1
|
Saifi F, Biró JB, Horváth B, Vizler C, Laczi K, Rákhely G, Kovács S, Kang M, Li D, Chen Y, Chen R, Domonkos Á, Kaló P. Two members of a Nodule-specific Cysteine-Rich (NCR) peptide gene cluster are required for differentiation of rhizobia in Medicago truncatula nodules. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024. [PMID: 38923649 DOI: 10.1111/tpj.16871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/13/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024]
Abstract
Legumes have evolved a nitrogen-fixing symbiotic interaction with rhizobia, and this association helps them to cope with the limited nitrogen conditions in soil. The compatible interaction between the host plant and rhizobia leads to the formation of root nodules, wherein internalization and transition of rhizobia into their symbiotic form, termed bacteroids, occur. Rhizobia in the nodules of the Inverted Repeat-Lacking Clade legumes, including Medicago truncatula, undergo terminal differentiation, resulting in elongated and endoreduplicated bacteroids. This transition of endocytosed rhizobia is mediated by a large gene family of host-produced nodule-specific cysteine-rich (NCR) peptides in M. truncatula. Few NCRs have been recently found to be essential for complete differentiation and persistence of bacteroids. Here, we show that a M. truncatula symbiotic mutant FN9285, defective in the complete transition of rhizobia, is deficient in a cluster of NCR genes. More specifically, we show that the loss of the duplicated genes NCR086 and NCR314 in the A17 genotype, found in a single copy in Medicago littoralis R108, is responsible for the ineffective symbiotic phenotype of FN9285. The NCR086 and NCR314 gene pair encodes the same mature peptide but their transcriptional activity varies considerably. Nevertheless, both genes can restore the effective symbiosis in FN9285 indicating that their complementation ability does not depend on the strength of their expression activity. The identification of the NCR086/NCR314 peptide, essential for complete bacteroid differentiation, has extended the list of peptides, from a gene family of several hundred members, that are essential for effective nitrogen-fixing symbiosis in M. truncatula.
Collapse
Affiliation(s)
- Farheen Saifi
- Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - János Barnabás Biró
- HUN-REN Biological Research Centre, Institute of Plant Biology, Szeged, Hungary
| | - Beatrix Horváth
- Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - Csaba Vizler
- HUN-REN Biological Research Centre, Institute of Biochemistry, Szeged, Hungary
| | - Krisztián Laczi
- HUN-REN Biological Research Centre, Institute of Plant Biology, Szeged, Hungary
- Department of Biotechnology, University of Szeged, Szeged, Hungary
| | - Gábor Rákhely
- Department of Biotechnology, University of Szeged, Szeged, Hungary
- HUN-REN Biological Research Centre, Institute of Biophysics, Biological Research Center, Szeged, Hungary
| | - Szilárd Kovács
- HUN-REN Biological Research Centre, Institute of Plant Biology, Szeged, Hungary
| | - Mingming Kang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Dengyao Li
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Yuhui Chen
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Rujin Chen
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Ágota Domonkos
- Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - Péter Kaló
- Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
- HUN-REN Biological Research Centre, Institute of Plant Biology, Szeged, Hungary
| |
Collapse
|
2
|
Shirasawa K, Yakushiji H, Nishimura R, Morita T, Jikumaru S, Ikegami H, Toyoda A, Hirakawa H, Isobe S. The Ficus erecta genome aids Ceratocystis canker resistance breeding in common fig (F. carica). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:1313-1322. [PMID: 31978270 PMCID: PMC7317799 DOI: 10.1111/tpj.14703] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/27/2019] [Accepted: 01/16/2020] [Indexed: 05/31/2023]
Abstract
Ficus erecta, a wild relative of the common fig (F. carica), is a donor of Ceratocystis canker resistance in fig breeding programmes. Interspecific hybridization followed by recurrent backcrossing is an effective method to transfer the resistance trait from wild to cultivated fig. However, this process is time consuming and labour intensive for trees, especially for gynodioecious plants such as fig. In this study, genome resources were developed for F. erecta to facilitate fig breeding programmes. The genome sequence of F. erecta was determined using single-molecule real-time sequencing technology. The resultant assembly spanned 331.6 Mb with 538 contigs and an N50 length of 1.9 Mb, from which 51 806 high-confidence genes were predicted. Pseudomolecule sequences corresponding to the chromosomes of F. erecta were established with a genetic map based on single nucleotide polymorphisms from double-digest restriction-site-associated DNA sequencing. Subsequent linkage analysis and whole-genome resequencing identified a candidate gene for the Ceratocystis canker resistance trait. Genome-wide genotyping analysis enabled the selection of female lines that possessed resistance and effective elimination of the donor genome from the progeny. The genome resources provided in this study will accelerate and enhance disease-resistance breeding programmes in fig.
Collapse
Affiliation(s)
| | | | | | - Takeshige Morita
- Agricultural Technology Research CenterHiroshima Prefectural Technology Research InstituteHigashihiroshimaJapan
| | - Shota Jikumaru
- Agricultural Technology Research CenterHiroshima Prefectural Technology Research InstituteHigashihiroshimaJapan
| | | | | | | | | |
Collapse
|
3
|
Lamaoui M, Jemo M, Datla R, Bekkaoui F. Heat and Drought Stresses in Crops and Approaches for Their Mitigation. Front Chem 2018; 6:26. [PMID: 29520357 DOI: 10.3389/fchem.2018.00026/full] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 02/01/2018] [Indexed: 05/28/2023] Open
Abstract
Drought and heat are major abiotic stresses that reduce crop productivity and weaken global food security, especially given the current and growing impacts of climate change and increases in the occurrence and severity of both stress factors. Plants have developed dynamic responses at the morphological, physiological and biochemical levels allowing them to escape and/or adapt to unfavorable environmental conditions. Nevertheless, even the mildest heat and drought stress negatively affects crop yield. Further, several independent studies have shown that increased temperature and drought can reduce crop yields by as much as 50%. Response to stress is complex and involves several factors including signaling, transcription factors, hormones, and secondary metabolites. The reproductive phase of development, leading to the grain production is shown to be more sensitive to heat stress in several crops. Advances coming from biotechnology including progress in genomics and information technology may mitigate the detrimental effects of heat and drought through the use of agronomic management practices and the development of crop varieties with increased productivity under stress. This review presents recent progress in key areas relevant to plant drought and heat tolerance. Furthermore, an overview and implications of physiological, biochemical and genetic aspects in the context of heat and drought are presented. Potential strategies to improve crop productivity are discussed.
Collapse
Affiliation(s)
- Mouna Lamaoui
- AgroBioSciences Division, University Mohammed VI Polytechnic, Benguérir, Morocco
| | - Martin Jemo
- AgroBioSciences Division, University Mohammed VI Polytechnic, Benguérir, Morocco
- Office Chérifien des Phosphates-Africa, Casablanca, Morocco
| | - Raju Datla
- National Research Council Canada, Saskatoon, SK, Canada
| | - Faouzi Bekkaoui
- AgroBioSciences Division, University Mohammed VI Polytechnic, Benguérir, Morocco
| |
Collapse
|
4
|
Lamaoui M, Jemo M, Datla R, Bekkaoui F. Heat and Drought Stresses in Crops and Approaches for Their Mitigation. Front Chem 2018; 6:26. [PMID: 29520357 PMCID: PMC5827537 DOI: 10.3389/fchem.2018.00026] [Citation(s) in RCA: 227] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 02/01/2018] [Indexed: 01/09/2023] Open
Abstract
Drought and heat are major abiotic stresses that reduce crop productivity and weaken global food security, especially given the current and growing impacts of climate change and increases in the occurrence and severity of both stress factors. Plants have developed dynamic responses at the morphological, physiological and biochemical levels allowing them to escape and/or adapt to unfavorable environmental conditions. Nevertheless, even the mildest heat and drought stress negatively affects crop yield. Further, several independent studies have shown that increased temperature and drought can reduce crop yields by as much as 50%. Response to stress is complex and involves several factors including signaling, transcription factors, hormones, and secondary metabolites. The reproductive phase of development, leading to the grain production is shown to be more sensitive to heat stress in several crops. Advances coming from biotechnology including progress in genomics and information technology may mitigate the detrimental effects of heat and drought through the use of agronomic management practices and the development of crop varieties with increased productivity under stress. This review presents recent progress in key areas relevant to plant drought and heat tolerance. Furthermore, an overview and implications of physiological, biochemical and genetic aspects in the context of heat and drought are presented. Potential strategies to improve crop productivity are discussed.
