1
|
Srinivasan S, Zhu C, McShan AC. Structure, function, and immunomodulation of the CD8 co-receptor. Front Immunol 2024; 15:1412513. [PMID: 39253084 PMCID: PMC11381289 DOI: 10.3389/fimmu.2024.1412513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 08/05/2024] [Indexed: 09/11/2024] Open
Abstract
Expressed on the surface of CD8+ T cells, the CD8 co-receptor is a key component of the T cells that contributes to antigen recognition, immune cell maturation, and immune cell signaling. While CD8 is widely recognized as a co-stimulatory molecule for conventional CD8+ αβ T cells, recent reports highlight its multifaceted role in both adaptive and innate immune responses. In this review, we discuss the utility of CD8 in relation to its immunomodulatory properties. We outline the unique structure and function of different CD8 domains (ectodomain, hinge, transmembrane, cytoplasmic tail) in the context of the distinct properties of CD8αα homodimers and CD8αβ heterodimers. We discuss CD8 features commonly used to construct chimeric antigen receptors for immunotherapy. We describe the molecular interactions of CD8 with classical MHC-I, non-classical MHCs, and Lck partners involved in T cell signaling. Engineered and naturally occurring CD8 mutations that alter immune responses are discussed. The applications of anti-CD8 monoclonal antibodies (mABs) that target CD8 are summarized. Finally, we examine the unique structure and function of several CD8/mAB complexes. Collectively, these findings reveal the promising immunomodulatory properties of CD8 and CD8 binding partners, not only to uncover basic immune system function, but to advance efforts towards translational research for targeted immunotherapy.
Collapse
Affiliation(s)
- Shreyaa Srinivasan
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, United States
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| | - Cheng Zhu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Andrew C. McShan
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, United States
| |
Collapse
|
2
|
van Loenen MM, Hagedoorn RS, de Boer R, Falkenburg JHF, Heemskerk MHM. Extracellular domains of CD8α and CD8ß subunits are sufficient for HLA class I restricted helper functions of TCR-engineered CD4(+) T cells. PLoS One 2013; 8:e65212. [PMID: 23738014 PMCID: PMC3667802 DOI: 10.1371/journal.pone.0065212] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 04/24/2013] [Indexed: 11/18/2022] Open
Abstract
By gene transfer of HLA-class I restricted T-cell receptors (TCRs) (HLA-I-TCR) into CD8+ as well as CD4+ T-cells, both effector T-cells as well as helper T-cells can be generated. Since most HLA-I-TCRs function best in the presence of the CD8 co-receptor, the CD8αß molecule has to be co-transferred into the CD4+ T-cells to engineer optimal helper T-cells. In this study, we set out to determine the minimal part of CD8αβ needed for optimal co-receptor function in HLA-I-TCR transduced CD4+ T-cells. For this purpose, we transduced human peripheral blood derived CD4+ T-cells with several HLA-class I restricted TCRs either with or without co-transfer of different CD8 subunits. We demonstrate that the co-transduced CD8αβ co-receptor in HLA-I-TCR transduced CD4+ T-cells behaves as an adhesion molecule, since for optimal antigen-specific HLA class I restricted CD4+ T-cell reactivity the extracellular domains of the CD8α and ß subunits are sufficient.
Collapse
Affiliation(s)
- Marleen M van Loenen
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands.
| | | | | | | | | |
Collapse
|
3
|
Rettig L, McNeill L, Sarner N, Guillaume P, Luescher I, Tolaini M, Kioussis D, Zamoyska R. An essential role for the stalk region of CD8 beta in the coreceptor function of CD8. THE JOURNAL OF IMMUNOLOGY 2009; 182:121-9. [PMID: 19109142 DOI: 10.4049/jimmunol.182.1.121] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The CD8alphabeta heterodimer is integral to the selection of the class I-restricted lineage in the thymus; however, the contribution of the CD8beta chain to coreceptor function is poorly understood. To understand whether the CD8beta membrane proximal stalk region played a role in coreceptor function, we substituted it with the corresponding sequence from the CD8alpha polypeptide and expressed the hybrid molecule in transgenic mice in place of endogenous CD8beta. Although the stalk-swapped CD8beta was expressed on the cell surface as a disulfide-bonded heterodimer at equivalent levels of expression to an endogenous CD8beta molecule, it failed to restore selection of CD8(+) class I MHC-restricted T cells and it altered the response of peripheral T cells. Thus, the stalk region of the CD8beta polypeptide has an essential role in ensuring functionality of the CD8alphabeta heterodimer and its replacement compromises the interaction of CD8 with peptide-MHC complexes.
Collapse
Affiliation(s)
- Lorna Rettig
- Molecular Immunology, Medical Research Council National Institute for Medical Research, London, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Angelov GS, Guillaume P, Luescher IF. CD8β knockout mice mount normal anti-viral CD8+ T cell responses—but why? Int Immunol 2008; 21:123-35. [DOI: 10.1093/intimm/dxn130] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
5
|
HIV-1 Nef protein expression in human CD34+ progenitors impairs the differentiation of an early T/NK cell precursor. Virology 2008; 377:207-15. [PMID: 18555888 DOI: 10.1016/j.virol.2008.04.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2008] [Revised: 03/25/2008] [Accepted: 04/14/2008] [Indexed: 12/30/2022]
Abstract
HIV-1 impairs the production of T cells, through mechanisms that are still unknown. Here, we investigated the effect of the expression of HIV-1 Nef on the T-cell potential of human hematopoietic CD34(+) precursors. Those progenitors were transduced by using lentiviral vectors expressing Nef and cultured on OP9-DL1 cells allowing the differentiation of T cell from human hematopoietic precursors. We demonstrate that Nef impairs the generation of a CD3epsilon(+)CD5(+) CD1a(+) precursor stage that has initiated a D-J rearrangement of the TCRbeta locus. Onward stages of T-cell development were also affected with a quantitative reduction of CD4(+) intraCD3epsilon(+) Immature single positive cells (ISP), Double Positive (DP) CD4(+)CD8(+) TCRalphabeta T cells and CD56(+) NK cells. But B cell production was not affected. Limiting dilution analyses demonstrated a significant reduction in the frequency of T/NK progenitors among Nef-expressing CD34(+) cells. Altogether, these data demonstrate that Nef interferes with the differentiation of a primitive lymphoid human precursor with a T/NK potential.
Collapse
|
6
|
Thakral D, Dobbins J, Devine L, Kavathas PB. Differential expression of the human CD8beta splice variants and regulation of the M-2 isoform by ubiquitination. THE JOURNAL OF IMMUNOLOGY 2008; 180:7431-42. [PMID: 18490743 DOI: 10.4049/jimmunol.180.11.7431] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The CD8alphabeta heterodimer functions as a coreceptor with the TCR, influencing the outcome of CD8(+) T cell responses to pathogen-infected and tumor cells. In contrast to the murine CD8B gene, the human gene encodes alternatively spliced variants with different cytoplasmic tails (M-1, M-2, M-3, and M-4). At present, little is known about the expression patterns and functional significance of such variants. We used quantitative RT-PCR to demonstrate differential mRNA expression patterns of these splice variants in thymocytes and in resting, memory, and activated primary human CD8(+) T cells. In total CD8(+) T cells, mRNA levels of the M-1 variant were the most predominant and levels of M-3 were the least detected. The M-4 isoform was predominant in effector memory CD8(+) T cells. Upon stimulation of CD8(+) T cells, the M-2 variant mRNA levels were elevated 10-20-fold relative to resting cells in contrast to the other isoforms. Curiously, the M-2 isoform was not expressed on the cell surface in transfected cell lines. Using fluorescent chimeras of the extracellular domain of mouse CD8beta fused to the cytoplasmic tails of each isoform, the M-2 isoform was localized in a lysosomal compartment regulated by ubiquitination of a lysine residue (K215) in its cytoplasmic tail. In contrast, upon short-term stimulation, the M-2 protein localized to the cell surface with the TCR complex. The relatively recent evolution of CD8B gene splice variants in the chimpanzee/human lineage is most likely important for fine-tuning the CD8(+) T cell responses.
Collapse
Affiliation(s)
- Deepshi Thakral
- Department of Laboratory Medicine, Section of Immunobiology, Yale Cancer Center, Yale University School of Medicine, Yale University, New Haven, CT 06520, USA
| | | | | | | |
Collapse
|
7
|
Stove V, Van de Walle I, Naessens E, Coene E, Stove C, Plum J, Verhasselt B. Human immunodeficiency virus Nef induces rapid internalization of the T-cell coreceptor CD8alphabeta. J Virol 2005; 79:11422-33. [PMID: 16103193 PMCID: PMC1193625 DOI: 10.1128/jvi.79.17.11422-11433.2005] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2005] [Accepted: 06/13/2005] [Indexed: 11/20/2022] Open
Abstract
Human immunodeficiency virus (HIV) Nef is a membrane-associated protein decreasing surface expression of CD4, CD28, and major histocompatibility complex class I on infected cells. We report that Nef strongly down-modulates surface expression of the beta-chain of the CD8alphabeta receptor by accelerated endocytosis, while CD8 alpha-chain expression is less affected. By mutational analysis of the cytoplasmic tail of the CD8 beta-chain, an FMK amino acid motif was shown to be critical for Nef-induced endocytosis. Although independent of CD4, endocytosis of the CD8 beta-chain was abrogated by the same mutations in Nef that affect CD4 down-regulation, suggesting common molecular interactions. The ability to down-regulate the human CD8 beta-chain was conserved in HIV-1, HIV-2, and simian immunodeficiency virus SIVmac239 Nef and required an intact AP-2 complex. The Nef-mediated internalization of receptors, such as CD4, major histocompatibility complex class I, CD28, and CD8alphabeta, may contribute to the subversion of the host immune system and progression towards AIDS.
