1
|
Nguyen K, Carleton G, Lum JJ, Duncan KD. Expanding Spatial Metabolomics Coverage with Lithium-Doped Nanospray Desorption Electrospray Ionization Mass Spectrometry Imaging. Anal Chem 2024. [PMID: 39504343 DOI: 10.1021/acs.analchem.4c03553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Spatial metabolomics has emerged as a powerful tool capable of revealing metabolic gradients throughout complex heterogeneous tissues. While mass spectrometry imaging (MSI) technologies designed to generate spatial metabolomic data have improved significantly over time, metabolite coverage is still a significant limitation. It is possible to achieve deeper metabolite coverage by imaging in positive and negative polarities or imaging several serial sections with different targeted biomolecular classes. However, this significantly increases the number of tissue samples required for biological studies and reduces the capacity for larger sample cohorts. Herein, we introduce lithium-doped nanospray desorption electrospray ionization (nano-DESI) as a simple and robust method to increase spatial metabolomics coverage, which is achieved through enhancements to ionization efficiencies in positive ion mode for metabolites and lipids lacking basic moieties, and improved structurally diagnostic tandem mass spectra for [M + Li]+ adducts. Specifically, signal intensities were found to be enhanced by 10-1000× for 96 compounds including small molecule metabolites, fatty acids, neutral lipids (e.g., diacylglycerols, DAG), and phospholipids when lithium was added to the ESI solvent. In addition, proof-of-principle results reveal that lithium-doped nano-DESI MSI was able to comprehensively visualize metabolites and lipids in the prostaglandin (PG) biosynthetic pathway with PG isomeric resolution in an ovarian tumor section. These data show colocalization of fatty acid (FA) 20:4 containing DAGs, FA 20:4 monoacylglycerols (MAGs), and FA 20:4 with PGE2 and disparate localizations of PGD2. Overall, this study describes a simple and powerful approach to more comprehensively probe the spatial metabolome with MSI.
Collapse
Affiliation(s)
- Kiera Nguyen
- Department of Chemistry, Vancouver Island University, Nanaimo, BC V9R 5S5, Canada
| | - Gillian Carleton
- Trev and Joyce Deeley Research Centre, BC Cancer, Victoria, BC V8R 6 V5, Canada
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Julian J Lum
- Trev and Joyce Deeley Research Centre, BC Cancer, Victoria, BC V8R 6 V5, Canada
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Kyle D Duncan
- Department of Chemistry, Vancouver Island University, Nanaimo, BC V9R 5S5, Canada
- Department of Chemistry, University of Victoria, Victoria, BC V8W 2Y2, Canada
| |
Collapse
|
2
|
Zhao J, Qiao L, Xia Y. In-Depth Characterization of Sphingoid Bases via Radical-Directed Dissociation Tandem Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:2394-2402. [PMID: 37735971 DOI: 10.1021/jasms.3c00274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Sphingoid base (SPH) is a basic structural unit of all classes of sphingolipids. A sphingoid base typically consists of an aliphatic chain that may be desaturated between C4 and C5, an amine group at C2, and a variable number of OH groups located at C1, C3, and C4. Variations in the chain length and the occurrence of chemical modifications, such as methyl branching, desaturation, and hydroxylation, lead to a large structural diversity and distinct functional properties of sphingoid bases. However, conventional tandem mass spectrometry (MS/MS) via collision-induced dissociation (CID) faces challenges in characterizing these modifications. Herein, we developed an MS/MS method based on CID-triggered radical-directed dissociation (RDD) for in-depth characterization of sphingoid bases. The method involves derivatizing the sphingoid amine with 3-(2,2,6,6-tetramethylpiperidin-1-yloxymethyl)-picolinic acid 2,5-dioxopyrrolidin-1-yl ester (TPN), followed by MS2 CID to unleash the pyridine methyl radical moiety for subsequent RDD. This MS/MS method was integrated on a reversed-phase liquid chromatography-mass spectrometry workflow and further applied for in-depth profiling of total sphingoid bases in bovine heart and Caenorhabditis elegans. Notably, we identified and relatively quantified a series of unusual sphingoid bases, including SPH id17:2 (4,13) and SPH it19:0 in C. elegans, revealing that the metabolic pathways of sphingolipids are more diverse than previously known.
Collapse
Affiliation(s)
- Jing Zhao
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Lipeng Qiao
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yu Xia
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
3
|
da Silva KM, Wölk M, Nepachalovich P, Iturrospe E, Covaci A, van Nuijs ALN, Fedorova M. Investigating the Potential of Drift Tube Ion Mobility for the Analysis of Oxidized Lipids. Anal Chem 2023; 95:13566-13574. [PMID: 37646365 DOI: 10.1021/acs.analchem.3c02213] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Epilipids, a subset of the lipidome that comprises oxidized, nitrated, and halogenated lipid species, show important biochemical activity in the regulation of redox lipid metabolism by influencing cell fate decisions, including death, health, and aging. Due to the large chemical diversity, reversed-phase liquid chromatography-high-resolution mass spectrometry (RPLC-HRMS) methods have only a limited ability to separate numerous isobaric and isomeric epilipids. Ion mobility spectrometry (IMS) is a gas-phase separation technique that can be combined with LC-HRMS to improve the overall peak capacity of the analytical platform. Here, we illustrate the advantages and discuss the current limitations of implementing IMS in LC-HRMS workflows for the analysis of oxylipins and oxidized complex lipids. Using isomeric mixtures of oxylipins, we demonstrated that while deprotonated ions of eicosanoids were poorly resolved by IMS, sodium acetate and metal adducts (e.g., Li, Na, Ag, Ba, K) of structural isomers often showed ΔCCS% above 1.4% and base peak separation with high-resolution demultiplexing (HRDm). The knowledge of the IM migration order was also used as a proof of concept to help in the annotation of oxidized complex lipids using HRDm and all-ion fragmentation spectra. Additionally, we used a mixture of deuterium-labeled lipids for a routine system suitability test with the purpose of improving harmonization and interoperability of IMS data sets in (epi)lipidomics.