Collapse
Affiliation(s)
- Mouna Lamaoui
- AgroBioSciences Division, University Mohammed VI Polytechnic, Benguérir, Morocco
| | - Martin Jemo
- AgroBioSciences Division, University Mohammed VI Polytechnic, Benguérir, Morocco
- Office Chérifien des Phosphates-Africa, Casablanca, Morocco
| | - Raju Datla
- National Research Council Canada, Saskatoon, SK, Canada
| | - Faouzi Bekkaoui
- AgroBioSciences Division, University Mohammed VI Polytechnic, Benguérir, Morocco
| |
Collapse
|
5
|
Gao LL, Xue HW. Global analysis of expression profiles of rice receptor-like kinase genes. MOLECULAR PLANT 2012; 5:143-53. [PMID: 21765177 DOI: 10.1093/mp/ssr062] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The receptor-like kinases (RLKs) play critical roles in plant development and response to stress stimuli. By perceiving or sensing the extracellular signals, RLK activates the downstream signaling pathway through phosphorylating the specific targets. Up to now, only a few RLKs have been functionally identified, which are even fewer in rice (Oryza sativa L.). We here report the systemic analysis of the expression profiles of rice RLK coding genes in different tissues, with the emphasis on seed development and in response to both abiotic stress and plant hormones. The results showed that most rice RLK genes are expressed in two or more tissues, of which the RLCK-RLKs have a higher, while WAK- and SD-RLKs have a lower, expression level in the vegetative tissues than other subfamily members. Interestingly, the constitutively highly expressed RLKs in rice and Arabidopsis are conserved, which is consistent with the previous hypothesis that RLKs existed before the differentiation of monocotyledon and dicotyledon plants. Nearly one-third of the detected rice RLKs are expressed during seed development, and the RLCK-RLK members possess a higher percentage during the endosperm development, suggesting a novel function of RLCK-RLK members in endosperm development. Further analysis revealed that many RLK genes expressed during seed development are also regulated by abiotic stresses (cold, salt, or drought) or hormones, indicating that RLKs may take part in the stress-related signaling pathways such as dehydration of endosperm. These results provide informative insights into the RLK studies and will be helpful to reveal the global regulatory network controlling rice seed development.
Collapse
Affiliation(s)
- Lin-Lin Gao
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Science, Chinese Academy of Sciences, 20032 Shanghai, China
| | | |
Collapse
|
6
|
Cho JI, Kim HB, Kim CY, Hahn TR, Jeon JS. Identification and characterization of the duplicate rice sucrose synthase genes OsSUS5 and OsSUS7 which are associated with the plasma membrane. Mol Cells 2011; 31:553-61. [PMID: 21533550 PMCID: PMC3887615 DOI: 10.1007/s10059-011-1038-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Revised: 03/21/2011] [Accepted: 03/22/2011] [Indexed: 10/18/2022] Open
Abstract
Systematic searches using the complete genome sequence of rice (Oryza sativa) identified OsSUS7, a new member of the rice sucrose synthase (OsSUS) gene family, which shows only nine single nucleotide substitutions in the OsSUS5 coding sequence. Comparative genomic analysis revealed that the synteny between OsSUS5 and OsSUS7 is conserved, and that significant numbers of transposable elements are scattered at both loci. In particular, a 17.6-kb genomic region containing transposable elements was identified in the 5' upstream sequence of the OsSUS7 gene. GFP fusion experiments indicated that OsSUS5 and OsSUS7 are largely associated with the plasma membrane and partly with the cytosol in maize mesophyll protoplasts. RT-PCR analysis and transient expression assays revealed that OsSUS5 and OsSUS7 exhibit similar expression patterns in rice tissues, with the highest expression evident in roots. These results suggest that two redundant genes, OsSUS5 and OsSUS7, evolved via duplication of a chromosome region and through the transposition of transposable elements.
Collapse
Affiliation(s)
| | | | | | | | - Jong-Seong Jeon
- Graduate School of Biotechnology, Kyung Hee University, Yongin 446-701, Korea
| |
Collapse
|
7
|
Matsushima N, Miyashita H, Mikami T, Kuroki Y. A nested leucine rich repeat (LRR) domain: the precursor of LRRs is a ten or eleven residue motif. BMC Microbiol 2010; 10:235. [PMID: 20825685 PMCID: PMC2946307 DOI: 10.1186/1471-2180-10-235] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Accepted: 09/09/2010] [Indexed: 12/03/2022] Open
Abstract
Background Leucine rich repeats (LRRs) are present in over 60,000 proteins that have been identified in viruses, bacteria, archae, and eukaryotes. All known structures of repeated LRRs adopt an arc shape. Most LRRs are 20-30 residues long. All LRRs contain LxxLxLxxNxL, in which "L" is Leu, Ile, Val, or Phe and "N" is Asn, Thr, Ser, or Cys and "x" is any amino acid. Seven classes of LRRs have been identified. However, other LRR classes remains to be characterized. The evolution of LRRs is not well understood. Results Here we describe a novel LRR domain, or nested repeat observed in 134 proteins from 54 bacterial species. This novel LRR domain has 21 residues with the consensus sequence of LxxLxLxxNxLxxLDLxx(N/L/Q/x)xx or LxxLxCxxNxLxxLDLxx(N/L/x)xx. This LRR domain is characterized by a nested periodicity; it consists of alternating 10- and 11- residues units of LxxLxLxxNx(x/-). We call it "IRREKO" LRR, since the Japanese word for "nested" is "IRREKO". The first unit of the "IRREKO" LRR domain is frequently occupied by an "SDS22-like" LRR with the consensus of LxxLxLxxNxLxxLxxLxxLxx or a "Bacterial" LRR with the consensus of LxxLxLxxNxLxxLPxLPxx. In some proteins an "SDS22-like" LRR intervenes between "IRREKO" LRRs. Conclusion Proteins having "IRREKO" LRR domain are almost exclusively found in bacteria. It is suggested that IRREKO@LRR evolved from a common ancestor with "SDS22-like" and "Bacterial" classes and that the ancestor of IRREKO@LRR is 10 or 11 residues of LxxLxLxxNx(x/-). The "IRREKO" LRR is predicted to adopt an arc shape with smaller curvature in which β-strands are formed on both concave and convex surfaces.
Collapse
Affiliation(s)
- Norio Matsushima
- Sapporo Medical University Center for Medical Education, Sapporo, Hokkaido 060-8556, Japan.
| | | | | | | |
Collapse
|
8
|
Analyses of non-leucine-rich repeat (non-LRR) regions intervening between LRRs in proteins. Biochim Biophys Acta Gen Subj 2009; 1790:1217-37. [PMID: 19580846 DOI: 10.1016/j.bbagen.2009.06.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2008] [Revised: 05/01/2009] [Accepted: 06/26/2009] [Indexed: 02/01/2023]
Abstract
BACKGROUND Many proteins have LRR (leucine-rich repeat) units interrupted by non-LRRs which we call IR (non-LRR island region). METHODS We identified proteins containing LRR@IRs (LRRs having IR) by using a new method and then analyzed their natures and distributions. RESULTS LRR@IR proteins were found in over two hundred proteins from prokaryotes and from eukaryotes. These are divided into twenty-one different protein families. The IRs occur one to four times in LRR regions and range in length from 5 to 11,265 residues. The IR lengths in Fungi adenylate cyclases (acys) range from 5 to 116 residues; there are 22 LRR repeats. The IRs in Leishmania proteophosphoglycans (ppgs) vary from 105 to 11,265 residues. These results indicate that the IRs evolved rapidly. A group of LRR@IR proteins-LRRC17, chondroadherin-like protein, ppgs, and four Pseudomonas proteins-have a super motif consisting of an LRR block and its adjacent LRR@IR region. This indicates that the entire super motif experienced duplication. The sequence analysis of IRs offers functional similarity in some LRR@IR protein families. GENERAL SIGNIFICANCE This study suggests that various IRs and super motifs provide a great variety of structures and functions for LRRs.
Collapse
|
9
|
Afzal AJ, Wood AJ, Lightfoot DA. Plant receptor-like serine threonine kinases: roles in signaling and plant defense. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2008; 21:507-17. [PMID: 18393610 DOI: 10.1094/mpmi-21-5-0507] [Citation(s) in RCA: 315] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Plants are hosts to a wide array of pathogens from all kingdoms of life. In the absence of an active immune system or combinatorial diversifications that lead to recombination-driven somatic gene flexibility, plants have evolved different strategies to combat both individual pathogen strains and changing pathogen populations. The receptor-like kinase (RLK) gene-family expansion in plants was hypothesized to have allowed accelerated evolution among domains implicated in signal reception, typically a leucine-rich repeat (LRR). Under that model, the gene-family expansion represents a plant-specific adaptation that leads to the production of numerous and variable cell surface and cytoplasmic receptors. More recently, it has emerged that the LRR domains of RLK interact with a diverse group of proteins leading to combinatorial variations in signal response specificity. Therefore, the RLK appear to play a central role in signaling during pathogen recognition, the subsequent activation of plant defense mechanisms, and developmental control. The future challenges will include determinations of RLK modes of action, the basis of recognition and specificity, which cellular responses each receptor mediates, and how both receptor and kinase domain interactions fit into the defense signaling cascades. These challenges will be complicated by the limited information that may be derived from the primary sequence of the LRR domain. The review focuses upon implications derived from recent studies of the secondary and tertiary structures of several plant RLK that change understanding of plant receptor function and signaling. In addition, the biological functions of plant and animal RLK-containing receptors were reviewed and commonalities among their signaling mechanisms identified. Further elucidated were the genomic and structural organizations of RLK gene families, with special emphasis on RLK implicated in resistance to disease and development.
