1
|
Goffin E, Fraikin P, Abboud D, de Tullio P, Beaufour C, Botez I, Hanson J, Danober L, Francotte P, Pirotte B. New insights in the development of positive allosteric modulators of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors belonging to 3,4-dihydro-2H-1,2,4-benzothiadiazine 1,1-dioxides: Introduction of (mono/difluoro)methyl groups at the 2-position of the thiadiazine ring. Eur J Med Chem 2023; 250:115221. [PMID: 36863228 DOI: 10.1016/j.ejmech.2023.115221] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/17/2023] [Accepted: 02/19/2023] [Indexed: 02/26/2023]
Abstract
Positive allosteric modulators of the AMPA receptors (AMPAR PAMs) have been proposed as new drugs for the management of various neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, attention deficit hyperactivity disorder, depression, and schizophrenia. The present study explored new AMPAR PAMs belonging to 3,4-dihydro-2H-1,2,4-benzothiadiazine 1,1-dioxides (BTDs) characterized by the presence of a short alkyl substituent at the 2-position of the heterocycle and by the presence or absence of a methyl group at the 3-position. The introduction of a monofluoromethyl or a difluoromethyl side chain at the 2-position instead of the methyl group was examined. 7-Chloro-4-cyclopropyl-2-fluoromethyl-3,4-dihydro-4H-1,2,4-benzothiadiazine 1,1-dioxide (15e) emerged as the most promising compound associating high in vitro potency on AMPA receptors, a favorable safety profile in vivo and a marked efficacy as a cognitive enhancer after oral administration in mice. Stability studies in aqueous medium suggested that 15e could be considered, at least in part, as a precursor of the corresponding 2-hydroxymethyl-substituted analogue and the known AMPAR modulator 7-chloro-4-cyclopropyl-3,4-dihydro-4H-1,2,4-benzothiadiazine 1,1-dioxide (3) devoid of an alkyl group at the 2-position.
Collapse
Affiliation(s)
- Eric Goffin
- Center for Interdisciplinary Research on Medicines (CIRM) - Laboratory of Medicinal Chemistry, University of Liège, Avenue Hippocrate 15 (B36), B-4000, Liège, Belgium
| | - Pierre Fraikin
- Center for Interdisciplinary Research on Medicines (CIRM) - Laboratory of Medicinal Chemistry, University of Liège, Avenue Hippocrate 15 (B36), B-4000, Liège, Belgium
| | - Dayana Abboud
- Laboratory of Molecular Pharmacology, GIGA-Molecular Biology of Diseases, University of Liège, Avenue Hippocrate 1/11 (B34), B-4000, Liège, Belgium
| | - Pascal de Tullio
- Center for Interdisciplinary Research on Medicines (CIRM) - Laboratory of Medicinal Chemistry, University of Liège, Avenue Hippocrate 15 (B36), B-4000, Liège, Belgium
| | - Caroline Beaufour
- Institut de Recherches Servier, 125 Chemin de Ronde, F-78290, Croissy-sur-Seine, France
| | - Iuliana Botez
- Institut de Recherches Servier, 125 Chemin de Ronde, F-78290, Croissy-sur-Seine, France
| | - Julien Hanson
- Center for Interdisciplinary Research on Medicines (CIRM) - Laboratory of Medicinal Chemistry, University of Liège, Avenue Hippocrate 15 (B36), B-4000, Liège, Belgium; Laboratory of Molecular Pharmacology, GIGA-Molecular Biology of Diseases, University of Liège, Avenue Hippocrate 1/11 (B34), B-4000, Liège, Belgium
| | - Laurence Danober
- Institut de Recherches Servier, 125 Chemin de Ronde, F-78290, Croissy-sur-Seine, France
| | - Pierre Francotte
- Center for Interdisciplinary Research on Medicines (CIRM) - Laboratory of Medicinal Chemistry, University of Liège, Avenue Hippocrate 15 (B36), B-4000, Liège, Belgium
| | - Bernard Pirotte
- Center for Interdisciplinary Research on Medicines (CIRM) - Laboratory of Medicinal Chemistry, University of Liège, Avenue Hippocrate 15 (B36), B-4000, Liège, Belgium.