Collapse
Affiliation(s)
| | - Michele Wölk
- Lipid Metabolism: Analysis and Integration, Center of Membrane Biochemistry and Lipid Research, Faculty of Medicine Carl Gustav Carus of TU Dresden, 01307 Dresden, Germany
| | - Palina Nepachalovich
- Lipid Metabolism: Analysis and Integration, Center of Membrane Biochemistry and Lipid Research, Faculty of Medicine Carl Gustav Carus of TU Dresden, 01307 Dresden, Germany
| | - Elias Iturrospe
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Jette, Belgium
| | - Adrian Covaci
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| | | | - Maria Fedorova
- Lipid Metabolism: Analysis and Integration, Center of Membrane Biochemistry and Lipid Research, Faculty of Medicine Carl Gustav Carus of TU Dresden, 01307 Dresden, Germany
| |
Collapse
|
4
|
Young RSE, Flakelar CL, Narreddula VR, Jekimovs LJ, Menzel JP, Poad BLJ, Blanksby SJ. Identification of Carbon-Carbon Double Bond Stereochemistry in Unsaturated Fatty Acids by Charge-Remote Fragmentation of Fixed-Charge Derivatives. Anal Chem 2022; 94:16180-16188. [DOI: 10.1021/acs.analchem.2c03625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Reuben S. E. Young
- School of Chemistry and Physics, Queensland University of Technology, Brisbane 4001, Queensland, Australia
- Central Analytical Research Facility, Queensland University of Technology, Brisbane 4001, Queensland, Australia
| | - Clare L. Flakelar
- School of Behavioural and Health Sciences, Australian Catholic University, Brisbane 4014, Queensland, Australia
| | - Venkateswara R. Narreddula
- School of Chemistry and Physics, Queensland University of Technology, Brisbane 4001, Queensland, Australia
| | - Lachlan J. Jekimovs
- School of Chemistry and Physics, Queensland University of Technology, Brisbane 4001, Queensland, Australia
| | - Jan P. Menzel
- School of Chemistry and Physics, Queensland University of Technology, Brisbane 4001, Queensland, Australia
| | - Berwyck L. J. Poad
- School of Chemistry and Physics, Queensland University of Technology, Brisbane 4001, Queensland, Australia
- Central Analytical Research Facility, Queensland University of Technology, Brisbane 4001, Queensland, Australia
| | - Stephen J. Blanksby
- School of Chemistry and Physics, Queensland University of Technology, Brisbane 4001, Queensland, Australia
- Central Analytical Research Facility, Queensland University of Technology, Brisbane 4001, Queensland, Australia
| |
Collapse
|
5
|
Bonney JR, Prentice BM. Perspective on Emerging Mass Spectrometry Technologies for Comprehensive Lipid Structural Elucidation. Anal Chem 2021; 93:6311-6322. [PMID: 33856206 PMCID: PMC8177724 DOI: 10.1021/acs.analchem.1c00061] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Lipids and metabolites are of interest in many clinical and research settings because it is the metabolome that is increasingly recognized as a more dynamic and sensitive molecular measure of phenotype. The enormous diversity of lipid structures and the importance of biological structure-function relationships in a wide variety of applications makes accurate identification a challenging yet crucial area of research in the lipid community. Indeed, subtle differences in the chemical structures of lipids can have important implications in cellular metabolism and many disease pathologies. The speed, sensitivity, and molecular specificity afforded by modern mass spectrometry has led to its widespread adoption in the field of lipidomics on many different instrument platforms and experimental workflows. However, unambiguous and complete structural identification of lipids by mass spectrometry remains challenging. Increasingly sophisticated tandem mass spectrometry (MS/MS) approaches are now being developed and seamlessly integrated into lipidomics workflows to meet this challenge. These approaches generally either (i) alter the type of ion that is interrogated or (ii) alter the dissociation method in order to improve the structural information obtained from the MS/MS experiment. In this Perspective, we highlight recent advances in both ion type alteration and ion dissociation methods for lipid identification by mass spectrometry. This discussion is aimed to engage investigators involved in fundamental ion chemistry and technology developments as well as practitioners of lipidomics and its many applications. The rapid rate of technology development in recent years has accelerated and strengthened the ties between these two research communities. We identify the common characteristics and practical figures of merit of these emerging approaches and discuss ways these may catalyze future directions of lipid structural elucidation research.
Collapse
Affiliation(s)
- Julia R Bonney
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Boone M Prentice
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
6
|
Randolph CE, Blanksby SJ, McLuckey SA. Enhancing detection and characterization of lipids using charge manipulation in electrospray ionization-tandem mass spectrometry. Chem Phys Lipids 2020; 232:104970. [PMID: 32890498 PMCID: PMC7606777 DOI: 10.1016/j.chemphyslip.2020.104970] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/25/2020] [Accepted: 08/31/2020] [Indexed: 12/14/2022]
Abstract
Heightened awareness regarding the implication of disturbances in lipid metabolism with respect to prevalent human-related pathologies demands analytical techniques that provide unambiguous structural characterization and accurate quantitation of lipids in complex biological samples. The diversity in molecular structures of lipids along with their wide range of concentrations in biological matrices present formidable analytical challenges. Modern mass spectrometry (MS) offers an unprecedented level of analytical power in lipid analysis, as many advancements in the field of lipidomics have been facilitated through novel applications of and developments in electrospray ionization tandem mass spectrometry (ESI-MS/MS). ESI allows for the formation of intact lipid ions with little to no fragmentation and has become widely used in contemporary lipidomics experiments due to its sensitivity, reproducibility, and compatibility with condensed-phase modes of separation, such as liquid chromatography (LC). Owing to variations in lipid functional groups, ESI enables partial chemical separation of the lipidome, yet the preferred ion-type is not always formed, impacting lipid detection, characterization, and quantitation. Moreover, conventional ESI-MS/MS approaches often fail to expose diverse subtle structural features like the sites of unsaturation in fatty acyl constituents or acyl chain regiochemistry along the glycerol backbone, representing a significant challenge for ESI-MS/MS. To overcome these shortcomings, various charge manipulation strategies, including charge-switching, have been developed to transform ion-type and charge state, with aims of increasing sensitivity and selectivity of ESI-MS/MS approaches. Importantly, charge manipulation approaches afford enhanced ionization efficiency, improved mixture analysis performance, and access to informative fragmentation channels. Herein, we present a critical review of the current suite of solution-based and gas-phase strategies for the manipulation of lipid ion charge and type relevant to ESI-MS/MS.
Collapse
Affiliation(s)
- Caitlin E Randolph
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, USA
| | - Stephen J Blanksby
- Central Analytical Research Facility, Institute for Future Environments, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Scott A McLuckey
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, USA.
| |
Collapse
|
7
|
Wang HYJ, Hsu FF. Revelation of Acyl Double Bond Positions on Fatty Acyl Coenzyme A Esters by MALDI/TOF Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:1047-1057. [PMID: 32167298 DOI: 10.1021/jasms.9b00139] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Fatty acyl coenzyme A esters (FA-CoAs) are important crossroad intermediates in lipid catabolism and anabolism, and the structures are complicated. Several mass spectrometric approaches have been previously described to elucidate their structures. However, a direct mass spectrometric approach toward a complete identification of the molecule, including the location of unsaturated bond(s) in the fatty acid chain has not been reported. In this study, we applied a simple MALDI/TOF mass spectrometric method to a near-complete characterization of long-chain FA-CoAs, including the location(s) of the double bond in the fatty acyl chain, and the common structural features that recognize FA-CoAs. Negative ion mass spectra of saturated, monounsaturated, and polyunsaturated FA-CoAs were acquired with a MALDI/TOF mass spectrometer using 2,5-dihydroxybenzoic acid as the matrix and ionized with a laser fluence two folds of the threshold to induce the in-source fragmentation (ISF) of the analytes. The resulting ISF spectra contained fragment ions arising from specific cleavages of the C-C bond immediate adjacent to the acyl double-bond. This structural feature affords locating the double-bond position(s) of the fatty acyl substituent. Thereby, positional isomer such as 18:3(n - 3) and 18:3(n - 6) FA-CoA can be differentiated without applying tandem mass spectrometry.