Collapse
Affiliation(s)
- Ahmed J Afzal
- Department of Molecular Biology, Microbiology and Biochemistry, Southern Illinois University, Carbondale, IL 62901, USA
| | | | | |
Collapse
|
10
|
Yu F, Lydiate DJ, Rimmer SR. Identification and mapping of a third blackleg resistance locus inBrassica napusderived fromB. rapasubsp.sylvestris. Genome 2008; 51:64-72. [DOI: 10.1139/g07-103] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The spectrum of resistance to isolates of Leptosphaeria maculans and the map location of a new blackleg resistance gene found in the canola cultivar Brassica napus ‘Surpass 400’ are described. Two blackleg resistance genes, LepR1 and LepR2, from B. rapa subsp. sylvestris and introgressed in B. napus were identified previously. ‘Surpass 400’ also has blackleg resistance introgressed from B. rapa subsp. sylvestris. Using 31 diverse isolates of L. maculans, the disease reaction of ‘Surpass 400’ was compared with those of the resistant breeding lines AD9 (which contains LepR1), AD49 (which contains LepR2), and MC1-8 (which contains both LepR1 and LepR2). The disease reaction on ‘Surpass 400’ was different from those observed on AD9 and MC1-8, indicating that ‘Surpass 400’ carries neither LepR1 nor both LepR1 and LepR2 in combination. Disease reactions of ‘Surpass 400’ to most of the isolates tested were indistinguishable from those of AD49, which suggested ‘Surpass 400’ might contain LepR2 or a similar resistance gene. Classical genetic analysis of F1and BC1plants showed that a dominant allele conferred resistance to isolates of L. maculans in ‘Surpass 400’. The resistance gene, which mapped to B. napus linkage group N10 in an interval of 2.9 cM flanked by microsatellite markers sR12281a and sN2428Rb and 11.7 cM below LepR2, was designated LepR3. A 9 cM region of the B. napus genome containing LepR3 was found to be syntenic with a segment of Arabidopsis chromosome 5.
Collapse
Affiliation(s)
- Fengqun Yu
- Saskatoon Research Centre, Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK S7N 0X2, Canada
| | - Derek J. Lydiate
- Saskatoon Research Centre, Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK S7N 0X2, Canada
| | - S. Roger Rimmer
- Saskatoon Research Centre, Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK S7N 0X2, Canada
| |
Collapse
|
11
|
Du J, Wang X, Zhang M, Tian D, Yang YH. Unique nucleotide polymorphism of ankyrin gene cluster in Arabidopsis. J Genet 2007; 86:27-35. [PMID: 17656846 DOI: 10.1007/s12041-007-0004-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The ankyrin (ANK) gene cluster is a part of a multigene family encoding ANK transmembrane proteins in Arabidopsis thaliana, and plays an important role in protein-protein interactions and in signal pathways. In contrast to other regions of a genome, the ANK gene cluster exhibits an extremely high level of DNA polymorphism in an approximately 5-kb region, without apparent decay. Phylogenetic analysis detects two clear, deeply differentiated haplotypes (dimorphism). The divergence between haplotypes of accession Col-0 and Ler-0 (Hap-C and Hap-L) is estimated to be 10.7%, approximately equal to the 10.5% average divergence between A. thaliana and A. lyrata. Sequence comparisons for the ANK gene cluster homologues in Col-0 indicate that the members evolve independently, and that the similarity among paralogues is lower than between alleles. Very little intralocus recombination or gene conversion is detected in ANK regions. All these characteristics of the ANK gene cluster are consistent with a tandem gene duplication and birth-and-death process. The possible mechanisms for and implications of this elevated nucleotide variation are also discussed, including the suggestion of balancing selection.
Collapse
Affiliation(s)
- Jianchang Du
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biology, Nanjing University, Nanjing 210093, China.
| | | | | | | | | |
Collapse
|
12
|
Kim H, San Miguel P, Nelson W, Collura K, Wissotski M, Walling JG, Kim JP, Jackson SA, Soderlund C, Wing RA. Comparative physical mapping between Oryza sativa (AA genome type) and O. punctata (BB genome type). Genetics 2007; 176:379-90. [PMID: 17339227 PMCID: PMC1893071 DOI: 10.1534/genetics.106.068783] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2006] [Accepted: 02/09/2007] [Indexed: 11/18/2022] Open
Abstract
A comparative physical map of the AA genome (Oryza sativa) and the BB genome (O. punctata) was constructed by aligning a physical map of O. punctata, deduced from 63,942 BAC end sequences (BESs) and 34,224 fingerprints, onto the O. sativa genome sequence. The level of conservation of each chromosome between the two species was determined by calculating a ratio of BES alignments. The alignment result suggests more divergence of intergenic and repeat regions in comparison to gene-rich regions. Further, this characteristic enabled localization of heterochromatic and euchromatic regions for each chromosome of both species. The alignment identified 16 locations containing expansions, contractions, inversions, and transpositions. By aligning 40% of the punctata BES on the map, 87% of the punctata FPC map covered 98% of the O. sativa genome sequence. The genome size of O. punctata was estimated to be 8% larger than that of O. sativa with individual chromosome differences of 1.5-16.5%. The sum of expansions and contractions observed in regions >500 kb were similar, suggesting that most of the contractions/expansions contributing to the genome size difference between the two species are small, thus preserving the macro-collinearity between these species, which diverged approximately 2 million years ago.
Collapse
Affiliation(s)
- HyeRan Kim
- Arizona Genomics Institute, University of Arizona, Tucson, Arizona 85721, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Zhang XS, Choi JH, Heinz J, Chetty CS. Domain-Specific Positive Selection Contributes to the Evolution of Arabidopsis Leucine-Rich Repeat Receptor-Like Kinase (LRR RLK) Genes. J Mol Evol 2006; 63:612-21. [PMID: 17031460 DOI: 10.1007/s00239-005-0187-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2005] [Accepted: 07/20/2006] [Indexed: 11/29/2022]
Abstract
Leucine-rich repeat receptor-like kinases (LRR RLKs) comprise the largest group within the plant receptor-like kinase (RLK) superfamily, and the Arabidopsis genome alone contains over 200 LRR RLK genes. Although there is clear evidence for diverse roles played by individual LRR RLK genes in Arabidopsis growth and development, the evolutionary mechanism for this functional diversification is currently unclear. In this study, we focused on the LRRII RLK subfamily to investigate the molecular mechanisms that might have led to the functional differentiation of Arabidopsis LRR RLK genes. Phylogenetic analysis of 14 genes in this subfamily revealed three well-supported groups (I, II, and III). RT-PCR analysis did not find many qualitative differences in expression among these 14 genes in various Arabidopsis tissues, suggesting that evolution of regulatory sequences did not play a major role in their functional divergence. We analyzed substitution patterns in the predicted ligand-binding regions of these genes to examine if positive selection has acted to produce novel ligand-binding specificities, using the nonsynonymous/synonymous rate ratio (d (N)/d (S)) as an indicator of selective pressure. Estimates of d (N)/d (S) ratios from multiple methods indicate that nonsynonymous substitutions accumulated during divergence of the three lineages. Positive selection is likely to have occurred along the lineages ancestral to groups II and III. We suggest that positive selection on the ligand-binding sites of LRRII RLKs promoted diversification of ligand-binding specificities and thus contributed to the functional differentiation of Arabidopsis LRRII RLK genes during evolution.
Collapse
Affiliation(s)
- Xiaorong S Zhang
- Department of Natural Sciences and Mathematics, Savannah State University, Savannah, GA, 31404, USA.
| | | | | | | |
Collapse
|
14
|
Chen JW, Wang L, Pang XF, Pan QH. Genetic analysis and fine mapping of a rice brown planthopper (Nilaparvata lugens Stål) resistance gene bph19(t). Mol Genet Genomics 2006; 275:321-9. [PMID: 16395578 DOI: 10.1007/s00438-005-0088-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2005] [Accepted: 12/07/2005] [Indexed: 10/25/2022]
Abstract
Genetic analysis and fine mapping of a resistance gene against brown planthopper (BPH) biotype 2 in rice was performed using two F(2) populations derived from two crosses between a resistant indica cultivar (cv.), AS20-1, and two susceptible japonica cvs., Aichi Asahi and Lijiangxintuanheigu. Insect resistance was evaluated using F(1) plants and the two F(2) populations. The results showed that a single recessive gene, tentatively designated as bph19(t), conditioned the resistance in AS20-1. A linkage analysis, mainly employing microsatellite markers, was carried out in the two F(2) populations through bulked segregant analysis and recessive class analysis (RCA), in combination with bioinformatics analysis (BIA). The resistance gene locus bph19(t) was finely mapped to a region of about 1.0 cM on the short arm of chromosome 3, flanked by markers RM6308 and RM3134, where one known marker RM1022, and four new markers, b1, b2, b3 and b4, developed in the present study were co-segregating with the locus. To physically map this locus, the bph19(t)-linked markers were landed on bacterial artificial chromosome or P1 artificial chromosome clones of the reference cv., Nipponbare, released by the International Rice Genome Sequencing Project. Sequence information of these clones was used to construct a physical map of the bph19(t) locus, in silico, by BIA. The bph19(t) locus was physically defined to an interval of about 60 kb. The detailed genetic and physical maps of the bph19(t) locus will facilitate marker-assisted gene pyramiding and cloning.