Collapse
Affiliation(s)
- Veronique Stove
- Department of Clinical Chemistry, Microbiology and Immunology, Ghent University Hospita, Belgium
| | | | | | | | | | | | | |
Collapse
|
8
|
Kao H, Allen PM. An antagonist peptide mediates positive selection and CD4 lineage commitment of MHC class II-restricted T cells in the absence of CD4. ACTA ACUST UNITED AC 2005; 201:149-58. [PMID: 15630142 PMCID: PMC2212763 DOI: 10.1084/jem.20041574] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The CD4 coreceptor works together with the T cell receptor (TCR) to deliver signals to the developing thymocyte, yet its specific contribution to positive selection and CD4 lineage commitment remains unclear. To resolve this, we used N3.L2 TCR transgenic, RAG-, and CD4-deficient mice, which are severely impaired in positive selection, and asked whether altered peptide ligands can replace CD4 function in vivo. Remarkably, in the presence of antagonist ligands that normally deleted CD4+ T cells in wild-type mice, we induced positive selection of functional CD4 lineage T cells in mice deficient in CD4. We show that the kinetic threshold for positive and negative selection was lowered in the absence of CD4, with no evident skewing toward the CD8 lineage with weaker ligands. These results suggest that CD4 is dispensable as long as the affinity threshold for positive selection is sustained, and strongly argue that CD4 does not deliver a unique instructional signal for lineage commitment.
Collapse
Affiliation(s)
- Henry Kao
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | |
Collapse
|
9
|
Abstract
Over the past decade, key protein interactions contributing to T cell antigen recognition have been characterized in molecular detail. These have included interactions involving the T cell antigen receptor (TCR) itself, its coreceptors CD4 and CD8, the accessory molecule CD2, and the costimulatory receptors CD28 and CTLA-4. A clear view is emerging of how these molecules interact with their ligands at the cell-cell interface. Structural and binding studies have confirmed that the proteins span small but comparable distances and that, overall, they interact very weakly. However, there have been important surprises as well: that TCR interactions with peptide-MHC are topologically constrained and characterized by considerable conformational flexibility at the binding interface; that coreceptors engage peptide-MHC with extraordinarily fast kinetics and at angles apparently precluding direct interactions with the TCR bound to the same peptide-MHC; that the structural mechanisms allowing recognition by costimulatory and accessory molecules to be weak and yet specific are very heterogeneous; and that because of differences in both binding affinity and stoichiometry, there is enormous variation in the stability of the various costimulatory receptor/ligand complexes. These studies provide the necessary framework for exploring how these molecular interactions initiate T cell activation.
Collapse
|
10
|
Doucey MA, Goffin L, Naeher D, Michielin O, Baumgärtner P, Guillaume P, Palmer E, Luescher IF. CD3 delta establishes a functional link between the T cell receptor and CD8. J Biol Chem 2003; 278:3257-64. [PMID: 12215456 DOI: 10.1074/jbc.m208119200] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
T cells expressing T cell receptor (TCR) complexes that lack CD3 delta, either due to deletion of the CD3 delta gene, or by replacement of the connecting peptide of the TCR alpha chain, exhibit severely impaired positive selection and TCR-mediated activation of CD8 single-positive T cells. Because the same defects have been observed in mice expressing no CD8 beta or tailless CD8 beta, we examined whether CD3 delta serves to couple TCR.CD3 with CD8. To this end we used T cell hybridomas and transgenic mice expressing the T1 TCR, which recognizes a photoreactive derivative of the PbCS 252-260 peptide in the context of H-2K(d). We report that, in thymocytes and hybridomas expressing the T1 TCR.CD3 complex, CD8 alpha beta associates with the TCR. This association was not observed on T1 hybridomas expressing only CD8 alpha alpha or a CD3 delta(-) variant of the T1 TCR. CD3 delta was selectively co-immunoprecipitated with anti-CD8 antibodies, indicating an avid association of CD8 with CD3 delta. Because CD8 alpha beta is a raft constituent, due to this association a fraction of TCR.CD3 is raft-associated. Cross-linking of these TCR-CD8 adducts results in extensive TCR aggregate formation and intracellular calcium mobilization. Thus, CD3 delta couples TCR.CD3 with raft-associated CD8, which is required for effective activation and positive selection of CD8(+) T cells.
Collapse
Affiliation(s)
- Marie-Agnès Doucey
- Institute for Biochemistry, University of Lausanne, Epalinges 1066, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Naeher D, Luescher IF, Palmer E. A role for the alpha-chain connecting peptide motif in mediating TCR-CD8 cooperation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:2964-70. [PMID: 12218110 DOI: 10.4049/jimmunol.169.6.2964] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
To generate peripheral T cells that are both self-MHC restricted and self-MHC tolerant, thymocytes are subjected to positive and negative selection. How the TCR discriminates between positive and negative selection ligands is not well understood, although there is substantial evidence that the CD4 and CD8 coreceptors play an important role in this cell fate decision. We have previously identified an evolutionarily conserved motif in the TCR, the alpha-chain connecting peptide motif (alpha-CPM), which allows the TCR to deliver positive selection signals. Thymocytes expressing alpha-CPM-deficient receptors do not undergo positive selection, whereas their negative selection is not impaired. In this work we studied the ligand binding and receptor function of alpha-CPM-deficient TCRs by generating T cell hybridomas expressing wild-type or alpha-CPM-deficient forms of the T1 TCR. This K(d)-restricted TCR is specific for a photoreactive derivative of the Plasmodium berghei circumsporozoite peptide(252-260) IASA-YIPSAEK(ABA)I and is therefore amenable to TCR photoaffinity labeling. The experiments presented in this work show that alpha-CPM-deficient TCRs fail to cooperate with CD8 to enhance ligand binding and functional responses.
Collapse
MESH Headings
- Amino Acid Motifs/genetics
- Amino Acid Sequence
- Animals
- CD8 Antigens/metabolism
- CD8 Antigens/physiology
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Cell Line
- Gene Expression Regulation/immunology
- Genes, T-Cell Receptor alpha/genetics
- Genes, T-Cell Receptor alpha/physiology
- Humans
- Hybridomas
- Interleukin-2/biosynthesis
- Ligands
- Mice
- Molecular Sequence Data
- Peptide Fragments/genetics
- Peptide Fragments/physiology
- Protein Binding/genetics
- Protein Binding/immunology
- Receptors, Antigen, T-Cell, alpha-beta/biosynthesis
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Receptors, Antigen, T-Cell, alpha-beta/physiology
- Recombinant Fusion Proteins/biosynthesis
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Recombinant Fusion Proteins/physiology
Collapse
Affiliation(s)
- Dieter Naeher
- Laboratory of Transplantation Immunology and Nephrology, University Hospital, Basel, Switzerland
| | | | | |
Collapse
|
12
|
Abstract
Cell-fate decisions are controlled typically by conserved receptors that interact with co-evolved ligands. Therefore, the lineage-specific differentiation of immature CD4+ CD8+ T cells into CD4+ or CD8+ mature T cells is unusual in that it is regulated by clonally expressed, somatically generated T-cell receptors (TCRs) of unpredictable fine specificity. Yet, each mature T cell generally retains expression of the co-receptor molecule (CD4 or CD8) that has an MHC-binding property that matches that of its TCR. Two models were proposed initially to explain this remarkable outcome--'instruction' of lineage choice by initial signalling events or 'selection' after a stochastic fate decision that limits further development to cells with coordinated TCR and co-receptor specificities. Aspects of both models now appear to be correct; mistake-prone instruction of lineage choice precedes a subsequent selection step that filters out most incorrect decisions.
Collapse
Affiliation(s)
- Ronald N Germain
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892-1892, USA.
| |
Collapse
|
13
|
Arcaro A, Grégoire C, Bakker TR, Baldi L, Jordan M, Goffin L, Boucheron N, Wurm F, van der Merwe PA, Malissen B, Luescher IF. CD8beta endows CD8 with efficient coreceptor function by coupling T cell receptor/CD3 to raft-associated CD8/p56(lck) complexes. J Exp Med 2001; 194:1485-95. [PMID: 11714755 PMCID: PMC2193676 DOI: 10.1084/jem.194.10.1485] [Citation(s) in RCA: 170] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
The extraordinary sensitivity of CD8+ T cells to recognize antigen impinges to a large extent on the coreceptor CD8. While several studies have shown that the CD8beta chain endows CD8 with efficient coreceptor function, the molecular basis for this is enigmatic. Here we report that cell-associated CD8alphabeta, but not CD8alphaalpha or soluble CD8alphabeta, substantially increases the avidity of T cell receptor (TCR)-ligand binding. To elucidate how the cytoplasmic and transmembrane portions of CD8beta endow CD8 with efficient coreceptor function, we examined T1.4 T cell hybridomas transfected with various CD8beta constructs. T1.4 hybridomas recognize a photoreactive Plasmodium berghei circumsporozoite (PbCS) peptide derivative (PbCS (4-azidobezoic acid [ABA])) in the context of H-2K(d), and permit assessment of TCR-ligand binding by TCR photoaffinity labeling. We find that the cytoplasmic portion of CD8beta, mainly due to its palmitoylation, mediates partitioning of CD8 in lipid rafts, where it efficiently associates with p56(lck). In addition, the cytoplasmic portion of CD8beta mediates constitutive association of CD8 with TCR/CD3. The resulting TCR-CD8 adducts exhibit high affinity for major histocompatibility complex (MHC)-peptide. Importantly, because CD8alphabeta partitions in rafts, its interaction with TCR/CD3 promotes raft association of TCR/CD3. Engagement of these TCR/CD3-CD8/lck adducts by multimeric MHC-peptide induces activation of p56(lck) in rafts, which in turn phosphorylates CD3 and initiates T cell activation.
