1
|
Wang TH, Watanabe K, Hamada N, Tani-Ishii N. Role of MAPKs in TGF-β1-induced maturation and mineralization in human osteoblast-like cells. J Oral Biosci 2024; 66:61-67. [PMID: 38110177 DOI: 10.1016/j.job.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/14/2023] [Accepted: 12/14/2023] [Indexed: 12/20/2023]
Abstract
OBJECTIVES Our study aimed to clarify the role of mitogen-activated protein kinases (MAPKs) in transforming growth factor (TGF)-β1-stimulated mineralization in the human osteoblast-like MG63 cells. METHODS The viability of MG63 cells under TGF-β1 stimulation was assessed by MTS assay. Western blotting determined TGF-β1-mediated activation of extracellular signal-related protein kinase (ERK), p38, and c-Jun amino-terminal kinase (JNK). Mineralization-related gene expression was examined by quantitative real-time PCR, and mineral deposition levels were evaluated by alizarin red S staining. RESULTS TGF-β1 had no effect on MG63 cell proliferation. Activation of p38 was observed at 3 h post TGF-β1 stimulation. Moreover, JNK phosphorylation was upregulated by TGF-β1 from 1 to 6 h post stimulation, but had no activation on ERK phosphorylation throughout the experimental period. Treatment with JNK inhibitor diminished the alizarin red S-stained area in a dose-dependent manner. Mineral deposition was unaffected by MEK inhibitor, whereas p38 inhibitor increased the red-stained area. Gene expression levels of ALP and BSP were significantly decreased under treatment with JNK inhibitor and p38 inhibitor. The MEK inhibitor had no effect on the TGF-β1-mediated upregulation of ALP and BSP. Although all three inhibitors suppressed expression of COL I, none were found to stimulate expression of OCN. CONCLUSIONS Human osteoblast-like MG63 cells maturation and mineralization are induced through JNK activation of MAPK signaling in response to TGF-β1.
Collapse
Affiliation(s)
- Ting-Hsuan Wang
- Department of Pulp Biology and Endodontics, Graduate School of Dentistry, Kanagawa Dental University, 82 Inaoka-cho, Yokosuka, 238-8580, Japan
| | - Kiyoko Watanabe
- Department of Liberal Arts Education, Kanagawa Dental University, 82 Inaoka-cho, Yokosuka, 238-8580, Japan
| | - Nobushiro Hamada
- Department of Oral Microbiology, Graduate School of Dentistry, Kanagawa Dental University, 82 Inaoka-cho, Yokosuka, 238-8580, Japan
| | - Nobuyuki Tani-Ishii
- Department of Pulp Biology and Endodontics, Graduate School of Dentistry, Kanagawa Dental University, 82 Inaoka-cho, Yokosuka, 238-8580, Japan.
| |
Collapse
|
2
|
Chaudhari SD, Sharma KK, Marchetto JJ, Hydren JR, Burton BM, Moreno AP. Modulating OPG and TGF-β1 mRNA expression via bioelectrical stimulation. Bone Rep 2021; 15:101141. [PMID: 34692946 PMCID: PMC8517839 DOI: 10.1016/j.bonr.2021.101141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 09/29/2021] [Accepted: 10/05/2021] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Bone remodeling is a lifelong process that ranges from orthodontic tooth movement/alignment to bone damage/healing, to overall bone health. Osteoprotegerin (OPG) and transforming growth factor β1 (TGF-β1) are secreted by osteoblasts and participate in bone remodeling. OPG promotes bone remineralization and stabilization prominent in post-mechanical repositioning of the teeth in the dental alveolus. TGF-β1 participates in regulatory processes to promote osteoblast and osteoclast equilibrium. In the context of orthodontic tooth movement, post-treatment fixation requires additional, exogenous, stabilization support. Recent research showcases supplementary solutions, in conjunction to standard tooth fixation techniques, such as OPG injections into gum and periodontal tissues to accelerate tooth anchorage; however, injections are prone to post-procedure complications and discomfort. This study utilizes noninvasive bioelectric stimulation (BES) to modulate OPG and TGF-β1 as a novel solution to regulate bone remineralization specifically in the context of post-orthodontic tooth movement. PURPOSE The aim of this study was to investigate a spectrum of BES parameters that would modulate OPG and TGF-β1 expression in osteoblasts. METHODS Osteoblasts were cultured and stimulated using frequencies from 25 Hz to 3 MHz. RT-qPCR was used to quantify changes in OPG and TGFb-1 mRNA expression. RESULTS OPG mRNA expression was significantly increased at frequencies above 10,000 Hz with a maximum expression increase of 332 ± 8% at 100 kHz. Conversely, OPG mRNA expression was downregulated at frequencies lower than 1000 Hz. TGF-β1 mRNA expression increased throughout all stimulation frequencies with a peak of 332 ± 72% at 250 kHz. Alizarin Red tests for calcium, indicated that mineralization of stimulated osteoblasts in vitro increased 28% after 6 weeks in culture. DISCUSSION Results support the working hypothesis that OPG and TGF-β1 mRNA expression can be modulated through BES. Noninvasive BES approaches have the potential to accelerate bone remineralization by providing a novel tool to supplement the anchorage process, reduce complications, and promote patient compliance and reduce post-treatment relapse. Noninvasive BES may be applicable to other clinical applications as a novel therapeutic tool to modulate bone remodeling.
Collapse
Affiliation(s)
- Sejal D. Chaudhari
- OrthodontiCell Inc., Leonhardt Launchpads Utah, Inc., Salt Lake City, UT 84115, United States of America
| | - Kapil K. Sharma
- OrthodontiCell Inc., Leonhardt Launchpads Utah, Inc., Salt Lake City, UT 84115, United States of America
| | - John J. Marchetto
- OrthodontiCell Inc., Leonhardt Launchpads Utah, Inc., Salt Lake City, UT 84115, United States of America
- John J. Marchetto DMD, Weston, FL 33326, United States of America
| | - Jay R. Hydren
- OrthodontiCell Inc., Leonhardt Launchpads Utah, Inc., Salt Lake City, UT 84115, United States of America
| | - Brett M. Burton
- OrthodontiCell Inc., Leonhardt Launchpads Utah, Inc., Salt Lake City, UT 84115, United States of America
| | - Alonso P. Moreno
- OrthodontiCell Inc., Leonhardt Launchpads Utah, Inc., Salt Lake City, UT 84115, United States of America
| |
Collapse
|
3
|
Amarasekara DS, Kim S, Rho J. Regulation of Osteoblast Differentiation by Cytokine Networks. Int J Mol Sci 2021; 22:ijms22062851. [PMID: 33799644 PMCID: PMC7998677 DOI: 10.3390/ijms22062851] [Citation(s) in RCA: 149] [Impact Index Per Article: 49.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/08/2021] [Accepted: 03/08/2021] [Indexed: 02/07/2023] Open
Abstract
Osteoblasts, which are bone-forming cells, play pivotal roles in bone modeling and remodeling. Osteoblast differentiation, also known as osteoblastogenesis, is orchestrated by transcription factors, such as runt-related transcription factor 1/2, osterix, activating transcription factor 4, special AT-rich sequence-binding protein 2 and activator protein-1. Osteoblastogenesis is regulated by a network of cytokines under physiological and pathophysiological conditions. Osteoblastogenic cytokines, such as interleukin-10 (IL-10), IL-11, IL-18, interferon-γ (IFN-γ), cardiotrophin-1 and oncostatin M, promote osteoblastogenesis, whereas anti-osteoblastogenic cytokines, such as tumor necrosis factor-α (TNF-α), TNF-β, IL-1α, IL-4, IL-7, IL-12, IL-13, IL-23, IFN-α, IFN-β, leukemia inhibitory factor, cardiotrophin-like cytokine, and ciliary neurotrophic factor, downregulate osteoblastogenesis. Although there are gaps in the body of knowledge regarding the interplay of cytokine networks in osteoblastogenesis, cytokines appear to be potential therapeutic targets in bone-related diseases. Thus, in this study, we review and discuss our osteoblast, osteoblast differentiation, osteoblastogenesis, cytokines, signaling pathway of cytokine networks in osteoblastogenesis.