Collapse
Affiliation(s)
- J W Chen
- Laboratory of Plant Resistance and Genetics, College of Natural Resources and Environment, South China Agricultural University, 510642, Guangzhou, China
| | | | | | | |
Collapse
|
15
|
Jena KK, Jeung JU, Lee JH, Choi HC, Brar DS. High-resolution mapping of a new brown planthopper (BPH) resistance gene, Bph18(t), and marker-assisted selection for BPH resistance in rice (Oryza sativa L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2006; 112:288-97. [PMID: 16240104 DOI: 10.1007/s00122-005-0127-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2005] [Accepted: 09/28/2005] [Indexed: 05/04/2023]
Abstract
Brown planthopper (BPH) is a destructive insect pest of rice in Asia. Identification and the incorporation of new BPH resistance genes into modern rice cultivars are important breeding strategies to control the damage caused by new biotypes of BPH. In this study, a major resistance gene, Bph18(t), has been identified in an introgression line (IR65482-7-216-1-2) that has inherited the gene from the wild species Oryza australiensis. Genetic analysis revealed the dominant nature of the Bph18(t) gene and identified it as non-allelic to another gene, Bph10 that was earlier introgressed from O. australiensis. After linkage analysis using MapMaker followed by single-locus ANOVA on quantitatively expressed resistance levels of the progenies from an F2 mapping population identified with marker allele types, the Bph18(t) gene was initially located on the subterminal region of the long arm of chromosome 12 flanked by the SSR marker RM463 and the STS marker S15552. The corresponding physical region was identified in the Nipponbare genome pseudomolecule 3 through electronic chromosome landing (e-landing), in which 15 BAC clones covered 1.612 Mb. Eleven DNA markers tagging the BAC clones were used to construct a high-resolution genetic map of the target region. The Bph18(t) locus was further localized within a 0.843-Mb physical interval that includes three BAC clones between the markers R10289S and RM6869 by means of single-locus ANOVA of resistance levels of mapping population and marker-gene association analysis on 86 susceptible F2 progenies based on six time-point phenotyping. Using gene annotation information of TIGR, a putative resistance gene was identified in the BAC clone OSJNBa0028L05 and the sequence information was used to generate STS marker 7312.T4A. The marker allele of 1,078 bp completely co-segregated with the BPH resistance phenotype. STS marker 7312.T4A was validated using BC2F2 progenies derived from two temperate japonica backgrounds. Some 97 resistant BC2F2 individuals out of 433 screened completely co-segregated with the resistance-specific marker allele (1,078 bp) in either homozygous or heterozygous state. This further confirmed a major gene-controlled resistance to the BPH biotype of Korea. Identification of Bph18(t) enlarges the BPH resistance gene pool to help develop improved rice cultivars, and the PCR marker (7312.T4A) for the Bph18(t) gene should be readily applicable for marker-assisted selection (MAS).
Collapse
Affiliation(s)
- K K Jena
- Plant Breeding, Genetics, and Biotechnology Division, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines.
| | | | | | | | | |
Collapse
|
16
|
Huang B, Liu X, Wang X, Pi Y, Lin J, Fei J, Sun X, Tang K. Isolation and Expression Profiling of the Pto-Like Gene SsPto from Solanum surattense. Mol Biol 2005. [DOI: 10.1007/s11008-005-0083-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Tremblay K, Ouellet F, Fournier J, Danyluk J, Sarhan F. Molecular characterization and origin of novel bipartite cold-regulated ice recrystallization inhibition proteins from cereals. PLANT & CELL PHYSIOLOGY 2005; 46:884-91. [PMID: 15792959 DOI: 10.1093/pcp/pci093] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
To understand the molecular basis of freezing tolerance in plants, several low temperature-responsive genes have been identified from wheat. Among these are two genes named TaIRI-1 and TaIRI-2 (Triticum aestivum ice recrystallization inhibition) that are up-regulated during cold acclimation in freezing-tolerant species. Phytohormones involved in pathogen defense pathways (jasmonic acid and ethylene) induce the expression of one of the two genes. The encoded proteins are novel in that they have a bipartite structure that has never been reported for antifreeze proteins. Their N-terminal part shows similarity with the leucine-rich repeat-containing regions present in the receptor domain of receptor-like protein kinases, and their C-terminus is homologous to the ice-binding domain of some antifreeze proteins. The recombinant TaIRI-1 protein inhibits the growth of ice crystals, confirming its function as an ice recrystallization inhibition protein. The TaIRI genes were found only in the species belonging to the Pooideae subfamily of cereals. Comparative genomic analysis suggested that molecular evolutionary events took place in the genome of freezing-tolerant cereals to give rise to these genes with putative novel functions. These apparent adaptive DNA rearrangement events could be part of the molecular mechanisms that ensure the survival of hardy cereals in the harsh freezing environments.
Collapse
Affiliation(s)
- Karine Tremblay
- Université du Québec à Montréal, Département des Sciences biologiques, CP 8888, Succursale Centre-ville, Montréal, Québec H3C 3P8, Canada
| | | | | | | | | |
Collapse
|
18
|
Melotto M, Coelho MF, Pedrosa-Harand A, Kelly JD, Camargo LEA. The anthracnose resistance locus Co-4 of common bean is located on chromosome 3 and contains putative disease resistance-related genes. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2004; 109:690-9. [PMID: 15221144 DOI: 10.1007/s00122-004-1697-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2003] [Accepted: 04/02/2004] [Indexed: 05/20/2023]
Abstract
The broadest based resistance to anthracnose of common bean ( Phaseolus vulgaris L.) is conferred by the Co-4 locus. We sequenced a bacterial artificial chromosome clone harboring part of the Co-4 locus of the bean genotype Sprite and assembled a single contig of 106.5 kb for functional annotation. This region contained five copies of the COK-4 gene that encodes for a serine threonine kinase protein previously mapped to the Co-4 locus and 19 novel genes with no similarity to any previously identified genes of common bean. Several putative genes of the Co-4 locus seemed to be expressed as they matched perfectly with bean expressed sequence tags. The expression of the COK-4 genes was assessed by reverse transcription (RT)-PCR, and a single 850-bp cDNA fragment was sequenced and compared with the genomic sequences of the COK-4 homologs. Although the COK-4 cDNA was isolated from a different bean cultivar, it showed high similarity (95%) to the exons of genes BA17 and BA21, suggesting that they were expressed. In a phylogenetic tree including all currently available Pto-like sequences from Phaseolus species, the COK-4 homologs formed a single cluster with the Pto gene, whereas two sequences from P. coccineus and all sequences of P. vulgaris formed two closely related clusters. The Co-4 locus was physically mapped to the short arm of bean chromosome 3, which corresponds to linkage group B8. This study represents a first step in gaining an understanding of the genomic organization of an anthracnose resistance locus of common bean and provides molecular data for comparative analysis with other plant species.
Collapse
Affiliation(s)
- M Melotto
- Departamento de Fitopatologia, Laboratório de Genética Molecular, ESALQ, Universidade de São Paulo, C.P. 9, 13418-900, Piracicaba, SP, Brazil.
| | | | | | | | | |
Collapse
|
19
|
Tian Y, Fan L, Thurau T, Jung C, Cai D. The absence of TIR-type resistance gene analogues in the sugar beet (Beta vulgaris L.) genome. J Mol Evol 2004; 58:40-53. [PMID: 14743313 DOI: 10.1007/s00239-003-2524-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2003] [Accepted: 07/15/2003] [Indexed: 12/11/2022]
Abstract
The majority of known plant resistance genes encode proteins with conserved nucleotide-binding sites and leucine-rich repeats (NBS-LRR). Degenerate primers based on conserved NBS-LRR motifs were used to amplify analogues of resistance genes from the dicot sugar beet. Along with a cDNA library screen, the PCR screen identified 27 genomic and 12 expressed NBS-LRR RGAs (nlRGAs) sugar beet clones. The clones were classified into three subfamilies based on nucleotide sequence identity. Sequence analyses suggested that point mutations, such as nucleotide substitutions and insertion/deletions, are probably the primary source of diversity of sugar beet nlRGAs. A phylogenetic analysis revealed an ancestral relationship among sugar beet nlRGAs and resistance genes from various angiosperm species. One group appeared to share the same common ancestor as Prf, Rx, RPP8, and Mi, whereas the second group originated from the ancestral gene from which 12C1, Xa1, and Cre3 arose. The predicted protein products of the nlRGAs isolated in this study are all members of the non-TIR-type resistance gene subfamily and share strong sequence and structural similarities with non-TIR-type resistance proteins. No representatives of the TIR-type RGAs were detected either by PCR amplification using TIR type-specific primers or by in silico screening of more than 16,000 sugar beet ESTs. These findings suggest that TIR type of RGAs is absent from the sugar beet genome. The possible evolutionary loss of TIR type RGAs in the sugar beet is discussed.
Collapse
Affiliation(s)
- Yanyan Tian
- Institute of Crop Science and Plant Breeding, Christian-Albrechts-University of Kiel, Kiel, Germany
| | | | | | | | | |
Collapse
|
20
|
Verica JA, Chae L, Tong H, Ingmire P, He ZH. Tissue-specific and developmentally regulated expression of a cluster of tandemly arrayed cell wall-associated kinase-like kinase genes in Arabidopsis. PLANT PHYSIOLOGY 2003; 133:1732-46. [PMID: 14576286 PMCID: PMC300728 DOI: 10.1104/pp.103.028530] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The Arabidopsis cell wall-associated kinase (WAK) and WAK-like kinase (WAKL) family of receptor-like kinase genes encodes transmembrane proteins with a cytoplasmic serine/threonine kinase domain and an extracellular region containing epidermal growth factor-like repeats. Previous studies have suggested that some WAK members are involved in plant defense and heavy metal responses, whereas others are required for cell elongation and plant development. The WAK/WAKL gene family consists of 26 members in Arabidopsis and can be divided into four groups. Here, we describe the characterization of group 2 members that are composed of a cluster of seven tandemly arrayed WAKL genes. The predicted WAKL proteins are highly similar in their cytoplasmic region but are more divergent in their predicted extracellular ligand-binding region. WAKL7 encodes a truncated WAKL isoform that is predicted to be secreted from the cytoplasm. Ratios of nonsynonymous to synonymous substitutions suggest that the extracellular region is subject to diversifying selection. Comparison of the WAKL and WAK gene clusters suggests that they arose independently. Protein gel-blot and immunolocalization analyses suggest that WAKL6 is associated with the cell wall. Histochemical analyses of WAKL promoters fused with the beta-glucuronidase reporter gene have shown that the expressions of WAKL members are developmentally regulated and tissue specific. Unlike WAK members whose expressions were found predominately in green tissues, WAKL genes are highly expressed in roots and flowers. The expression of WAKL5 and WAKL7 can be induced by wounding stress and by the salicylic acid analog 2,6-dichloroisonicotinic acid in an nonexpressor of pathogenesis-related gene 1-dependent manner, suggesting that they, like some WAK members, are wound inducible and can be defined as pathogenesis-related genes.