Collapse
Affiliation(s)
- Hay-Yan J Wang
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| | - Fong-Fu Hsu
- Mass Spectrometry Resource, Division of Endocrinology, Diabetes, Metabolism, and Lipid Research, Washington University School of Medicine Box 8127, 660 S Euclid Ave., St. Louis, Missouri 63110, United States
| |
Collapse
|
8
|
Evaluation of ultraviolet photodissociation tandem mass spectrometry for the structural assignment of unsaturated fatty acid double bond positional isomers. Anal Bioanal Chem 2020; 412:2339-2351. [PMID: 32006064 DOI: 10.1007/s00216-020-02446-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/18/2019] [Accepted: 01/21/2020] [Indexed: 12/13/2022]
Abstract
Fatty acids are a major source of structural diversity within the lipidome due to variations in their acyl chain lengths, branching, and cyclization, as well as the number, position, and stereochemistry of double bonds within their mono- and poly-unsaturated species. Here, the utility of 193 nm UltraViolet PhotoDissociation tandem mass spectrometry (UVPD-MS/MS) has been evaluated for the detailed structural characterization of a series of unsaturated fatty acid lipid species. UVPD-MS/MS of unsaturated fatty acids is shown to yield pairs of unique diagnostic product ions resulting from cleavages adjacent to their C=C double bonds, enabling unambiguous localization of the site(s) of unsaturation within these lipids. The effect of several experimental variables on the observed fragmentation behaviour and UVPD-MS/MS efficiency, including the position and number of double bonds, the effect of conjugated versus non-conjugated double bonds, the number of laser pulses, and the influence of alkali metal cations (Li, Na, K) as the ionizing adducts, has been evaluated. Importantly, the abundance of the diagnostic ions is shown to enable relative quantitation of mixtures of fatty acid isomers across a range of molar ratios. Finally, the practical application of 193 nm UVPD-MS/MS is demonstrated via characterization of changes in the ratios of fatty acid double bond positional isomers in isogenic colorectal cancer cell lines. This study therefore demonstrates the practicality of UVPD-MS/MS for the structural characterization of fatty acid isomers in lipidome analysis workflows.
Collapse
|
9
|
Ahern KW, Serbulea V, Wingrove CL, Palas ZT, Leitinger N, Harris TE. Regioisomer-independent quantification of fatty acid oxidation products by HPLC-ESI-MS/MS analysis of sodium adducts. Sci Rep 2019; 9:11197. [PMID: 31371760 PMCID: PMC6671977 DOI: 10.1038/s41598-019-47693-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 07/22/2019] [Indexed: 01/08/2023] Open
Abstract
Despite growing acknowledgement of the role of oxidized fatty acids (oxFA) as cellular signaling molecules and in the pathogenesis of disease, developing methods to measure these species in biological samples has proven challenging. Here we describe a novel method utilizing HPLC-ESI-MS/MS to identify and quantify multiple full-length oxFA species in a regioisomer-independent manner without the need for time-consuming sample preparation or derivatization. Building on recent progress in the characterization of FA and their oxidation products by MS/MS, we employed positive-ion ionization by measuring sodium adducts in conjunction with Differential Energy Qualifier Ion Monitoring to unequivocally verify the presence of the hydroperoxide, hydroxide, and ketone oxidation products of linoleic and arachidonic acid. Our HPLC method achieved separation of these oxidized species from their unoxidized counterparts while maintaining regioisomer-independent elution, allowing quantification over a 5 log10 range with a lower limit of quantification of 0.1 picomoles. With a simple sample preparation and a runtime as low as 11 minutes, our method allows the rapid and facile detection and measurement of full-length oxFA in biological samples. We believe this approach will allow for new insight and further investigation into the role of oxFA in metabolic disease.
Collapse
Affiliation(s)
- Katelyn W Ahern
- Department of Pharmacology, University of Virginia Health System, Charlottesville, VA, 22908, United States
| | - Vlad Serbulea
- Department of Pharmacology, University of Virginia Health System, Charlottesville, VA, 22908, United States
| | - Catherine L Wingrove
- Department of Pharmacology, University of Virginia Health System, Charlottesville, VA, 22908, United States
| | - Zachary T Palas
- Department of Pharmacology, University of Virginia Health System, Charlottesville, VA, 22908, United States
| | - Norbert Leitinger
- Department of Pharmacology, University of Virginia Health System, Charlottesville, VA, 22908, United States
| | - Thurl E Harris
- Department of Pharmacology, University of Virginia Health System, Charlottesville, VA, 22908, United States.
| |
Collapse
|
10
|
Randolph CE, Foreman DJ, Blanksby SJ, McLuckey SA. Generating Fatty Acid Profiles in the Gas Phase: Fatty Acid Identification and Relative Quantitation Using Ion/Ion Charge Inversion Chemistry. Anal Chem 2019; 91:9032-9040. [PMID: 31199126 PMCID: PMC6882335 DOI: 10.1021/acs.analchem.9b01333] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Representing the most fundamental lipid class, fatty acids (FA) play vital biological roles serving as energy sources, cellular signaling molecules, and key architectural components of complex lipids. Direct infusion electrospray ionization spectrometry, also known as shotgun lipidomics, has emerged as a rapid and powerful toolbox for lipid analysis. While shotgun lipidomics can be a sensitive approach to FA detection, the diverse molecular structure of FA presents challenges for unambiguous identification and the relative quantification of isomeric contributors. In particular, pinpointing double bond position(s) in unsaturated FA and determining the relative contribution of double bond isomers has limited the application of the shotgun approach. Recently, we reported the use of gas-phase ion/ion reactions to facilitate the identification of FA. Briefly, singly deprotonated FA anions undergo charge inversion when reacted in the gas phase with tris-phenanthroline magnesium dications by forming [FA - H + MgPhen]+ complex ions. These charge-inverted FA complex cations fragment upon ion-trap collision-induced dissociation (CID) to generate product ion spectra unique to individual FA isomers. Herein, we report the development of a mass spectral library comprised of [FA - H + MgPhen]+ product ion spectra. The developed FA library permits confident FA identification, including polyunsaturated FA isomers. Furthermore, we demonstrate the ability to determine relative contributions of isomeric FA using multiple linear regression analysis paired with gas-phase ion/ion reactions. We successfully applied the presented method to generate a FA profile for bovine liver phospholipidome based entirely on gas-phase chemistries.
Collapse
Affiliation(s)
- Caitlin E. Randolph
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, United States
| | - David J. Foreman
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, United States
| | - Stephen J. Blanksby
- Central Analytical Research Facility, Institute for Future Environments, Queensland University of Technology, Brisbane, Queensland 4000, Australia
| | - Scott A. McLuckey
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, United States
| |
Collapse
|
11
|
Randolph CE, Foreman DJ, Betancourt SK, Blanksby SJ, McLuckey SA. Gas-Phase Ion/Ion Reactions Involving Tris-Phenanthroline Alkaline Earth Metal Complexes as Charge Inversion Reagents for the Identification of Fatty Acids. Anal Chem 2018; 90:12861-12869. [PMID: 30260210 PMCID: PMC6688842 DOI: 10.1021/acs.analchem.8b03441] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Fatty acids (FA) play vital biological roles as energy sources, signaling molecules and key building blocks of complex lipids in cell membranes. Modifications to FA structure and composition are associated with the onset and progression of a number of chronic diseases. Consequently, the sensitive detection and unambiguous structure elucidation of FA is integral to the advancement of biomedical sciences. Recent advances in FA analysis have taken advantage of wet chemical derivatization to enhance detection and drive unique fragmentation in tandem mass spectrometry protocols. Here, we significantly further this approach through demonstrating gas-phase charge inversion of singly deprotonated FA ions, [M - H]-, using doubly charged tris-phenanthroline alkaline earth metal complexes, [Cat(Phen)3]2+ (Cat = Mg2+, Ca2+, Sr2+, or Ba2+). Metal cationized FA, [M - H + Cat]+ are obtained after the gas-phase ion/ion reaction. Low-energy collision-induced dissociation (CID) of the [M - H + Cat]+ cations facilitates double bond localization for a variety of monounsaturated and polyunsaturated FAs. Ultimately, detailed characterization presented unambiguous distinction among FA double bond positional isomers, such as n-3 and n-6 isomers. The method was successfully used to identify the FA profile of corn oil, including double bond localization for unsaturated FAs present.