Collapse
Affiliation(s)
- Dulshara Sachini Amarasekara
- Department of Zoology and Environment Sciences, Faculty of Science, University of Colombo, Colombo 00300, Sri Lanka;
| | - Sumi Kim
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon 34134, Korea;
| | - Jaerang Rho
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon 34134, Korea;
- Correspondence: ; Tel.: +82-42-821-6420; Fax: +82-42-822-7367
| |
Collapse
|
4
|
M2-like macrophage infiltration and transforming growth factor-β secretion during socket healing process in mice. Arch Oral Biol 2021; 123:105042. [PMID: 33482540 DOI: 10.1016/j.archoralbio.2021.105042] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 12/15/2020] [Accepted: 01/03/2021] [Indexed: 01/01/2023]
Abstract
OBJECTIVE Macrophages are involved in tissue inflammation and repair through cytokine secretion. However, the contribution of macrophages to healing and osteogenesis after tooth extraction remains unclear. Therefore, we investigated the distribution of osteoblastic cells and macrophages in the early healing process after tooth extraction. METHODS The maxillary first molars of 6-week-old male mice were extracted. The maxilla was collected 1, 3, and 7 days after extraction. The states of socket healing, localization of osteoblastic markers, and macrophage infiltration were sequentially observed by micro-CT imaging and immunohistochemistry. RESULTS On day 3 after tooth extraction, α-smooth muscle actin (SMA)-positive cells, osteoprogenitor cells at fracture healing, were observed in the socket. Several α-SMA-positive cells also expressed Runx2, the early osteoblast differentiation marker. The infiltration of F4/80-positive, mature macrophages and CD206-positive, M2-like macrophages was noted in the socket. However, CD169-positive macrophages (Osteomac), which are involved in fracture healing, were not detected in the socket. F4/80-positive and CD206-positive macrophages also showed the localization of transforming growth factor-β (TGF-β), which promotes osteoprogenitor cell proliferation and early differentiation. Phosphorylated Smad3, a downstream mediator of the signal activity of TGF-β, was detected in α-SMA-positive cells. On day 7, the extracted socket contained a large amount of new bone. Tartrate-resistant acid phosphatase (TRAP)-positive osteoclasts were detected on bone surfaces. CONCLUSION Our data indicate that M2-like macrophages regulate the proliferation and differentiation of α-SMA-positive cells by secreting TGF-β at the early stage of socket healing, and also suggest the importance of macrophages in healing and bone formation after tooth extraction.
Collapse
|
5
|
Wilkinson JM. The use of bisphosphonates to meet orthopaedic challenges. Bone 2020; 137:115443. [PMID: 32445893 DOI: 10.1016/j.bone.2020.115443] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/14/2020] [Accepted: 05/19/2020] [Indexed: 11/17/2022]
Abstract
The anti-resorptive properties of bisphosphonates have been explored to manage several conditions that traditionally have required a surgical solution. In osteonecrosis, their use is predicated on the principle that bone collapse occurs during the revascularisation phase of the disease. If the associated resorptive activity were modulated, the resultant preserved joint architecture may improve clinical outcome and reduce the need for joint replacement. Pre-clinical and small-scale clinical studies have given non-conclusive support for this principle. Adequately powered clinical trials with relevant long-term endpoints are still required to firmly clarify the clinical efficacy of this treatment. Several clinical studies have shown that bisphosphonates can reduce periprosthetic bone loss and, in some situations, enhance implant fixation in the early period after joint replacement. This may be advantageous in settings where osseointegration is problematic. However, the ultimate goals of their use in joint replacement has been to reduce the incidence of late periprosthetic inflammatory osteolysis, the main cause of prosthesis failure. Population-based observational studies have associated bisphosphonate use with a lower incidence of revision surgery, supported by pre-clinical data. However, clinical trials have, to date, failed to demonstrate any efficacy for the human disease. The timing of bisphosphonate administration for secondary prevention after acute osteoporotic fracture has been subject to extensive investigation, with pre-clinical studies showing increased callus formation but decreased remodelling and no effect on the restoration of mechanical integrity of bone. Meta-analysis of clinical trial data indicates that early administration of bisphosphonate after acute fracture does not adversely affect fracture union, pain or functional outcomes. Finally, bisphosphonates have also been explored as a treatment for complex regional pain syndrome type-I. A recent meta-analysis has shown a beneficial effect on visual analogue scale pain scores, but an increase in mild adverse events.
Collapse
Affiliation(s)
- J Mark Wilkinson
- Department of Oncology and Metabolism, University of Sheffield, United Kingdom.
| |
Collapse
|
6
|
The Role of Macrophage in the Pathogenesis of Osteoporosis. Int J Mol Sci 2019; 20:ijms20092093. [PMID: 31035384 PMCID: PMC6539137 DOI: 10.3390/ijms20092093] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/20/2019] [Accepted: 04/26/2019] [Indexed: 12/13/2022] Open
Abstract
Osteoporosis is a systemic disease with progressive bone loss. The bone loss is associated with an imbalance between bone resorption via osteoclasts and bone formation via osteoblasts. Other cells including T cells, B cells, macrophages, and osteocytes are also involved in the pathogenesis of osteoporosis. Different cytokines from activated macrophages can regulate or stimulate the development of osteoclastogenesis-associated bone loss. The fusion of macrophages can form multinucleated osteoclasts and, thus, cause bone resorption via the expression of IL-4 and IL-13. Different cytokines, endocrines, and chemokines are also expressed that may affect the presentation of macrophages in osteoporosis. Macrophages have an effect on bone formation during fracture-associated bone repair. However, activated macrophages may secrete proinflammatory cytokines that induce bone loss by osteoclastogenesis, and are associated with the activation of bone resorption. Targeting activated macrophages at an appropriate stage may help inhibit or slow the progression of bone loss in patients with osteoporosis.
Collapse
|
7
|
Movilla N, Borau C, Valero C, García-Aznar JM. Degradation of extracellular matrix regulates osteoblast migration: A microfluidic-based study. Bone 2018; 107:10-17. [PMID: 29107125 DOI: 10.1016/j.bone.2017.10.025] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 10/17/2017] [Accepted: 10/25/2017] [Indexed: 01/06/2023]
Abstract
Bone regeneration is strongly dependent on the capacity of cells to move in a 3D microenvironment, where a large cascade of signals is activated. To improve the understanding of this complex process and to advance in the knowledge of the role of each specific signal, it is fundamental to analyze the impact of each factor independently. Microfluidic-based cell culture is an appropriate technology to achieve this objective, because it allows recreating realistic 3D local microenvironments by taking into account the extracellular matrix, cells and chemical gradients in an independent or combined scenario. The main aim of this work is to analyze the impact of extracellular matrix properties and growth factor gradients on 3D osteoblast movement, as well as the role of cell matrix degradation. For that, we used collagen-based hydrogels, with and without crosslinkers, under different chemical gradients, and eventually inhibiting metalloproteinases to tweak matrix degradation. We found that osteoblast's 3D migratory patterns were affected by the hydrogel properties and the PDGF-BB gradient, although the strongest regulatory factor was determined by the ability of cells to remodel the matrix.
Collapse
Affiliation(s)
- N Movilla
- Multiscale in Mechanical and Biological Engineering, Aragon Institute of Engineering Research, Department of Mechanical Engineering, University of Zaragoza, 50018 Zaragoza, Spain
| | - C Borau
- Multiscale in Mechanical and Biological Engineering, Aragon Institute of Engineering Research, Department of Mechanical Engineering, University of Zaragoza, 50018 Zaragoza, Spain
| | - C Valero
- Multiscale in Mechanical and Biological Engineering, Aragon Institute of Engineering Research, Department of Mechanical Engineering, University of Zaragoza, 50018 Zaragoza, Spain
| | - J M García-Aznar
- Multiscale in Mechanical and Biological Engineering, Aragon Institute of Engineering Research, Department of Mechanical Engineering, University of Zaragoza, 50018 Zaragoza, Spain.
| |
Collapse
|
8
|
Abstract
During bone remodelling, osteoclasts induce chemotaxis of osteoblasts and yet maintain spatial segregation. We show that osteoclasts express the repulsive guidance factor Semaphorin 4D and induce contact inhibition of locomotion (CIL) in osteoblasts through its receptor Plexin-B1. To examine causality and elucidate how localized Plexin-B1 stimulation may spatiotemporally coordinate its downstream targets in guiding cell migration, we develop an optogenetic tool for Plexin-B1 designated optoPlexin. Precise optoPlexin activation at the leading edge of migrating osteoblasts readily induces local retraction and, unexpectedly, distal protrusions to steer cells away. These morphological changes are accompanied by reorganization of Myosin II, PIP3, adhesion and active Cdc42. We attribute the resultant repolarization to RhoA/ROCK-mediated redistribution of β-Pix, which activates Cdc42 and promotes protrusion. Thus, our data demonstrate a causal role of Plexin-B1 for CIL in osteoblasts and reveals a previously unknown effect of Semaphorin signalling on spatial distribution of an activator of cell migration.
Collapse
|
9
|
Sefat F, Denyer MC, Youseffi M. Effects of different transforming growth factor beta (TGF-β) isomers on wound closure of bone cell monolayers. Cytokine 2014; 69:75-86. [DOI: 10.1016/j.cyto.2014.05.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 02/24/2014] [Accepted: 05/12/2014] [Indexed: 12/14/2022]
|
10
|
Mori G, D'Amelio P, Faccio R, Brunetti G. The Interplay between the bone and the immune system. Clin Dev Immunol 2013; 2013:720504. [PMID: 23935650 PMCID: PMC3725924 DOI: 10.1155/2013/720504] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 06/07/2013] [Indexed: 12/27/2022]
Abstract
In the last two decades, numerous scientists have highlighted the interactions between bone and immune cells as well as their overlapping regulatory mechanisms. For example, osteoclasts, the bone-resorbing cells, are derived from the same myeloid precursor cells that give rise to macrophages and myeloid dendritic cells. On the other hand, osteoblasts, the bone-forming cells, regulate hematopoietic stem cell niches from which all blood and immune cells are derived. Furthermore, many of the soluble mediators of immune cells, including cytokines and growth factors, regulate the activities of osteoblasts and osteoclasts. This increased recognition of the complex interactions between the immune system and bone led to the development of the interdisciplinary osteoimmunology field. Research in this field has great potential to provide a better understanding of the pathogenesis of several diseases affecting both the bone and immune systems, thus providing the molecular basis for novel therapeutic strategies. In these review, we reported the latest findings about the reciprocal regulation of bone and immune cells.