Collapse
Affiliation(s)
- Joseph A Verica
- Department of Biology, San Francisco State University, 1600 Holloway Avenue, San Francisco, California 94132, USA
| | | | | | | | | |
Collapse
|
21
|
Thabuis A, Palloix A, Pflieger S, Daubèze AM, Caranta C, Lefebvre V. Comparative mapping of Phytophthora resistance loci in pepper germplasm: evidence for conserved resistance loci across Solanaceae and for a large genetic diversity. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2003; 106:1473-85. [PMID: 12750791 DOI: 10.1007/s00122-003-1206-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2002] [Accepted: 09/25/2002] [Indexed: 05/20/2023]
Abstract
Phytophthora capsici Leonian, known as the causal agent of the stem, collar and root rot, is one of the most serious problems limiting the pepper crop in many areas in the world. Genetic resistance to the parasite displays complex inheritance. Quantitative trait locus (QTL) analysis was performed in three intraspecific pepper populations, each involving an unrelated resistant accession. Resistance was evaluated by artificial inoculations of roots and stems, allowing the measurement of four components involved in different steps of the plant-pathogen interaction. The three genetic maps were aligned using common markers, which enabled the detection of QTLs involved in each resistance component and the comparison of resistance factors existing among the three resistant accessions. The major resistance factor was found to be common to the three populations. Another resistance factor was found conserved between two populations, the others being specific to a single cross. This comparison across intraspecific germplasm revealed a large variability for quantitative resistance loci to P. capsici. It also provided insights both into the allelic relationships between QTLs across pepper germplasm and for the comparative mapping of resistance factors across the Solanaceae.
Collapse
Affiliation(s)
- A Thabuis
- INRA, Genetics and Breeding of Fruits and Vegetables, BP 94, 84143 Montfavet cedex, France
| | | | | | | | | | | |
Collapse
|
22
|
Durel CE, Parisi L, Laurens F, Van de Weg WE, Liebhard R, Jourjon MF. Genetic dissection of partial resistance to race 6 of Venturia inaequalis in apple. Genome 2003; 46:224-34. [PMID: 12723038 DOI: 10.1139/g02-127] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Scab, caused by the fungus Venturia inaequalis, is one of the most important diseases of apple (Malus x domestica). The major resistance gene, Vf, has been widely used in apple breeding programs, but two new races of the fungus (races 6 and 7) are able to overcome this gene. A mapped F1 progeny derived from a cross between the cultivars Prima and Fiesta has bee n inoculated with two monoconidial strains of race 6. These strains originated from sporulating leaves of 'Prima' and a descendant of 'Prima' that were grown in an orchard in northern Germany. 'Prima' carries the Vf resistance gene, whereas 'Fiesta' lacks Vf. A large variation in resistance and (or) susceptibility was observed among the individuals of the progeny. Several quantitative trait loci (QTLs) for resistance were identified that mapped on four genomic regions. One of them was located in the very close vicinity of the Vf resistance gene on linkage group LG-1 of the 'Prima' genetic map. This QTL is isolate specific because it was only detected with one of the two isolates. Two out of the three other genomic regions were identified with both isolates (LG-11 and LG-17). On LG-11, a QTL effect was detected in both parents. The genetic dissection of this QTL indicated a favourable intra-locus interaction between some parental alleles.
Collapse
Affiliation(s)
- C E Durel
- Unité d'Amélioration des Espèces Fruitières et Omementales, BP 57, 49071, Beaucouzd CEDEX, France.
| | | | | | | | | | | |
Collapse
|
23
|
Ramalingam J, Vera Cruz CM, Kukreja K, Chittoor JM, Wu JL, Lee SW, Baraoidan M, George ML, Cohen MB, Hulbert SH, Leach JE, Leung H. Candidate defense genes from rice, barley, and maize and their association with qualitative and quantitative resistance in rice. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2003; 16:14-24. [PMID: 12580278 DOI: 10.1094/mpmi.2003.16.1.14] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Candidate genes involved in both recognition (resistance gene analogs [RGAs]) and general plant defense (putative defense response [DR]) were used as molecular markers to test for association with resistance in rice to blast, bacterial blight (BB), sheath blight, and brown plant-hopper (BPH). The 118 marker loci were either polymerase chain reaction-based RGA markers or restriction fragment length polymorphism (RFLP) markers that included RGAs or putative DR genes from rice, barley, and maize. The markers were placed on an existing RFLP map generated from a mapping population of 116 doubled haploid (DH) lines derived from a cross between an improved indica rice cultivar, IR64, and a traditional japonica cultivar, Azucena. Most of the RGAs and DR genes detected a single locus with variable copy number and mapped on different chromosomes. Clusters of RGAs were observed, most notably on chromosome 11 where many known blast and BB resistance genes and quantitative trait loci (QTL) for blast, BB, sheath blight, and BPH were located. Major resistance genes and QTL for blast and BB resistance located on different chromosomes were associated with several candidate genes. Six putative QTL for BB were located on chromosomes 2, 3, 5, 7, and 8 and nine QTL for BPH resistance were located to chromosomes 3, 4, 6, 11, and 12. The alleles of QTL for BPH resistance were mostly from IR64 and each explained between 11.3 and 20.6% of the phenotypic variance. The alleles for BB resistance were only from the Azucena parent and each explained at least 8.4% of the variation. Several candidate RGA and DR gene markers were associated with QTL from the pathogens and pest. Several RGAs were mapped to BB QTL. Dihydrofolate reductase thymidylate synthase co-localized with two BPH QTL associated with plant response to feeding and also to blast QTL. Blast QTL also were associated with aldose reductase, oxalate oxidase, JAMyb (a jasmonic acid-induced Myb transcription factor), and peroxidase markers. The frame map provides reference points to select candidate genes for cosegregation analysis using other mapping populations, isogenic lines, and mutants.
Collapse
Affiliation(s)
- J Ramalingam
- Department of Plant Pathology, 4024 Throckmorton Plant Sciences Center, Kansas State University, Manhattan 66506-5502, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Ouédraogo JT, Tignegre JB, Timko MP, Beizile FJ. AFLP markers linked to resistance against Striga gesnerioides race 1 in cowpea (Vigna unguiculata). Genome 2002; 45:787-93. [PMID: 12416610 DOI: 10.1139/g02-043] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Amplified fragment length polymorphism (AFLP) analysis was used in combination with bulked segregant analysis (BSA) to identify molecular markers linked to two cowpea (Vigna unguiculata (L.) Walp.) genes conferring resistance to Striga gesnerioides race 1. After AFLP analysis of an F2 population derived from a cross between the resistant cultivar Gorom and the susceptible cultivar Tvx 3236, seven AFLP markers were identified that are linked to Rsg3, the gene conferring race I resistance in 'Gorom'. The distances between these markers and Rsg3 ranged from 9.9 to 2.5 cM, with two markers, E-AGA/M-CTA460 and E-AGA/M-CAG300, flanking Rsg3 at 2.5 and 2.6 cM, respectively. Analysis of a second F2 population derived from the cross between 'Tvx 3236' and the resistant cultivar IT81D-994 identified five AFLP markers linked to the race 1 resistance gene 994-Rsg present in 'IT81D-994'. The two markers showing the tightest linkage to the 994-Rsg locus were E-AAG/M-AAC450 and E-AAG/M-AAC150 at 2.1 and 2.0 cM, respectively. Two of the markers linked to 994-Rsg, E-AGA/M-CAG300 and E-AGA/M-CAG450, were also linked to Rsg3. The identification of molecular markers in common between the two sources of race 1 resistance suggests that either Striga resistance genes are clustered in these plants or that these loci are allelic. Mapping of the resistance loci within the cowpea genome revealed that three markers linked to Rsg3 and (or) 994-Rsg are located on linkage group 6.