Collapse
Affiliation(s)
- Caitlin E. Randolph
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, United States
| | - David J. Foreman
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, United States
| | - Stella K. Betancourt
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, United States
| | - Stephen J. Blanksby
- Central Analytical Research Facility, Institute for Future Environments, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Scott A. McLuckey
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, United States
| |
Collapse
|
12
|
Zhao X, Zhao Y, Zhang L, Ma X, Zhang S, Zhang X. Rapid Analysis of Unsaturated Fatty Acids on Paper-Based Analytical Devices via Online Epoxidation and Ambient Mass Spectrometry. Anal Chem 2018; 90:2070-2078. [PMID: 29272100 DOI: 10.1021/acs.analchem.7b04312] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Xu Zhao
- Beijing
Key Laboratory for Microanalytical Methods and Instrumentation, Department
of Chemistry, Tsinghua University, Beijing 100084, People’s Republic of China
| | - Yaoyao Zhao
- Graduate
School of Health Science, Hokkaido University, North 12, West 5, Kita-ku, Sapporo 060-0812, Japan
| | - Lin Zhang
- Beijing
Key Laboratory for Microanalytical Methods and Instrumentation, Department
of Chemistry, Tsinghua University, Beijing 100084, People’s Republic of China
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, People’s Republic of China
| | - Xiaoxiao Ma
- State
Key Laboratory of Precision Measurement Technology and Instruments,
Department of Precision Instrument, Tsinghua University, Beijing 100084, People’s Republic of China
| | - Sichun Zhang
- Beijing
Key Laboratory for Microanalytical Methods and Instrumentation, Department
of Chemistry, Tsinghua University, Beijing 100084, People’s Republic of China
| | - Xinrong Zhang
- Beijing
Key Laboratory for Microanalytical Methods and Instrumentation, Department
of Chemistry, Tsinghua University, Beijing 100084, People’s Republic of China
| |
Collapse
|
13
|
Zhao Y, Zhao H, Zhao X, Jia J, Ma Q, Zhang S, Zhang X, Chiba H, Hui SP, Ma X. Identification and Quantitation of C═C Location Isomers of Unsaturated Fatty Acids by Epoxidation Reaction and Tandem Mass Spectrometry. Anal Chem 2017; 89:10270-10278. [PMID: 28837768 DOI: 10.1021/acs.analchem.7b01870] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Yaoyao Zhao
- Graduate
School of Health Science, Hokkaido University, North 12, West 5, Kita-ku, Sapporo 060-0812, Japan
| | - Hansen Zhao
- Department
of Chemistry, Tsinghua University, Beijing 100084, P.R. China
| | - Xu Zhao
- Department
of Chemistry, Tsinghua University, Beijing 100084, P.R. China
| | - Jia Jia
- Department
of Chemistry, Tsinghua University, Beijing 100084, P.R. China
| | - Qiang Ma
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Sichun Zhang
- Department
of Chemistry, Tsinghua University, Beijing 100084, P.R. China
| | - Xinrong Zhang
- Department
of Chemistry, Tsinghua University, Beijing 100084, P.R. China
| | - Hitoshi Chiba
- Graduate
School of Health Science, Hokkaido University, North 12, West 5, Kita-ku, Sapporo 060-0812, Japan
| | - Shu-Ping Hui
- Graduate
School of Health Science, Hokkaido University, North 12, West 5, Kita-ku, Sapporo 060-0812, Japan
| | - Xiaoxiao Ma
- Department
of Precision Instruments, Tsinghua University, Beijing 100084, P.R. China
| |
Collapse
|
14
|
Xie X, Wang Z, Li Y, Zhan L, Nie Z. Investigation and Applications of In-Source Oxidation in Liquid Sampling-Atmospheric Pressure Afterglow Microplasma Ionization (LS-APAG) Source. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:1036-1047. [PMID: 27995501 DOI: 10.1007/s13361-016-1550-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 10/28/2016] [Accepted: 10/29/2016] [Indexed: 06/06/2023]
Abstract
A liquid sampling-atmospheric pressure afterglow microplasma ionization (LS-APAG) source is presented for the first time, which is embedded with both electrospray ionization (ESI) and atmospheric pressure afterglow microplasma ionization (APAG) techniques. This ion source is capable of analyzing compounds with diverse molecule weights and polarities. An unseparated mixture sample was detected as a proof-of-concept, giving complementary information (both polarities and non-polarities) with the two ionization modes. It should also be noted that molecular mass can be quickly identified by ESI with clean and simple spectra, while the structure can be directly studied using APAG with in-source oxidation. The ionization/oxidation mechanism and applications of the LS-APAG source have been further explored in the analysis of nonpolar alkanes and unsaturated fatty acids/esters. A unique [M + O - 3H]+ was observed in the case of individual alkanes (C5-C19) and complex hydrocarbons mixture under optimized conditions. Moreover, branched alkanes generated significant in-source fragments, which could be further applied to the discrimination of isomeric alkanes. The technique also facilitates facile determination of double bond positions in unsaturated fatty acids/esters due to diagnostic fragments (the acid/ester-containing aldehyde and acid oxidation products) generated by on-line ozonolysis in APAG mode. Finally, some examples of in situ APAG analysis by gas sampling and surface sampling were given as well. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Xiaobo Xie
- Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhenpeng Wang
- National Center for Mass Spectrometry in Beijing, Beijing, 100190, China
| | - Yafeng Li
- Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Lingpeng Zhan
- Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zongxiu Nie
- Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- National Center for Mass Spectrometry in Beijing, Beijing, 100190, China.
| |
Collapse
|
15
|
Duncan KD, Volmer DA, Gill CG, Krogh ET. Rapid Screening of Carboxylic Acids from Waste and Surface Waters by ESI-MS/MS Using Barium Ion Chemistry and On-Line Membrane Sampling. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2016; 27:443-450. [PMID: 26689207 DOI: 10.1007/s13361-015-1311-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 11/18/2015] [Accepted: 11/19/2015] [Indexed: 06/05/2023]
Abstract
Negative ion tandem mass spectrometric analysis of aliphatic carboxylic acids often yields only non-diagnostic ([M - H](-)) ions with limited selective fragmentation. However, carboxylates cationized with Ba(2+) have demonstrated efficient dissociation in positive ion mode, providing structurally diagnostic product ions. We report the application of barium adducts followed by collision induced dissociation (CID), to improve selectivity for rapid screening of carboxylic acids in complex aqueous samples. The quantitative MS/MS method presented utilizes common product ions of [M - H + Ba](+) precursor ions. The mechanism of product ion formation is investigated using isotopically labeled standards and a series of structurally related carboxylic acids. The results suggest that hydrogen atoms in the β and γ positions yield common product ions ([BaH](+) and [BaOH](+)). Furthermore, the diagnostic product ion at m/z 196 serves as a qualifying ion for carboxylate species. This methodology has been successfully used in conjunction with condensed phase membrane introduction mass spectrometry (CP-MIMS), with barium acetate added directly to the methanol acceptor phase. The combination enables rapid screening of carboxylic acids directly from acidified water samples (wastewater effluent, spiked natural waters) using a capillary hollow fiber PDMS membrane immersion probe. We have applied this technique for the direct analysis of complex naphthenic acid mixtures spiked into natural surface waters using CP-MIMS. Selectivity at the ionization and tandem mass spectrometry level eliminate isobaric interferences from hydroxylated species present within the samples, which have been observed in negative electrospray ionization.
