1
|
Isakova AM, Kutyrev MA, Kudasheva AS, Rogacheva EV, Kraeva LA, Shityakov S, Zhukov MV, Ulasevich SA, Skorb EV. Fabrication of biocidal materials based on the molecular interactions of tetracycline and quercetin with hydroxyapatite via In Silico- and In vitro approaches. Heliyon 2025; 11:e41064. [PMID: 39758386 PMCID: PMC11699380 DOI: 10.1016/j.heliyon.2024.e41064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 12/04/2024] [Accepted: 12/06/2024] [Indexed: 01/07/2025] Open
Abstract
Synthetic hydroxyapatite (HA) materials with antibacterial and biocompatible properties have potential for biomedical applications. The application of various computational methods in silica is highly relevant for the optimal development of modern materials. In this work, we used molecular docking to determine the binding constants of tetracycline (TET) and quercetin (QUE) with hydroxyapatite and compared them to experimental data of the adsorption of tetracycline (TET) and quercetin (QUE) on the HA surface. The experimental adsorption study was performed via the UV-VIS method. The fabricated biocidal powders were characterized via X-ray powder diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, and scanning electron microscopy (SEM). The electrical charge of the HA particle surface was determined via zeta potential measurements. The molecular docking method was used to predict the binding affinities of TET and QUE for HA. We also performed molecular docking studies to predict the binding affinity of TET and QUE for HA. These affinities correlate with the experimental binding constants, suggesting that molecular docking is a good tool for material property prediction. In addition, the antimicrobial activity of the HA/TET and HA/QUE powders was determined against 2 g-positive bacterial strains: S. aureus and E. faecalis. The obtained HA powders were evaluated for biocompatibility in vitro with the myoblast cell line C2C12.
Collapse
Affiliation(s)
- Anastasiia M. Isakova
- Infochemistry Scientific Center, ITMO University, Lomonosova str. 9, 191002, Saint Petersburg, Russia
| | - Maxim A. Kutyrev
- Infochemistry Scientific Center, ITMO University, Lomonosova str. 9, 191002, Saint Petersburg, Russia
| | - Aleksandra S. Kudasheva
- Infochemistry Scientific Center, ITMO University, Lomonosova str. 9, 191002, Saint Petersburg, Russia
| | - Elizaveta V. Rogacheva
- Pasteur Institute of Epidemiology and Microbiology, 14 Mira Street, 197101, Saint Petersburg, Russia
| | - Lyudmila A. Kraeva
- Pasteur Institute of Epidemiology and Microbiology, 14 Mira Street, 197101, Saint Petersburg, Russia
| | - Sergey Shityakov
- Infochemistry Scientific Center, ITMO University, Lomonosova str. 9, 191002, Saint Petersburg, Russia
| | - Mikhail V. Zhukov
- Infochemistry Scientific Center, ITMO University, Lomonosova str. 9, 191002, Saint Petersburg, Russia
| | - Sviatlana A. Ulasevich
- Infochemistry Scientific Center, ITMO University, Lomonosova str. 9, 191002, Saint Petersburg, Russia
| | - Ekaterina V. Skorb
- Infochemistry Scientific Center, ITMO University, Lomonosova str. 9, 191002, Saint Petersburg, Russia
| |
Collapse
|
2
|
Vasziné Szabó E, Köves K, Csáki Á. Fluorescent Molecules That Help Reveal Previously Unidentified Neural Connections in Adult, Neonatal and Peripubertal Mammals. Int J Mol Sci 2023; 24:14478. [PMID: 37833924 PMCID: PMC10572731 DOI: 10.3390/ijms241914478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/19/2023] [Accepted: 09/19/2023] [Indexed: 10/15/2023] Open
Abstract
One hundred and twenty-five years ago there was a lively discussion between Hungarian and Spanish neuroscientists on the nature of neural connections. The question was whether the neurofibrils run from one neuron to the next and connect neurons as a continuous network or the fibrils form an internal skeleton in the neurons and do not leave the cell; however, there is close contact between the neurons. About 50 years later, the invention of the electron microscope solved the problem. Close contacts between individual neurons were identified and named as synapses. In the following years, the need arose to explore distant connections between neuronal structures. Tracing techniques entered neuroscience. There are three major groups of tracers: (A) non-transsynaptic tracers used to find direct connections between two neuronal structures; (B) tracers passing gap junctions; (C) transsynaptic tracers passing synapses that are suitable to explore multineuronal circuits. According to the direction of the transport mechanism, the tracer may be ante- or retrograde. In this review, we focus on the ever-increasing number of fluorescent tracers that we have also used in our studies. The advantage of the use of these molecules is that the fluorescence of the tracer can be seen in histological sections without any other processes. Genes encoding fluorescent molecules can be inserted in various neuropeptide or neurotransmitter expressing transcriptomes. This makes it possible to study the anatomy, development or functional relations of these neuronal networks in transgenic animals.