Collapse
Affiliation(s)
- A Arcaro
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne, Chemin des Boveresses 155, 1066 Epalinges, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Pellicci DG, Kortt AA, Sparrow LG, Hudson PJ, Sorensen HV, Davis SJ, Classon BJ. Expression and purification of antigenically active soluble derivatives of the heterodimeric and homodimeric forms of the mouse CD8 lymphocyte membrane glycoprotein. J Immunol Methods 2000; 246:149-63. [PMID: 11121556 DOI: 10.1016/s0022-1759(00)00280-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The T lymphocyte membrane glycoprotein CD8 enhances antigen recognition by class I-restricted T cells. There are two naturally occurring forms of CD8, an alphabeta heterodimer expressed by the majority of CD8(+) T cells, and a less abundant alphaalpha homodimer found on specialised T cell subsets. An expression strategy was developed for production of soluble CD8alphaalpha and CD8alphabeta extracellular domains for use in ligand binding studies. Mouse CD8alpha was expressed autonomously as a homodimer at 10 mg/l in mammalian fibroblasts, but CD8beta was not expressed at significant levels in the absence of CD8alpha. Co-expression with CD8alpha led to significant enhancement in the level of CD8beta expression, which was secreted as a non-covalent heterodimer at 3 mg/l with CD8alpha. Despite the marked increase of CD8beta expression in the presence of CD8alpha, an excess of soluble CD8alphaalpha homodimer was also present in the supernatant of co-expressing cell clones. In order to resolve the CD8alphaalpha homodimer from the CD8alphabeta heterodimer, affinity chromatographic techniques specific for the CD8beta subunit were employed. Purification procedures requiring elution from affinity matrices at low pH led to substantial losses in the total antigenic activity and partial subunit dissociation of the soluble CD8alphabeta heterodimer. The inclusion of a hexahistidine tag at the C-terminus of CD8beta enabled affinity purification of soluble CD8alphabeta (and sCD8alphaalpha) under neutral conditions, yielding recombinant protein with the correct stoichiometry and full antigenic activity. This method may prove useful for production of other soluble recombinant heterodimeric receptor proteins whose antigenicity is affected by denaturation during immunoaffinity purification.
Collapse
Affiliation(s)
- D G Pellicci
- Department of Pathology and Immunology, Monash Medical School, Commercial Road, Vic. 3181, Prahran, Australia
| | | | | | | | | | | | | |
Collapse
|
15
|
Aude-Garcia C, Attinger A, Housset D, MacDonald HR, Acha-Orbea H, Marche PN, Jouvin-Marche E. Pairing of Vbeta6 with certain Valpha2 family members prevents T cell deletion by Mtv-7 superantigen. Mol Immunol 2000; 37:1005-12. [PMID: 11395139 DOI: 10.1016/s0161-5890(00)00106-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Superantigens (SAg) are proteins of bacterial or viral origin able to activate T cells by forming a trimolecular complex with both MHC class II molecules and the T cell receptor (TCR), leading to clonal deletion of reactive T cells in the thymus. SAg interact with the TCR through the beta chain variable region (Vbeta), but the TCR alpha chain has been shown to have an influence on the T cell reactivity. We have investigated here the role of the TCR alpha chain in the modulation of T cell reactivity to Mtv-7 SAg by comparing the peripheral usage of Valpha2 in Vbeta6(+) (SAg-reactive) and Vbeta8.2(+) (SAg non-reactive) T cells, in either BALB/D2 (Mtv-7(+)) or BALB/c (Mtv-7(-)) mice. The results show, first, that pairing of Vbeta6 with certain Valpha2 family members prevents T cell deletion by Mtv-7 SAg. Second, there is a strikingly different distribution of the Valpha2 family members in CD4 and CD8 populations of Vbeta6 but not of Vbeta8.2 T cells, irrespective of the presence of Mtv-7 SAg. Third, the alpha chain may play a role in the overall stability of the TCR/SAg/MHC complex. Taken together, these results suggest that the Valpha domain contributes to the selective process by its role in the TCR reactivity to SAg/MHC class II complexes, most likely by influencing the orientation of the Vbeta domain in the TCR alphabeta heterodimer.
Collapse
Affiliation(s)
- C Aude-Garcia
- CEA-Grenoble, DBMS/Laboratoire d'Immunochimie, INSERM U238, 17 rue des Martyrs, 38054 Cedex 9, Grenoble, France.
| | | | | | | | | | | | | |
Collapse
|
16
|
Arcaro A, Grégoire C, Boucheron N, Stotz S, Palmer E, Malissen B, Luescher IF. Essential role of CD8 palmitoylation in CD8 coreceptor function. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:2068-76. [PMID: 10925291 DOI: 10.4049/jimmunol.165.4.2068] [Citation(s) in RCA: 141] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
To investigate the molecular basis that makes heterodimeric CD8alphabeta a more efficient coreceptor than homodimeric CD8alphaalpha, we used various CD8 transfectants of T1.4 T cell hybridomas, which are specific for H-2Kd, and a photoreactive derivative of the Plasmodium berghei circumsporozoite peptide PbCS 252-260 (SYIPSAEKI). We demonstrate that CD8 is palmitoylated at the cytoplasmic tail of CD8beta and that this allows partitioning of CD8alphabeta, but not of CD8alphaalpha, in lipid rafts. Localization of CD8 in rafts is crucial for its coreceptor function. First, association of CD8 with the src kinase p56lck takes place nearly exclusively in rafts, mainly due to increased concentration of both components in this compartment. Deletion of the cytoplasmic domain of CD8beta abrogated localization of CD8 in rafts and association with p56lck. Second, CD8-mediated cross-linking of p56lck by multimeric Kd-peptide complexes or by anti-CD8 Ab results in p56lck activation in rafts, from which the abundant phosphatase CD45 is excluded. Third, CD8-associated activated p56lck phosphorylates CD3zeta in rafts and hence induces TCR signaling and T cell activation. This study shows that palmitoylation of CD8beta is required for efficient CD8 coreceptor function, mainly because it dramatically increases CD8 association with p56lck and CD8-mediated activation of p56lck in lipid rafts.
Collapse
Affiliation(s)
- A Arcaro
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne, Epalinges, Switzerland
| | | | | | | | | | | | | |
Collapse
|
17
|
Wiegers GJ, Stec IE, Klinkert WE, Reul JM. Glucocorticoids regulate TCR-induced elevation of CD4: functional implications. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 164:6213-20. [PMID: 10843673 DOI: 10.4049/jimmunol.164.12.6213] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CD4 serves as a coreceptor during Ag recognition by the TCR. This interaction results in a marked increase in the sensitivity of a T cell to Ag presented by MHC class II molecules. Here we report that activation of T cells either by plate-bound mAb (anti-TCR, anti-CD3) or soluble activators (staphylococcal enterotoxin A, Con A) is associated with an (up to 3-fold) increase in CD4 cell surface expression on CD25+ cells, which was maximal after 72-96 h. Incubation with the glucocorticoid hormone corticosterone (CORT) shifted the enhancement of CD4 expression to a point about 24 h earlier than that observed in control cultures. In parallel, the proliferative response of these CORT-treated cells was profoundly enhanced. An involvement of increased CD4 expression in this enhanced proliferative response was evidenced by the observation that T cell proliferation in CORT-treated cultures was much less sensitive to inhibition by an inhibitory, nondepleting anti-CD4 mAb than that in control cultures. TCR down-regulation was, however, not affected by CORT. Thus, based on this study and previous reports we propose that both TCR-mediated signals and glucocorticoids are important physiological regulators of CD4 expression. In addition, these findings may be of significance for the sensitivity of CD4+ cells to HIV infection upon T cell activation, as the efficacy of primary patient HIV entry depends on the level of surface CD4.
Collapse
MESH Headings
- Adjuvants, Immunologic/antagonists & inhibitors
- Adjuvants, Immunologic/pharmacology
- Animals
- Antibodies, Monoclonal/pharmacology
- CD4 Antigens/biosynthesis
- CD4 Antigens/immunology
- CD4 Antigens/physiology
- CD4-Positive T-Lymphocytes/immunology
- Cells, Cultured
- Corticosterone/antagonists & inhibitors
- Corticosterone/pharmacology
- Corticosterone/physiology
- Down-Regulation/drug effects
- Down-Regulation/immunology
- Lymphocyte Activation/drug effects
- Lymphocyte Activation/immunology
- Male
- Mifepristone/pharmacology
- Rats
- Rats, Wistar
- Receptors, Antigen, T-Cell/antagonists & inhibitors
- Receptors, Antigen, T-Cell/biosynthesis
- Receptors, Antigen, T-Cell/physiology
- Receptors, Glucocorticoid/antagonists & inhibitors
- T-Lymphocytes/drug effects
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
Collapse
Affiliation(s)
- G J Wiegers
- Section of Neuroimmunoendocrinology, Max Planck Institute of Psychiatry, Munich, Germany
| | | | | | | |
Collapse
|
18
|
Bosselut R, Kubo S, Guinter T, Kopacz JL, Altman JD, Feigenbaum L, Singer A. Role of CD8beta domains in CD8 coreceptor function: importance for MHC I binding, signaling, and positive selection of CD8+ T cells in the thymus. Immunity 2000; 12:409-18. [PMID: 10795739 DOI: 10.1016/s1074-7613(00)80193-4] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The contribution of the CD8beta subunit to CD8 coreceptor function is poorly understood. We now demonstrate that the CD8beta extracellular domain increases the avidity of CD8 binding to MHC I, and that the intracellular domain of CD8beta enhances association with two intracellular molecules required for TCR signal transduction, Lck and LAT. By assessing CD8+ T cell differentiation in CD8beta-deficient mice reconstituted with various transgenic CD8beta chimeric molecules, we also demonstrate that the intracellular and extracellular domains of CD8beta can contribute independently to CD8+ T cell development, but that both CD8beta domains together are most efficient. Thus, this study identifies the molecular functions of the CD8beta intracellular and extracellular domains and documents their contributions to CD8+ T cell development.