Collapse
Affiliation(s)
- Giorgio Mori
- Department of Clinical and Experimental Medicine, University of Foggia, 71100 Foggia, Italy
| | - Patrizia D'Amelio
- Department of Medical Sciences, University of Torino, 10126 Torino, Italy
| | - Roberta Faccio
- Department of Orthopedics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Giacomina Brunetti
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, Section of Human Anatomy and Histology, University of Bari, Piazza Giulio Cesare, 11, 70124 Bari, Italy
| |
Collapse
|
11
|
Kasagi S, Chen W. TGF-beta1 on osteoimmunology and the bone component cells. Cell Biosci 2013; 3:4. [PMID: 23321200 PMCID: PMC3565958 DOI: 10.1186/2045-3701-3-4] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 11/26/2012] [Indexed: 01/07/2023] Open
Abstract
TGF-β1 is an immunoregulatory cytokine that regulates immune cell proliferation, survival, differentiation, and migration. Compelling evidence has demonstrated a strong association between the immune and skeletal systems (so called Osteoimmunology), such as the critical role of TGF-β1 in the development and maintenance of the skeletal tissue. This review provides an overview of the mechanisms in which TGF-β1 interacts with bone component cells, such as osteoblasts, osteoclasts, chondrocytes, mesenchymal stem cells, and hematopoietic stem cells, in concert with other cytokines and hormones.
Collapse
Affiliation(s)
- Shimpei Kasagi
- Mucosal Immunology Section, NIDCR, NIH, Bethesda, MD, USA.
| | | |
Collapse
|
12
|
Lian N, Lin T, Liu W, Wang W, Li L, Sun S, Nyman JS, Yang X. Transforming growth factor β suppresses osteoblast differentiation via the vimentin activating transcription factor 4 (ATF4) axis. J Biol Chem 2012; 287:35975-84. [PMID: 22952236 DOI: 10.1074/jbc.m112.372458] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ATF4 is an osteoblast-enriched transcription factor of the leucine zipper family. We recently identified that vimentin, a leucine zipper-containing intermediate filament protein, suppresses ATF4-dependent osteocalcin (Ocn) transcription and osteoblast differentiation. Here we show that TGFβ inhibits ATF4-dependent activation of Ocn by up-regulation of vimentin expression. Osteoblasts lacking Atf4 (Atf4(-/-)) were less sensitive than wild-type (WT) cells to the inhibition by TGFβ on alkaline phosphatase activity, Ocn transcription and mineralization. Importantly, the anabolic effect of a monoclonal antibody neutralizing active TGFβ ligands on bone in WT mice was blunted in Atf4(-/-) mice. These data establish that ATF4 is required for TGFβ-related suppression of Ocn transcription and osteoblast differentiation in vitro and in vivo. Interestingly, TGFβ did not directly regulate the expression of ATF4; instead, it enhanced the expression of vimentin, a negative regulator of ATF4, at the post-transcriptional level. Accordingly, knockdown of endogenous vimentin in 2T3 osteoblasts abolished the inhibition of Ocn transcription by TGFβ, confirming an indirect mechanism by which TGFβ acts through vimentin to suppress ATF4-dependent Ocn activation. Furthermore, inhibition of PI3K/Akt/mTOR signaling, but not canonical Smad signaling, downstream of TGFβ, blocked TGFβ-induced synthesis of vimentin, and inhibited ATF4-dependent Ocn transcription in osteoblasts. Thus, our study identifies that TGFβ stimulates vimentin production via PI3K-Akt-mTOR signaling, which leads to suppression of ATF4-dependent Ocn transcription and osteoblast differentiation.
Collapse
Affiliation(s)
- Na Lian
- Vanderbilt Center for Bone Biology, Nashville, Tennessee 37232, USA
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Smith EL, Locke M, Waddington RJ, Sloan AJ. An ex vivo rodent mandible culture model for bone repair. Tissue Eng Part C Methods 2010; 16:1287-96. [PMID: 20218818 DOI: 10.1089/ten.tec.2009.0698] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
To understand fully cellular mechanisms during bone tissue repair and engineering, there is a need to develop reproducible three-dimensional organotypic culture models, whereby cells in their natural extracellular matrix can be manipulated. Limitations in current model systems do not allow for this integrated approach. This study aimed to develop and validate an ex vivo fractured rat mandible model, to investigate specific molecular and cellular processes involved in bone repair. Slices of mandible from 28-day-old male Wistar rats were cultured in Trowel-type cultures at the liquid-gas interface for up to 21 days. Maintenance of cell and tissue architecture and viability was shown within fractured mandible slices during all culture periods. Autoradiographic studies demonstrated that resident cells were actively synthesizing and secreting proteins, and cells of the osteoblast lineage were shown to survive throughout the culture periods. The model was responsive to exogenously added transforming growth factor-β1, with observed increases in cellular migration/proliferation and expression of bone matrix proteins. The ex vivo mandible model developed within this study may represent an ideal system for investigating specific processes of bone repair, as well as a promising alternative to in vivo testing of novel clinical therapeutics.
Collapse
Affiliation(s)
- Emma L Smith
- Mineralised Tissue Group, Tissue Engineering and Reparative Dentistry, School of Dentistry, Cardiff University, Cardiff, UK
| | | | | | | |
Collapse
|
14
|
|
15
|
Thibault MM, Hoemann CD, Buschmann MD. Fibronectin, vitronectin, and collagen I induce chemotaxis and haptotaxis of human and rabbit mesenchymal stem cells in a standardized transmembrane assay. Stem Cells Dev 2007; 16:489-502. [PMID: 17610379 DOI: 10.1089/scd.2006.0100] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The mesenchymal stem cell (MSC) is a critical element in tissue repair and regeneration. Its ability to differentiate into multiple connective tissue cell types and to self-renew has made it a prime candidate in regenerative medicine strategies. Currently, the environmental cues responsible for in situ recruitment and control of MSC distribution at repair sites are not entirely revealed and in particular the role of extracellular matrix (ECM) proteins as motogenic factors has not been studied. Here we have used a standardized transmembrane chemotaxis assay to assess the chemotactic and haptotactic potential of fibronectin, vitronectin, and collagen type 1 on MSCs from both rabbit and human origin. The use of both cell types was based in part on the widespread use of rabbit models for musculoskeletal-related tissue engineering and repair models and their unknown correspondence to human in terms of MSC migration. The optimized assay yielded a greatly increased chemotactic response toward known factors such as platelet-derived growth factor-BB (PDGF)-BB compared to previous studies. Our primary finding was that all three ECM proteins tested (fibronectin, vitronectin, and collagen I) induced significant motogenic activity, in both soluble and insoluble forms, for both rabbit and human MSCs. These results suggest that ECM proteins could play roles as significant as cytokines in the recruitment of pluripotential repair cells wound and tissue repair sites. Furthermore, designed ECM coatings of scaffolds or implants could provide a new tool to control both cell influx and outflux from the scaffold post-implantation. Finally, the similarity of motogenic behavior of both rabbit and human cells suggests the rabbit is a reliable model for assessing MSC recruitment in repair and regeneration strategies.
Collapse
Affiliation(s)
- Marc M Thibault
- Department of Chemical Engineering, Institute of Biomedical Engineering, Ecole Polytechnique, Montreal, Quebec, Canada
| | | | | |
Collapse
|
16
|
Abstract
TGF-beta1 is a ubiquitous growth factor that is implicated in the control of proliferation, migration, differentiation, and survival of many different cell types. It influences such diverse processes as embryogenesis, angiogenesis, inflammation, and wound healing. In skeletal tissue, TGF-beta1 plays a major role in development and maintenance, affecting both cartilage and bone metabolism, the latter being the subject of this review. Because it affects both cells of the osteoblast and osteoclast lineage, TGF-beta1 is one of the most important factors in the bone environment, helping to retain the balance between the dynamic processes of bone resorption and bone formation. Many seemingly contradictory reports have been published on the exact functioning of TGF-beta1 in the bone milieu. This review provides an overall picture of the bone-specific actions of TGF-beta1 and reconciles experimental discrepancies that have been reported for this multifunctional cytokine.