| |
Collapse
|
2
|
Ata A, Salar U, Saleem F, Lateef M, Khan SA, Khan KM, Taha M, Haider SM, Ul-Haq Z. Identification of potential urease inhibitors and antioxidants based on saccharin derived analogs: Synthesis, in vitro, and in silico studies. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
3
|
Structural analysis of saccharin in aqueous solution by NMR and supramolecular interactions with α-, β-, γ-cyclodextrins. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
4
|
Frija LMT, Ntungwe E, Sitarek P, Andrade JM, Toma M, Śliwiński T, Cabral L, S. Cristiano ML, Rijo P, Pombeiro AJL. In Vitro Assessment of Antimicrobial, Antioxidant, and Cytotoxic Properties of Saccharin-Tetrazolyl and -Thiadiazolyl Derivatives: The Simple Dependence of the pH Value on Antimicrobial Activity. Pharmaceuticals (Basel) 2019; 12:E167. [PMID: 31726663 PMCID: PMC6958446 DOI: 10.3390/ph12040167] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/06/2019] [Accepted: 11/07/2019] [Indexed: 02/07/2023] Open
Abstract
The antimicrobial, antioxidant, and cytotoxic activities of a series of saccharin-tetrazolyl and -thiadiazolyl analogs were examined. The assessment of the antimicrobial properties of the referred-to molecules was completed through an evaluation of minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values against Gram-positive and Gram-negative bacteria and yeasts. Scrutiny of the MIC and MBC values of the compounds at pH 4.0, 7.0, and 9.0 against four Gram-positive strains revealed high values for both the MIC and MBC at pH 4.0 (ranging from 0.98 to 125 µg/mL) and moderate values at pH 7.0 and 9.0, exposing strong antimicrobial activities in an acidic medium. An antioxidant activity analysis of the molecules was performed by using the DPPH (2,2-diphenyl-1-picrylhydrazyl) method, which showed high activity for the TSMT (N-(1-methyl-2H-tetrazol-5-yl)-N-(1,1-dioxo-1,2-benzisothiazol-3-yl) amine, 7) derivative (90.29% compared to a butylated hydroxytoluene positive control of 61.96%). Besides, the general toxicity of the saccharin analogs was evaluated in an Artemia salina model, which displayed insignificant toxicity values. In turn, upon an assessment of cell viability, all of the compounds were found to be nontoxic in range concentrations of 0-100 µg/mL in H7PX glioma cells. The tested molecules have inspiring antimicrobial and antioxidant properties that represent potential core structures in the design of new drugs for the treatment of infectious diseases.
Collapse
Affiliation(s)
- Luís M. T. Frija
- Centro de Química Estrutural (CQE), Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal;
| | - Epole Ntungwe
- CBIOS—Research Center for Health Sciences & Technologies, ULusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal; (E.N.); (J.M.A.)
| | - Przemysław Sitarek
- Department of Biology and Pharmaceutical Botany, Medical University of Lodz, Muszyńskiego Street 1, 90-151 Łódź, Poland;
| | - Joana M. Andrade
- CBIOS—Research Center for Health Sciences & Technologies, ULusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal; (E.N.); (J.M.A.)
| | - Monika Toma
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-151 Lodz, Poland; (M.T.); (T.Ś.)
| | - Tomasz Śliwiński
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-151 Lodz, Poland; (M.T.); (T.Ś.)
| | - Lília Cabral
- Department of Chemistry and Pharmacy (FCT) and Center of Marine Sciences (CCMar), Universidade do Algarve, P-8005-039 Faro, Portugal; (L.C.); (M.L.S.C.)
| | - M. Lurdes S. Cristiano
- Department of Chemistry and Pharmacy (FCT) and Center of Marine Sciences (CCMar), Universidade do Algarve, P-8005-039 Faro, Portugal; (L.C.); (M.L.S.C.)
| | - Patrícia Rijo
- CBIOS—Research Center for Health Sciences & Technologies, ULusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal; (E.N.); (J.M.A.)
- iMed.ULisboa - Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Armando J. L. Pombeiro
- Centro de Química Estrutural (CQE), Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal;
| |
Collapse
|
5
|
Chen H, Jia HX. Crystal structure of 2-(4-(2-(4-(2-fluorophenyl)piperazin-1-yl)ethyl)benzyl)benzo[ d]isothiazol-3(2H)-one 1,1-dioxide, C 26H 26FN 3O 3S – a saccharin dervative. Z KRIST-NEW CRYST ST 2018. [DOI: 10.1515/ncrs-2017-0197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
C26H26F1N3O3S1, triclinic, P1̅ (no. 2), a = 7.0252(14) Å, b = 9.3017(19) Å, c = 19.388(4) Å, α = 97.80(3)°, β = 97.77(3)°, γ = 106.84(3)°, V = 1180.9(5) Å3, Z = 2, R
gt(F) = 0.0729, wR
ref(F
2) = 0.1854, T = 296.15 K.