Collapse
Affiliation(s)
- R Bosselut
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Yu X, Fournier S, Allison JP, Sharpe AH, Hodes RJ. The role of B7 costimulation in CD4/CD8 T cell homeostasis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 164:3543-53. [PMID: 10725709 DOI: 10.4049/jimmunol.164.7.3543] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The effect of B7-mediated costimulation on T cell homeostasis was examined in studies of B7-1 (CD80) and B7-2 (CD86) transgenic as well as B7-deficient mice. B7 overexpression in transgenic mice resulted in marked polyclonal peripheral T cell hyperplasia accompanied by skewing toward an increased proportion of CD8 single-positive cells and a decreased proportion of CD4 single-positive cells in thymus and more markedly in peripheral T cells. B7-induced T cell expansion was dependent on both CD28 and TCR expression. Transgenic overexpression of B7-1 or B7-2 resulted in down-regulation of cell surface CD28 on thymocytes and peripheral T cells through a mechanism mediated by intercellular interaction. Mice deficient in B7-1 and B7-2 exhibited changes that were the reciprocal of those observed in B7-overexpressing transgenics: a marked increase in the CD4/CD8 ratio in peripheral T cells and an increase in cell surface CD28 in thymus and peripheral T cells. These reciprocal effects of genetically engineered increase or decrease in B7 expression indicate that B7 costimulation plays a physiological role in the regulation of CD4+ and CD8+ T cell homeostasis.
Collapse
MESH Headings
- Abatacept
- Animals
- Antigens, CD/biosynthesis
- Antigens, CD/genetics
- Antigens, CD/physiology
- Antigens, Differentiation/biosynthesis
- Antigens, Differentiation/genetics
- B7-1 Antigen/biosynthesis
- B7-1 Antigen/genetics
- B7-1 Antigen/physiology
- B7-2 Antigen
- CD28 Antigens/biosynthesis
- CD28 Antigens/genetics
- CD28 Antigens/physiology
- CD4-CD8 Ratio
- CD4-Positive T-Lymphocytes/cytology
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/cytology
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- CTLA-4 Antigen
- Down-Regulation/genetics
- Down-Regulation/immunology
- Homeostasis/genetics
- Homeostasis/immunology
- Hyperplasia
- Immunoconjugates
- Lymphocyte Activation/genetics
- Lymphoid Tissue/immunology
- Lymphoid Tissue/metabolism
- Lymphoid Tissue/pathology
- Membrane Glycoproteins/biosynthesis
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/physiology
- Mice
- Mice, Congenic
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Mutant Strains
- Mice, Transgenic
- Phenotype
- Receptors, Antigen, T-Cell/biosynthesis
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell, alpha-beta/biosynthesis
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
Collapse
Affiliation(s)
- X Yu
- Experimental Immunology Branch, National Cancer Institute, and National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | |
Collapse
|
20
|
Lin TJ, Hirji N, Stenton GR, Gilchrist M, Grill BJ, Schreiber AD, Befus AD. Activation of macrophage CD8: pharmacological studies of TNF and IL-1 beta production. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 164:1783-92. [PMID: 10657625 DOI: 10.4049/jimmunol.164.4.1783] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Previously, we demonstrated that rat macrophages express CD8 and that Ab to CD8 stimulates NO production. We confirm that CD8 is expressed by rat macrophages and extend understanding of its functional significance. Activation of CD8 alpha (OX8 Ab) on alveolar macrophages stimulated mRNA expression for TNF and IL-1 beta and promoted TNF and IL-1 beta secretion. Similarly, OX8 Ab (CD8 alpha) stimulated NR8383 cells to secrete TNF, IL-1 beta, and NO. Activation of CD8 beta (Ab 341) on alveolar macrophages increased mRNA expression for TNF and IL-1 beta and stimulated secretion of TNF, but not IL-1 beta. Interestingly, anti-CD8 Abs did not stimulate IFN-gamma or PGE2 production, or phagocytosis by macrophages. OX8 (CD8 alpha)-induced TNF and IL-1 beta production by macrophages was blocked by inhibitors of protein tyrosine kinase(s), PP1, and genistein, but not by phosphatidylinositol-3 kinase inhibitor, wortmannin. Moreover, OX8 stimulated protein tyrosine kinase activity in NR8383 cells. Further analysis of kinase dependence using antisense to Syk kinase demonstrated that TNF, but not IL-1 beta, stimulation by CD8 alpha is Syk dependent. By contrast, protein kinase C inhibitor Ro 31-8220 had no effect on OX8-induced TNF production, whereas OX8-induced IL-1 beta production was blocked by Ro 31-8220. Thus, there are distinct signaling mechanisms involved in CD8 alpha (OX8)-induced TNF and IL-1 beta production. In summary, macrophages express CD8 molecules that, when activated, stimulate TNF and IL-1 beta expression, probably through mechanisms that include activation of Src and Syk kinases and protein kinase C. These findings identify a previously unknown pathway of macrophage activation likely to be involved in host defense and inflammation.
Collapse
Affiliation(s)
- T J Lin
- Department of Microbiology, Dalhousie University, Halifax, Nova Scotia, Canada, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Daniels MA, Jameson SC. Critical role for CD8 in T cell receptor binding and activation by peptide/major histocompatibility complex multimers. J Exp Med 2000; 191:335-46. [PMID: 10637277 PMCID: PMC2195759 DOI: 10.1084/jem.191.2.335] [Citation(s) in RCA: 223] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/1999] [Accepted: 10/12/1999] [Indexed: 01/29/2023] Open
Abstract
Recent data using MHC/peptide tetramers and dimers suggests that the T cell coreceptors, CD4 and CD8, although important for T cell activation, do not play a direct role in facilitating T cell receptor (TCR) binding to multivalent MHC/peptide ligands. Instead, a current model proposes that coreceptors are recruited only after a stable TCR-MHC/peptide complex has already formed and signaled. In contrast, we show using multimeric class I MHC/peptide ligands that CD8 plays a critical (in some cases obligatory) role in antigen-specific TCR binding. T cell activation, measured by calcium mobilization, was induced by multimeric but not monomeric ligands and also showed CD8 dependency. Our analysis using anti-CD8 antibodies revealed that binding to different epitopes of CD8 can either block or augment TCR-MHC/peptide interaction. These effects on TCR binding to high-affinity agonist ligands were even more pronounced when binding to multimeric low-affinity ligands, including TCR antagonists, was studied. Our data have important implications for the role of CD8 in TCR binding to MHC/peptide ligands and in T cell activation. In addition, our results argue against the view that multimeric MHC/peptide ligands bind directly and solely to the TCR; rather, our data highlight a pivotal contribution of CD8 for this association.
Collapse
Affiliation(s)
- M A Daniels
- Center for Immunology, Department of Lab Medicine and Pathology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA
| | | |
Collapse
|
22
|
Sharp LL, Hedrick SM. Commitment to the CD4 Lineage Mediated by Extracellular Signal-Related Kinase Mitogen-Activated Protein Kinase and Lck Signaling. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.163.12.6598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Abstract
The development of T cells results in a concordance between the specificity of the TCR for MHC class I and class II molecules and the expression of CD8 and CD4 coreceptors. Based on analogy to simple metazoan models of organ development and lineage commitment, we sought to determine whether extracellular signal-related kinase (Erk) mitogen-activated protein (MAP) kinase pathway signaling acts as an inductive signal for the CD4 lineage. Here, we show that, by altering the intracellular signaling involving the Erk/MAP kinase pathway, T cells with specificity for MHC class I can be diverted to express CD4, and, conversely, T cells with specificity for MHC class II can be diverted to express CD8. Furthermore, we find that activation of the src-family tyrosine kinase, p56lck is an upstream mediator of lineage commitment. These results suggest a simple mechanism for lineage commitment in T cell development.
Collapse
Affiliation(s)
- Leslie L. Sharp
- Department of Biology and Cancer Center, University of California at San Diego, La Jolla, CA 92093. E-mail address:
| | - Stephen M. Hedrick
- Department of Biology and Cancer Center, University of California at San Diego, La Jolla, CA 92093. E-mail address:
| |
Collapse
|
23
|
Salmon P, Mong M, Kang XJ, Cado D, Robey E. The Role of CD8α′ in the CD4 Versus CD8 Lineage Choice. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.163.10.5312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
During thymic development the recognition of MHC proteins by developing thymocytes influences their lineage commitment, such that recognition of class I MHC leads to CD8 T cell development, whereas recognition of class II MHC leads to CD4 T cell development. The coreceptors CD8 and CD4 may contribute to these different outcomes through interactions with class I and class II MHC, respectively, and through interactions with the tyrosine kinase p56lck (Lck) via their cytoplasmic domains. In this paper we provide evidence that an alternatively spliced form of CD8 that cannot interact with Lck (CD8α′) can influence the CD4 vs CD8 lineage decision. Constitutive expression of a CD8 minigene transgene that encodes both CD8α and CD8α′ restores CD8 T cell development in CD8α mutant mice, but fails to permit the development of mismatched CD4 T cells bearing class I-specific TCRs. These results indicate that CD8α′ favors the development of CD8-lineage T cells, perhaps by reducing Lck activity upon class I MHC recognition in the thymus.