Collapse
Affiliation(s)
- Katrien Janssens
- Department of Medical Genetics, University of Antwerp, Campus Drie Eiken, 2610 Antwerp, Belgium
| | | | | | | |
Collapse
|
17
|
Yano S, Mentaverri R, Kanuparthi D, Bandyopadhyay S, Rivera A, Brown EM, Chattopadhyay N. Functional expression of beta-chemokine receptors in osteoblasts: role of regulated upon activation, normal T cell expressed and secreted (RANTES) in osteoblasts and regulation of its secretion by osteoblasts and osteoclasts. Endocrinology 2005; 146:2324-35. [PMID: 15718270 DOI: 10.1210/en.2005-0065] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The expression and functions of receptors for the beta-chemokine, regulated upon activation, normal T cell expressed, and secreted (RANTES)/CCL5, were investigated in osteoblasts. Both primary osteoblasts and the MC3T3-E1 osteoblast cell line express the RANTES receptors, CCR1, 3, 4, and 5 (by RT-PCR), which encode functional receptors in osteoblasts as shown by [125I]-RANTES binding followed by Scatchard analysis. Expression of all four RANTES receptor mRNAs in osteoblast is in contrast to the reports of expression of CCR1 being the only RANTES receptor expressed by osteoclasts. Exogenous RANTES elicits chemotaxis of osteoblasts and promotes cell survival via phosphatidylinositol 3-kinase with attendant phosphorylation of Akt. Osteoclastic RANTES, obtained from the conditioned medium of receptor activator of nuclear factor-kappa B ligand-differentiated RAW264.7 cells also induces chemotaxis of MC3T3-E1 cells. Incubating the conditioned medium with an anti-RANTES neutralizing antibody attenuated this effect. RANTES secretion from osteoblast is inhibited by differentiation promoting hormones, e.g. 1,25 (OH)2D3 and dexamethasone, whereas macrophage inflammatory protein-1 alpha (but not macrophage inflammatory protein-1 beta) and elevated calcium induce it. Elevated calcium also stimulated RANTES secretion by osteoclasts. Therefore, RANTES is an osteoblast chemoattractant and a survival-promoting molecule whose regulation in osteoblast is varied. Furthermore, RANTES secreted from osteoclasts induces osteoblast chemotaxis. Therefore, expression of RANTES and its receptors in both osteoblasts and osteoclasts could enable this chemokine to act in autocrine/paracrine modes.
Collapse
Affiliation(s)
- Shozo Yano
- Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine and Membrane Biology Program, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
Development of a multicellular organism is accomplished through a series of events that are preprogrammed in the genome. These events encompass cellular proliferation, lineage commitment, lineage progression, lineage expression, cellular inhibition, and regulated apoptosis. The sequential progression of cells through these events results in the formation of the differentiated cells, tissues, and organs that constitute an individual. Although most cells progress through this sequence during development, a few cells leave the developmental continuum to become reserve precursor cells. The reserve precursor cells are involved in the continual maintenance and repair of the tissues and organs throughout the life span of the individual. Until recently it was generally assumed that the precursor cells in postnatal individuals were limited to lineage-committed progenitor cells specific for various tissues. However, studies by Young, his colleagues, and others have demonstrated the presence of two categories of precursor cells that reside within the organs and tissues of postnatal animals. These two categories of precursor cells are lineage-committed (multipotent, tripotent, bipotent, and unipotent) progenitor cells and lineage-uncommitted pluripotent (epiblastic-like, ectodermal, mesodermal, and endodermal) stem cells. These reserve precursor cells provide for the continual maintenance and repair of the organism after birth.
Collapse
Affiliation(s)
- Henry E Young
- Division of Basic Medical Sciences, Mercer University School of Medicine, Macon, Georgia 31207, USA.
| | | |
Collapse
|
19
|
Makhijani NS, Bischoff DS, Yamaguchi DT. Regulation of proliferation and migration in retinoic acid treated C3H10T1/2 cells by TGF-? isoforms. J Cell Physiol 2004; 202:304-13. [PMID: 15389595 DOI: 10.1002/jcp.20128] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
UNLABELLED Proliferation of mesenchymal precursors of osteogenic and chondrogenic cells and migration of these precursors to repair sites are important early steps in bone repair. Transforming growth factor-beta (TGF-beta) has been implicated in the promotion of bone repair and may have a role in these processes. Three isoforms of TGF-beta, TGF-beta1, -beta2, and -beta3, are expressed in fracture healing, however, their specific roles in the repair process are unknown. Differential actions of the TGF-beta isoforms on early events of bone repair were explored in the multipotent mesenchymal precursor cell line, C3H10T1/2. Cell migration was determined using a modified Boyden chamber in response to concentrations of each isoform ranging from 10(-12) to 10(-9) g/ml. All three isoforms demonstrated a dose-dependent chemotactic stimulation of untreated C3H10T1/2 cells. Checkerboard assays indicated that all three isoforms also stimulated chemokinesis of the untreated cells. C3H10T1/2 cells treated with all-trans-retinoic acid (ATRA) and expressing relatively higher levels of osteoblastic gene markers such as alkaline phosphatase and collagen type I, lower levels of chondrocytic gene markers collagen type II and aggrecan, and unchanged levels of the adipose marker adipsin did not demonstrate significant chemokinesis or chemotaxis in response to TGF-beta1 or -beta3 at concentrations ranging from 10(-12) to 10(-9) g/ml. In the ATRA-treated cells, TGF-beta2 stimulated a significant increase in chemotaxis only at the highest concentration tested. Cell proliferation was assessed by mitochondrial dehydrogenase activity and cell counts at TGF-beta concentrations from 10(-11) to 10(-8) g/ml. None of the TGF-beta isoforms stimulated cell proliferation in untreated or ATRA-treated C3H10T1/2 cells. Analysis of TGF-beta receptors (TGF-betaR1, -betaR2, and -betaR3) showed a 1.6- to 2.8-fold decrease in mRNA expression of these receptors in ATRA-treated cells. IN CONCLUSION (1) while all three TGF-beta isoforms stimulate chemotaxis/chemokinesis of multipotent C3H10T1/2 cells, TGF-beta1 and -beta3 do not stimulate chemotaxis in C3H10T1/2 cells treated with ATRA while TGF-beta2 stimulated chemotaxis only at the highest concentration tested. (2) TGF-beta isoforms do not appear to stimulate cell proliferation in C3H10T1/2 cells in either a multipotent state or after ATRA treatment when expressing higher levels of alkaline phosphatase and collagen type I gene markers. (3) Decrease in mRNA expression for TGF-betaR1, -betaR2, and -betaR3 upon ATRA treatment could potentially explain the lack of chemotaxis/chemokinesis in these cells expressing higher levels of alkaline phosphatase and collagen type I.
Collapse
Affiliation(s)
- Nalini S Makhijani
- Research Service, VA Greater Los Angeles Healthcare System, Los Angeles, California 90073, USA
| | | | | |
Collapse
|
20
|
Fong KD, Warren SM, Loboa EG, Henderson JH, Fang TD, Cowan CM, Carter DR, Longaker MT. Mechanical Strain Affects Dura Mater Biological Processes: Implications for Immature Calvarial Healing. Plast Reconstr Surg 2003; 112:1312-27. [PMID: 14504515 DOI: 10.1097/01.prs.0000079860.14734.d6] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The human brain grows rapidly during the first 2 years of life. This growth generates tensile strain in the overlying dura mater and neurocranium. Interestingly, it is largely during this 2-year growth period that infants are able to reossify calvarial defects. This clinical observation is important because it suggests that calvarial healing is most robust during the period of active intracranial volume expansion. With a rat model, it was previously demonstrated that immature dura mater proliferates more rapidly and produces more osteogenic cytokines and markers of osteoblast differentiation than does mature dura mater. It was therefore hypothesized that mechanical strain generated by the growing brain induces immature dura mater proliferation and increases osteogenic cytokine expression necessary for growth and healing of the overlying calvaria. Human and rat (n = 40) intracranial volume expansion was calculated as a function of age. These calculations demonstrated that 83 percent of human intracranial volume expansion is complete by 2 years of age and 90 percent of Sprague-Dawley rat intracranial volume expansion is achieved by 2 months of age. Next, the maximal daily circumferential tensile strains that could be generated in immature rat dura mater were calculated, and the corresponding daily biaxial tensile strains in the dura mater during this 2-month period were determined. With the use of a three-parameter monomolecular growth curve, it was calculated that rat dura mater experiences daily equibiaxial strains of at most 9.7 percent and 0.1 percent at birth (day 0) and 60 days of age, respectively. Because it was noted that immature dural cells may experience tensile strains as high as approximately 10 percent, neonatal rat dural cells were subjected to 10 percent equibiaxial strain in vitro, and dural cell proliferation and gene expression profiles were analyzed. When exposed to mechanical strain, immature dural cells rapidly proliferated (5.8-fold increase in proliferating cell nuclear antigen expression at 24 hours). Moreover, mechanical strain induced marked up-regulation of dural cell osteogenic cytokine production; transforming growth factor-beta1 messenger RNA levels increased 3.4-fold at 3 hours and fibroblast growth factor-2 protein levels increased 4.5-fold at 24 hours and 5.6-fold at 48 hours. Finally, mechanical strain increased dural cell expression of markers of osteoblast differentiation (2.8-fold increase in osteopontin levels at 3 hours). These findings suggest that mechanical strain can induce changes in dura mater biological processes and gene expression that may play important roles in coordinating the growth and healing of the neonatal calvaria.