Collapse
Affiliation(s)
- Enikő Vasziné Szabó
- Department of Restorative Dentistry and Endodontics, Faculty of Dentistry, Semmelweis University, Szentkirályi u. 47, H-1088 Budapest, Hungary
| | - Katalin Köves
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, Tűzoltó u. 58, H-1094 Budapest, Hungary; (K.K.); (Á.C.)
| | - Ágnes Csáki
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, Tűzoltó u. 58, H-1094 Budapest, Hungary; (K.K.); (Á.C.)
| |
Collapse
|
3
|
Hibbard EA, Sengelaub DR. Intraneural Topography of Rat Sciatic Axons: Implications for Polyethylene Glycol Fusion Peripheral Nerve Repair. Front Cell Neurosci 2022; 16:852933. [PMID: 35431811 PMCID: PMC9005634 DOI: 10.3389/fncel.2022.852933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/11/2022] [Indexed: 11/13/2022] Open
Abstract
Peripheral nerve injuries are the most common type of nerve trauma. We have been working with a novel repair technique using a plasmalemmal fusogen, polyethylene glycol (PEG), to re-fuse the membranes of severed axons. PEG-fusion repair allows for immediate re-innervation of distal targets, prevents axonal degeneration, and improves behavioral recovery. PEG-fusion of severed axons is non-specific, and we have previously reported that following injury and PEG-fusion misconnections between spinal motoneurons and their distal targets were present. Surprisingly, appropriately paired proximal and distal motor axons were observed in all PEG-fused animals. We hypothesized that a topographic organization of axons contributing to the sciatic nerve could explain the incidence of appropriate connections. We traced the course of specific axon populations contributing to the sciatic nerve in young adult male and female rats. Following intraneural injection of Fast Blue into the tibial branch, labeled axons were confined to a discrete location throughout the course of the nerve. Following intramuscular injection of cholera toxin-conjugated horseradish peroxidase into the anterior tibialis, labeled axons were confined to a smaller but still discrete location throughout the nerve. In both cases, the relative locations of labeled axons were consistent bilaterally within animals, as well as across animals and sexes. Thus, the relatively consistent location of specific axon populations could allow for realignment of appropriate populations of axons, and enhanced behavioral recovery seen in PEG-fused animals. Knowing the organization of axons within the sciatic nerve promotes accurate territory realignment during repair, therefore aiding in recovery outcomes.
Collapse
|
4
|
Gerbella M, Belmalih A, Borra E, Rozzi S, Luppino G. Cortical connections of the anterior (F5a) subdivision of the macaque ventral premotor area F5. Brain Struct Funct 2010; 216:43-65. [PMID: 21132509 DOI: 10.1007/s00429-010-0293-6] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Accepted: 11/19/2010] [Indexed: 11/26/2022]
Abstract
We traced the cortical connections of the anterior sector (F5a) of the macaque ventral premotor (PMv) area F5 and compared them with those of the adjacent F5 sectors, F5c and F5p. F5a displays a very dense "intrinsic" connectivity with F5c and F5p, premotor connections limited to F4 and F6/pre-SMA, relatively robust prefrontal connections with areas 46v and 12, and dense connections with rostral opercular frontal areas. Outside the frontal cortex, connections of F5a are dense with the SII region, relatively robust with inferior parietal areas PFG and AIP, weak with the inferior parietal area PF, and moderate with area 24. The comparison with data from injections in F5c and F5p showed that F5a, though sharing some common parietal connections with the other F5 sectors, displays several characterizing features providing robust evidence for its connectional distinctiveness. The present study provides evidence for a general organization of the PMv similar to that of the medial and dorsal premotor cortex, with F5a representing a pre-PMv area. Specifically, the present data suggest that F5a is a privileged site of integration, in the PMv, of parietal sensory-motor signals with higher-order information originating from prefrontal, rostral frontal opercular areas, and F6/pre-SMA. The results of this integration can be then broadcasted to the adjacent F5 sectors for the generation and control of hand actions and cognitive motor functions.
Collapse
Affiliation(s)
- Marzio Gerbella
- Dipartimento di Neuroscienze, Sezione di Fisiologia, Università di Parma, Via Volturno 39, 43100 Parma, Italy
| | | | | | | | | |
Collapse
|
5
|
Huh Y, Oh MS, Leblanc P, Kim KS. Gene transfer in the nervous system and implications for transsynaptic neuronal tracing. Expert Opin Biol Ther 2010; 10:763-72. [PMID: 20367126 DOI: 10.1517/14712591003796538] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
IMPORTANCE OF THE FIELD Neuronal circuitries are determined by specific synaptic connections and they provide the cellular basis of cognitive processes and behavioral functions. To investigate neuronal circuitries, tracers are typically used to identify the original neurons and their projection targets. AREAS COVERED IN THIS REVIEW Traditional tracing methods using chemical tracers have major limitations such as non-specificity. In this review, we highlight novel genetic tracing approaches that enable visualization of specific neuronal pathways by introducing cDNA encoding a transsynaptic tracer. In contrast to conventional tracing methods, these genetic approaches use cell-type-specific promoters to express transsynaptic tracers such as wheat germ agglutinin and C-terminal fragment of tetanus toxin, which allows labeling of either the input or output populations and connections of specific neuronal type. WHAT THE READER WILL GAIN Specific neuronal circuit information by these genetic approaches will allow more precise, comprehensive and novel information about individual neural circuits and their function in normal and diseased brains. TAKE HOME MESSAGE Using tracer gene transfer, neuronal circuit plasticity after traumatic injury or neurodegenerative diseases can be visualized. Also, this can provide a good marker for evaluation of therapeutic effects of neuroprotective or neurotrophic agents.