Collapse
Affiliation(s)
- Kyle D Duncan
- Applied Environmental Research Laboratories, Department of Chemistry, Vancouver Island University, Nanaimo, BC, Canada
- Department of Chemistry, University of Victoria, Victoria, BC, Canada
| | - Dietrich A Volmer
- Institute of Bioanalytical Chemistry, Saarland University, Saarbrücken, Germany
| | - Chris G Gill
- Applied Environmental Research Laboratories, Department of Chemistry, Vancouver Island University, Nanaimo, BC, Canada.
- Department of Chemistry, University of Victoria, Victoria, BC, Canada.
| | - Erik T Krogh
- Applied Environmental Research Laboratories, Department of Chemistry, Vancouver Island University, Nanaimo, BC, Canada.
- Department of Chemistry, University of Victoria, Victoria, BC, Canada.
| |
Collapse
|
16
|
Thomas MC, Altvater J, Gallagher TJ, Nette GW. Collision-induced dissociation of fatty acid [M - 2H + Na]- ions: charge-directed fragmentation and assignment of double bond position. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2014; 25:1917-1926. [PMID: 25142324 DOI: 10.1007/s13361-014-0966-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Revised: 07/06/2014] [Accepted: 07/09/2014] [Indexed: 06/03/2023]
Abstract
The collision-induced dissociation (CID) of cationic fatty acid-metal ion complexes has been extensively studied and, in general, provides rich structural information. In particular, charge-remote fragmentation processes are commonly observed allowing the assignment of double bond position. In a previous manuscript, we presented two methods to doubly deprotonate polyunsaturated fatty acids to form anionic fatty acid-sodium ion complexes, referred to as [M - 2H + Na] (-) ions. In the current manuscript, the CID behavior of these [M - 2H + Na] (-) ions is investigated for the first time. Significantly, we also present a deuterium-labeling experiment, which excludes the possibility that deprotonation occurs predominately at the α-carbon in the formation of fatty acid [M - H + NaF](-) ions. This supports our original proposal where deprotonation occurs at the bis-allylic positions of polyunsaturated fatty acids. CID spectra of polyunsaturated fatty acid [M - 2H + Na](-) ions display abundant product ions arising from acyl chain cleavages. Through the examination of fatty acid isomers, it is demonstrated that double bond position may be unequivocally determined for methylene-interrupted polyunsaturated fatty acids with three or more carbon-carbon double bonds. In addition, CID of [M - 2H + Na](-) ions was applied to 18:3 isomers of Nannochloropsis oculata and three isomers were tentatively identified: ∆(9,12,15)18:3, ∆(6,9,12)18:3, and ∆(5,8,11)18:3. We propose that structurally-informative product ions are formed via charge-driven fragmentation processes at the site of the resonance-stabilized carbanion as opposed to charge-remote fragmentation processes, which could be inferred if deprotonation occurred predominately at the α-carbon.
Collapse
Affiliation(s)
- Michael C Thomas
- Independent Marine Biochemistry Research, Moreton Bay Research Station, Dunwich, QLD, 4183, Australia,
| | | | | | | |
Collapse
|
17
|
Thomas MC, Kirk BB, Altvater J, Blanksby SJ, Nette GW. Formation and fragmentation of unsaturated fatty acid [M - 2H + Na]- ions: stabilized carbanions for charge-directed fragmentation. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2014; 25:237-247. [PMID: 24338213 DOI: 10.1007/s13361-013-0760-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 09/20/2013] [Accepted: 09/24/2013] [Indexed: 06/03/2023]
Abstract
Fatty acids are long-chain carboxylic acids that readily produce [M - H](-) ions upon negative ion electrospray ionization (ESI) and cationic complexes with alkali, alkaline earth, and transition metals in positive ion ESI. In contrast, only one anionic monomeric fatty acid-metal ion complex has been reported in the literature, namely [M - 2H + Fe(II)Cl](-). In this manuscript, we present two methods to form anionic unsaturated fatty acid-sodium ion complexes (i.e., [M - 2H + Na](-)). We find that these ions may be generated efficiently by two distinct methods: (1) negative ion ESI of a methanolic solution containing the fatty acid and sodium fluoride forming an [M - H + NaF](-) ion. Subsequent collision-induced dissociation (CID) results in the desired [M - 2H + Na](-) ion via the neutral loss of HF. (2) Direct formation of the [M - 2H + Na](-) ion by negative ion ESI of a methanolic solution containing the fatty acid and sodium hydroxide or bicarbonate. In addition to deprotonation of the carboxylic acid moiety, formation of [M - 2H + Na](-) ions requires the removal of a proton from the fatty acid acyl chain. We propose that this deprotonation occurs at the bis-allylic position(s) of polyunsaturated fatty acids resulting in the formation of a resonance-stabilized carbanion. This proposal is supported by ab initio calculations, which reveal that removal of a proton from the bis-allylic position, followed by neutral loss of HX (where X = F(-) and (-)OH), is the lowest energy dissociation pathway.
Collapse
Affiliation(s)
- Michael C Thomas
- Independent Marine Biochemistry Research, Moreton Bay Research Station, Dunwich, Qld, 4183, Australia,
| | | | | | | | | |
Collapse
|
18
|
Rodríguez-Blanco G, Jobst KJ, Luider TM, Terlouw JK, Burgers PC. Generation and Dissociation of RCOOCaCl2−and other Carboxylate-Substituted Superhalogens: CO2Capture and Implications for Structure Analysis. Chempluschem 2013; 78:1184-1189. [DOI: 10.1002/cplu.201300161] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 07/16/2013] [Indexed: 11/08/2022]
|
19
|
Zhang JI, Tao WA, Cooks RG. Facile determination of double bond position in unsaturated fatty acids and esters by low temperature plasma ionization mass spectrometry. Anal Chem 2011; 83:4738-44. [PMID: 21539336 DOI: 10.1021/ac1030946] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Unsaturated fatty acids and esters can be oxidized in situ during ionization using a low temperature plasma (LTP) probe. The discharge generates ozone from air that reacts with and cleaves olefins. The molecular ions of the resulting acid/ester oxidation products are present in the full scan mass spectra and are confirmed by exact mass measurements. The fragmentation information can be used to assign double bond positions. We have successfully applied this strategy to a range of mono-/polyunsaturated fatty acids and fatty acid methyl/ethyl esters to assign their double bond locations. The procedure allows rapid and direct identification of double bond positions in situ at atmospheric pressure without sample preparation prior to mass spectrometric analysis. Microbial fatty acid ethyl ester (FAEE) mixtures from complex bacterial samples were directly analyzed by this method. Structural confirmation of their diagnostic ions by using exact mass measurements and tandem mass spectrometry confirms double bond positions in unsaturated bacterial FAEEs.