Collapse
Affiliation(s)
- Hong Chen
- College of Food and Drug , Luoyang Normal University , Luoyang , Henan 471934, P.R. China
| | - Hui-Xia Jia
- College of Food and Drug , Luoyang Normal University , Luoyang , Henan 471934, P.R. China
| |
Collapse
|
6
|
Goel P, Jumpertz T, Mikles DC, Tichá A, Nguyen MTN, Verhelst S, Hubalek M, Johnson DC, Bachovchin DA, Ogorek I, Pietrzik CU, Strisovsky K, Schmidt B, Weggen S. Discovery and Biological Evaluation of Potent and Selective N-Methylene Saccharin-Derived Inhibitors for Rhomboid Intramembrane Proteases. Biochemistry 2017; 56:6713-6725. [PMID: 29185711 DOI: 10.1021/acs.biochem.7b01066] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Rhomboids are intramembrane serine proteases and belong to the group of structurally and biochemically most comprehensively characterized membrane proteins. They are highly conserved and ubiquitously distributed in all kingdoms of life and function in a wide range of biological processes, including epidermal growth factor signaling, mitochondrial dynamics, and apoptosis. Importantly, rhomboids have been associated with multiple diseases, including Parkinson's disease, type 2 diabetes, and malaria. However, despite a thorough understanding of many structural and functional aspects of rhomboids, potent and selective inhibitors of these intramembrane proteases are still not available. In this study, we describe the computer-based rational design, chemical synthesis, and biological evaluation of novel N-methylene saccharin-based rhomboid protease inhibitors. Saccharin inhibitors displayed inhibitory potency in the submicromolar range, effectiveness against rhomboids both in vitro and in live Escherichia coli cells, and substantially improved selectivity against human serine hydrolases compared to those of previously known rhomboid inhibitors. Consequently, N-methylene saccharins are promising new templates for the development of rhomboid inhibitors, providing novel tools for probing rhomboid functions in physiology and disease.
Collapse
Affiliation(s)
- Parul Goel
- Department of Neuropathology, Heinrich-Heine University Duesseldorf , Moorenstrasse 5, 40225 Duesseldorf, Germany.,Clemens Schoepf Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt , Alarich-Weiss-Strasse 4-8, 64287 Darmstadt, Germany
| | - Thorsten Jumpertz
- Department of Neuropathology, Heinrich-Heine University Duesseldorf , Moorenstrasse 5, 40225 Duesseldorf, Germany
| | - David C Mikles
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic , Flemingovo n. 2, 166 10 Praha 6, Czech Republic
| | - Anežka Tichá
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic , Flemingovo n. 2, 166 10 Praha 6, Czech Republic
| | - Minh T N Nguyen
- Chemical Proteomics Group, Leibnitz Institute for Analytical Sciences (ISAS) e.V. , Otto-Hahn-Strasse 6b, 44227 Dortmund, Germany
| | - Steven Verhelst
- Chemical Proteomics Group, Leibnitz Institute for Analytical Sciences (ISAS) e.V. , Otto-Hahn-Strasse 6b, 44227 Dortmund, Germany.,Laboratory of Chemical Biology, Department of Cellular and Molecular Medicine, University of Leuven , Herestraat 49, Box 802, 3000 Leuven, Belgium
| | - Martin Hubalek
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic , Flemingovo n. 2, 166 10 Praha 6, Czech Republic
| | - Darren C Johnson
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center , 1275 York Avenue, Box 428, New York, New York 10065, United States
| | - Daniel A Bachovchin
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center , 1275 York Avenue, Box 428, New York, New York 10065, United States
| | - Isabella Ogorek
- Department of Neuropathology, Heinrich-Heine University Duesseldorf , Moorenstrasse 5, 40225 Duesseldorf, Germany
| | - Claus U Pietrzik
- Institute for Pathobiochemistry, University Medical Center of the Johannes Gutenberg University Mainz , Duesbergweg 6, 55128 Mainz, Germany
| | - Kvido Strisovsky
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic , Flemingovo n. 2, 166 10 Praha 6, Czech Republic
| | - Boris Schmidt
- Clemens Schoepf Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt , Alarich-Weiss-Strasse 4-8, 64287 Darmstadt, Germany
| | - Sascha Weggen
- Department of Neuropathology, Heinrich-Heine University Duesseldorf , Moorenstrasse 5, 40225 Duesseldorf, Germany
| |
Collapse
|
7
|
Synthesis and Antitumor Activity of Novel Arylpiperazine Derivatives Containing the Saccharin Moiety. Molecules 2017; 22:molecules22111857. [PMID: 29109383 PMCID: PMC6150201 DOI: 10.3390/molecules22111857] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 10/17/2017] [Accepted: 10/25/2017] [Indexed: 11/29/2022] Open
Abstract
Prostate cancer is a major public health problem worldwide. For the development of potential anti-prostate cancer agents, a series of novel arylpiperazine derivatives containing the saccharin moiety based on previous studies was designed, synthesized, and evaluated in prostate (PC-3, LNCaP, and DU145) cancer cell lines for their anticancer activities. The majority of the compounds exhibited excellent selective activity for the tested cancer cells. Compounds 4 and 12 exhibited strong cytotoxic activities against DU145 cells (half maximal inhibitory concentration (IC50) < 2 μM). The structure–activity relationship (SAR) of these arylpiperazine derivatives was also discussed based on the obtained experimental data. This work provides a potential lead compound for anticancer agent development focusing on prostate cancer therapy.