Collapse
Affiliation(s)
- Youngbuhm Huh
- Department of Anatomy and Neurobiology, Kyung Hee University, Seoul, Republic of Korea
| | | | | | | |
Collapse
|
6
|
Pettersson J, Lobov S, Novikova LN. Labeling of olfactory ensheathing glial cells with fluorescent tracers for neurotransplantation. Brain Res Bull 2010; 81:125-32. [PMID: 19828127 DOI: 10.1016/j.brainresbull.2009.10.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Revised: 09/28/2009] [Accepted: 10/05/2009] [Indexed: 01/05/2023]
Abstract
Development of cell-based treatment strategies for repair of the injured nervous system requires cell tracing techniques to follow the fate of transplanted cells and their interaction with the host tissue. The present study investigates the efficacy of fluorescent cell tracers Fast Blue, PKH26, DiO and CMFDA for long-term labeling of olfactory ensheathing glial cells (OEC) in culture and following transplantation into the rat spinal cord. All tested dyes produced very efficient initial labeling of p75-positive OEC in culture. The number of Fast Blue-positive cells remained largely unchanged during the first 4 weeks but only about 21% of the cells retained tracer 6 weeks after labeling. In contrast, the number of cells labeled with PKH26 and DiO was reduced to 51-55% after 2 weeks in culture and reached 8-12% after 4-6 weeks. CMFDA had completely disappeared from the cells 2 weeks after labeling. AlamarBlue assay showed that among four tested tracers only CMFDA reduced proliferation rate of the OEC. After transplantation into spinal cord, Fast Blue-labeled OEC survived for at least 8 weeks but demonstrated very limited migration from the injection sites. Additional immunostaining with glial and neuronal markers revealed signs of dye leakage from the transplanted cells resulted in weak labeling of microglia and spinal neurons. The results show that Fast Blue is an efficient cell marker for cultured OEC. However, transfer of the dye from the transplanted cells to the host tissue should be considered and correctly interpreted.
Collapse
Affiliation(s)
- Jonas Pettersson
- Department of Integrative Medical Biology, Section of Anatomy, Umeå University, SE-901 87 Umeå, Sweden
| | | | | |
Collapse
|
7
|
Duffy MT, Simpson SB, Liebich DR, Davis BM. Origin of spinal cord axons in the lizard regenerated tail: supernormal projections from local spinal neurons. J Comp Neurol 2009; 293:208-22. [PMID: 19189712 DOI: 10.1002/cne.902930205] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
During tail regeneration most lizards also regenerate the tail spinal cord. The regenerated spinal cord primarily contains neuroepithelium (i.e., the ependymal tube which forms the central canal) and descending axons. The present experiments identify the source of the axons in the regenerated spinal cord. Application of HRP to normal tail spinal cord resulted in labeled cells in the nucleus paraventricularis, the interstitial nucleus of the fasciculus longitudinalis medialis, the nucleus ruber, the medullary reticular formation (including raphe nuclei), as well as in vestibular nuclei. HRP applied to the regenerated spinal cord labeled only 4% of the cells seen in normal animals, and these were confined to rhombencephalic nuclei. The lack of labeling of more rostral nuclei was not due to the death of descending neurons. Application of HRP immediately rostral to the regenerated spinal cord resulted in the labeling of a normal, and in some cases, greater than normal, number of neurons. To quantify the origin of axons in the regenerated spinal cord, electron microscopic montages of the regenerated spinal cord were made and the number of axons counted, before and after various spinal lesions. Only lesions within one spinal segment of the regenerated spinal cord had a significant effect on the number of axons in the regenerated tail spinal cord. This indicated that most of the regenerated axons were of local spinal origin. A significant increase in the number of labeled local spinal neurons was revealed following application of HRP to a regenerated tail spinal cord. These results suggest that while various portions of the lizard central nervous system can grow axons into the regenerating tail spinal cord, the great majority of axons in the regenerate are of local origin and that some of these arise from neurons that do not normally possess descending projections. Finally, to test whether new neurons were participating in the regeneration process, 3H-thymidine was injected during the regrowth of the tail. No labeled spinal cord cells were conclusively identified as neurons. Thus, the regenerating lizard tail spinal cord exhibits robust axonal sprouting from neurons near the site of a spinal transection in a manner reminiscent of sprouting in the mammalian CNS. This sprouting can develop into descending spinal projections that extend for significant distances into the regenerated tail spinal cord and provides a unique model for exploring the requirements for successful axon growth in an adult vertebrate CNS.