Collapse
Affiliation(s)
- J Isabella Zhang
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | |
Collapse
|
20
|
Blanksby SJ, Mitchell TW. Advances in mass spectrometry for lipidomics. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2010; 3:433-65. [PMID: 20636050 DOI: 10.1146/annurev.anchem.111808.073705] [Citation(s) in RCA: 252] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Recent expansion in research in the field of lipidomics has been driven by the development of new mass spectrometric tools and protocols for the identification and quantification of molecular lipids in complex matrices. Although there are similarities between the field of lipidomics and the allied field of mass spectrometry (e.g., proteomics), lipids present some unique advantages and challenges for mass spectrometric analysis. The application of electrospray ionization to crude lipid extracts without prior fractionation-the so-called shotgun approach-is one such example, as it has perhaps been more successfully applied in lipidomics than in any other discipline. Conversely, the diverse molecular structure of lipids means that collision-induced dissociation alone may be limited in providing unique descriptions of complex lipid structures, and the development of additional, complementary tools for ion activation and analysis is required to overcome these challenges. In this article, we discuss the state of the art in lipid mass spectrometry and highlight several areas in which current approaches are deficient and further innovation is required.
Collapse
|
21
|
Mitchell TW, Pham H, Thomas MC, Blanksby SJ. Identification of double bond position in lipids: from GC to OzID. J Chromatogr B Analyt Technol Biomed Life Sci 2009; 877:2722-35. [PMID: 19250888 DOI: 10.1016/j.jchromb.2009.01.017] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Revised: 01/12/2009] [Accepted: 01/13/2009] [Indexed: 10/21/2022]
Abstract
Recent developments in mass spectrometry and chromatography provide new possibilities for the identification and in some instances quantification of a wide range of lipids in complex matrices. These advances in analytical technologies have provided a tantalizing glimpse of the true structural diversity of lipids in nature and have reinvigorated interest in the role of lipids in biology. While technological advances have been impressive, difficulties in the ready identification of sites of unsaturation (i.e., double bond position) within these molecules presents a significant impediment to understanding lipid biochemistry. This is of particular importance given the growing body of literature suggesting that the presence of naturally occurring lipid double bond isomers can have a significant influence, both positive and negative, on the development of pathologies such as cancer, cardiovascular disease and type 2 diabetes. This article provides a critical review of the current suite of analytical approaches to the challenge of identification of the position of carbon-carbon double bonds in intact lipids.
Collapse
Affiliation(s)
- Todd W Mitchell
- School of Health Sciences, University of Wollongong, Wollongong, NSW 2522, Australia.
| | | | | | | |
Collapse
|
22
|
Hsu FF, Turk J. Elucidation of the double-bond position of long-chain unsaturated fatty acids by multiple-stage linear ion-trap mass spectrometry with electrospray ionization. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2008; 19:1673-80. [PMID: 18692406 PMCID: PMC2595141 DOI: 10.1016/j.jasms.2008.07.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2008] [Revised: 07/01/2008] [Accepted: 07/08/2008] [Indexed: 05/10/2023]
Abstract
Linear ion-trap (LIT) MS2 mass spectrometric approach toward locating the position of double bond(s) of unsaturated long-chain fatty acids and toward discerning among isomeric unsaturated fatty acids as dilithiated adduct ([M-H+2Li]+) ions are described in this report. Upon resonance excitation in a LIT instrument, charge-remote fragmentation that involves beta-cleavage with gamma-H shift (McLafferty rearrangement) is the predominant fragmentation pathway seen for the [M-H+2Li]+ ions of monoenoic long-chain fatty acids. The fragmentation process results in a dilithiated product ion of terminally unsaturated fatty acid, which undergoes consecutive McLafferty rearrangement to eliminate a propylene residue, and gives rise to another dilithiated adduct ion of terminally unsaturated fatty acid. In addition to the above-cited fragmentation process, the [M-H+2Li]+ ions of homoconjugated dienoic long-chain fatty acids also undergo alpha-cleavage(s) with shift of the allylic hydrogen situated between the homoconjugated double bonds to the unsaturated site. These fragmentation pathways lead to two types of CC bond cleavages that are allylic (alpha-cleavage) or vinylic, respectively, to the proximal CC double bond, resulting in two distinct sets of ion series, in which each ion series is separated by a CH2CHCH (40 Da) residue. These latter fragmentations are the predominant processes seen for the polyunsaturated long-chain fatty acids. The spectrum feature dependent on the position of unsaturated double bond(s) affords unambiguous assignment of the position of double bond(s) of long-chain unsaturated fatty acids.
Collapse
Affiliation(s)
- Fong-Fu Hsu
- Mass Spectrometry Resource, Division of Endocrinology, Diabetes, Metabolism, and Lipid Research, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| | | |
Collapse
|
23
|
Zehethofer N, Pinto DM, Volmer DA. Plasma free fatty acid profiling in a fish oil human intervention study using ultra-performance liquid chromatography/electrospray ionization tandem mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2008; 22:2125-2133. [PMID: 18523974 DOI: 10.1002/rcm.3597] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
A rapid method was developed for the simultaneous profiling of 29 free fatty acids in plasma using ultra-performance liquid chromatography/electrospray ionization tandem mass spectrometry (UPLC/ESI-MS/MS). Barium acetate was used as the cationization agent in the positive ion mode for sensitive multiple reaction monitoring (MRM) experiments. The cis- and trans-C18:1 and -C18:2 isomers were baseline-separated using two tandem reversed-phase C18 UPLC columns, while identification of two pairs of positional isomers of C18:3 and C20:3 required isomer-specific product ions, as the analytes were not chromatographically resolved. The assay linearity was greater than three orders of magnitude and correlation coefficients were >0.99; the limits of detections were typically less than 0.2 microM. The method was successfully applied to plasma free fatty acid profiling of samples from volunteers who participated in a randomized crossover study involving the administration of either placebo or fish oil capsules. The results clearly indicate the ability to measure the time profiles of the n-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in plasma for the volunteers given fish oil capsules while the concentrations of the other free fatty acids and the total free fatty acid concentration in plasma remained virtually constant.