Collapse
|
8
|
Elghamry I, Youssef MM, Al-Omair MA, Elsawy H. Synthesis, antimicrobial, DNA cleavage and antioxidant activities of tricyclic sultams derived from saccharin. Eur J Med Chem 2017; 139:107-113. [PMID: 28800451 DOI: 10.1016/j.ejmech.2017.07.079] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 07/30/2017] [Accepted: 07/31/2017] [Indexed: 11/19/2022]
Abstract
Two series of fused tricyclic sultams (carboxylates, 3a, b and 5a, f, g and anilides 5b-e) were synthesized from saccharin and their chemical structures were confirmed by spectroscopic tools. Then, their antibacterial activities and MIC were evaluated against two strains of gram positive and gram-negative bacteria. The MIC values of the tested compounds are in the of range 8-33 μg/ml. In addition, their DNA cleavage ability, binding affinity and their anticancer activities against hepatic cancer cell were tested. And their antioxidant activities were also measured. Four carboxylate derivatives (3a, 5a, 5f and 5g) and one anilide (5d) of the tested compounds proved to be the highest activity all over the study.
Collapse
Affiliation(s)
- Ibrahim Elghamry
- King Faisal University, College of Science, Department of Chemistry, P. O. Box 400 Al Hufuf, 31982 Al Ahsa, Saudi Arabia.
| | - Magdy M Youssef
- Mansoura University, Faculty of Science, Department of Chemistry, Mansoura 35516, Egypt
| | - Mohammed A Al-Omair
- King Faisal University, College of Science, Department of Chemistry, P. O. Box 400 Al Hufuf, 31982 Al Ahsa, Saudi Arabia
| | - Hany Elsawy
- King Faisal University, College of Science, Department of Chemistry, P. O. Box 400 Al Hufuf, 31982 Al Ahsa, Saudi Arabia; Tanta University, Faculty of Science, Department of Chemistry, Tanta, Egypt
| |
Collapse
|
9
|
Kuznetsov MA, Shestakov AN, Zibinsky M, Krasavin M, Supuran CT, Kalinin S, Tanç M. Synthesis, structure and properties of N -aminosaccharin – A selective inhibitor of human carbonic anhydrase I. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2016.12.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
10
|
|
11
|
Sun K, Wang X, Jiang Y, Lv Y, Zhang L, Xiao B, Li D, Zhu Z, Liu L. Direct N-Methylation Reaction Using DMSO as One-Carbon Bridge: Convenient Access to Heterocycle-Containing β-Amino Ketones. Chem Asian J 2015; 10:536-9. [DOI: 10.1002/asia.201403358] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Indexed: 12/20/2022]
|
12
|
Budnjo A, Narawane S, Grauffel C, Schillinger AS, Fossen T, Reuter N, Haug BE. Reversible ketomethylene-based inhibitors of human neutrophil proteinase 3. J Med Chem 2014; 57:9396-408. [PMID: 25365140 DOI: 10.1021/jm500782s] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Neutrophil serine proteases, proteinase 3 (PR3) and human neutrophil elastase (HNE), are considered as targets for chronic inflammatory diseases. Despite sharing high sequence similarity, the two enzymes have different substrate specificities and functions. While a plethora of HNE inhibitors exist, PR3 specific inhibitors are still in their infancy. We have designed ketomethylene-based inhibitors for PR3 that show low micromolar IC50 values. Their synthesis was made possible by amending a previously reported synthesis of ketomethylene dipeptide isosteres to allow for the preparation of derivatives suitable for solid phase peptide synthesis. The best inhibitor (Abz-VADnV[Ψ](COCH2)ADYQ-EDDnp) was found to be selective for PR3 over HNE and to display a competitive and reversible inhibition mechanism. Molecular dynamics simulations show that the interactions between enzyme and ketomethylene-containing inhibitors are similar to those with the corresponding substrates. We also confirm that N- and C-terminal FRET groups are important for securing high inhibitory potency toward PR3.
Collapse
Affiliation(s)
- Adnan Budnjo
- Department of Chemistry and Centre for Pharmacy, University of Bergen , Allégaten 41, 5007 Bergen, Norway
| | | | | | | | | | | | | |
Collapse
|
13
|
Kosikowska P, Lesner A. Inhibitors of cathepsin G: a patent review (2005 to present). Expert Opin Ther Pat 2013; 23:1611-24. [PMID: 24079661 DOI: 10.1517/13543776.2013.835397] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
INTRODUCTION Cathepsin G (CatG) is a neutral proteinase originating from human neutrophils. It displays a unique dual specificity (trypsin- and chymotrypsin-like); thus, its enzymatic activity is difficult to control. CatG is involved in the pathophysiology of several serious human diseases, such as chronic obstructive pulmonary disease (COPD), Crohn's disease, rheumatoid arthritis, cystic fibrosis and other conditions clinically manifested by excessive inflammatory reactions. For mentioned reasons, CatG was considered as good molecular target for the development of novel drugs. However, none of them have yet entered the market as novel therapeutic agents. AREAS COVERED This article presents an in-depth and detailed analysis of the therapeutic potential of CatG inhibitors based on a review of patent applications and academic publishing disclosed in patents and patent applications (1991 - 2012), with several exceptions for inhibitors retrieved from academic articles. EXPERT OPINION Among the discussed inhibitors of CatG, examples corresponding to derivatives of β-ketophosphonic acids, aminoalkylphosphonic esters and boswellic acids (BAs) could be regarded as the most promising. The most promising one seems to be analogues of compounds of Nature's origin (peptidic and BA derivates). Nevertheless, nothing is currently known about the clinical disposition of any of the CatG inhibitors discovered so far. This latter point suggests that there is still a lot of work to do in the design of stable, pharmacologically active compounds able to specifically regulate the in vivo activity of cathepsin G.