Collapse
Affiliation(s)
- M T Duffy
- Department of Biological Sciences and Committee on Neuroscience, University of Illinois at Chicago, Chicago, Illinois 60680, USA
| | | | | | | |
Collapse
|
8
|
Leung CKS, Weinreb RN. Experimental detection of retinal ganglion cell damage in vivo. Exp Eye Res 2008; 88:831-6. [PMID: 18926816 DOI: 10.1016/j.exer.2008.09.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Accepted: 09/02/2008] [Indexed: 10/21/2022]
Abstract
In vivo detection of retinal ganglion cell (RGC) damage should have experimental and clinical relevance. A number of experimental models have been recently described to visualize RGCs in vivo. With retrograde injection of fluorescent tracers into the superior colliculus, lateral geniculate body, or optic nerve, RGCs can be detected in vivo with confocal laser scanning microscopy, fluorescent microscopy, or confocal scanning laser ophthalmoscopy. Although the resolution of these imaging techniques is limited to detecting only the cell bodies, the addition of adaptive optics has allowed in vivo visualization of axonal and dendritic processes. An ideal experimental model for detection of RGC damage should be non-invasive and reproducible. The introduction of a strain of transgenic mice that express fluorescent proteins under the control of Thy-1 promoter sequence has offered a non-invasive approach to detect RGCs. Long- term serial monitoring of RGCs over a year has been shown possible with this technique. In vivo imaging of RGCs could provide crucial information to investigating the mechanisms of neurodegenerative diseases and evaluating the treatment response of neuroprotective agents.
Collapse
Affiliation(s)
- Christopher Kai-Shun Leung
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | | |
Collapse
|
9
|
Abstract
The growth of fluorescence imaging technology and the development of sensitive fluorescent retrograde tracers has provided many new approaches for analyzing neuronal circuits. Fluorescent markers provide unparalleled opportunity for combining axonal tract tracing with techniques such as immunohistochemistry or physiological recording. This unit describes the use of six different fluorescent tracers: Fast Blue, fluorescein dextran, FluoroGold, FluoroRuby, red beads, and green beads. Guidance is provided on how to choose a tracer for a particular experiment, and three methods are described for injecting the tracers, including pressure injection through a microsyringe or a micropipet, and iontophoretic injection through a micropipet. Criteria for selecting the most appropriate method are discussed. The protocols provide the information necessary to take advantage of the numerous fluorescent tracers that are available and to apply them to a wide variety of scientific questions.
Collapse
Affiliation(s)
- Brett R Schofield
- Northeastern Ohio Universities College of Medicine, Rootstown, Ohio, USA
| |
Collapse
|
10
|
Morecraft RJ, Cipolloni PB, Stilwell-Morecraft KS, Gedney MT, Pandya DN. Cytoarchitecture and cortical connections of the posterior cingulate and adjacent somatosensory fields in the rhesus monkey. J Comp Neurol 2004; 469:37-69. [PMID: 14689472 DOI: 10.1002/cne.10980] [Citation(s) in RCA: 155] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The cytoarchitecture and connections of the caudal cingulate and medial somatosensory areas were investigated in the rhesus monkey. There is a stepwise laminar differentiation starting from retrosplenial area 30 towards the isocortical regions of the medial parietal cortex. This includes a gradational emphasis on supragranular laminar organization and general reduction of the infragranular neurons as one proceeds from area 30 toward the medial parietal regions, including areas 3, 1, 2, 5, 31, and the supplementary sensory area (SSA). This trend includes a progressive increase in layer IV neurons. Area 23c in the lower bank and transitional somatosensory area (TSA) in the upper bank of the cingulate sulcus appear as nodal points. From area 23c and TSA the architectonic progression can be traced in three directions: one culminates in areas 3a and 3b (core line), the second in areas 1, 2, and 5 (belt line), and the third in areas 31 and SSA (root line). These architectonic gradients are reflected in the connections of these regions. Thus, cingulate areas (30, 23a, and 23b) are connected with area 23c and TSA on the one hand and have widespread connections with parieto-temporal, frontal, and parahippocampal (limbic) regions on the other. Area 23c has connections with areas 30, 23a and b, and TSA as well as with medial somatosensory areas 3, 1, 2, 5, and SSA. Area 23c also has connections with parietotemporal, frontal, and limbic areas similar to areas 30, 23a, and 23b. Area TSA, like area 23c, has connections with areas 3, 1, 2, 5, and SSA. However, it has only limited connections with the parietotemporal and frontal regions and none with the parahippocampal gyrus. Medial area 3 is mainly connected to medial and dorsal sensory areas 3, 1, 2, 5, and SSA and to areas 4 and 6 as well as to supplementary (M2 or area 6m), rostral cingulate (M3 or areas 24c and d), and caudal cingulate (M4 or areas 23c and d) motor cortices. Thus, in parallel with the architectonic gradient of laminar differentiation, there is also a progressive shift in the pattern of corticocortical connections. Cingulate areas have widespread connections with limbic, parietotemporal, and frontal association areas, whereas parietal area 3 has more restricted connections with adjacent somatosensory and motor cortices. TSA is primarily related to the somatosensory-motor areas and has limited connections with the parietotemporal and frontal association cortices.