Collapse
Affiliation(s)
- Nicole Zehethofer
- National Research Council, Institute for Marine Biosciences, Halifax, Nova Scotia, Canada
| | | | | |
Collapse
|
24
|
Kasai HF, Tsubuki M, Honda T. Studies on High-energy Collision-induced Dissociation of Endogenous Cannabinoids: 2-Arachidonoylglycerol and N-Arachidonoylethanolamide in FAB-Mass Spectrometry. ANAL SCI 2006; 22:921-30. [PMID: 16837740 DOI: 10.2116/analsci.22.921] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Analysis of 2-arachidonoylglycerol (2-AG) and N-arachidonoylethanolamide (anandamide) via alkali or alkaline earth metal-adduct high-energy collision-induced dissociation (CID) in fast-atom bombardment (FAB) ionization-mass spectrometry (MS) is described. The CID-MS/MS of the [2-AG+Li](+) or [2-AG+Na](+) ion undergoes charge-remote fragmentation (CRF), which is useful for the determination of the double-bond positions in the hydrocarbon chain, while the CID-MS/MS of the [2-AG-H+Cat](+) (Cat = Mg(2+), Ca(2+), Ba(2+)) ion provides an abundant fragment ion of the cationized arachidonic acid species, which is derived from cleaving the ester bond via a McLafferty-type rearrangement in addition to structurally informative CRF ions in small amounts. On the other hand, the CID-MS/MS spectra of anandamide cationized with both alkali metal (Li(+) or Na(+)) and alkaline earth metal (Mg(2+), Ca(2+), or Ba(2+)) show CRF patterns: the spectra obtained in lithium or sodium adduct are more clearly visible than those in magnesium, calcium, or barium adduct. The McLafferty rearrangement is not observed with metal-adduct anandamide. The characteristics in each mass spectrum are useful for the detection of these endogenous ligands. m-Nitrobenzyl alcohol (m-NBA) is the most suitable matrix. A lithium-adduct [2-AG+Li](+) or [anandamide+Li](+) ion is observed to be the most abundant in each mass spectrum, since the affinity of lithium for m-NBA is lower than that for other matrices examined.
Collapse
Affiliation(s)
- Hiroko F Kasai
- Faculty of Pharmaceutical Sciences, Hoshi University, Ebara 2-4-41, Shinagawa, Tokyo 142-8501, Japan.
| | | | | |
Collapse
|
25
|
Afonso C, Riu A, Xu Y, Fournier F, Tabet JC. Structural characterization of fatty acids cationized with copper by electrospray ionization mass spectrometry under low-energy collision-induced dissociation. JOURNAL OF MASS SPECTROMETRY : JMS 2005; 40:342-349. [PMID: 15674862 DOI: 10.1002/jms.792] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Fatty acids have for many years been characterized by mass spectrometry using electron ionization after chemical derivatization. When fatty acids are ionized using desorption/ionization methods such as electrospray ionization or fast atom bombardment, structural information is usually obtained through high-energy collision-induced dissociation (CID) using sector instruments. It has been shown that copper displays very interesting properties in the gas phase during CID. In this study, the reactivity of saturated and unsaturated fatty acid-copper [M-H+Cu(II)]+ complex and the role of the copper ion in promoting fragmentations were investigated under low-energy collisional activation conditions. The decomposition of these species in an ion trap instrument led to diagnostic ion series that reflect C--C bond cleavage, which involves Cu(II) reduction followed by the release of an alkyl radical. It was demonstrated that in this way the localization of one or two homoconjugated double bonds is possible using low-energy CID. Moreover, the distinction of cis and trans isomers is possible through characteristic product ions related to a specific loss of CO2. When these experiments are repeated using a triple-quadrupole instrument with argon as collision gas, a different behavior is observed as in this case, in addition to the product ion distributions observed in the ion trap, other distributions are observed that reflect the influence of the different kinetic shifts and the occurrence of consecutive decompositions. Different examples are presented with various saturated and unsaturated fatty acid chains. Mechanisms are proposed in order to rationalize the experimental observations.
Collapse
Affiliation(s)
- Carlos Afonso
- Laboratoire de Chimie Structurale Organique et Biologique, UMR 7613, Université Pierre et Marie Curie, 4 place Jussieu, 75225 Paris Cedex 05, France
| | | | | | | | | |
Collapse
|
26
|
Harvey DJ. A new charge-associated mechanism to account for the production of fragment ions in the high-energy CID spectra of fatty acids. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2005; 16:280-290. [PMID: 15694778 DOI: 10.1016/j.jasms.2004.11.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2004] [Revised: 11/09/2004] [Accepted: 11/09/2004] [Indexed: 05/24/2023]
Abstract
A new mechanism, termed a charge-assisted process, is proposed as an additional mechanism to the charge-remote process to account for ions of the [M - CnH2n+2] series found in the positive and negative high energy CID spectra of fatty acids and related compounds when ionized as closed-shell ([M - H]- or [M + X]+) species. The new mechanism is based on that commonly invoked to account for similar ions in the electron-impact spectra of derivatized fatty acids whereby the positive charge on the derivative abstracts a hydrogen atom from various positions of the alkyl chain to leave a radical that initiates a radical-induced cleavage of the chain. It is proposed that in the high energy CID spectra of closed-shell ions, similar hydrogen migrations occur but unpairing of electrons is avoided by charge transfer to the alkyl chain. This charge then initiates a concerted cleavage of the chain to give an allylic carbonium (positive ion spectrum) or carbanion (negative ion spectrum). The mechanism avoids the need to involve radicals or loss of hydrogen atoms from even-electron (closed shell) ions and provides a driving force for the reaction, namely, the formation of ions with a stabilized charge. An extension of the mechanism is also proposed to account for the formation of odd-electron ions from these compounds. The charge-assisted mechanism does not rule out the occurrence of other mechanisms that have been accepted for many years but provides an alternative process that can account for some spectral features which were difficult to explain earlier.
Collapse
Affiliation(s)
- David J Harvey
- Department of Biochemistry, Oxford Glycobiology Institute, Oxford, United Kingdom.
| |
Collapse
|
27
|
Chen R, Yu X, Li L. Characterization of poly(ethylene glycol) esters using low energy collision-induced dissociation in electrospray ionization mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2002; 13:888-897. [PMID: 12148812 DOI: 10.1016/s1044-0305(02)00396-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A method of characterizing polyglycol esters, an important class of industrial polymer, has been developed using electrospray ionization ion trap mass spectrometry (ESI ITMS). The fragmentation behavior of polyglycol esters is found to be different from that of polyglycols whose functional end groups are linked to the polymer chain via ether bonds (i.e., polyglycol ethers). The fragmentation pattern of an oligomer ion generated by low-energy collision-induced dissociation is strongly dependent on the type of cation used for ionization. It is shown that structural information on the polymer chain and end groups is best obtained by examining the fragment ion spectra of oligomers ionized by ammonium, alkali, and transition metal ions. The application of this method is demonstrated in the analysis of two surfactants based on fatty acid methyl ester ethoxylates.
Collapse
Affiliation(s)
- Rui Chen
- Department of Chemistry, University of Alberta, Edmonton, Canada
| | | | | |
Collapse
|
28
|
Abstract
Studies on the applications, energetics, and mechanisms of charge-remote fragmentations are reviewed, with emphasis given to those articles published after 1992. Independent of the charge status, charge-remote fragmentations are analogous to gas-phase thermolysis. Under collisional activation and with a fixed charge, ions containing long-chain or poly-ring structures undergo charge-remote fragmentations, generating productions that are structurally informative. Interpretation of the production spectra enables one to elucidate molecular structures. Although charge-remote fragmentations have been successfully used in the structural determination of fatty acids, phospholipids, glycolipids, triacylglycerols, steroids, peptides, ceramides, and other systems, the energetics and mechanisms of these reactions are still debated because none of the existing mechanisms can explain all the experimental data.