Collapse
Affiliation(s)
- Paulina Kosikowska
- University of Gdansk, Department of Bioorganic Chemistry , Wita Stwosza 63, 80-952 Gdansk , Poland +48585235095 ; +48585235472 ;
| | | |
Collapse
|
14
|
Gençer N, Demir D, Sonmez F, Kucukislamoglu M. New saccharin derivatives as tyrosinase inhibitors. Bioorg Med Chem 2012; 20:2811-21. [DOI: 10.1016/j.bmc.2012.03.033] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 03/13/2012] [Accepted: 03/15/2012] [Indexed: 11/26/2022]
|
15
|
Electrochemistry of saccharinate anion at liquid interfaces. Electrochem commun 2011. [DOI: 10.1016/j.elecom.2011.09.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
16
|
Yavari I, Bayat M. Triphenylphosphine-Catalyzed Simple Synthesis of Vinyl-Substituted Saccharins. PHOSPHORUS SULFUR 2010. [DOI: 10.1080/10426500214574] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Issa Yavari
- a Department of Chemistry , University of Tarbiat Modarres , Tehran, Iran
| | - Mohammad Bayat
- a Department of Chemistry , University of Tarbiat Modarres , Tehran, Iran
| |
Collapse
|
17
|
Mulchande J, Simões SI, Gaspar MM, Eleutério CV, Oliveira R, Cruz MEM, Moreira R, Iley J. Synthesis, stability, biochemical and pharmacokinetic properties of a new potent and selective 4-oxo-β-lactam inhibitor of human leukocyte elastase. J Enzyme Inhib Med Chem 2010; 26:169-75. [PMID: 20545486 DOI: 10.3109/14756366.2010.486794] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The 4-oxo-β-lactams (azetidine-2,4-diones) are potent acylating agents of the human leukocyte elastase (HLE), a neutrophil serine protease that plays a key role in several inflammatory diseases. A novel 4-oxo-β-lactam containing a N-(4-(phenylsulphonylmethyl)phenyl) group, 3, was designed as a potential mechanism-based inhibitor capable of undergoing elimination of phenylsulphinate upon Ser-195 acylation. Compound 3 was found to be a potent slow-tight binding inhibitor of HLE, presenting a remarkable second-order rate constant of 1.46 x 10⁶ M⁻¹s⁻¹ and displaying selectivity over the proteinase 3 and cathepsin G. However, liberation of phenylsulphinate was not observed in the hydrolysis of 3 in both pH 7.4 phosphate buffer and human plasma. The C(max) values of 1207 μg/total blood, 179 μg/g spleen and 106 μg/g lung were determined by HPLC, following a single 30 mg/kg dose of 3 given intraperitoneally to NMRI mice, suggesting that the inhibitor distributes well into tissues. Although being a powerful selective inhibitor of HLE, 4-oxo-β-lactam 3 has a limited stability, being susceptible to off-target reactions (plasma and liver enzymes).