Collapse
Affiliation(s)
- Jeremy T Ouédraogo
- Institut de l'Environnement et de Recherches Agricoles, Ouagadougou, Burkina Faso.
| | | | | | | |
Collapse
|
25
|
Wang YH, Choi W, Thomas CE, Dean RA. Cloning of disease-resistance homologues in end sequences of BAC clones linked to Fom-2, a gene conferring resistance to Fusarium wilt in melon (Cucumis melo L.). Genome 2002; 45:473-80. [PMID: 12033615 DOI: 10.1139/g02-005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Disease resistance has not yet been characterized at the molecular level in cucurbits, a group of high-value, nutritious, horticultural plants. Previously, we genetically mapped the Fom-2 gene that confers resistance to Fusarium wilt races 0 and I of melon. In this paper, two cosegregating codominant markers (AM, AFLP marker; FM, Fusarium marker) were used to screen a melon bacterial artificial chromosome (BAC) library. Identified clones were fingerprinted and end sequenced. Fingerprinting analysis showed that clones identified by each marker assembled into two separate contigs at high stringency. GenBank searches produced matches to leucine-rich repeats (LRRs) of resistance genes (R genes); to retroelements and to cellulose synthase in clones identified by FM; and to nucleotide-binding sites (NBSs) of R genes, retroelements, and cytochrome P-450 in clones identified by AM. A 6.5-kb fragment containing both NBS and LRR sequences was found to share high homology to TIR (Toll-interleukin-1 receptor)-NBS-LRR R genes, such as N, with 42% identity and 58% similarity in the TIR-NBS and LRR regions. The sequence information may be useful for identifying NBS-LRR class of R genes in other cucurbits.
Collapse
Affiliation(s)
- Yi-Hong Wang
- Clemson University Genomics Institute and Department of Plant Pathology and Physiology, Clemson University, SC 29634, USA
| | | | | | | |
Collapse
|
26
|
Leach JE, Leung H, Wang GL. Dissection of defence response pathways in rice. NOVARTIS FOUNDATION SYMPOSIUM 2002; 236:190-200; discussion 200-4. [PMID: 11387980 DOI: 10.1002/9780470515778.ch14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
The cloning of major resistance genes has led to a better understanding of the molecular biology of the steps for induction of resistance, yet much remains to be discovered about the downstream genes that collectively confer resistance, i.e. the defence response (DR) genes. We are dissecting the pathways contributing to resistance in rice by identifying a collection of mutants with deletions or other structural rearrangements in DR genes. The collection of rice mutants has been screened for many characters, including increased susceptibility or resistance to Magnaporthe grisea and Xanthomonas oryzae pv. oryzae. A collection of enhanced sequence tags (ESTs) and putative DR genes has been established to facilitate detection of mutants with deletions in DR genes. Arrays of DR genes will be used to create gene expression profiles of interesting mutants. Successful application of the mutant screen will have broad utility in identifying candidate genes involved in disease response and other metabolic pathways.
Collapse
Affiliation(s)
- J E Leach
- Department of Plant Pathology, 4024 Throckmorton Plant Sciences Center, Kansas State University, Manhattan, KS 66506-5502, USA
| | | | | |
Collapse
|
27
|
Richly E, Kurth J, Leister D. Mode of amplification and reorganization of resistance genes during recent Arabidopsis thaliana evolution. Mol Biol Evol 2002; 19:76-84. [PMID: 11752192 DOI: 10.1093/oxfordjournals.molbev.a003984] [Citation(s) in RCA: 158] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The NBS-LRR (nucleotide-binding site plus leucine-rich repeat) genes represent the major class of disease resistance genes in flowering plants and comprise 166 genes in the ecotype Col-0 of Arabidopsis thaliana. NBS-LRR genes are organized in single-gene loci, clusters, and superclusters. Phylogenetic analysis reveals nine monophyletic clades and a few phylogenetic orphans. Most clusters contain only genes from the same phylogenetic lineage, reflecting their origin from the exchange of sequence blocks as a result of intralocus recombination. Multiple duplications increased the number of NBS-LRR genes in the progenitors of Arabidopsis, suggesting that the present complexity in Col-0 may derive from as few as 17 progenitors. The combination of physical and phylogenetic analyses of the NBS-LRR genes makes it possible to detect relatively recent gene rearrangements, which increased the number of NBS-LRR genes by about 50, but which are almost never associated with large segmental duplications. The identification of 10 heterogeneous clusters containing members from different clades demonstrates that sequence sampling between different resistance gene loci and clades has occurred. Such events may have taken place early during flowering plant evolution, but they generated modules that have been duplicated and remobilized also more recently.
Collapse
Affiliation(s)
- Erik Richly
- Abteilung für Pflanzenzüchtung und Ertragsphysiologie, Max-Planck-Institut für Züchtungsforschung, Carl-von-Linné Weg 10, 50829 Köln, Germany
| | | | | |
Collapse
|
28
|
Shiu SH, Bleecker AB. Plant receptor-like kinase gene family: diversity, function, and signaling. SCIENCE'S STKE : SIGNAL TRANSDUCTION KNOWLEDGE ENVIRONMENT 2001; 2001:re22. [PMID: 11752632 DOI: 10.1126/stke.2001.113.re22] [Citation(s) in RCA: 298] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Plant receptor-like kinases (RLKs) are transmembrane proteins with putative amino-terminal extracellular domains and carboxyl-terminal intracellular kinase domains, with striking resemblance in domain organization to the animal receptor tyrosine kinases such as epidermal growth factor receptor. The recently sequenced Arabidopsis genome contains more than 600 RLK homologs, representing nearly 2.5% of the annotated protein-coding genes in Arabidopsis. Although only a handful of these genes have known functions and fewer still have identified ligands or downstream targets, the studies of several RLKs such as CLAVATA1, Brassinosteroid Insensitive 1, Flagellin Insensitive 2, and S-locus receptor kinase provide much-needed information on the functions mediated by members of this large gene family. RLKs control a wide range of processes, including development, disease resistance, hormone perception, and self-incompatibility. Combined with the expression studies and biochemical analysis of other RLKs, more details of RLK function and signaling are emerging.
Collapse
Affiliation(s)
- S H Shiu
- The Department of Botany, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | |
Collapse
|
29
|
|
30
|
Fourmann M, Chariot F, Froger N, Delourme R, Brunel D. Expression, mapping, and genetic variability of Brassica napus disease resistance gene analogues. Genome 2001; 44:1083-99. [PMID: 11768212 DOI: 10.1139/g01-098] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Numerous sequences analogous to resistance (R) genes exist in plant genomes and could be involved in resistance traits. The aim of this study was to identify a large number of Brassica napus sequences related to R genes and also to test the adequacy of specific PCR-based tools for studying them. Different consensus primers were compared for their efficiency in amplifying resistance-gene analogues (RGAs) related to the nucleotide-binding-site subgroup of R genes. Specific primers were subsequently designed to fine-study the different RGAs and we tested their efficiency in three species related to B. napus: Brassica oleracea, Brassica rapa, and Arabidopsis thaliana. Forty-four B. napus RGAs were identified. Among 29 examined, at least one-third were expressed. Eighteen RGAs were mapped on 10 of the 19 B. napus linkage groups. The high variability within these sequences permitted discrimination of each genotype within a B. napus collection. The RGA-specific primers amplified RGAs in the B. oleracea and B. rapa genomes, but the sequences appear to be poorly conserved in A. thaliana. Specific RGA primers are a precise tool for studying known-sequence RGAs. These sequences represent interesting markers that could be correlated with resistance traits in B. napus or related Brassica genomes.
Collapse
Affiliation(s)
- M Fourmann
- Station de Génétique et Amelioration des Plantes, Institut National de la Recherche Agronomique, Versailles, France.
| | | | | | | | | |
Collapse
|
31
|
Taguchi-Shiobara F, Yuan Z, Hake S, Jackson D. The fasciated ear2 gene encodes a leucine-rich repeat receptor-like protein that regulates shoot meristem proliferation in maize. Genes Dev 2001; 15:2755-66. [PMID: 11641280 PMCID: PMC312812 DOI: 10.1101/gad.208501] [Citation(s) in RCA: 208] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The ability to initiate organs throughout the lifecycle is a unique feature of plant development that is executed by groups of stem cells called meristems. The balance between stem cell proliferation and organ initiation is carefully regulated and ensures that organs can be initiated in regular geometric patterns. To understand how this regulation is achieved, we isolated a novel mutant of maize, fasciated ear2 (fea2), which causes a massive overproliferation of the ear inflorescence meristem and a more modest effect on floral meristem size and organ number. We cloned the fea2 gene using transposon tagging, and it encodes a membrane localized leucine-rich repeat receptor-like protein that is most closely related to CLAVATA2 from Arabidopsis. These findings provide evidence that the CLAVATA pathway for regulation of meristem size is functionally conserved throughout the angiosperms. A possible connection of fea2 to the control of crop yields is discussed.
Collapse
|
32
|
Shiu SH, Bleecker AB. Receptor-like kinases from Arabidopsis form a monophyletic gene family related to animal receptor kinases. Proc Natl Acad Sci U S A 2001; 98:10763-8. [PMID: 11526204 PMCID: PMC58549 DOI: 10.1073/pnas.181141598] [Citation(s) in RCA: 1008] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Plant receptor-like kinases (RLKs) are proteins with a predicted signal sequence, single transmembrane region, and cytoplasmic kinase domain. Receptor-like kinases belong to a large gene family with at least 610 members that represent nearly 2.5% of Arabidopsis protein coding genes. We have categorized members of this family into subfamilies based on both the identity of the extracellular domains and the phylogenetic relationships between the kinase domains of subfamily members. Surprisingly, this structurally defined group of genes is monophyletic with respect to kinase domains when compared with the other eukaryotic kinase families. In an extended analysis, animal receptor kinases, Raf kinases, plant RLKs, and animal receptor tyrosine kinases form a well supported group sharing a common origin within the superfamily of serine/threonine/tyrosine kinases. Among animal kinase sequences, Drosophila Pelle and related cytoplasmic kinases fall within the plant RLK clade, which we now define as the RLK/Pelle family. A survey of expressed sequence tag records for land plants reveals that mosses, ferns, conifers, and flowering plants have similar percentages of expressed sequence tags representing RLK/Pelle homologs, suggesting that the size of this gene family may have been close to the present-day level before the diversification of land plant lineages. The distribution pattern of four RLK subfamilies on Arabidopsis chromosomes indicates that the expansion of this gene family is partly a consequence of duplication and reshuffling of the Arabidopsis genome and of the generation of tandem repeats.