Collapse
Affiliation(s)
- R J Morecraft
- University of South Dakota School of Medicine, Division of Basic Biomedical Sciences, Laboratory of Neurological Sciences, Vermillion, South Dakota 57069, USA.
| | | | | | | | | |
Collapse
|
11
|
Luppino G, Rozzi S, Calzavara R, Matelli M. Prefrontal and agranular cingulate projections to the dorsal premotor areas F2 and F7 in the macaque monkey. Eur J Neurosci 2003; 17:559-78. [PMID: 12581174 DOI: 10.1046/j.1460-9568.2003.02476.x] [Citation(s) in RCA: 153] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The superior sector of Brodmann area 6 (dorsal premotor cortex, PMd) of the macaque monkey consists of a rostral and a caudal architectonic area referred to as F7 and F2, respectively. The aim of this study was to define the origin of prefrontal and agranular cingulate afferents to F7 and F2, in the light of functional and hodological evidence showing that these areas do not appear to be functionally homogeneous. Different sectors of F7 and F2 were injected with neural tracers in seven monkeys and the retrograde labelling was qualitatively and quantitatively analysed. The dorsorostral part of F7 (supplementary eye field, F7-SEF) was found to be a target of strong afferents from the frontal eye field (FEF), from the dorsolateral prefrontal regions located dorsally (DLPFd) and ventrally (DLPFv) to the principal sulcus and from cingulate areas 24a, 24b and 24c. In contrast, the remaining part of F7 (F7-non SEF) is only a target of the strong afferents from DLPFd. Finally, the ventrorostral part of F2 (F2vr), but not the F2 sector located around the superior precentral dimple (F2d), receives a minor, but significant, input from DLPFd and a relatively strong input from the cingulate gyrus (areas 24a and 24b) and area 24d. Present data provide strong hodological support in favour of the idea that areas F7 and F2 are formed by two functionally distinct sectors.
Collapse
Affiliation(s)
- Giuseppe Luppino
- Dipartomento di Neuroscienze, Sezione di Fisiologia, Universita' di Parma, Italy.
| | | | | | | |
Collapse
|
12
|
Hase T, Kawaguchi S, Hayashi H, Nishio T, Mizoguchi A, Nakamura T. Spinal cord repair in neonatal rats: a correlation between axonal regeneration and functional recovery. Eur J Neurosci 2002; 15:969-74. [PMID: 11918656 DOI: 10.1046/j.1460-9568.2002.01932.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The present study aimed to analyse how anatomical regeneration contributes to functional recovery after experimental spinal cord repair. Thoracic spinal cord of neonatal rats was completely transected to make a gap and repaired by grafting a section of embryonic spinal cord. Six weeks after surgery, outcome of locomotor performance was assessed using an open field locomotor scale (BBB scale). Axonal regeneration across the repaired site was quantitatively assessed in the raphe, vestibular, and red nuclei and the sensorimotor cortex by a retrograde tracing method. The rats that had no labelled neurons in any of the supraspinal nuclei showed no hind-forelimb coordination. The rats that had labelled neurons in the brainstem nuclei but not in the sensorimotor cortex showed hind-forelimb coordination of varying grades depending on the amount of regeneration. The rats that had labelled neurons in all of the examined nuclei showed almost normal locomotion. In addition to a relationship between distribution of the labelled neurons and functional recovery, a positive correlation was observed between number of the labelled neurons in each of the supraspinal nuclei and locomotor performance of the rat. Thus the grade of restored function appeared to be regulated by distribution and number of fibres regenerated across the repaired site and into the target region. These results suggest that accurate reconstruction of neural connections is essential for significant functional recovery after spinal cord repair.
Collapse
Affiliation(s)
- Takao Hase
- Department of Integrative Brain Science, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| | | | | | | | | | | |
Collapse
|
13
|
Mengual E, Casanovas-Aguilar C, Pérez-Clausell J, Giménez-Amaya JM. Thalamic distribution of zinc-rich terminal fields and neurons of origin in the rat. Neuroscience 2001; 102:863-84. [PMID: 11182249 DOI: 10.1016/s0306-4522(00)00472-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Several cortico-cortical and limbic-related circuits are enriched in zinc, which is considered as an important modulator of glutamatergic transmission. While heavy metals have been detected in the thalamus, the specific presence of zinc has not been examined in this region. We have used two highly sensitive variations of the Timm method to study the zinc-rich innervation in the rat thalamus, which was compared to the distribution of acetylcholinesterase activity. The origin of some of these zinc-rich projections was also investigated by means of retrograde transport after intracerebral infusions of sodium selenium (Na2SeO3). The overall zinc staining in the thalamus was much lower than in the neocortex, striatum or basal forebrain; however, densely stained terminal fields were observed in the dorsal tip of the reticular thalamic nucleus, the anterodorsal and lateral dorsal thalamic nuclei and the zona incerta. In addition, moderately stained zinc-rich terminal fields were found in the rostral intralaminar nuclei, nucleus reuniens and lateral habenula. Intracerebral infusions of Na2SeO3 in the lateral dorsal nucleus resulted in retrogradely labeled neurons that were located in the postsubiculum, and also in the pre- and parasubiculum. These results are the first to establish the existence of a zinc-rich subicular-thalamic projection. Similar infusions in either the intralaminar nuclei or the zona incerta resulted in labeling of neurons in several brainstem structures related to the reticular formation. Our results provide morphological evidence for zinc modulation of glutamatergic inputs to highly selective thalamic nuclei, arising differentially from either cortical limbic areas or from brainstem ascending activation systems.