Collapse
Affiliation(s)
- Jalmira Mulchande
- Medicinal Chemistry, iMed.UL, Faculty of Pharmacy, University of Lisbon, Av. Prof. Gama Pinto, Lisbon, Portugal.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Zakharova VM, Brede O, Gütschow M, Kuznetsov MA, Zibinsky M, Sieler J, Schulze B. N,N′-Linked 1,2-benzisothiazol-3(2H)-one 1,1-dioxides: synthesis, biological activity, and derived radicals. Tetrahedron 2010. [DOI: 10.1016/j.tet.2009.10.070] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
19
|
Ferrer EG, Baeza N, Naso LG, Castellano EE, Piro OE, Williams PAM. Superoxidedismutase-mimetic copper(II) complexes containing saccharinate and 4-aminopyridine/4-cyanopyridine. J Trace Elem Med Biol 2010; 24:20-6. [PMID: 20122575 DOI: 10.1016/j.jtemb.2009.09.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2008] [Revised: 09/23/2009] [Accepted: 09/28/2009] [Indexed: 11/17/2022]
Abstract
Two copper(II) complexes, [Cu(sac)(2)(4-cypy)(2)(H(2)O)], 1 and [Cu(sac)(2)(4-Ampy)(2)(H(2)O)], 2 (4-cypy: 4-cyanopyridine; 4-Ampy: 4-aminopyridine) were prepared. Physicochemical properties of the complexes were studied by spectroscopic (solution UV-vis, diffuse reflectance and IR) techniques. Structural X-ray diffraction data could be obtained only for [Cu(sac)(2)(4-cypy)(2)(H(2)O)] that it crystallized in the tetragonal space group P4cc with a=b=15.313(1), c=13.240(1)A, and Z=4 molecules per unit cell. The complex was cited on a crystallographic C(2)-axis with the Cu(II) ion in a square-pyramidal environment, coordinated at the pyramid basis to the nitrogen atom of two saccharine anions [d(Cu-N)=2.011(3)A] and the pyridine N-atom of two 4-cyanopyridine ligands [d(Cu-N)=2.038(4)A]. The coordination was completed by a water molecule at the pyramid apex [d(Cu-Ow)=2.189(5)A]. Elemental and spectroscopic analyses revealed an O-saccharinate coordination mode for complex 2 and a square-pyramidal structure. Only complex 2 retained its structure in methanolic solution. However, both complexes were able to catalyze the dismutation of superoxide anion (O(2)(-)) (pH 7.5) at micromolar concentrations. Therefore, these complexes behaved as useful SOD-mimetic compounds.
Collapse
Affiliation(s)
- Evelina G Ferrer
- Centro de Química Inorgánica (CEQUINOR/CONICET, UNLP), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, C. Correo 962, 1900 La Plata, Argentina
| | | | | | | | | | | |
Collapse
|
20
|
Gütschow M, Pietsch M, Themann A, Fahrig J, Schulze B. 2,4,5-Triphenylisothiazol-3(2H)-one 1,1-dioxides as inhibitors of human leukocyte elastase. J Enzyme Inhib Med Chem 2008; 20:341-7. [PMID: 16206828 DOI: 10.1080/14756360500148783] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
A series of substituted 2,4,5-triphenylisothiazol-3(2H)-one 1,1-dioxides 9 was synthesized and investigated as inhibitors of human leukocyte elastase (HLE). All compounds were found to inhibit HLE in a time-dependent manner and most of them exhibited kobs/[I] values > 300M(-1)s(-1). The most potent 3-oxosultam of this series was 91 (kobs/[I] = 2440 M(-1)s(-1)). Kinetic investigations performed with 9g and different substrate concentrations did not allow to clearly distinguish between a competitive or noncompetitive mode of inhibition. A more complex interaction is supported by the failure of a linear dependency of kobs values on the inhibitor concentration.
Collapse
Affiliation(s)
- Michael Gütschow
- Pharmaceutical Institute, Poppelsdorf, University of Bonn, Bonn, Germany.
| | | | | | | | | |
Collapse
|
21
|
Jakopin Ž, Dolenc MS. Preparation of Saccharin Derivatives of Amino Acids as Potential Peptidomimetic Building Blocks. SYNTHETIC COMMUN 2008. [DOI: 10.1080/00397910802149105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Žiga Jakopin
- a Faculty of Pharmacy, University of Ljubljana , Ljubljana, Slovenia
| | | |
Collapse
|
22
|
Synthesis and elastase-inhibiting activity of 2-pyridinyl-isothiazol-3(2H)-one 1,1-dioxides. Bioorg Med Chem 2008; 16:8127-35. [DOI: 10.1016/j.bmc.2008.07.049] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2008] [Revised: 07/14/2008] [Accepted: 07/18/2008] [Indexed: 11/21/2022]
|
23
|
Rode H, Koerbe S, Besch A, Methling K, Loose J, Otto HH. Synthesis and in vitro evaluation of pseudosaccharinamine derivatives as potential elastase inhibitors. Bioorg Med Chem 2006; 14:2789-98. [PMID: 16377194 DOI: 10.1016/j.bmc.2005.11.057] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2005] [Revised: 11/12/2005] [Accepted: 11/30/2005] [Indexed: 11/25/2022]
Abstract
Pseudosaccharinamine derivatives were evaluated for elastase inhibitory activity. Ester derivatives of pseudosaccharinamine displayed reversible and high inhibition of human leukocyte elastase (HLE) as compared to porcine pancreatic elastase (PPE). Cyanomethyl (2S,3S)-2-(1,1-dioxobenzo[d]isothiazol-3-ylamino)-3-methylpentanoate was found to inhibit HLE at Ki=0.8 microM.