Collapse
Affiliation(s)
- S H Shiu
- Department of Botany, University of Wisconsin, Madison, WI 53706, USA
| | | |
Collapse
|
33
|
Vleeshouwers VG, Martens A, van Dooijeweert W, Colon LT, Govers F, Kamoun S. Ancient diversification of the Pto kinase family preceded speciation in Solanum. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2001; 14:996-1005. [PMID: 11497472 DOI: 10.1094/mpmi.2001.14.8.996] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Recent phylogenetic analyses of the nucleotide binding sites (NBS)-leucine-rich repeats (LRR) class of plant disease resistance (R) genes suggest that these genes are ancient and coexist next to susceptibility alleles at resistance loci. Another class of R genes encodes serine-threonine protein kinases related to Pto that were originally identified from wild relatives of tomato. In this study, we exploit the highly diverse genus Solanum to identify Pto-like sequences and test various evolutionary scenarios for Pto-like genes. Polymerase chain reaction amplifications with the use of primers that were developed on the basis of conserved and variable regions of Pto revealed an extensive Pto gene family and yielded 32 intact Pto-like sequences from six Solanum species. Furthermore, Pto-like transcripts were detected in the leaf tissue of all tested plants. The kinase consensus and autophosphorylation sites were highly conserved, in contrast to the kinase activation domain, which is involved in ligand recognition in Pto. Phylogenetic analyses distinguished nine classes of Pto-like genes and revealed that orthologs were more similar than paralogs, suggesting that the Pto gene family evolved through a series of ancient gene duplication events prior to speciation in Solanum. Thus, like the NBS-LRR class, the kinase class of R genes is highly diverse and ancient.
Collapse
Affiliation(s)
- V G Vleeshouwers
- Plant Research International, Wageningen University and Research Center, The Netherlands.
| | | | | | | | | | | |
Collapse
|
34
|
Luo M, Wang YH, Frisch D, Joobeur T, Wing RA, Dean RA. Melon bacterial artificial chromosome (BAC) library construction using improved methods and identification of clones linked to the locus conferring resistance to melon Fusarium wilt (Fom-2). Genome 2001. [DOI: 10.1139/g00-117] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Utilizing improved methods, two bacterial artificial chromosome (BAC) libraries were constructed for the multidisease-resistant line of melon MR-1. The HindIII library consists of 177 microtiter plates in a 384-well format, while the EcoRI library consists of 222 microtiter plates. Approximately 95.6% of the HindIII library clones contain nuclear DNA inserts with an average size of 118 kb, providing a coverage of 15.4 genome equivalents. Similarly, 96% of the EcoRI library clones contain nuclear DNA inserts with an average size of 114 kb, providing a coverage of 18.7 genome equivalents. Both libraries were evaluated for contamination with high-copy vector, empty pIndigoBac536 vector, and organellar DNA sequences. High-density filters were screened with two genetic markers FM and AM that co-segregate with Fom-2, a gene conferring resistance to races 0 and 1 of Fusarium wilt. Fourteen and 18 candidate BAC clones were identified for the FM and AM probes, respectively, from the HindIII library, while 34 were identified for the AM probe from filters A, B, and C of the EcoRI library.Key words: bacterial artificial chromosome (BAC) library, Fusarium wilt, melon, pCUGIBAC1, resistant gene.
Collapse
|
35
|
Chin DB, Arroyo-Garcia R, Ochoa OE, Kesseli RV, Lavelle DO, Michelmore RW. Recombination and spontaneous mutation at the major cluster of resistance genes in lettuce (Lactuca sativa). Genetics 2001; 157:831-49. [PMID: 11157000 PMCID: PMC1461523 DOI: 10.1093/genetics/157.2.831] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Two sets of overlapping experiments were conducted to examine recombination and spontaneous mutation events within clusters of resistance genes in lettuce. Multiple generations were screened for recombinants using PCR-based markers flanking Dm3. The Dm3 region is not highly recombinagenic, exhibiting a recombination frequency 18-fold lower than the genome average. Recombinants were identified only rarely within the cluster of Dm3 homologs and no crossovers within genes were detected. Three populations were screened for spontaneous mutations in downy mildew resistance. Sixteen Dm mutants were identified corresponding to spontaneous mutation rates of 10(-3) to 10(-4) per generation for Dm1, Dm3, and Dm7. All mutants carried single locus, recessive mutations at the corresponding Dm locus. Eleven of the 12 Dm3 mutations were associated with large chromosome deletions. When recombination could be analyzed, deletion events were associated with exchange of flanking markers, consistent with unequal crossing over; however, although the number of Dm3 paralogs was changed, no novel chimeric genes were detected. One mutant was the result of a gene conversion event between Dm3 and a closely related homolog, generating a novel chimeric gene. In two families, spontaneous deletions were correlated with elevated levels of recombination. Therefore, the short-term evolution of the major cluster of resistance genes in lettuce involves several genetic mechanisms including unequal crossing over and gene conversion.
Collapse
Affiliation(s)
- D B Chin
- Department of Vegetable Crops, University of California-Davis, 1 Shields Ave, Davis, CA 95616, USA
| | | | | | | | | | | |
Collapse
|
36
|
|
37
|
Abstract
A saturated genetic map of diploid oat was constructed based on a recombinant inbred (RI) population developed from a cross between Avena strigosa (Cereal Introduction, C.I. 3815) and A. wiestii (C.I. 1994). This 513-locus map includes 372 AFLP (amplified fragment length polymorphism) and 78 S-SAP (sequence-specific-amplification polymorphism) markers, 6 crown-rust resistance loci, 8 resistance-gene analogs (RGAs), one morphological marker, one RAPD (random amplified polymorphic DNA) marker, and is anchored by 45 grass-genome RFLP (restriction fragment length polymorphism) markers. This new A. strigosa × A. wiestii RI map is colinear with a diploid Avena map from an A. atlantica × A. hirtula F2 population. However, some linkage blocks were rearranged as compared to the RFLP map derived from the progenitor A. strigosa × A. wiestii F2 population. Mapping of Bare-1-like sequences via sequence-specific AFLP indicated that related retrotransposons had considerable heterogeneity and widespread distribution in the diploid Avena genome. Novel amplified fragments detected in the RI population suggested that some of these retrotransposon-like sequences are active in diploid Avena. Three markers closely linked to the Pca crown-rust resistance cluster were identified via AFLP-based bulk-segregant analysis. The derived STS (sequence-tagged-site) marker, Agx4, cosegregates with Pc85, the gene that provides resistance specificity to crown-rust isolate 202 at the end of the cluster. This framework map will be useful in gene cloning, genetic mapping of qualitative genes, and positioning QTL (quantitative trait loci) of agricultural importance.Key words: AFLP, Bare-1 retrotransposon, sequence-specific-amplification polymorphism (S-SAP), resistance-gene analog, crown-rust resistance, Pca, Gramineae, grass anchor probe.
Collapse
|
38
|
Abstract
Plant resistance genes (R genes), especially the nucleotide binding site leucine-rich repeat (NBS-LRR) family of sequences, have been extensively studied in terms of structural organization, sequence evolution and genome distribution. These studies indicate that NBS-LRR sequences can be split into two related groups that have distinct amino-acid motif organizations, evolutionary histories and signal transduction pathways. One NBS-LRR group, characterized by the presence of a Toll/interleukin receptor domain at the amino-terminal end, seems to be absent from the Poaceae. Phylogenetic analysis suggests that a small number of NBS-LRR sequences existed among ancient Angiosperms and that these ancestral sequences diversified after the separation into distinct taxonomic families. There are probably hundreds, perhaps thousands, of NBS-LRR sequences and other types of R gene-like sequences within a typical plant genome. These sequences frequently reside in 'mega-clusters' consisting of smaller clusters with several members each, all localized within a few million base pairs of one another. The organization of R-gene clusters highlights a tension between diversifying and conservative selection that may be relevant to gene families that are unrelated to disease resistance.
Collapse
Affiliation(s)
- N D Young
- Department of Plant Pathology, 495 Borlaug Hall, University of Minnesota, St. Paul 55108, USA.
| |
Collapse
|
39
|
Jahn M, Paran I, Hoffmann K, Radwanski ER, Livingstone KD, Grube RC, Aftergoot E, Lapidot M, Moyer J. Genetic mapping of the Tsw locus for resistance to the Tospovirus Tomato spotted wilt virus in Capsicum spp. and its relationship to the Sw-5 gene for resistance to the same pathogen in tomato. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2000; 13:673-682. [PMID: 10830267 DOI: 10.1094/mpmi.2000.13.6.673] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The Tsw gene conferring dominant resistance to the Tospovirus Tomato spotted wilt virus (TSWV) in Capsicum spp. has been tagged with a random amplified polymorphic DNA marker and mapped to the distal portion of chromosome 10. No mapped homologues of Sw-5, a phenotypically similar dominant TSWV resistance gene in tomato, map to this region in C. annuum, although a number of Sw-5 homologues are found at corresponding positions in pepper and tomato. The relationship between Tsw and Sw-5 was also examined through genetic studies of TSWV. The capacity of TSWV-A to overcome the Tsw gene in pepper and the Sw-5 gene in tomato maps to different TSWV genome segments. Therefore, despite phenotypic and genetic similarities of resistance in tomato and pepper, we infer that distinct viral gene products control the outcome of infection in plants carrying Sw-5 and Tsw, and that these loci do not appear to share a recent common evolutionary ancestor.
