregation. However, the Ran system is now best known for its pivotal role in nucleocytoplasmic transport, where RanGTP is used as a positional flag for the nucleus during interphase. Ran's effectors are the shuttling transport factors, importins and exportins, which facilitate the transit of cargoes between the nucleus and cytoplasm: RanGTP regulates their cargo-binding properties so that they can move their cargo in the correct direction. RanGTP also plays a separate role during mitosis, influencing microtubule polymerisation, possibly specifically in the vicinity of chromosomes. Most recently, Ran has been shown to be crucial for the regeneration of a nuclear envelope after exit from mitosis. So, can the problems with cell-cycle progression and control induced by perturbing the Ran-system be attributed to defects in these three processes? This article examines this issue, concentrating on vertebrate systems. BioEssays 23:77-85, 2001.
Collapse
Affiliation(s)
- J D Moore
- Imperial Cancer Research Fund, Clare Hall Laboratories, South Mimms, Herts, EN6 3LD, United Kingdom.
| |
Collapse
|
48
|
Biochemical Genetics. Biochemistry 2001. [DOI: 10.1016/b978-012492543-4/50029-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
49
|
Quimby BB, Wilson CA, Corbett AH. The interaction between Ran and NTF2 is required for cell cycle progression. Mol Biol Cell 2000; 11:2617-29. [PMID: 10930458 PMCID: PMC14944 DOI: 10.1091/mbc.11.8.2617] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The small GTPase Ran is required for the trafficking of macromolecules into and out of the nucleus. Ran also has been implicated in cell cycle control, specifically in mitotic spindle assembly. In interphase cells, Ran is predominately nuclear and thought to be GTP bound, but it is also present in the cytoplasm, probably in the GDP-bound state. Nuclear transport factor 2 (NTF2) has been shown to import RanGDP into the nucleus. Here, we examine the in vivo role of NTF2 in Ran import and the effect that disruption of Ran imported into the nucleus has on the cell cycle. A temperature-sensitive (ts) mutant of Saccharomyces cerevisiae NTF2 that does not bind to Ran is unable to import Ran into the nucleus at the nonpermissive temperature. Moreover, when Ran is inefficiently imported into the nucleus, cells arrest in G(2) in a MAD2 checkpoint-dependent manner. These findings demonstrate that NTF2 is required to transport Ran into the nucleus in vivo. Furthermore, we present data that suggest that depletion of nuclear Ran triggers a spindle-assembly checkpoint-dependent cell cycle arrest.
Collapse
Affiliation(s)
- B B Quimby
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
50
|
Beales M, Flay N, McKinney R, Habara Y, Ohshima Y, Tani T, Potashkin J. Mutations in the large subunit of U2AF disrupt pre-mRNA splicing, cell cycle progression and nuclear structure. Yeast 2000; 16:1001-13. [PMID: 10923022 DOI: 10.1002/1097-0061(200008)16:11<1001::aid-yea605>3.0.co;2-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The prp2 gene of fission yeast has previously been shown to encode the large subunit of the splicing factor spU2AF. SpU2AF(59) is an evolutionarily conserved protein that has an arginine/serine-rich region and three RNA recognition motifs (RRMs). We have sequenced three temperature-sensitive alleles of prp2 and determined that the mutations result in single amino acid changes within one of the RRMs or between RRMs. All mutant alleles of prp2 have pre-mRNA splicing defects at the non-permissive temperature. Although the mutant strains are growth-arrested at 37 degrees C, they do not elongate like typical fission yeast cell cycle mutants. The DNA of the prp2(-) strains stains more intensely than a wild-type strain, suggesting that the chromatin may be condensed. Ultrastructural studies show differences in the mutant nuclei including a prominent distinction between the chromatin- and non-chromatin-enriched regions compared to the more homogenous wild-type nucleus. Two-hybrid assays indicate that some of the wild-type protein interactions are altered in the mutant strains. These results suggest that normal functioning of spU2AF(59) may be essential not only for pre-mRNA splicing but also for the maintenance of proper nuclear structure and normal cell cycle progression.
Collapse
Affiliation(s)
- M Beales
- Department of Cellular and Molecular Pharmacology, Finch University of Health Sciences/The Chicago Medical School, 3333 Green Bay Road, North Chicago, IL 60064, USA
| | | | | | | | | | | | | |
Collapse
|