Collapse
Affiliation(s)
- Haridas Rode
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Ernst-Moritz-Arndt-University, Friedrich-Ludwig-Jahn-Str. 17, D-17489 Greifswald, Germany
| | | | | | | | | | | |
Collapse
|
24
|
Lai Z, Gan X, Wei L, Alliston KR, Yu H, Li YH, Groutas WC. Potent inhibition of human leukocyte elastase by 1,2,5-thiadiazolidin-3-one 1,1 dioxide-based sulfonamide derivatives. Arch Biochem Biophys 2004; 429:191-7. [PMID: 15313222 DOI: 10.1016/j.abb.2004.06.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2004] [Revised: 06/11/2004] [Indexed: 10/26/2022]
Abstract
The design, synthesis, and in vitro biochemical evaluation of a class of mechanism-based inhibitors of human leukocyte elastase (HLE) that incorporate in their structure a 1,2,5-thiadiazolidin-3-one 1,1 dioxide scaffold with appropriate recognition and reactivity elements appended to it is described. The synthesized compounds were found to be efficient, time-dependent inhibitors of HLE. The interaction of the inhibitors with HLE is postulated to lead to the formation of a highly reactive N-sulfonyl imine (a Michael acceptor) that arises from an enzyme-induced sulfonamide fragmentation cascade. Subsequent reaction ultimately leads to the formation of a relatively stable acyl enzyme. The results cited herein demonstrate convincingly the superiority of the 1,2,5-thiadiazolidin-3-one 1,1 dioxide scaffold over other scaffolds (e.g., saccharin) in the design of inhibitors of (chymo)trypsin-like serine proteases.
Collapse
Affiliation(s)
- Zhong Lai
- Department of Chemistry, Wichita State University, Wichita, Kansas 67260, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Bioorganic & Medicinal Chemistry Symposia-in-Print. Bioorg Med Chem 2004. [DOI: 10.1016/s0968-0896(03)00447-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
26
|
Powers JC, Asgian JL, Ekici OD, James KE. Irreversible inhibitors of serine, cysteine, and threonine proteases. Chem Rev 2002; 102:4639-750. [PMID: 12475205 DOI: 10.1021/cr010182v] [Citation(s) in RCA: 818] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- James C Powers
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA.
| | | | | | | |
Collapse
|
27
|
Icbudak H, Naumov P, Ristova M, Jovanovski G. Structural studies of bis( o -sulfobenzimidato)praseodymium(III) chloride hexahydrate. J Mol Struct 2002. [DOI: 10.1016/s0022-2860(01)00815-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
28
|
Naumov P, Jovanovski G, Hanna JV, Razak IA, Chantrapromma S, Fun HK, Ng SW. Diaquabis(4,4′-bipyridine)copper(II) di(o-sulfobenzimidate) dichloromethane solvate, a two-dimensional Cu4(4,4′-C5H4NC5H4N)4 rhombic grid clathrating guest dichloromethane. INORG CHEM COMMUN 2001. [DOI: 10.1016/s1387-7003(01)00325-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
29
|
Vagnoni LM, Gronostaj M, Kerrigan JE. 6-Acylamino-2-1[(ethylsulfonyl)oxy]-1H-isoindole-1,3-diones mechanism-based inhibitors of human leukocyte elastase and cathepsin G: effect of chirality in the 6-acylamino substituent on inhibitory potency and selectivity. Bioorg Med Chem 2001; 9:637-45. [PMID: 11310598 DOI: 10.1016/s0968-0896(00)00281-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Inhibition of human leukocyte elastase(HLE) by a series of 6-acylamino-2-[(ethylsulfonyl)oxy)]-1H-isoindole-1,3-diones was determined and compared to their inhibition of ChT, PPE, and Cat G. The best inhibitor of the series was 6-((1'S)-camphanyl)amino-2-[(ethylsulfonyl) oxy]-1H-isoindole-1,3-dione 5b, with a k(obs)/[I] = 11,000 M(-1) s(-1). This study revealed that HLE shows a preference for the S stereochemistry and tolerates hydrophobic substituents in the Sn' binding sites. Molecular modeling of non-covalent HLE-inhibitor complexes was used as a tool to investigate our binding model. Buffer stability assays reveal that these compounds are susceptible to hydrolysis at physiological pH.
Collapse
Affiliation(s)
- L M Vagnoni
- Department of Pharmaceutical Chemistry, College of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA
| | | | | |
Collapse
|
30
|
Outer-sphere coordination, N-coordination and O-coordination of the deprotonated saccharin in copper(II) saccharinato complexes. Implications for the saccharinato carbonyl stretching frequency. Inorganica Chim Acta 2001. [DOI: 10.1016/s0020-1693(01)00306-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
31
|
Macchia B, Gentili D, Macchia M, Mamone F, Martinelli A, Orlandini E, Rossello A, Cercignani G, Pierotti R, Allegretti M, Asti C, Caselli G. Synthesis, inhibitory activity towards human leukocyte elastase and molecular modelling studies of 1-carbamoyl-4-methyleneaminoxyazetidinones. Eur J Med Chem 2000; 35:53-67. [PMID: 10733603 DOI: 10.1016/s0223-5234(00)00111-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Some monocyclic beta-lactam derivatives of type 3 (MAOAs) in which the leaving group (LG) on the C(4) is a methyleneaminoxy moiety, were synthesised and tested in vitro and in vivo for their inhibitory activity towards human leukocyte elastase (HLE). Some compounds showed an appreciable in vitro inhibitory activity against this enzyme. Effects on the anti-HLE activity due to the nature of the substituents R and R(1) present on their LG were observed and rationalised by means of molecular modelling techniques. The results of in vivo pharmacological tests indicated that MAOAs, while showing an inhibitory activity on the haemorrhage induced by HLE, did not exhibit any effects due to the R and R(1) substituents.