Collapse
Affiliation(s)
- M Jahn
- Department of Plant Breeding, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Gómez-Gómez L, Boller T. FLS2: an LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Mol Cell 2000; 5:1003-11. [PMID: 10911994 DOI: 10.1016/s1097-2765(00)80265-8] [Citation(s) in RCA: 1410] [Impact Index Per Article: 58.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Flagellin, the main protein of the bacterial flagella, elicits defence responses and alters growth in Arabidopsis seedlings. Previously, we identified the FLS1 locus, which confers flagellin insensitivity in Ws-0. To identify additional components involved in flagellin perception, we screened for flagellin insensitivity mutants in the flagellin-sensitive accession La-er. Here, we describe the identification of a new locus, FLS2, by a map-based strategy. The FLS2 gene is ubiquitously expressed and encodes a putative receptor kinase. FLS2 shares structural and functional homologies with known plant resistance genes and with components involved in the innate immune system of mammals and insects.
Collapse
|
41
|
Geffroy V, Sévignac M, De Oliveira JC, Fouilloux G, Skroch P, Thoquet P, Gepts P, Langin T, Dron M. Inheritance of partial resistance against Colletotrichum lindemuthianum in Phaseolus vulgaris and co-localization of quantitative trait loci with genes involved in specific resistance. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2000; 13:287-96. [PMID: 10707354 DOI: 10.1094/mpmi.2000.13.3.287] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Anthracnose, one of the most important diseases of common bean (Phaseolus vulgaris), is caused by the fungus Colletotrichum lindemuthianum. A "candidate gene" approach was used to map anthracnose resistance quantitative trait loci (QTL). Candidate genes included genes for both pathogen recognition (resistance genes and resistance gene analogs [RGAs]) and general plant defense (defense response genes). Two strains of C. lindemuthianum, identified in a world collection of 177 strains, displayed a reproducible and differential aggressiveness toward BAT93 and JaloEEP558, two parental lines of P. vulgaris representing the two major gene pools of this crop. A reliable test was developed to score partial resistance in aerial organs of the plant (stem, leaf, petiole) under controlled growth chamber conditions. BAT93 was more resistant than JaloEEP558 regardless of the organ or strain tested. With a recombinant inbred line (RIL) population derived from a cross between these two parental lines, 10 QTL were located on a genetic map harboring 143 markers, including known defense response genes, anthracnose-specific resistance genes, and RGAs. Eight of the QTL displayed isolate specificity. Two were co-localized with known defense genes (phenylalanine ammonia-lyase and hydroxyproline-rich glycoprotein) and three with anthracnose-specific resistance genes and/or RGAs. Interestingly, two QTL, with different allelic contribution, mapped on linkage group B4 in a 5.0 cM interval containing Andean and Mesoamerican specific resistance genes against C. lindemuthianum and 11 polymorphic fragments revealed with a RGA probe. The possible relationship between genes underlying specific and partial resistance is discussed.
Collapse
Affiliation(s)
- V Geffroy
- LPPM, IBP, Université de Paris XI, Orsay, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Wei F, Gobelman-Werner K, Morroll SM, Kurth J, Mao L, Wing R, Leister D, Schulze-Lefert P, Wise RP. The Mla (powdery mildew) resistance cluster is associated with three NBS-LRR gene families and suppressed recombination within a 240-kb DNA interval on chromosome 5S (1HS) of barley. Genetics 1999; 153:1929-48. [PMID: 10581297 PMCID: PMC1460856 DOI: 10.1093/genetics/153.4.1929] [Citation(s) in RCA: 145] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Powdery mildew of barley, caused by Erysiphe graminis f. sp. hordei, is a model system for investigating the mechanism of gene-for-gene interaction between large-genome cereals and obligate-fungal pathogens. A large number of loci that confer resistance to this disease are located on the short arm of chromosome 5(1H). The Mla resistance-gene cluster is positioned near the telomeric end of this chromosome arm. AFLP-, RAPD-, and RFLP-derived markers were used to saturate the Mla region in a high-resolution recombinant population segregating for the (Mla6 + Mla14) and (Mla13 + Ml-Ru3) resistance specificities. These tightly linked genetic markers were used to identify and develop a physical contig of YAC and BAC clones spanning the Mla cluster. Three distinct NBS-LRR resistance-gene homologue (RGH) families were revealed via computational analysis of low-pass and BAC-end sequence data derived from Mla-spanning clones. Genetic and physical mapping delimited the Mla-associated, NBS-LRR gene families to a 240-kb interval. Recombination within the RGH families was at least 10-fold less frequent than between markers directly adjacent to the Mla cluster.
Collapse
Affiliation(s)
- F Wei
- Interdepartmental Genetics Program, USDA-ARS, Iowa State University, Ames, Iowa 50011-1020, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Geffroy V, Sicard D, de Oliveira JC, Sévignac M, Cohen S, Gepts P, Neema C, Langin T, Dron M. Identification of an ancestral resistance gene cluster involved in the coevolution process between Phaseolus vulgaris and its fungal pathogen Colletotrichum lindemuthianum. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 1999; 12:774-84. [PMID: 10494630 DOI: 10.1094/mpmi.1999.12.9.774] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The recent cloning of plant resistance (R) genes and the sequencing of resistance gene clusters have shed light on the molecular evolution of R genes. However, up to now, no attempt has been made to correlate this molecular evolution with the host-pathogen coevolution process at the population level. Cross-inoculations were carried out between 26 strains of the fungal pathogen Colletotrichum lindemuthianum and 48 Phaseolus vulgaris plants collected in the three centers of diversity of the host species. A high level of diversity for resistance against the pathogen was revealed. Most of the resistance specificities were overcome in sympatric situations, indicating an adaptation of the pathogen to the local host. In contrast, plants were generally resistant to allopatric strains, suggesting that R genes that were efficient against exotic strains but had been overcome locally were maintained in the plant genome. These results indicated that coevolution processes between the two protagonists led to a differentiation for resistance in the three centers of diversity of the host. To improve our understanding of the molecular evolution of these different specificities, a recombinant inbred (RI) population derived from two representative genotypes of the Andean (JaloEEP558) and Mesoamerican (BAT93) gene pools was used to map anthracnose specificities. A gene cluster comprising both Andean (Co-y; Co-z) and Mesoamerican (Co-9) host resistance specificities was identified, suggesting that this locus existed prior to the separation of the two major gene pools of P. vulgaris. Molecular analysis revealed a high level of complexity at this locus. It harbors 11 restriction fragment length polymorphisms when R gene analog (RGA) clones are used. The relationship between the coevolution process and diversification of resistance specificities at resistance gene clusters is discussed.
Collapse
Affiliation(s)
- V Geffroy
- IBP-LPPM, Université de Paris XI, Orsay, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Glazebrook J. Genes controlling expression of defense responses in Arabidopsis. CURRENT OPINION IN PLANT BIOLOGY 1999; 2:280-6. [PMID: 10458996 DOI: 10.1016/s1369-5266(99)80050-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
In the past year, two regulatory defense-related genes, EDS1l and COl1, have been cloned. Several other genes with regulatory functions have been identified by mutation, including DND1, PAD4, CPR6, and SSl1. It has become clear that jasmonate signaling plays an important role in defense response signaling, and that the jasmonate and salicylic acid signaling pathways are interconnected.
Collapse
Affiliation(s)
- J Glazebrook
- Novartis Agricultural Discovery, Institute, Inc., 3050 Science Park Rd, Suite 102, San Diego, CA 92121, USA.
| |
Collapse
|
45
|
Joosten MHAJ, de Wit PJGM. THE TOMATO-CLADOSPORIUM FULVUM INTERACTION: A Versatile Experimental System to Study Plant-Pathogen Interactions. ANNUAL REVIEW OF PHYTOPATHOLOGY 1999; 37:335-367. [PMID: 11701827 DOI: 10.1146/annurev.phyto.37.1.335] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Over the past 20 years, the interaction between the biotrophic fungal pathogen Cladosporium fulvum and tomato has developed into a versatile experimental system for molecular plant pathology and resistance breeding. This interaction provided the resources for cloning of fungal avirulence genes for the first time and interesting clues on recognition of their extracellular products by tomato, as well as mechanisms employed by the fungus to circumvent this recognition. A wealth of information has become available on the structure and genomic organization of Cf resistance genes. The occurrence of many clustered Cf homologues allows the generation of new genes with additional recognitional specificities by reshuffling. It is anticipated that potentially all proteins secreted by C. fulvum are recognized by one or more individuals in a population of tomato genotypes, a hypothesis that has been experimentally confirmed. The future challenge will be to elucidate the mechanisms of perception of avirulence factors and the subsequent signaling eventually leading to activation of host defense responses.
Collapse
Affiliation(s)
- MHAJ Joosten
- Laboratory of Phytopathology, Wageningen University, Binnenhaven 9, WAGENINGEN, PD 6709 The Netherlands; e-mail:
| | | |
Collapse
|