Collapse
Affiliation(s)
- Patrick Salmon
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| | - Mimi Mong
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| | - Xiao-Jun Kang
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| | - Dragana Cado
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| | - Ellen Robey
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| |
Collapse
|
24
|
Human Immunodeficiency Virus nef Gene Expression Affects Generation and Function of Human T Cells, But Not Dendritic Cells. Blood 1999. [DOI: 10.1182/blood.v94.8.2809.420k11_2809_2818] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human immunodeficiency virus (HIV)-infected individuals develop an acquired immune deficiency syndrome (AIDS) due to loss in their lymphocyte numbers and cellular defects in T cells and antigen-presenting cells (APC). HIV infection of the thymus results in deficient replenishment of the peripheral naive T-cell pool. The HIVnef gene was shown to be important for progression towards AIDS and cellular depletion of the infected thymus. Here, we demonstrate by retroviral gene transfer that nef expression, in the absence of other HIV genes, impaired human thymic T-cell development. Thymocytes were generated in reduced numbers and downmodulated CD4 and CD8β cell surface expression. T cells grown from nef-expressing thymocytes were hyperproliferative in vitro upon T-cell receptor triggering. Mature dendritic cells (DC) were functional and had normal surface CD4 levels despite nef expression. Thus, nefexpression alone may contribute to AIDS development by reduced T-cell generation and T-cell hyperresponsiveness.
Collapse
|
25
|
Devine L, Kavathas PB. Molecular analysis of protein interactions mediating the function of the cell surface protein CD8. Immunol Res 1999; 19:201-10. [PMID: 10493174 DOI: 10.1007/bf02786488] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The T cell coreceptor CD8 is a cell-surface glycoprotein expressed either as a disulfide-linked homodimer of two CD8alpha monomers, or a heterodimer of CD8alpha and CD8beta. These receptors interact with ligands, such as major histocompatibility complex (MHC) class I, on the outside of the cell, with proteins inside the cell, such as the tyrosine kinase p56lck, and possibly with proteins on the same cell-surface. The molecular details describing such protein interactions can shed light on how the proteins function and the functional differences between the two forms of CD8. Crystal structures, mutational analysis, affinity measurements, and other approaches are providing those details.
Collapse
Affiliation(s)
- L Devine
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT 06520-8035, USA
| | | |
Collapse
|
26
|
Kern P, Hussey RE, Spoerl R, Reinherz EL, Chang HC. Expression, purification, and functional analysis of murine ectodomain fragments of CD8alphaalpha and CD8alphabeta dimers. J Biol Chem 1999; 274:27237-43. [PMID: 10480942 DOI: 10.1074/jbc.274.38.27237] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Soluble mouse CD8alphaalpha and CD8alphabeta dimers corresponding to the paired ectodomains (CD8(f)) or their respective component Ig-like domains (CD8) were expressed in Chinese hamster ovary cells or the glycosylation variant Lec3.2.8.1 cells as secreted proteins using a leucine zipper strategy. The affinity of CD8alphaalpha(f) for H-2K(b) as measured by BIAcore revealed a approximately 65 microM K(d), similar to that of CD8alphabeta(f). Consistent with this result, CD8alphaalpha(f) as well as CD8alphabeta(f) blocked the effector function of N15 T cell receptor transgenic cytolytic T cells in a comparable, dose-dependent fashion. Furthermore, both Lec3.2.8.1-produced and Chinese hamster ovary-produced CD8 homodimers and heterodimers were active in the inhibition assay. These results suggest that the Ig-like domains of CD8 molecules are themselves sufficient to block the requisite transmembrane CD8-pMHC interaction between cytolytic T lymphocytes and target cells. Moreover, given the similarities in co-receptor affinities for pMHC, the findings suggest that the greater efficiency of CD8alphabeta versus CD8alphaalpha co-receptor function on T cells is linked to differences within their membrane-bound stalk regions and/or intracellular segments. As recently shown for sCD8alphaalpha, the yield, purity and homogeneity of the deglycosylated protein resulting from this expression system is sufficient for crystallization and x-ray diffraction at atomic resolution.
Collapse
Affiliation(s)
- P Kern
- Laboratory of Immunobiology, Dana-Farber Cancer Institute and Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
27
|
Witte T, Spoerl R, Chang HC. The CD8beta ectodomain contributes to the augmented coreceptor function of CD8alphabeta heterodimers relative to CD8alphaalpha homodimers. Cell Immunol 1999; 191:90-6. [PMID: 9973530 DOI: 10.1006/cimm.1998.1412] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Within the lymphoid compartment, CD8 is expressed either as an alphaalpha homodimer or as an alphabeta heterodimer. Prior functional characterization of CD8alpha transfectants has demonstrated that CD8alphaalpha homodimers can reconstitute T cell responses in the absence of the CD8beta subunit. In order to now examine the role of CD8beta in TCR recognition, the CD8alpha cDNA alone or in combination with CD8beta cDNA was transfected into the mouse T cell hybridoma, N15wt, specific for VSV8/Kb. Comparison of antigen-induced IL-2 production reveals that CD8alphabeta+ transfectants are 100-fold more sensitive in molar terms of peptide than CD8alphaalpha+ transfectants. This enhancement of IL-2 production is independent of CD8alpha or CD8beta cytoplasmic tails as demonstrated by analysis of cytoplasmic deletion mutants CD8alpha'beta, CD8alphabeta', and CD8alpha'beta'. These results indicate that the ectodomain of the CD8beta chain greatly enhances the coreceptor function of the CD8alphabeta molecule, at least for certain class I MHC restricted alphabeta TCRs.
Collapse
Affiliation(s)
- T Witte
- Laboratory of Immunobiology, Dana-Farber Cancer Institute, Boston, Massachusetts, 02115, USA
| | | | | |
Collapse
|
28
|
Kern PS, Teng MK, Smolyar A, Liu JH, Liu J, Hussey RE, Spoerl R, Chang HC, Reinherz EL, Wang JH. Structural basis of CD8 coreceptor function revealed by crystallographic analysis of a murine CD8alphaalpha ectodomain fragment in complex with H-2Kb. Immunity 1998; 9:519-30. [PMID: 9806638 DOI: 10.1016/s1074-7613(00)80635-4] [Citation(s) in RCA: 159] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The crystal structure of the two immunoglobulin variable-like domains of the murine CD8alphaalpha homodimer complexed to the class I MHC H-2Kb molecule at 2.8 A resolution shows that CD8alphaalpha binds to the protruding MHC alpha3 domain loop in an antibody-like manner. Comparison of mouse CD8alphaalpha/H-2Kb and human CD8alphaalpha/HLA-A2 complexes reveals shared as well as species-specific recognition features. In both species, coreceptor function apparently involves the participation of CD8 dimer in a bidentate attachment to an MHC class I molecule in conjunction with a T cell receptor without discernable conformational alteration of the peptide or MHC antigen-presenting platform.
Collapse
Affiliation(s)
- P S Kern
- Laboratory of Immunobiology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Dave VP, Allman D, Keefe R, Hardy RR, Kappes DJ. HD mice: a novel mouse mutant with a specific defect in the generation of CD4(+) T cells. Proc Natl Acad Sci U S A 1998; 95:8187-92. [PMID: 9653162 PMCID: PMC20951 DOI: 10.1073/pnas.95.14.8187] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/1998] [Accepted: 05/11/1998] [Indexed: 02/08/2023] Open
Abstract
We have identified a spontaneous mutation in mice, which we term HD for "helper T cell deficient." This mouse is distinguished by the virtual absence of peripheral T cells of the CD4(+)8(-) major histocompatibility complex (MHC) class II-restricted T helper subset due to a specific block in thymic development. The developmental defect is selective for CD4(+)8(-) cells; the maturation of CD4(-)8(+) and gamma delta T cells is normal. The autosomal recessive mutation underlying the HD phenotype is unrelated to MHC class II, since it segregates independently of the MHC class II locus. Moreover, the HD phenotype is not caused by a defect of the CD4 gene. Bone marrow transfer experiments demonstrate that the defect is intrinsic to cells of the hematopoietic lineage, i.e., most likely to developing thymocytes themselves. The frequency of CD4(+)8(low) intermediate cells is markedly increased in HD mice, suggesting that class II-restricted thymocytes are arrested at this stage. This is the first genetic defect of its kind to be described in the mouse and may prove highly informative in understanding the molecular pathways underlying lineage commitment.
Collapse
Affiliation(s)
- V P Dave
- Fox Chase Cancer Center, 7701 Burholme Avenue, Philadelphia, PA 19111, USA
| | | | | | | | | |
Collapse
|
30
|
Irie HY, Mong MS, Itano A, Crooks MEC, Littman DR, Burakoff SJ, Robey E. The Cytoplasmic Domain of CD8β Regulates Lck Kinase Activation and CD8 T Cell Development. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.161.1.183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
Previous studies have shown that CD8β plays a role in both enhancing CD8α-associated Lck kinase activity and promoting the development of CD8-lineage T cells. To examine the role of this enhancement in the maturation of CD8-lineage cells, we assessed CD8α-associated Lck kinase activity in both T cell hybridomas and thymocytes of mice expressing CD8β mutations known to impair CD8 T cell development. Lack of CD8β expression or expression of a cytoplasmic domain-deleted CD8β resulted in a severalfold reduction in CD8α-associated Lck kinase activity compared with that observed with cells expressing wild-type CD8β chain. This analysis indicated a critical role for the cytoplasmic domain of CD8β in the regulation of CD8α-associated Lck activity. Decreased CD8α-associated Lck activity observed with the various CD8β mutations also correlated with diminished in vivo cellular tyrosine phosphorylation. In addition, analysis of CD8β mutant mice (CD8β−/− or cytoplasmic domain-deleted CD8β transgenic) indicated that the degree of reduction in CD8α-associated Lck activity associated with each mutation correlated with the severity of developmental impairment. These results support the importance of CD8β-mediated enhancement of CD8α-associated Lck kinase activity in the differentiation of CD8 single-positive thymocytes.