Collapse
Affiliation(s)
- B Macchia
- Dipartimento di Scienze Farmaceutiche, Facoltà di Farmacia, Università degli Studi di Pisa, Via Bonanno, 6, 56100, Pisa, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Gütschow M, Kuerschner L, Neumann U, Pietsch M, Löser R, Koglin N, Eger K. 2-(diethylamino)thieno1,3ŏxazin-4-ones as stable inhibitors of human leukocyte elastase. J Med Chem 1999; 42:5437-47. [PMID: 10639285 DOI: 10.1021/jm991108w] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A series of 2-(diethylamino)thieno1,3ŏxazin-4-ones was synthesized and evaluated in vitro for inhibitory activity toward human leukocyte elastase (HLE). The Gewald thiophene synthesis was utilized to obtain several ethyl 2-aminothiophene-3-carboxylates. These precursors were subjected to a five-step route to obtain thieno2,3-d1,3ŏxazin-4-ones bearing various substituents at positions 5 and 6. Both thieno2,3-d and thieno3,2-d fused oxazin-4-ones possess extraordinary chemical stability, which was expressed as rate constants of the alkaline hydrolysis. The kinetic parameters of the HLE inhibition were determined. The most potent compound, 2-(diethylamino)-4H-1benzothieno2,3-d1,3ŏxazin-4-one, exhibited a K(i) value of 5.8 nM. 2-(Diethylamino)thieno1, 3ŏxazin-4-ones act as acyl-enzyme inhibitors of HLE, similar to the inhibition of serine proteases by 4H-3,1-benzoxazin-4-ones. The isosteric benzene-thiophene replacement accounts for an enhanced stability of the acyl-enzyme intermediates.
Collapse
Affiliation(s)
- M Gütschow
- Institute of Pharmacy, University of Leipzig, D-04103 Leipzig, Germany
| | | | | | | | | | | | | |
Collapse
|
33
|
Regan J, McGarry D, Bruno J, Green D, Newman J, Hsu CY, Kline J, Barton J, Travis J, Choi YM, Volz F, Pauls H, Harrison R, Zilberstein A, Ben-Sasson SA, Chang M. Anionic- and lipophilic-mediated surface binding inhibitors of human leukocyte elastase. J Med Chem 1997; 40:3408-22. [PMID: 9341916 DOI: 10.1021/jm970251r] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We report the synthesis of a series of diphenylmethane-based oligomers containing anionic and lipophilic functionalities that are potent inhibitors of human leukocyte elastase (HLE). The enzyme inhibition is regulated by the size of the oligomer, as well as, the number of charges. Lipophilicity is an important element in determining potency and specificity against other basic enzymes. Compounds whose scaffolds contain three phenoxyacetic acid groups and three alkyl ethers are competitive and specific inhibitors of HLE with Ki = 20 nM. The mechanism of action of this class of compounds is believed to involve multidendate interactions with the surface of HLE near the active site which prevents substrate access to the catalytic site.
Collapse
Affiliation(s)
- J Regan
- Department of Medicinal Chemistry, Rhône-Poulenc Rorer, Collegeville, Pennsylvania 19426, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
A series of 4H-3,1-benzoxazin-4-ones is reported that inhibit the serine proteases human cathepsin G and bovine chymotrypsin. The synthesis and kinetic parameters of the alkaline hydrolysis is described. These compounds act as acyl-enzyme inhibitors of both enzymes. The reaction of cathepsin G with 2-benzylamino-4H-3,1-benzoxazin-4-one (20) was studied in detail. A partition in deacylation of the initially formed acyl-enzyme was observed, leading to the formation of 2-(3-benzylureido)benzoic acid (26) and 3-benzylquinazoline-2,4-(1H,3H)-dione (27). A 6-methyl substitution strongly increased the acylation rate of both proteases. Introduction of an aryl moiety into the 2-substituent led to compounds with Ki values towards cathepsin G in the nanomolar range. Their inhibitory potency is stronger than that of other synthetic inhibitors of cathepsin G.
Collapse
Affiliation(s)
- M Gütschow
- Institute of Pharmacy, University of Leipzig, Germany
| | | |
Collapse
|