Collapse
Affiliation(s)
- E Mengual
- Departamento de Anatomía, Facultad de Medicina, Universidad de Navarra, ES-31008 Pamplona, Navarra, Spain.
| | | | | | | |
Collapse
|
14
|
Chung K, Chung JM. Sympathetic sprouting in the dorsal root ganglion after spinal nerve ligation: evidence of regenerative collateral sprouting. Brain Res 2001; 895:204-12. [PMID: 11259779 DOI: 10.1016/s0006-8993(01)02092-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
It is well documented that there is an increase in the number of sympathetic fibers within the dorsal root ganglion (DRG) after a peripheral nerve injury. The present study examined the numbers and distribution of sympathetic fibers in the DRG and their sprouting routes by utilizing various surgical manipulations and retrograde tracing and immunohistochemical staining methods in spinal nerve-ligated neuropathic rats. The appearance of many double immunostained fibers with antibodies to tyrosine hydroxylase (TH) and growth associated protein-43 (GAP-43) in the L5 DRG 1 week after L5 spinal nerve ligation, indicated sprouting of sympathetic fibers. The confined location of early sprouting sympathetic fibers in the distal half of the L5 DRG confirmed that sprouting fibers come primarily from the injured spinal nerve. A second cut proximal to the previously ligated L5 spinal nerve -- a process which would transect the regenerating sympathetic fibers extending from the injury site -- did not change the density of sympathetic fibers in the L5 DRG. When retrograde tracers (fast blue and diamidino yellow) were injected into the L5 spinal nerve and DRG, respectively, the number of double-labeled sympathetic postganglionic neurons was greatly increased after spinal nerve ligation, suggesting the increased number of sympathetic neurons projecting to both the spinal nerve and DRG. All these results indicate that many sympathetic fibers in the DRG are regenerating branches that are sprouting from the proximal part of the injured spinal nerve (regenerative collateral sprouting).
Collapse
Affiliation(s)
- K Chung
- Marine Biomedical Institute, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-1069, USA.
| | | |
Collapse
|
15
|
Popratiloff AS, Neiss WF, Skouras E, Streppel M, Guntinas-Lichius O, Angelov DN. Evaluation of muscle re-innervation employing pre- and post-axotomy injections of fluorescent retrograde tracers. Brain Res Bull 2001; 54:115-23. [PMID: 11226720 DOI: 10.1016/s0361-9230(00)00411-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In experimental studies on peripheral nerve repair, the possibility to objectively compare original and post-operative innervation is of decisive importance for the selection of the proper nerve-reconstruction strategy. Herewith we report serious drawbacks encountered with the standard method of pre- and post-operative intramuscular injections of widely used retrograde neuronal tracers. Labeling of rat facial motoneurons by injection of Fast-Blue (FB; Group 1), Dil (Group 2), or Fluoro-Gold (FG; Group 3) into the whisker pad muscles was followed by transection and suture of the facial nerve. Two months later, the same rats received Dil (Group 1), FG (Group 2), and FB (Group 3) injections with the same parameters as the pre-operative injections. By quantitative evaluation of single- and double-retrogradely labeled perikarya of facial motoneurons, we tried to estimate the accuracy of re-innervation. Observations through a "UV-filter" (for FB-labeled perikarya) and a "rhodamine-filter" (for Dil-labeled perikarya) in Group 1 revealed an unexpected axotomy-triggered leakage of FB which compromised the counts. After pre-operative Dil labeling, nerve suture, and post-operative FG labeling (Group 2), Dil created an extracellular deposit in the whisker pad. Thus, the uptake of pre-operative tracer by sprouts of re-growing axons compromised counts of retrogradely labeled motoneurons. Employing the "UV-filter" in Group 3 (FG-, FB-, FG+FB-labeled perikarya), the emission of FB obscured that of FG and also compromised cell counts. The use of filter sets constructed ad hoc for detection of FG and FB rendered possible an objective comparison.