Collapse
Affiliation(s)
- Hanna Yoko Irie
- *Department of Pediatric Oncology, Dana-Farber Cancer Institute, and Department of Pediatrics, Harvard Medical School, Boston, MA 02115
| | - Mimi S. Mong
- †Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| | - Andrea Itano
- †Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| | - M. E. Casey Crooks
- ‡Department of Microbiology and Immunology, University of California, San Francisco, CA 94143; and
| | - Dan R. Littman
- §Howard Hughes Medical Institute, Skirball Institute of Biomolecular Medicine, New York University Medical Center, New York, NY 10016
| | - Steven J. Burakoff
- *Department of Pediatric Oncology, Dana-Farber Cancer Institute, and Department of Pediatrics, Harvard Medical School, Boston, MA 02115
| | - Ellen Robey
- †Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| |
Collapse
|
31
|
Hirji N, Lin TJ, Bissonnette E, Belosevic M, Befus AD. Mechanisms of Macrophage Stimulation Through CD8: Macrophage CD8α and CD8β Induce Nitric Oxide Production and Associated Killing of the Parasite Leishmania major. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.160.12.6004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
Prior studies demonstrated that rat macrophages express CD8, which differs from T lymphocyte CD8 within the ligand binding domain. We investigated whether stimulation of macrophage CD8 could induce mediator release and regulate host defense. Cross-linking either CD8α (OX8, 5 μg/ml) or CD8β (341, 10 μg/ml) stimulated nitric oxide (NO) production, which correlated with an up-regulation of inducible NO synthase protein. Cell signaling inhibitors were used to elucidate the pathways of CD8α and CD8β stimulation. Genistein (broad spectrum protein tyrosine kinase inhibitor, 10 μg/ml), PP1 (src family kinase inhibitor, 5 μg/ml), polymyxin B (protein kinase C (PKC) inhibitor, 100 μg/ml), and Ro 31-8220 (PKC inhibitor, 1 μM) significantly inhibited anti-CD8α- and anti-CD8β-stimulated NO production and inducible NO synthase up-regulation, suggesting that tyrosine kinase(s) (src family) and PKC are involved in CD8 signaling. In addition, cross-linking CD8α stimulated NO-dependent macrophage killing of the parasite Leishmania major. For the first time, this work demonstrates that the β-chain of macrophage CD8, in addition to the α-chain, can regulate mediator release. These results further illustrate the importance of this molecule and support our previous data demonstrating differences between macrophage and T lymphocyte CD8. Additional studies on the signaling mechanisms and possible ligand(s) for macrophage CD8 will lead to a greater understanding of inflammation and host defense.
Collapse
Affiliation(s)
| | | | | | - Miodrag Belosevic
- †Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | | |
Collapse
|
32
|
Wheeler CJ, Chen JY, Potter TA, Parnes JR. Mechanisms of CD8β-Mediated T Cell Response Enhancement: Interaction with MHC Class I/β2-Microglobulin and Functional Coupling to TCR/CD3. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.160.9.4199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
CD8β expression results in enhanced IL-2 production and/or altered specificity in allogeneic MHC class I-restricted T cell hybridomas. Expression of chimeric CD8β-α molecules (extracellular CD8β, transmembrane and cytoplasmic CD8α) also results in enhancement of T hybridoma responses to alloantigen, suggesting that at least part of CD8β’s ability to influence responses similar to those of mature CD8+ T cells is mediated by its extracellular domain. Current data suggest that CD8β-mediated response enhancement proceeds through mechanisms similar to those mediated by CD8α, i.e., interacting with MHC class I and stabilizing CD8-associated Lck activity. In this study we present evidence that the extracellular portion of CD8β is capable of independent interaction with MHC class I/β2m dimers in the absence of CD8α. In addition, CD8β may enhance interaction with MHC class I/β2m when associated with CD8α. We also present evidence from T hybridoma responses suggesting that the extracellular portion of CD8β is uniquely capable of efficient interaction with the TCR/CD3 complex and may couple the TCR/CD3 complex to other surface components capable of enhancing TCR-mediated signals. This represents the first evidence that a critical coreceptor function can be preferentially associated with the CD8β subunit.
Collapse
Affiliation(s)
- Christopher J. Wheeler
- *Department of Medicine, Division of Immunology and Rheumatology, Stanford University Medical Center, Stanford, CA 94305; and
| | - Jing-Yi Chen
- *Department of Medicine, Division of Immunology and Rheumatology, Stanford University Medical Center, Stanford, CA 94305; and
| | - Terry A. Potter
- †Division of Basic Immunology, Department of Medicine, National Jewish Center for Immunology and Respiratory Medicine, Denver, CO 80206
| | - Jane R. Parnes
- *Department of Medicine, Division of Immunology and Rheumatology, Stanford University Medical Center, Stanford, CA 94305; and
| |
Collapse
|
33
|
van Meerwijk JPM, Bianchi T, Marguerat S, MacDonald HR. Thymic Lineage Commitment Rather Than Selection Causes Genetic Variations in Size of CD4 and CD8 Compartments. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.160.8.3649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
During their development, immature CD4+CD8+ thymocytes become committed to either the CD4 or CD8 lineage. Subsequent complete maturation of CD4+ and CD8+ cells requires a molecular match of the expressed coreceptor and the MHC specificity of the TCR. The final size of the mature CD4+ and CD8+ thymic compartments is therefore determined by a combination of lineage commitment and TCR-mediated selection. In humans and mice, the relative size of CD4+ and CD8+ peripheral T cell compartments shows marked genetic variability. We show here that genetic variations in thymic lineage commitment, rather than TCR-mediated selection processes, are responsible for the distinct CD4/CD8 ratios observed in common inbred mouse strains. Genetic variations in the regulation of lineage commitment open new ways to analyze this process and to identify the molecules involved.
Collapse
Affiliation(s)
- Joost P. M. van Meerwijk
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne, 1066 Epalinges, Switzerland
| | - Teresa Bianchi
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne, 1066 Epalinges, Switzerland
| | - Samuel Marguerat
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne, 1066 Epalinges, Switzerland
| | - H. Robson MacDonald
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne, 1066 Epalinges, Switzerland
| |
Collapse
|
34
|
Frank GD, Parnes JR. The Level of CD4 Surface Protein Influences T Cell Selection in the Thymus. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.160.2.634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
During T cell development thymocytes are subjected to positive and negative selection criteria to ensure that the mature T cell repertoire is MHC restricted, yet self tolerant at the same time. The CD4 and CD8 coreceptors are thought to play a crucial role in this developmental process. To elucidate the role of CD4 in T cell selection, we have produced a mouse strain that expresses CD4 at a reduced level. We used homologous recombination in embryonic stem cells to insert neo into the 3′ untranslated region of CD4. The resulting mice have a reduction in the percentage of CD4+ cells in the thymus and a concomitant increase in CD8+ cells. In addition, breeding two individual class II-restricted TCR transgenic mice onto the CD4low (low level of CD4) mutant background affects the selection of each TCR differentially. In one case (AND TCR transgenic), significantly fewer CD4+ cells with the transgenic TCR develop on the CD4low mutant background, whereas in the other (5C.C7 TCR transgenic), selection to the CD4 lineage is only slightly reduced. These data support the differential avidity model of positive and negative selection. With little or no avidity, the cell succumbs to programmed cell death, low to moderate avidity leads to positive selection, and an avidity above a certain threshold, presumably above one that would lead to autoreactivity in the periphery, results in clonal deletion. These data also support the idea that a minimum avidity threshold for selection exists and that CD4 plays a crucial role in determining this avidity.
Collapse
Affiliation(s)
- Gregory D. Frank
- *Program in Immunology and
- †Department of Medicine, Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA 94305
| | - Jane R. Parnes
- †Department of Medicine, Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
35
|
Hostert A, Tolaini M, Roderick K, Harker N, Norton T, Kioussis D. A region in the CD8 gene locus that directs expression to the mature CD8 T cell subset in transgenic mice. Immunity 1997; 7:525-36. [PMID: 9354473 DOI: 10.1016/s1074-7613(00)80374-x] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The coreceptors CD4 and CD8 play a crucial role during thymocyte development and T cell effector function, and their expression is developmentally regulated. To determine the underlying molecular mechanisms of CD8 gene regulation we cloned the murine CD8 gene locus from genomic libraries and analyzed this region for deoxyribonuclease (DNase I) hypersensitive sites (HSS). Here we report, using transgenic mice, deletion analysis of one of the identified clusters of DNase I hypersensitivity, consisting of three DNase I-HSS and located in the intergenic region between the CD8alpha and CD8beta genes. Our data show that at least two of the DNase I-HSS constituting this cluster are individually sufficient to direct CD8alpha or heterologous transgene expression to the mature CD8 single-positive T cell subset and that this expression coincides temporally with the appearance of positively selected T cells.