Collapse
Affiliation(s)
- Kenton D Fong
- Department of Surgery, School of Medicine, Stanford University, CA 94305, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Mathy JA, Lenton K, Nacamuli RP, Fong KD, Song HM, Fang TD, Yang GP, Longaker MT. FGF-2 stimulation affects calvarial osteoblast biology: quantitative analysis of nine genes important for cranial suture biology by real-time reverse transcription polymerase chain reaction. Plast Reconstr Surg 2003; 112:528-39. [PMID: 12900611 DOI: 10.1097/01.prs.0000070729.05978.bb] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Appropriately timed closure of the cranial sutures is a critical factor in normal postnatal morphogenesis of the cranial vault. Suture patency is necessary to permit rapid neonatal expansion of the cerebral hemispheres, and later ossification is important for bony protection of the cerebrum. Premature suture ossification (craniosynostosis) leads to myriad adverse functional and developmental consequences. Several murine studies have implicated dura-derived fibroblast growth factor-2 (FGF-2) paracrine signaling as a critical factor promoting physiologic posterior frontal suture fusion. In this study, the authors used real-time reverse transcription polymerase chain reaction (RT-PCR) to study an in vitro system that models the in vivo stimulation of suture calvarial osteoblasts by dura-derived FGF-2. The authors advocate real-time RT-PCR as a powerful and rapid technique that offers advantages in the highly sensitive, specific, and reproducible analyses of nine genes known to be important in cranial suture biology. The genes studied were growth factors [FGF-2, transforming growth factor (TGF)-beta 1, TGF-beta 2, and TGF-beta 3], growth factor receptors (FGF-R1, FGF-R2, TGF-beta RI, and TGF-beta RII), and a marker of osteoblast differentiation (Co1-I alpha I). These analyses provide a "snapshot" of several important genes involved in suture fusion that is more inclusive and quantitative than that which has been previously reported.
Collapse
Affiliation(s)
- Jonathan A Mathy
- Department of Surgery, Stanford University School of Medicine, CA 94305-5148, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Blumenfeld I, Srouji S, Peled M, Livne E. Metalloproteinases (MMPs -2, -3) are involved in TGF-β and IGF-1-induced bone defect healing in 20-month-old female rats. Arch Gerontol Geriatr 2002; 35:59-69. [PMID: 14764345 DOI: 10.1016/s0167-4943(02)00004-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2001] [Revised: 12/06/2001] [Accepted: 12/18/2001] [Indexed: 11/29/2022]
Abstract
Matrix metalloproteinases are important in the physiological and pathological degradation of extracellular matrix including that of bone and cartilage. The process of bone defect healing is associated with formation of cartilage callus and cancelous bone. With maturation and aging, the response of skeletal tissues to injury is limited. The ability of growth factors to enhance bone defect healing in aged rats was studied. Partial bone defects were induced in femurs of aged rats. A single dose of IGF-1, TGF-beta+IGF-1 or saline was inserted in the defect and bones were examined after 2 and 4 weeks. Morphology revealed that after 2 weeks of treatment with TGF-beta the defects were filled with mesenchyme-like tissue and delicate bone trabeculae. Positive staining for metalloproteinase-2 (MMP-2) was shown at the sites of new bone formation. In defects treated with IGF-1 or TGF-beta+IGF-1 nodules of cartilage and fine bone trabeculae along with positive staining for both MMP-2 and MMP-3 were demonstrated in the healing defects. After 4 weeks radiology revealed mineralization in defects treated with TGF-beta and less pronounced mineralization after treatment with IGF-1, or with TGF-beta+IGF-1, whereas only partial healing of the defects was observed in control specimens. MMP-2 and MMP-3 were detected at sites of new bone formation after treatment with TGF-beta, IGF-1, and TGF-beta+IGF-1. It is concluded that TGF-beta and IGF-1 induced bone defect healing in aged rats. TGF-beta induced bone formation while IGF-1 induced cartilage and than bone formation via endochondral ossification. The localization of MMP-2 and MMP-3 in the healing defects reflected the synthesis of bone or cartilage matrices in the defect, reflecting the involvement of MMPs in the process of bone formation and endochondral ossification. The ability to induce bone defect healing in aging is of great clinical importance and understanding the involvement of MMPs in this process can contribute to future treatment with growth factors to enhance bone defect healing in 20-month-old female rats.
Collapse
Affiliation(s)
- I Blumenfeld
- Maxillofacial Surgery Department, Rambam Medical Center, Haifa, Israel
| | | | | | | |
Collapse
|
23
|
Lai CF, Cheng SL. Signal transductions induced by bone morphogenetic protein-2 and transforming growth factor-beta in normal human osteoblastic cells. J Biol Chem 2002; 277:15514-22. [PMID: 11854297 DOI: 10.1074/jbc.m200794200] [Citation(s) in RCA: 174] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Transforming growth factor beta (TGF-beta) activates Ras/MAPK signaling in many cell types. Because TGF-beta and BMP-2 exert similar effects, we examined if this signaling is stimulated by both factors and analyzed the relationship between this signaling and the Smads in osteoblasts. BMP-2 and TGF-beta stimulated Ras, MAPK, and AP-1 activities. The DNA binding activities of c-Fos, FosB/Delta FosB, Fra-1, Fra-2, and JunB were up-regulated whereas JunD activity was decreased. c-Fos, FosB/Delta FosB, and JunB were associated with Smad4. The stimulation of AP-1 by BMP-2 and TGF-beta was dependent on Smad signaling, and anti-Smad4 antibody interfered with AP-1 activity. Thus, BMP-2 and TGF-beta activate both Ras/MAPK/AP-1 and Smad signaling in osteoblasts with Smads modulating AP-1 activity. To determine the roles of MAPK in BMP-2 and TGF-beta function, we analyzed the effect of ERK and p38 inhibitors on the regulation of bone matrix protein expression and JunB and JunD levels by these two factors. ERK and p38 mediated TGF-beta suppression of osteocalcin and JunD as well as stimulation of JunB. p38 was essential in BMP-2 up-regulation of type I collagen, fibronectin, osteopontin, osteocalcin, and alkaline phosphatase activity whereas ERK mediated BMP-2 stimulation of fibronectin and osteopontin. Thus, ERK and p38 differentially mediate TGF-beta and BMP-2 function in osteoblasts.
Collapse
Affiliation(s)
- Chung-Fang Lai
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | |
Collapse
|
24
|
Blumenfeld I, Srouji S, Lanir Y, Laufer D, Livne E. Enhancement of bone defect healing in old rats by TGF-beta and IGF-1. Exp Gerontol 2002; 37:553-65. [PMID: 11830358 DOI: 10.1016/s0531-5565(01)00215-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Bone defects are often created in order to repair bone pathologies. In the aging population, the healing of such defects is very limited. Bone healing in aging depends on the availability of various hormone and growth factors. The ability of growth factors to enhance bone formation in femoral defects in old rats was tested. Bone defects were induced in femurs of old rats. A single dose of transforming growth factor-beta (TGF-beta), IGF-1, TGF-beta+IGF-1 or saline was inserted in the defect and bones were tested after 2 and 4 weeks. Radiology revealed that mineralization appeared in the 2 weeks group in defects treated with TGF-beta and in defects treated with TGF-beta, TGF-beta+IGF-1 in the 4 weeks groups. Computerized tomography (CT) coronal and axial images revealed that 4 weeks after treatment with TGF-beta+IGF-1, a complete bone bridge was observed. Morphology revealed that these defects were filled with trabecular bone. A less pronounced bone healing was observed after TGF-beta or IGF-1, while control specimens revealed partial healing of the bone defect. Biomechanical tests indicated that treatment with TGF-beta, IGF-1 or TGF-beta+IGF-1 resulted in a significant increase of bone bending rigidity compared to control in the 4 weeks group and that TGF-beta+IGF-1 was the most inductive in this respect. The ability to induce bone healing in aging by TGF-beta+IGF-1 is of a great clinical importance for restoration of bone strength and biomechanical properties of bone defects in aging.
Collapse
Affiliation(s)
- I Blumenfeld
- Department of Maxillofacial Surgery, Rambam Medical Center, Haifa, Israel
| | | | | | | | | |
Collapse
|
25
|
Spector JA, Greenwald JA, Warren SM, Bouletreau PJ, Crisera FE, Mehrara BJ, Longaker MT. Co-culture of osteoblasts with immature dural cells causes an increased rate and degree of osteoblast differentiation. Plast Reconstr Surg 2002; 109:631-42; discussion 643-4. [PMID: 11818846 DOI: 10.1097/00006534-200202000-00033] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
For decades surgeons have exploited the ability of infants to reossify large calvarial defects. To demonstrate the role of dura mater-osteoblast communication during the process of calvarial reossification, the authors used a novel in vitro system that recapitulates the in vivo anatomic relationship of these cell populations. Primary cultures of osteoblast cells from 2-day-old Sprague-Dawley rat pups were grown on six-well plates, and cultures of immature, non-suture-associated dura mater cells from 6-day-old Sprague-Dawley rat pups were grown on Transwell inserts. When the osteoblast and dura mater cell cultures reached confluence, they were combined. This Transwell co-culture system permitted the two cell populations to grow together in the same well, but it prevented direct cell-to-cell contact. Therefore, the authors were able to determine, for the first time, whether paracrine signaling from immature, non-suture-associated dura mater could influence the biologic activity of osteoblasts. Osteoblasts co-cultured with dural cells proliferated significantly faster after 2 days (2.1 x 10(5) +/- 2.4 x 10(4) versus 1.4 x 10(5) +/- 2.2 x 10(4), p < or = 0.05) and 4 days (3.1 x 10(5) +/- 5 x 10(4) versus 2.2 x 10(5) +/- 4.0 x 10(4), p < or = 0.01) than did osteoblasts cultured alone. After 20 days, co-cultured osteoblasts expressed greater amounts of mRNA for several markers of osteoblast differentiation, including collagen I alpha I (4-fold), alkaline phosphatase (2.5-fold), osteopontin (3-fold), and osteocalcin (4-fold), than did osteoblasts cultured alone. After 30 days, co-cultured osteoblasts produced bone nodules that were significantly greater both in number (324 +/- 29 nodules versus 252 +/- 29 nodules per well, p , < or = 0.04) and total area of nodules (65 +/- 11 mm(2) versus 24 +/- 1.6 mm(2), p < or = 0.003) than osteoblasts cultured alone. To begin to understand how dural cells effect changes in osteoblast gene expression, the authors compared the expression of candidate genes, transforming growth factor beta 1 and fibroblast growth factor 2, in dural cells and osteoblasts before and after 5 days of culture. Interestingly, the dura mater produced marked amounts of these osteogenic cytokines compared with osteoblasts.The described co-culture system demonstrated that co-cultured osteoblasts proliferated more rapidly and experienced an increased rate and degree of cellular maturation than did osteoblasts cultured alone. The authors hypothesize that this effect was due to paracrine signaling (e.g., transforming growth factor beta 1 and fibroblast growth factor 2) from the dura mater, and they are investigating those mechanisms in ongoing experiments. Collectively these data verify that immature, non-suture-associated dura mater can influence the biologic activity of osteoblasts. Moreover, the production of cytokines derived from the dura mater (e.g., transforming growth factor beta 1 and fibroblast growth factor 2), and they may begin to explain why immature animals and infants with intact dura mater can reossify large calvarial defects.