Collapse
Affiliation(s)
- A S Popratiloff
- Institut I für Anatomie der Universität zu Köln, Köln, Germany
| | | | | | | | | | | |
Collapse
|
16
|
Thanos S, Fischer D, Pavlidis M, Heiduschka P, Bodeutsch N. Glioanatomy assessed by cell-cell interactions and phagocytotic labelling. J Neurosci Methods 2000; 103:39-50. [PMID: 11074094 DOI: 10.1016/s0165-0270(00)00294-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In the last three decades of research in neuroscience, fluorescent probes have gone from technical tools in the studies of physicochemical reactions, to being versatile tools in developmental neurobiology, neuroanatomy, angiography, neuromorphology, connectivity, cell death and even photodynamic therapy. Fluorescent dyes belong to heterogeneous groups of substances, but the feature to emit light of a certain wavelength depends on the energy status of the corresponding chemical bond. Therefore, light emission can range from the blue to the infrared spectrum, thus allowing multiple stains of the same cell, or event. The heterogeneity in their structure allows application of some fluorescent dyes for anterograde long-tract labelling, whereas others can be used for retrograde tracing. Lipophilic dyes are suitable for intramembraneous diffusion along cell membranes post-mortem, whereas hydrophilic stains seem more suitable for genealogic cell studies over several cell divisions. In the same time, less attention has been paid by most researchers to the use of fluorescent dyes to monitor neuroglial interactions and glioanatomy in the healthy and diseased brain. Studies of cell-cell-interactions during apoptosis can now be carried out with sequestration and subsequent phagocytosis of intracellular dyes. The present review focuses on recent developments that include the use of fluorescent probes. These probes make it possible to transneuronally assess functions of glial cells during programmed cell death, or induced degeneration. The high variety of available dyes, and their particular accumulation within subcellular compartments, is promising to shed light on some glial cell geometry and functions. The lessons obtained from the vast number of studies in neurons are of increasing importance for cells too, as their functions are not directly accessible. In short, some glial-glial and neuroglial negotiations will be analysed in near future by developing new, or by modifying existing fluorescent probes.
Collapse
Affiliation(s)
- S Thanos
- Department of Experimental Ophthalmology, Medical School, University of Muenster, Domagkstrasse 15, D-48149, Muenster, Germany.
| | | | | | | | | |
Collapse
|
17
|
Hsieh NK, Liu JC, Chen HI. Localization of sympathetic postganglionic neurons innervating mesenteric artery and vein in rats. JOURNAL OF THE AUTONOMIC NERVOUS SYSTEM 2000; 80:1-7. [PMID: 10742533 DOI: 10.1016/s0165-1838(99)00070-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Physiological and histochemical studies have demonstrated the control and innervation of sympathetic nerves to the artery and vein vessels of splanchnic circulation. In our laboratory, we first used the technique of retrograde transport of horseradish peroxidase to identify the origin of sympathetic neurons innervating the mesenteric vein. In this study, double fluorescence staining technique was used for a simultaneous localization of the sympathetic postganglionic neurons supplying the mesenteric artery and vein in rats. First-order branches of mesenteric artery (A) and vein (V) in the vicinity of ileo-cecal junction were isolated for application of fluorescent dyes (Fast Blue, FB and Diamidino Yellow, DY). The application of FB and DY on A and V was alternated in the next animal to minimize the difference in dye uptake. The animal was allowed to recover for 6-7 days assuring a complete uptake of FB and DY into the cytoplasm and nucleus, respectively. The number of FB, DY and double staining neurons in the prevertebral and paravertebral ganglia were counted under a fluorescent microscope after animal fixation and serial frozen section (30 microm) of the sympathetic ganglia. Our study revealed the following findings: (1) Distribution of the fluorescence-staining neurons in the sympathetic ganglia was as follows: right celiac ganglion (39%), superior mesenteric ganglion (30%), left celiac ganglion (26%), inferior mesenteric ganglion (1%) and paravertebral ganglia (4%). (2) Double staining neurons that dually innervate A and V amounted to 54% of total staining neurons. There were 41% neurons singly innervating A and 5% innervating V. (3) The ratio of neurons supplying the A and V ranged from 1.41 to 1.75 (average 1.61). (4) There was no distinct topographical distribution with respect to the neuron location innervating A and V. The distribution of neurons appeared in a scattering pattern.
Collapse
Affiliation(s)
- N K Hsieh
- Institute of Medical Science and Department of Physiology, Tzu Chi College of Medicine and Humanities, Hualien, Taiwan
| | | | | |
Collapse
|
18
|
Zhang Z, Soucacos PN, Bo J, Beris AE. Evaluation of collateral sprouting after end-to-side nerve coaptation using a fluorescent double-labeling technique. Microsurgery 1999; 19:281-6. [PMID: 10469443 DOI: 10.1002/(sici)1098-2752(1999)19:6<281::aid-micr5>3.0.co;2-d] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The mechanism of end-to-side neurorrhaphy is believed to be by collateral sprouting, although evidence for this is lacking. This study validates whether axonal sprouting originates from the donor intact nerve by collateral sprouting with the use of a fluorescent double-labeling technique. End-to-side neurorrhaphy was performed on adult female Sprague-Dawley rats. Eight and 12 months postoperatively, animals were injected with true blue and diamidino yellow into the tibialis anterior and/or gastrocnemius muscles and were transcardially perfused with fixative after 7 days of retrograde transport. The lumbar enlargement and the dorsal root ganglia from L3 to L6 were harvested and serial sectioning and fluorescent microscopy were performed. No double-labeling neurons were observed in control animals, but a group of neurons that were greenish or yellowish in color were seen with single labeling. Double-labeling neurons, however, were seen in animals treated with end-to-side neurorrhaphy whether or not perineurotomy was performed. These results demonstrate that one parent nerve fiber can emanate another axon by collateral sprouting following end-to-side neurorrhaphy. We hypothesize that the causes of collateral sprouting might result from "switching signals" and/or "switching factors."