Collapse
Affiliation(s)
- A Hostert
- Division of Molecular Immunology, National Institute for Medical Research, The Ridgeway, London, England
| | | | | | | | | | | |
Collapse
|
36
|
Abstract
The absence of cytotoxic T lymphocyte activity and the failure of MHC class I-restricted T cell receptor (TCR) transgenic thymocytes to mature in CD8alpha-deficient mice suggest that CD8 may be essential for CD8 lineage commitment. We report that variants of the antigenic peptide that delete TCR transgenic thymocytes from CD8 wild-type but not CD8alpha-deficient mice can restore positive selection of CD8 lineage cells in the absence of CD8. The positively selected cells down-regulate CD4, up-regulate TCR, respond to the antigenic peptide, and express CD8beta mRNA. Interestingly, there was no enhanced selection of CD4+ T cells, implying that the TCR-MHC interaction, even in the absence of CD8, provided instructive signaling for commitment to the CD8 lineage. Our results are discussed in terms of recent models of T cell lineage commitment.
Collapse
Affiliation(s)
- A W Goldrath
- Department of Immunology, Howard Hughes Medical Institute, University of Washington, Seattle 98195, USA
| | | | | |
Collapse
|
37
|
Sebzda E, Choi M, Fung-Leung WP, Mak TW, Ohashi PS. Peptide-induced positive selection of TCR transgenic thymocytes in a coreceptor-independent manner. Immunity 1997; 6:643-53. [PMID: 9175842 DOI: 10.1016/s1074-7613(00)80352-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
T cell receptor (TCR) transgenic thymocytes specific for the LCMV gp peptide are normally positively selected to the CD8 lineage. Transgenic thymocyte development was substantially reduced in the absence of these CD8 coreceptors. However, efficient positive selection was restored when TCR transgenic CD8-/- fetal thymic lobes were cultured with a peptide variant of the wild-type ligand. These mature thymocytes were functional, as shown by their ability to respond against strong peptide agonists. Additional experiments demonstrated that transgenic positive selection was peptide-specific. These results prove that CD8 does not possess essential signaling properties that are necessary for T cell development. In addition, the unilateral commitment of transgenic thymocytes to mature CD4-TCR(hi) T cells expressing intracellular perforin suggests that there must be some instructive component to CD4 down-regulation and lineage commitment during thymocyte selection.
Collapse
Affiliation(s)
- E Sebzda
- Ontario Cancer Institute, Department of Medical Biophysics, Toronto, Canada
| | | | | | | | | |
Collapse
|
38
|
Abstract
The past year has been marked by the application of new technologies to study thymocyte development. These studies have shown that positive selection affects a surprisingly large proportion of thymocytes, and now are beginning to investigate the affinities/avidities of the reactions involved. The lengthy controversy over how thymocytes decide whether to express CD4 or CD8 has taken a new turn with the discovery that levels of expression of the fate-determining protein Notch may affect the decision.
Collapse
Affiliation(s)
- P Marrack
- Howard Hughes Medical Institute, Department of Medicine, National Jewish Center, Denver, CO 80206, USA.
| | | |
Collapse
|
39
|
Cibotti R, Punt JA, Dash KS, Sharrow SO, Singer A. Surface molecules that drive T cell development in vitro in the absence of thymic epithelium and in the absence of lineage-specific signals. Immunity 1997; 6:245-55. [PMID: 9075925 DOI: 10.1016/s1074-7613(00)80327-1] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Differentiation of immature double positive (DP) CD4+ CD8+ thymocytes into single positive (SP) CD4+ and CD8+ T cells is referred to as positive selection and requires physical contact with thymic cortical epithelium. We now have identified "coinducer" molecules on DP thymocytes that, together with TCR, signal DP thymocytes to differentiate into SP T cells in vitro in the absence of thymic epithelium. A remarkable number of different molecules on DP thymocytes possessed "coinducing" activity, including CD2, CD5, CD24, CD28, CD49d, CD81, and TSA-1. Interestingly, in vitro differentiation occurred in the absence of lineage-specific signals, yet resulted in the selective generation of CD4+CD8- T cells. Thus, the present study has identified surface molecules that can signal DP thymocytes to differentiate into SP T cells in the absence of thymic epithelium and has characterized a default pathway for CD4+ T cell differentiation.
Collapse
Affiliation(s)
- R Cibotti
- Experimental Immunology Branch, National Cancer Institute, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
40
|
Res P, Blom B, Hori T, Weijer K, Spits H. Downregulation of CD1 marks acquisition of functional maturation of human thymocytes and defines a control point in late stages of human T cell development. J Exp Med 1997; 185:141-51. [PMID: 8996250 PMCID: PMC2196108 DOI: 10.1084/jem.185.1.141] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We have investigated whether in the human thymus transition of CD4+CD8+ double positive (DP) to CD4+ or CD8+ single positive (SP) cells is sufficient for generation of functional immunocompetent T cells. Using the capacity of thymocytes to expand in vitro in response to PHA and IL-2 as a criterion for functional maturity, we found that functional maturity of both SP and DP thymocytes correlates with downregulation of CD1a. CD1a- cells with a persistent DP phenotype were also found in neonatal cord blood, suggesting that at least a proportion of mature DP cells can emigrate from the thymus. The requirements for generating functional T cells were investigated in a hybrid human/mouse fetal thymic organ culture. MHC class II-positive, but not MHC class II-negative, mouse thymic microenvironments support differentiation of human progenitors into TCR alpha beta+CD4+ SP cells, indicating that mouse MHC class II can positively select TCR alpha beta +CD4+ SP human cells. Strikingly, these SP are arrested in the CD1a+ stage and could not be expanded in vitro with PHA and IL-2. CD1a+CD4+ SP thymocytes do not represent an end stage population because purified CD1a+CD4+ SP thymocytes differentiate to expandable CD1a- cells upon cocultivation with human thymic stromal cells. Taken together these data indicate that when CD1a+ DP TCR alpha beta low cells mature, these cells interact with MHC, but that an additional, apparently species-specific, signal is required for downregulation of CD1a to generate functional mature TCR alpha beta + cells.
Collapse
Affiliation(s)
- P Res
- Netherlands Cancer Institute, Amsterdam, Netherlands
| | | | | | | | | |
Collapse
|
41
|
Renard V, Delon J, Luescher IF, Malissen B, Vivier E, Trautmann A. The CD8 beta polypeptide is required for the recognition of an altered peptide ligand as an agonist. Eur J Immunol 1996; 26:2999-3007. [PMID: 8977296 DOI: 10.1002/eji.1830261227] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
T cell activation is triggered by the specific recognition of cognate peptides presented by MHC molecules. Altered peptide ligands are analogs of cognate peptides which have a high affinity for MHC molecules. Some of them induce complete T cell responses, i.e. they act as agonists, whereas others behave as partial agonists or even as antagonists. Here, we analyzed both early (intracellular Ca2+ mobilization), and late (interleukin-2 production) signal transduction events induced by a cognate peptide or a corresponding altered peptide ligand using T cell hybridomas expressing or not the CD8 alpha and beta chains. With a video imaging system, we showed that the intracellular Ca2+ response to an altered peptide ligand induces the appearance of a characteristic sustained intracellular Ca2+ concentration gradient which can be detected shortly after T cell interaction with antigen-presenting cells. We also provide evidence that the same altered peptide ligand can be seen either as an agonist or a partial agonist, depending on the presence of CD8beta in the CD8 co-receptor dimers expressed at the T cell surface.
Collapse
Affiliation(s)
- V Renard
- Centre d'Immunologie INSERM/CNRS de Marseille-Luminy, France
| | | | | | | | | | | |
Collapse
|
42
|
Renard V, Romero P, Vivier E, Malissen B, Luescher IF. CD8 beta increases CD8 coreceptor function and participation in TCR-ligand binding. J Exp Med 1996; 184:2439-44. [PMID: 8976201 PMCID: PMC2196369 DOI: 10.1084/jem.184.6.2439] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
To study the role of CD8 beta in T cell function, we derived a CD8 alpha/beta-(CD8-/-) T cell hybridoma of the H-2Kd-restricted N9 cytotoxic T lymphocyte clone specific for a photoreactive derivative of the Plasmodium berghei circumsporozoite peptide PbCS 252-260. This hybridoma was transfected either with CD8 alpha alone or together with CD8 beta. All three hybridomas released interleukin 2 upon incubation with L cells expressing Kd-peptide derivative complexes, though CD8 alpha/beta cells did so more efficiently than CD8 alpha/alpha and especially CD8-/- cells. More strikingly, only CD8 alpha/beta cells were able to recognize a weak agonist peptide derivative variant. This recognition was abolished by Fab' fragments of the anti-Kd alpha 3 monoclonal antibody SF1-1.1.1 or substitution of Kd D-227 with K, both conditions known to impair CD8 coreceptor function. T cell receptor (TCR) photoaffinity labeling indicated that TCR-ligand binding on CD8 alpha/beta cells was approximately 5- and 20-fold more avid than on CD8 alpha/a and CD8-/- cells, respectively. SF1-1.1.1 Fab' or Kd mutation D227K reduced the TCR photoaffinity labeling on CD8 alpha/beta cells to approximately the same low levels observed on CD8-/- cells. These results indicate that CD8 alpha/beta is a more efficient coreceptor than CD8alpha/alpha, because it more avidly strengthens TCR-ligand binding.