Collapse
Affiliation(s)
- Jason A Spector
- Department of Surgery, Stanford University School of Medicine, CA 94305-5148, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Spector JA, Greenwald JA, Warren SM, Bouletreau PJ, Detch RC, Fagenholz PJ, Crisera FE, Longaker MT. Dura mater biology: autocrine and paracrine effects of fibroblast growth factor 2. Plast Reconstr Surg 2002; 109:645-54. [PMID: 11818848 DOI: 10.1097/00006534-200202000-00035] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The dura mater, the outermost layer of the meninges, is thought to be essential for calvarial morphogenesis, postnatal suture fusion, and osseous repair of calvarial defects. Despite numerous studies illustrating the fundamental role of the dura mater, there is little information about the autocrine and paracrine mechanisms regulating dural cell biology during calvarial ossification. Previous work conducted in the authors' laboratory demonstrated that non-suture-associated dural cells from 6-day-old rat pups expressed high levels of fibroblast growth factor 2 (FGF-2), whereas dural cells from 60-day-old adult rats expressed very little FGF-2. Because young mammals can successfully heal large calvarial defects, the authors sought to investigate the autocrine and/or paracrine effects of FGF-2 on the proliferation, gene expression, and alkaline phosphatase production of dural cells. Cultures of non-suture-associated dural cells were established from 6-day-old Sprague-Dawley rat pups and then stimulated with recombinant human FGF-2 (rhFGF-2; 10 ng/ml). Dural cells stimulated with rhFGF-2 proliferated significantly faster than untreated dural cells at 24 hours (2.1 x 10(5) +/- 3.2 x 10(4) versus 1.1 x 10(5) +/- 1.8 x 10(4), p < or = 0.001) and 48 hours (2.3 x 10(5) +/- 4.2 x 10(4) versus 1.2 x 10(5) +/- 1.3 x 10(4), p < or = 0.001). Moreover, dural cells stimulated with rhFGF-2 expressed 7-fold more proliferating cell nuclear antigen than did control cultures. Treatment with rhFGF-2 increased dural cell expression of genes important for skeletal repair: FGF-2 (7-fold), transforming growth factor beta 1 (3-fold), transforming growth factor beta 3 (4-fold), and type I collagen (4-fold). Furthermore, rhFGF-2 increased dural cell expression of osteopontin (2-fold), a "late" marker of osteoblastic differentiation. Interestingly, dural cell alkaline phosphatase activity, an "earlier" marker of osteoblast differentiation, was significantly decreased by treatment with rhFGF-2 compared with control cultures at 24 hours (0.005 +/- 0.001 versus 0.01 +/- 0.003, p < or = 0.01) and 48 hours (0.004 +/- 0.0009 versus 0.01 +/- 0.0009). Together these data provide insight into the autocrine and paracrine effects of FGF-2 on the biology of the dura mater.
Collapse
Affiliation(s)
- Jason A Spector
- Department of Surgery, New York University School of Medicine, NY, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Karsdal MA, Fjording MS, Foged NT, Delaissé JM, Lochter A. Transforming growth factor-beta-induced osteoblast elongation regulates osteoclastic bone resorption through a p38 mitogen-activated protein kinase- and matrix metalloproteinase-dependent pathway. J Biol Chem 2001; 276:39350-8. [PMID: 11477097 DOI: 10.1074/jbc.m008738200] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transforming growth factor-beta (TGF-beta) is a powerful modulator of bone metabolism, and both its anabolic and catabolic effects on bone have been described. Here we have tested the hypothesis that TGF-beta-induced changes in osteoblast shape promote bone resorption by increasing the surface area of bone that is accessible to osteoclasts. The addition of TGF-beta1 to MC3T3-E1 cells resulted in cytoskeletal reorganization, augmented expression of focal adhesion kinase, and cell elongation, accompanied by an increase in the area of cell-free substratum. TGF-beta1 also triggered activation of Erk1/2 and p38 mitogen-activated protein (MAP) kinase. The p38 MAP kinase inhibitor PD169316, but not an inhibitor of the Erk1/2 pathway, abrogated the effect of TGF-beta1 on cell shape. The matrix metalloproteinase inhibitor GM6001 also interfered with osteoblast elongation. Treatment of MC3T3-E1 cells seeded at confluence onto bone slices to mimic a bone lining cell layer with TGF-beta1 also induced cell elongation and increased pit formation by subsequently added osteoclasts. These effects were again blocked by PD169316 and GM6001. We propose that this novel pathway regulating osteoblast morphology plays an important role in the catabolic effects of TGF-beta on bone metabolism.
Collapse
Affiliation(s)
- M A Karsdal
- OSTEOPRO A/S, Herlev Hovedgade 207, 2730 Herlev, Denmark.
| | | | | | | | | |
Collapse
|
28
|
Lai CF, Feng X, Nishimura R, Teitelbaum SL, Avioli LV, Ross FP, Cheng SL. Transforming growth factor-beta up-regulates the beta 5 integrin subunit expression via Sp1 and Smad signaling. J Biol Chem 2000; 275:36400-6. [PMID: 10964912 DOI: 10.1074/jbc.m002131200] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Integrin-mediated cell-matrix interactions play important roles in regulating cell function. Since transforming growth factor-beta (TGF-beta) modulates many osteoblast activities, we hypothesized that the growth factor acts in part by modulating integrin expression. TGF-beta increased cell adhesion to vitronectin and up-regulated the surface level of alpha(v)beta(5) via increasing beta(5) protein synthesis by a transcriptional mechanism. Promoter activity analysis demonstrated that a TGF-beta-responsive element resides between nucleotides -63 and -44. Electrophoretic mobility shift assay and immunoprecipitation/Western studies indicated that the nuclear complex formed using the -66/-42 oligonucleotide contained both Sp1/Sp3 and Smad proteins. Since nuclear Sp1/Sp3 levels were not altered, whereas Smad levels were increased by TGF-beta, we investigated the roles of Smad proteins in the up-regulation of beta(5) gene activation. Co-transfection of cells with beta(5) promoter reporter construct and expression vectors for Smad3, Smad4, and Sp1 increased the stimulatory effect of TGF-beta. Furthermore, expression of dominant negative Smad3 or Smad4 in cells decreased or abolished the stimulation of beta(5) promoter activity by TGF-beta. Smad4 mutant also inhibited the up-regulation of surface beta(5) level by TGF-beta. Thus, TGF-beta increases expression of the integrin beta(5) gene by mechanisms involving Sp1/Sp3 and Smad transcription factors.
Collapse
Affiliation(s)
- C F Lai
- Division of Bone and Mineral Diseases, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Beck LS, Wong RL, DeGuzman L, Lee WP, Ongpipattanakul B, Nguyen TH. Combination of bone marrow and TGF-beta1 augment the healing of critical-sized bone defects. J Pharm Sci 1998; 87:1379-86. [PMID: 9811494 DOI: 10.1021/js9800883] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A 1.5 cm segmental defect in the radius of rabbits was used to compare healing at sites administered TGF-beta, with or without autologous bone marrow, to autogenous cortical bone graft. The carrier for TGF-beta consisted of tricalcium phosphate (TCP) granules and hetastarch. The efficacy of TGF-beta formulations and bone marrow (BM) was compared to autogenous bone, carrier control, and untreated defect sites. Bone measurements taken at necropsy included the anterior-posterior (AP) diameter and medial to lateral (LAT) diameter of the defect; the AP and LAT diameters of both radii measured 1 cm proximal to the distal epiphysis, and the AP and LAT diameters of the mid-shaft of the femora. The bones from each group were subdivided for either histological evaluation or for mechanical testing. Strength (maximum torque), energy, angle of rotation and stiffness were determined for both the treated and contralateral radii. Results of the radiographic, necropsy, and mechanical data for defects administered 1.0 microgram of TGF-beta1 + BM or autogenous cortical bone were similar and indicated superior healing compared to defects left blank or administered the carrier control with or without bone marrow. Defects administered 1.0 microgram of TGF-beta1 + BM or autogenous cortical bone had high mechanical strength relative to the control groups and were characterized histologically as healed primarily with lamellar bone. The results from the defects left blank or administered carrier control were similar and generally characterized by poor healing or nonunion. This study demonstrated substantial equality of healing between 1.0 microgram of TGF-beta1 + BM and autograft indicating that this formulation could function as a substitute for autologous grafts.