Collapse
Affiliation(s)
- C Cheng
- Department of Chemistry, Washington University, St. Louis, MO 63130, USA
| | | |
Collapse
|
29
|
Hsu FF, Turk J. Distinction among isomeric unsaturated fatty acids as lithiated adducts by electrospray ionization mass spectrometry using low energy collisionally activated dissociation on a triple stage quadrupole instrument. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 1999; 10:600-12. [PMID: 10384724 DOI: 10.1016/s1044-0305(99)00041-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Features of tandem mass spectra of dilithiated adduct ions of unsaturated fatty acids obtained by electrospray ionization mass spectrometry with low-energy collisionally activated dissociation (CAD) on a triple stage quadrupole instrument are described. These spectra distinguish among isomeric unsaturated fatty acids and permit assignment of double-bond location. Informative fragment ions reflect cleavage of bonds remote from the charge site on the dilithiated carboxylate moiety. The spectra contain radical cations reflecting cleavage of bonds between the first and second and between the second and third carbon atoms in the fatty acid chain. These ions are followed by a closed-shell ion series with members separated by 14 m/z units that reflect cleavage of bonds between the third and fourth and then between subsequent adjacent pairs of carbon atoms. This ion series terminates at the member reflecting cleavage of the carbon-carbon single bond vinylic to the first carbon-carbon double bond. Ions reflecting cleavages of bonds distal to the double bond are rarely observed for monounsaturated fatty acids and are not abundant when they occur. For polyunsaturated fatty acids that contain double bonds separated by a single methylene group, ions reflecting cleavage of carbon-carbon single bonds between double bonds are abundant, but ions reflecting cleavages distal to the final double bond are not. Cleavages between double bonds observed in these spectra can be rationalized by a scheme involving a six-membered transition state and subsequent rearrangement of a bis-allylic hydrogen atom to yield a terminally unsaturated charge-carrying fragment and elimination of a neutral alkene. The location of the beta-hydroxy-alkene moiety in ricinoleic acid can be demonstrated by similar methods. These observations offer the opportunity for laboratories that have tandem quadrupole instruments but do not have instruments with high energy CAD capabilities to assign double bond location in unsaturated free fatty acids by mass spectrometric methods without derivatization.
Collapse
Affiliation(s)
- F F Hsu
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | |
Collapse
|
30
|
Cheng C, Giblin D, Gross ML. Structural determination of oxofatty acids by charge-remote fragmentations. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 1998; 9:216-224. [PMID: 9879359 DOI: 10.1016/s1044-0305(97)00283-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
A strategy is described to locate the carbonyl position in oxofatty acids by utilizing charge-remote fragmentations of various molecular ions that are desorbed by fast atom bombardment (FAB). Oxofatty acids were cationized with alkali metal ions (Li+, Na+, K+, Rb+, and Cs+) to form [M + 2Met-H]+ or alkaline earth metal ions (Mg2+, Ca2+, Sr2+ or Ba2+) to from [M + Met-H]+ in the gas phase. The cationized acids undergo charge-remote fragmentations upon high-energy activation, giving a product-ion pattern that has a gap corresponding to the oxo position and bordered by two high-intensity peaks. One of the peaks corresponds to an ion that is formed by the cleavage of the C-C bond beta to the oxo position and proximal to the charge (beta ion), whereas the other is formed from the cleavage of the C-C bond gamma to the oxo position and distal to the charge (gamma' ion). The oxo position is easily determined by identifying the gap and the beta and gamma' ions. Furthermore, there are two competing patterns of fragments in a CAD spectrum of an oxofatty acid or ester [M + Li]+ ion. These arise because Li+ attaches to either the oxo or the carboxylic end, as was confirmed by ab initio molecular orbital calculations. The results demonstrate that control of the fragmentation can be guided by an understanding of metal-ion affinities. Collisional activation of the anionic carboxylates gives results that are similar to those for positive ions, showing that the process is not related to the charge status. Collisional activation of [M + H]+ ions does not give structural information because the charge migrates, leading to charge-mediated fragmentations.
Collapse
Affiliation(s)
- C Cheng
- Department of Chemistry, Washington University, St. Louis, Missouri, USA
| | | | | |
Collapse
|
31
|
Hirayama K, Akashi S, Yuji R, Niitsu U, Fujimoto Y. Structural studies of polyhydroxybis(tetrahydrofuran)acetogenins fromAnnona squamosa using the combination of chemical derivatization and precursor-ion scanning mass spectrometry. ACTA ACUST UNITED AC 1993. [DOI: 10.1002/oms.1210281225] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
32
|
Rubino FM, Zecca L, Sonnino S. Characterization of sphingosine long-chain bases by fast atom bombardment and high-energy collision-induced decomposition tandem mass spectrometry. ACTA ACUST UNITED AC 1992. [DOI: 10.1002/oms.1210271205] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
33
|
Madhusudanan KP, Singh C. Collisional activation of metal cationized and deprotonated triterpenoids: Charge remote fragmentations. ACTA ACUST UNITED AC 1992. [DOI: 10.1002/oms.1210271131] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
34
|
Chang YS, Watson JT. Charge-remote fragmentation during FAB-CAD-B/E linked-scan mass spectrometry of aminoethyl-triphenylphosphonium derivatives of fatty acids. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 1992; 3:769-775. [PMID: 24234645 DOI: 10.1016/1044-0305(92)87091-c] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/1991] [Revised: 03/27/1992] [Accepted: 04/01/1992] [Indexed: 06/02/2023]
Abstract
The carboxyl group of fatty acids is derivatized by aminoethyl triphenylphosphonium (AETPP) bromide. Fast atom bombardment (FAB) collision-activated dissociation (CAD) B/E linked-scan mass spectrometry of these fixed-charge derivatives shows typical charge-remote fragmentation (CRF). Locations of various structural modifications in fatty acids can be recognized easily from CAD spectra of the AETPP derivatives. Because the triphenylphosphonium group localizes positive charge in the molecule, and because a key requirement for CRF is a tightly localized charge site, these preionized molecules fragment under FAB-CAD conditions more effectively than other derivatives that involve ionic bonding with metal cations or protonation of basic sites. Thus, CAD of AETPP derivatives is likely to produce more structurally informative spectra and provide an opportunity to gain additional under-standing of the CRF process. The most profound difference between the AETPP derivatives and other cations in positive mode FAB-CAD-B/E-MS is reflected in the substantial improvement of detection limits for the AETPP derivatives over those for the metal cation adducts. For several fatty acids (C10-C22) tested, the detectability can be enhanced by one to two orders of magnitude when the analysis is performed on the AETPP derivative. In addition, for the analysis of fatty acid mixtures, the FAB mass spectrum of AETPP derivatives produces a relative intensity of the molecular ion peak for each component of the mixture that more closely represents its mole fraction than does that of metal ion adducts.
Collapse
Affiliation(s)
- Y S Chang
- Department of Biochemistry, Michigan State University, 48824-1319, East Lansing, MI, USA
| | | |
Collapse
|
35
|
Teesch LM, Adams J. Metal ions as special reagents in analytical mass spectrometry. ACTA ACUST UNITED AC 1992. [DOI: 10.1002/oms.1210270902] [Citation(s) in RCA: 86] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
36
|
|