Collapse
Affiliation(s)
- V Renard
- Centre d'Immunologie Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique de Marseille-Luminy, France
| | | | | | | | | |
Collapse
|
43
|
Itano A, Salmon P, Kioussis D, Tolaini M, Corbella P, Robey E. The cytoplasmic domain of CD4 promotes the development of CD4 lineage T cells. J Exp Med 1996; 183:731-41. [PMID: 8642277 PMCID: PMC2192343 DOI: 10.1084/jem.183.3.731] [Citation(s) in RCA: 120] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Thymocytes must bind major histocompatibility complex (MHC) proteins on thymic epithelial cells in order to mature into either CD8+ cytotoxic T cells or CD4+ helper T cells. Thymic precursors express both CD8 and CD4, and it has been suggested that the intracellular signals generated by CD8 or CD4 binding to class I or II MHC, respectively, might influence the fate of uncommitted cells. Here we test the notion that intracellular signaling by CD4 directs the development of thymocytes to a CD4 lineage. A hybrid protein consisting of the CD8 extracellular and transmembrane domains and the cytoplasmic domain of CD4 (CD884) should bind class I MHC but deliver a CD4 intracellular signal. We find that expression of a hybrid CD884 protein in thymocytes of transgenic mice leads to the development of large numbers of class I MHC-specific, CD4 lineage T cells. We discuss these results in terms of current models for CD4 and CD8 lineage commitment.
Collapse
Affiliation(s)
- A Itano
- Department of Molecular and Cell Biology, University of California, Berkeley, 94720, USA
| | | | | | | | | | | |
Collapse
|
44
|
Mittrücker HW, Pfeffer K, Schmits R, Mak TW. T-lymphocyte development and function in gene-targeted mutant mice. Immunol Rev 1995; 148:115-50. [PMID: 8825285 DOI: 10.1111/j.1600-065x.1995.tb00096.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- H W Mittrücker
- Department of Medical Biophysics, University of Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
45
|
LaFace DM, Vestberg M, Yang Y, Srivastava R, DiSanto J, Flomenberg N, Brown S, Sherman LA, Peterson PA. Human CD8 transgene regulation of HLA recognition by murine T cells. J Exp Med 1995; 182:1315-25. [PMID: 7595202 PMCID: PMC2192222 DOI: 10.1084/jem.182.5.1315] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
A series of human CD8 transgenic (hCD8 Tg) mice with differential expression in the thymus and periphery were produced to investigate CD8 coreceptor regulation of repertoire selection and T cell responses. Expression of hCD8 markedly enhanced responses to both HLA class I molecules and hybrid A2/Kb molecules providing functional evidence for a second interaction site, outside of the alpha 3 domain, which is essential for optimal coreceptor function. Peripheral T cell expression of hCD8 was sufficient to augment responsiveness to HLA class I, as hCD8 Tg mice which lacked thymic expression responded as well as mice expressing hCD8 in the thymus and periphery. Both murine CD8+ and CD4+ T cells expressing hCD8 transgenes exhibited markedly enhanced responses to foreign HLA class I, revealing the ability of T cell receptor repertoires selected on either murine class I or class II to recognize human class I major histocompatibility complex (MHC). In contrast to recognition of foreign class I, thymic expression of hCD8 transgenes was absolutely required to enhance recognition of antigenic peptide restricted by self-HLA class I. Thus, our studies revealed disparate requirements for CD8 coreceptor expression in the thymus for selection of a T cell repertoire responsive to foreign MHC and to antigenic peptides bound to self-MHC, providing a novel demonstration of positive selection that is dependent on human CD8.
Collapse
Affiliation(s)
- D M LaFace
- Department of Immunology, Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Ravichandran KS, Pratt JC, Sawasdikosol S, Irie HY, Burakoff SJ. Coreceptors and adapter proteins in T-cell signaling. Ann N Y Acad Sci 1995; 766:117-33. [PMID: 7486649 DOI: 10.1111/j.1749-6632.1995.tb26656.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- K S Ravichandran
- Division of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
47
|
Hwang I, Gottlieb PD. Bop: a new T-cell-restricted gene located upstream of and opposite to mouse CD8b. Immunogenetics 1995; 42:353-61. [PMID: 7590968 DOI: 10.1007/bf00179396] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In the course of transient expression studies undertaken to determine the location of the mouse CD8b gene promoter, two additional promoter activities were detected within 600 nucleotides upstream of the gene. One activity directs transcription in the same direction as CD8b but fails to transcribe the CAT reporter gene due to an apparent transcription-blocking element lying between it and the gene. The second activity directs transcription opposite to that of the CD8b gene. Northern hybridization with a probe consisting of nucleotides -875 to -550 relative to the site of CD8b transcription initiation revealed hybridizing species of 4 kilobases (kb) and 1.8 kb in poly-A-selected RNA from mouse thymus but not from any other tissues. Similar RNA species were detected in poly-A+ RNA from concanavalin A-stimulated spleen cells and several long-term CTL lines but not from the EL4 or BW5147 T-cell lines or the J558L myeloma. The mRNA species were most abundant in cells of a secondary mixed leukocyte culture which were greater than 95% CD8(+). Northern hybridizations using single-stranded unidirectional probes indicated that these mRNAs represent transcription opposite to the CD8b gene. The tissue and cell type distribution of this newly-discovered gene (designated Bop for CD8b opposite) are consistent with T-cell-specific and possibly CD8-positive T-cell-specific expression. The head-to-head arrangement of the Bop and CD8b genes is reminiscent of the arrangement of the Tap1 and Lmp2 genes, and the expression of the Bop gene in CD8-positive cells raises the possibility that these genes are involved in the same functional pathway.
Collapse
Affiliation(s)
- I Hwang
- Department of Microbiology, University of Texas at Austin, Austin, TX 78712, USA
| | | |
Collapse
|
48
|
Lucas B, Vasseur F, Penit C. Stochastic coreceptor shut-off is restricted to the CD4 lineage maturation pathway. J Exp Med 1995; 181:1623-33. [PMID: 7722442 PMCID: PMC2191984 DOI: 10.1084/jem.181.5.1623] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Kinetics of mature T cell generation in the thymus of normal or major histocompatibility complex (MHC) class I- or II-deficient mice were studied by the bromodeoxyuridine pulse labeling method. As previously described, the early activation and final maturation phases were found to be synchronous for the two T cell lineages, but CD4+8- cells were generated faster than CD4-8+ cells in MHC class I- and II-deficient mice, respectively. CD8 downregulation started on day 2 after cell proliferation even in the absence of MHC class II expression. CD8 downregulation thus appears to be stochastic at its beginning. By contrast, CD4 shut-off was found totally instructive, as the generation of CD4lo8+ cells with a high TCR density was not observed in class I-deficient mice. The analysis of the V beta 14 TCR frequencies in CD4/8 subsets in normal and MHC-deficient mice confirmed that CD4 and CD8 generation pathways are not symmetrical. These findings show that commitment towards the CD4+8- or CD4-8+ phenotype is controlled at the CD8lo step for the former and at the CD4+8+ double-positive stage for the latter.
Collapse
Affiliation(s)
- B Lucas
- Unité 345 Institut de la Santé et de la Recherche Médicale, CHU Necker-Enfants, Paris, France
| | | | | |
Collapse
|
49
|
Irie HY, Ravichandran KS, Burakoff SJ. CD8 beta chain influences CD8 alpha chain-associated Lck kinase activity. J Exp Med 1995; 181:1267-73. [PMID: 7699318 PMCID: PMC2191951 DOI: 10.1084/jem.181.4.1267] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The CD8 molecule plays an important role in the differentiation of CD8+ T cells in the thymus and in their normal function in the periphery. CD8 exists on the cell surface in two forms, the alpha alpha homodimer and the alpha beta heterodimer. Recent studies indicate an important role for the CD8 beta chain in thymic development of CD8+ T cells and suggest that signaling via CD8 alpha beta may be distinct from CD8 alpha alpha. To better understand these differences, we introduced the CD8 beta gene into a T cell hybridoma which only expressed the CD8 alpha alpha homodimer. In the parent hybridoma, cross-linking of the CD8 alpha chain led to minimal enhancement of CD8-associated Lck tyrosine kinase activity. In the CD8 beta+ transfectants, several observations suggested that CD8 beta modifies CD8 alpha-associated Lck tyrosine kinase activity: (a) in in vitro kinase assays, antibody-mediated crosslinking of CD8 alone, or CD8 cross-linking with the TCR, resulted in 10-fold greater activation of Lck kinase activity, compared to cells expressing CD8 alpha alpha alone; (b) in vivo, markedly enhanced tyrosine phosphorylation of several intracellular proteins was observed upon CD8 cross-linking with the TCR in CD8 alpha beta-expressing cells, compared to cells expressing CD8 alpha alpha alone; and (c) Lck association with CD8 alpha was stabilized by the coexpression of CD8 beta. Thus, the differential Lck kinase activation and tyrosine phosphorylation seen with CD8 alpha alpha vs. CD8 alpha beta may reflect the unique signaling capabilities of the CD8 beta molecule. These differences in signaling may, in part, account for the diminished ability to generate CD8 single positive thymocytes in mice bearing a homozygous disruption of the CD8 beta gene.
Collapse
Affiliation(s)
- H Y Irie
- Division of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
50
|
Abstract
In the past year, significant technical developments have provided the opportunity to investigate the more mechanistic features of positive selection. Major progress has been made in determining the structure and function of the early pre-T cell receptor, in defining cell types that mediate positive selection, and in analyzing the contribution of MHC and co-receptors to CD4/CD8 lineage commitment. The most revealing studies have been those addressing the role of peptides in thymic selection.
Collapse
Affiliation(s)
- B J Fowlkes
- Laboratory of Cellular and Molecular Immunology, National Institute of Allergy and Infectious Diseases, Bethesda, USA
| | | |
Collapse
|