Collapse
Affiliation(s)
- L S Beck
- Blue Ridge Pharmaceuticals, Ketchum, Idaho, USA
| | | | | | | | | | | |
Collapse
|
30
|
Abstract
Cell migration is a key event in tissue repair and remodeling. PDGF, a growth factor for multiple target cells, has been shown to be a potent chemoattractant for a variety of mesenchymal cells. However, it is likely that PDGF-mediated cell migration will be influenced by other cytokines that can be produced during physiological and pathological conditions. Leukemia inhibitory factor (LIF), a cytokine that is produced by a variety of cells including osteoblasts, may promote bone formation, but the mechanism is not known. Since osteoblasts are responsible for laying down new matrix during skeletal remodeling, in this report we have examined whether PDGF or LIF influences the migration of osteoblasts. Among several cytokines and growth factors tested, only PDGF was able to elicit a major chemotactic (directed migration) and a minor chemokinetic (random-migration) response in osteoblasts. LIF alone was not active in either chemotaxis or chemokinesis but when included with PDGF it caused a reduction in chemokinesis. Further, pretreatment of osteoblasts with LIF caused an increase in PDGF-driven chemotaxis. Finally, osteoblasts exposed briefly to LIF synthesized a higher level of non-collagenous proteins upon further treatment with PDGF. These observations are consistent with a role for LIF in promoting bone formation, both by influencing directional migration of osteoblasts and in laying down new matrix.
Collapse
Affiliation(s)
- S Chandrasekhar
- Endocrine Division, Lilly Research Laboratories, Indianapolis, Indiana 46285, USA
| | | |
Collapse
|
31
|
Mellibovsky L, Diez A, Serrano S, Aubia J, Pérez-Vila E, Mariñoso ML, Nogués X, Recker RR. Bone remodeling alterations in myelodysplastic syndrome. Bone 1996; 19:401-5. [PMID: 8894147 DOI: 10.1016/s8756-3282(96)00210-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
There is a close relationship between hematopoietic bone marrow and bone cells. Thus, the profound derangement of hematopoiesis in myelodysplastic syndromes (MDS) might be expected to affect bone cell function. We studied the dynamic histomorphometric changes in bone in 22 MDS patients to examine this relationship and analyze the influence of hematological disease on bone remodeling. Bone-regulating hormones and histomorphometry of undecalcified transiliac bone biopsies, after double tetracycline labeling, were studied. Serum calcium, phosphorus, creatinine, alkaline phophatase, osteocalcin, iPTH, 25(OH)D3, 1,25(OH)2D3, hydroxyprolinuria, and calcium/creatinine ratio in urine were normal compared with controls. Histomorphometry showed a significant decrease in osteoblast surface (Ob.S/BS) (0.30 +/- 0.40 vs. 0.8 +/- 1.1, p = 0.031), wall thickness (W.Th), (22.03 +/- 5.5 vs. 31.8 +/- 5.8, p < 0.005), osteoclast number (N.Oc/T.Ar) (0.004 +/- 0.01 vs. 0.017 +/- 0.01, p = 0.03), mineral apposition rate (MAR) (0.16 +/- 0.15 vs. 0.53 +/- 0.19, p < 0.005), bone formation rate, surface referent (BFR/BS) (0.004 +/- 0.10 vs. 0.016 +/- 0.016, p = 0.009), and activation frequency (Ac.f) (0.06 +/- 0.07 vs. 0.21 +/- 0.23, p = 0.008). An increase in mineralization lag time (MLT) (119.2 +/- 78.6 vs. 29.6 +/- 77, p < 0.005), (mean +/- SD, unpaired Student t-test) was observed. Bone volume (BV/ TV), eroded surfaces (ES/BS), and osteoid thickness (O.Th) remained unchanged. This picture of adynamic bone with decreased mineral apposition rate and markedly decreased osteoclast number is a characteristic finding in MDS patients. Thus, bone histomorphometric finding in MDS patients show the relationships and interactions between hematopoietic and bone cells.
Collapse
Affiliation(s)
- L Mellibovsky
- Department of Internal Medicine, Hospital Universitari del Mar, Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
32
|
LInd M, Eriksen EF, Bünger C. Bone morphogenetic protein-2 but not bone morphogenetic protein-4 and -6 stimulates chemotactic migration of human osteoblasts, human marrow osteoblasts, and U2-OS cells. Bone 1996; 18:53-7. [PMID: 8717537 DOI: 10.1016/8756-3282(95)00423-8] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Bone morphogenetic proteins (BMPs) have important functions for the differentiation of bone cells, but the exact role for bone remodeling and bone healing still needs to be defined. Migration of bone forming cells is an important physiological event both during bone healing and bone remodeling. The chemotatic properties of the bone morphogenetic protein family of growth factors have not been investigated. In this study the chemotactic effects of the bone morphogenetic proteins BMP-2, -4, and -6 have been quantitated toward human osteoblasts, human marrow stromal osteoblasts, and U2-OS human osteosarcoma cells. BMP-2 stimulated the migration of human stromal osteoblasts, human osteoblasts, and U2-OS cells with bell-shaped response curves in a dose-dependent manner with a 300% increase in cell migration at 1.0 ng/mL for human stromal osteoblasts and a 170-180% increase for human osteoblasts and U2-OS cells. At higher concentrations, migration decreased to background levels. BMP-4 and -6 did not show any effect on cellular migration. This study shows that BMP-2 can stimulate in vitro migration of human osteoblasts and human osteosarcoma cells. BMP-2 might play a role in the chemotactic recruitment of especially undifferentiated osteoblasts during bone remodeling and bone healing.
Collapse
Affiliation(s)
- M LInd
- Department of Orthopaedic Surgery, University Hospital of Aarhus, Denmark
| | | | | |
Collapse
|
33
|
Lind M, Deleuran B, Thestrup-Pedersen K, Søballe K, Eriksen EF, Bünger C. Chemotaxis of human osteoblasts. Effects of osteotropic growth factors. APMIS 1995. [PMID: 7748538 DOI: 10.1111/j.1699-0463.1995.tb01089.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The in vitro chemotactic response of human osteoblasts was investigated towards the following growth factors: TGF-beta, PDGFs, FGFs and IGFs. Human osteoblasts grown from trabecular bone after enzymatic digestion were studied. TGF-beta stimulated the migration of human osteoblasts in a dose-dependent manner with a four-fold increase in migrated cells at 100 pg/ml, which was the optimum concentration. PDGF-BB also stimulated migration four-fold in a dose-dependent manner with a maximum response at 10 ng/ml. PDGF-AA, IGF-I and IGF-II stimulated migration two-fold at 100 ng/ml. The results show that TGF-beta and PDGF-BB are important regulators of human osteoblast migration, but other growth factors IGF-I, IGF-II and PDGF-AA may also stimulate osteoblast migration. Our results additionally suggest that TGF-beta and PDGF-BB may participate in the recruitment of osteoblasts during bone remodeling since both TGF-beta and PDGF-BB are found in bone matrix and could be released during osteoclastic bone resorption. They furthermore support a possible use of TGF-beta and PDGF-BB in growth factor-induced osteogenesis.
Collapse
Affiliation(s)
- M Lind
- Department of Orthopedic Surgery, University Hospital of Aarhus, Denmark
| | | | | | | | | | | |
Collapse
|
34
|
García AJ, Ducheyne P. Numerical analysis of extracellular fluid flow and chemical species transport around and within porous bioactive glass. JOURNAL OF BIOMEDICAL MATERIALS RESEARCH 1994; 28:947-60. [PMID: 7983093 DOI: 10.1002/jbm.820280814] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Modeling of the physical phenomena present at the biomaterial-tissue interface provides a valuable tool for examining the underlying mechanisms which influence the overall behavior of the implant-host system. Based on histological data from a previous implantation study (E. Schepers, M. De Clercq, P. Ducheyne, and R. Kempeneers, "Bioactive glass particulate materials as a filler for bone lesions," J. Oral Rehab.; 18, 439-452, 1991, Ref. 1) which documented the differentiation of mesenchymal cells to cells expressing the osteoblastic phenotype in porous bioactive glass, a finite element momentum and mass transport model was constructed. In this analysis, the extracellular compositional variations and fluid flow conditions around and within porous bioactive glass granules were determined. Numerical simulations demonstrated that the interstitial fluid flow around these granules (300-360 microns) is viscosity dominated (low Reynolds number flow) and that the fluid inside the granules remains stagnant. This velocity field results in shear stresses proportional to the velocity gradient at the granule-fluid interface outside the particles and no shear stresses inside the particles. A parametric study on the effect of interstitial fluid flow on chemical species (Na+, Ca+2, HPO(4)-2) transport outside the granules revealed three domains. At low velocities (0-0.1 micron/s), the transport of species is diffusion controlled. At intermediate velocities (1.0-10 microns/s), diffusion and convection contribute to the species transport. The concentration of chemical species is nearly uniform at high velocities (100-800 microns/s). For all three cases, the transport of chemical species within the granules is diffusion controlled. The differences in transport mechanisms and interstitial fluid flow conditions lead to variations in concentrations, reaction rates, and shear stresses between the inside and the outside of the glass granules. These differences may influence cellular migration, attachment, differentiation, and the overall response to these bioactive materials.
Collapse
Affiliation(s)
- A J García
- Department of Bioengineering, University of Pennsylvania, Philadelphia 19104
| | | |
Collapse
|
35
|
Richardson L, Zioncheck TF, Amento EP, Deguzman L, Lee WP, Xu Y, Beck LS. Characterization of radioiodinated recombinant human TGF-beta 1 binding to bone matrix within rabbit skull defects. J Bone Miner Res 1993; 8:1407-14. [PMID: 8266832 DOI: 10.1002/jbmr.5650081115] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Bone healing is regulated in part by the local production of TGF-beta 1 and other growth factors produced by cells at the site of injury. The single application of recombinant human TGF-beta 1 (rhTGF-beta 1) to calvarial defects in rabbits induces an accelerated recruitment and proliferation of osteoblasts within 3 days. This ultimately results in the formation of new bone and the complete closure of the defect within 28 days. The persistence and localization of [125I]rhTGF-beta 1 within an osseous defect was investigated after applying a single dose of [125I]rhTGF-beta 1 formulated in a 3% methylcellulose vehicle. Normal bone encompassing the defect site, the periosteum, and the gel film covering the dura were harvested at 0, 4, 8, and 24 h and 3, 7, and 16 days after [125I]rhTGF-beta 1 application. The defect site-associated radioactivity was quantitated, visualized by autoradiography, and characterized by TCA precipitation and SDS-PAGE. Radioactivity was observed in autoradiographs of gross specimens, histologic sections of the bone matrix, and periosteal tissue surrounding the defect. There was a time-dependent decrease in TCA-precipitable radioactivity; however, radioactivity was still associated with the bone matrix 16 days after application of [125I]rhTGF-beta 1. SDS-PAGE and autoradiography of the radioactivity in homogenized bone and periosteal samples revealed a 25 kD band, suggesting that the radioactivity remaining at the defect site represented intact [125I]rhTGF-beta 1.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- L Richardson
- Department of Safety Evaluation, Genentech, Inc., South San Francisco, California
| | | | | | | | | | | | | |
Collapse
|
36
|
Beck LS, Amento EP, Xu Y, Deguzman L, Lee WP, Nguyen T, Gillett NA. TGF-beta 1 induces bone closure of skull defects: temporal dynamics of bone formation in defects exposed to rhTGF-beta 1. J Bone Miner Res 1993; 8:753-61. [PMID: 8328317 DOI: 10.1002/jbmr.5650080614] [Citation(s) in RCA: 135] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The temporal dynamics of bone repair in a skull defect in rabbits was examined to characterize the in vivo cellular events occurring following a single local application of recombinant human TGF-beta 1 (rhTGF-beta 1). Rabbits received vehicle or 0.4, 1, 2, or 5 micrograms rhTGF-beta 1 applied to 12 mm defects at the time of surgery. The defect sites were subsequently evaluated by radiography and qualitative and quantitative histology at time points ranging from 1 to 180 days. Based on radiographic assessment, the defect area decreased rapidly in a dose-dependent manner through 35 days after surgery in the rhTGF-beta 1-treated groups. Minimal closure occurred in sites administered vehicle control at all time points examined. Sites treated with rhTGF-beta 1 were characterized histologically by an increase in parameters of active bone formation through 49 days, including percentage osteoid surface, percentage osteoblast/total surface, and an increase in the trabecular bone volume. Bone resorption parameters were increased at 16 and 49 days with histologic evidence of remodeling from woven to lamellar bone. By 70 days, no differences were observed among the groups for parameters of either bone formation or resorption. Bone formation rate was not altered with rhTGF-beta 1 treatment at any time point. These results indicate that exogenously applied rhTGF-beta 1 stimulated the recruitment and proliferation of osteoblasts at the defect site, resulting in a rapid deposition of bony matrix, with normal remodeling processes occurring thereafter. This study supports the hypothesis that TGF-beta 1 is a potent osteoinductive growth factor in vivo and may have potential application as a therapeutic aid to nonhealing bony defects.
Collapse
Affiliation(s)
- L S Beck
- Department of Endocrinology, Genentech Inc., South San Francisco, California
| | | | | | | | | | | | | |
Collapse
|
37
|
Panagakos FS. Insulin-like growth factors-I and -II stimulate chemotaxis of osteoblasts isolated from fetal rat calvaria. Biochimie 1993; 75:991-4. [PMID: 8123707 DOI: 10.1016/0300-9084(93)90150-q] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Repair and regeneration of damaged bone is believed to be regulated in part by growth factors stored in the bone matrix. These growth factors are synthesized and secreted by osteoblasts and are incorporated into the developing bone. This pool of stored growth factors is then released into the immediate area following resorption of the matrix. One of the initial steps in bone repair is the recruitment of osteoblasts to the repair site. Growth factors, such as TGF-beta and PDGF, which are present in bone matrix, have been shown to be chemotactic for osteoblasts. In this study, primary cultures of osteoblasts isolated from fetal rat calvaria were examined for chemotaxis in response to IGF-I and IGF-II. IGF-I stimulated a dose-dependent increase in osteoblast chemotaxis, while IGF-II stimulated chemotaxis maximally at the lowest concentration studied (0.1 ng/ml), and had no effect at the highest concentration studied (100 ng/ml). IGF-I and -II had no effect on osteoblast proliferation at any of the concentrations examined. These results indicate that IGFs may be playing an important role in the early stages of bone repair by stimulating osteoblast chemotaxis to the repair site.
Collapse
Affiliation(s)
- F S Panagakos
- Department of Prosthodontics and Biomaterials, New Jersey Dental School, University of Medicine and Dentistry of New Jersey, Newark 07103
| |
Collapse
|
38
|
Dahlin C, Linde A, Röckert H. Stimulation of early bone formation by the combination of an osteopromotive membrane technique and hyperbaric oxygen. SCANDINAVIAN JOURNAL OF PLASTIC AND RECONSTRUCTIVE SURGERY AND HAND SURGERY 1993; 27:103-8. [PMID: 8351489 DOI: 10.3109/02844319309079791] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Large bone defects often heal incompletely as a result of ingrowth of connective tissue. By using a mechanical hindrance, a porous expanded polytetrafluoroethylene (e-PTFE) membrane, it is possible to prevent fibroblasts and other soft connective tissue cells from entering the defect, thereby allowing osteogenesis to occur unhindered. As evidenced in several investigations, this osteopromotive membrane technique causes a strongly improved bone regeneration of well defined osseous lesions. Hyperbaric oxygen treatment has also been shown to accelerate bone healing. In this study the value of combining the two techniques was investigated. Through-and-through bone defects, 5 mm in diameter, were produced unilaterally in the angular region of the mandibles of adult rats (n = 60); the defects in half the number of animals were covered lingually and buccally with membranes. The animals were then divided into four groups: treatment with membrane alone, treatment with hyperbaric oxygen alone, combined treatment, and no treatment. Histological examination of the defects after 14 days showed that the combination of techniques had resulted in significant improvement in bone healing, compared with hyperbaric oxygen or the membrane technique alone. Synergistic effects can thus be achieved by the use of membranes and stimulatory factors for bone regeneration.
Collapse
Affiliation(s)
- C Dahlin
- Department of Oral Biochemistry, University of Göteborg, Sweden
| | | | | |
Collapse
|
39
|
Dieudonné SC, Foo P, van Zoelen EJ, Burger EH. Inhibiting and stimulating effects of TGF-beta 1 on osteoclastic bone resorption in fetal mouse bone organ cultures. J Bone Miner Res 1991; 6:479-87. [PMID: 2068954 DOI: 10.1002/jbmr.5650060509] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The effects of TGF-beta 1 on osteoclastic resorption of fetal mouse calvaria and long bones at various stages of development was studied in organ culture. In resorbing calvariae and long bones with an established marrow cavity TGF-beta 1 (4-10 ng/ml) had a stimulating effect on 45Ca release that was partially inhibited by indomethacin. In primitive long bones, however, which were explanted before osteoclast invasion and excavation of a marrow cavity had started, TGF-beta 1 (1-4 ng/ml) inhibited 45Ca release by an indomethacin-insensitive mechanism. Histomorphometry of long bones after staining for tartrate-resistant acid phosphatase (TRAP) revealed that TGF-beta 1 treatment inhibited the migration of TRAP-positive cells from periosteum to developing marrow cavity and inhibited cell fusion. However, the formation of (mononuclear) TRAP-positive cells in the periosteum-perichondrium was strongly enhanced. These data suggest that TGF-beta 1 modulates various steps in the cascade of osteoclast development, recruitment, and activation in different ways, involving both prostaglandin-mediated and prostaglandin-independent pathways. Therefore the net effect of exogenous TGF-beta 1 on osteoclastic resorption in bone organ cultures depends on the relative prevalence of osteoclast progenitors, precursors, and mature osteoclasts in the tissue under study.
Collapse
Affiliation(s)
- S C Dieudonné
- Department of Oral Cell Biology, Vrije Universiteit, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|