Collapse
Affiliation(s)
- Z Zhang
- Department of Orthopaedic Surgery, University of Ioannina, School of Medicine, Ioannina, Greece
| | | | | | | |
Collapse
|
19
|
|
20
|
Casanovas-Aguilar C, Reblet C, Pérez-Clausell J, Bueno-López JL. Zinc-rich afferents to the rat neocortex: projections to the visual cortex traced with intracerebral selenite injections. J Chem Neuroanat 1998; 15:97-109. [PMID: 9719362 DOI: 10.1016/s0891-0618(98)00035-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Infusion of sodium selenite to the occipital cortex of the rat was used for the specific tracing of zinc-rich pathways. Large numbers of labeled somata were found ipsilaterally in the visual, orbital and frontal cortices, and contralaterally in homotopic and heterotopic visual areas. Labeled neurons were also found ipsilaterally in the retrosplenial, parietal, sensory-motor, temporal and perirhinal cortex. In contrast to the cortico-cortical connections, ascending afferents to the visual cortex were not zinc-rich except for a few labeled neurons in the claustrum. Additional injections showed reciprocal zinc-rich connections between the visual cortex and the orbital and frontal cortices. The latter cortices also received ascending zinc-rich afferents from the claustrum. Selenite injections revealed the layered distribution and the morphology of these labeled neurons in the neocortex. Zinc-rich neurons were found in layers II-III, V and VI. However, none was found in layer IV. Zinc-rich somata appeared as pyramidal and inverted neurons. The contrasting chemical properties of cortical and subcortical visual afferents may account for the functional differences between these systems.
Collapse
Affiliation(s)
- C Casanovas-Aguilar
- Departament de Biologia Cel.lular Animal i Vegetal, Facultat de Biologia, Universitat de Barcelona, Spain.
| | | | | | | |
Collapse
|
21
|
Abstract
The amygdaloid nuclear complex is critical for producing appropriate emotional and behavioral responses to biologically relevant sensory stimuli. It constitutes an essential link between sensory and limbic areas of the cerebral cortex and subcortical brain regions, such as the hypothalamus, brainstem, and striatum, that are responsible for eliciting emotional and motivational responses. This review summarizes the anatomy and physiology of the cortical pathways to the amygdala in the rat, cat and monkey. Although the basic anatomy of these systems in the cat and monkey was largely delineated in studies conducted during the 1970s and 1980s, detailed information regarding the cortico-amygdalar pathways in the rat was only obtained in the past several years. The purpose of this review is to describe the results of recent studies in the rat and to compare the organization of cortico-amygdalar projections in this species with that seen in the cat and monkey. In all three species visual, auditory, and somatosensory information is transmitted to the amygdala by a series of modality-specific cortico-cortical pathways ("cascades") that originate in the primary sensory cortices and flow toward higher order association areas. The cortical areas in the more distal portions of these cascades have stronger and more extensive projections to the amygdala than the more proximal areas. In all three species olfactory and gustatory/visceral information has access to the amygdala at an earlier stage of cortical processing than visual, auditory and somatosensory information. There are also important polysensory cortical inputs to the mammalian amygdala from the prefrontal and hippocampal regions. Whereas the overall organization of cortical pathways is basically similar in all mammalian species, there is anatomical evidence which suggests that there are important differences in the extent of convergence of cortical projections in the primate versus the nonprimate amygdala.
Collapse
Affiliation(s)
- A J McDonald
- Department of Cell Biology and Neuroscience, University of South Carolina School of Medicine, Columbia 29208, USA.
| |
Collapse
|
22
|
Négyessy L, Hámori J, Bentivoglio M. Contralateral cortical projection to the mediodorsal thalamic nucleus: origin and synaptic organization in the rat. Neuroscience 1998; 84:741-53. [PMID: 9579780 DOI: 10.1016/s0306-4522(97)00559-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The origin of the corticothalamic projections to the contralateral mediodorsal nucleus, the collateralization of cortical fibers and their synaptic organization in the ipsi- and contralateral mediodorsal nuclei were investigated in adult rats with double retrograde fluorescent and anterograde tracing. After tracer injections in the mediodorsal nuclei on either side, neurons were retrogradely labeled in all the areas of the contralateral prefrontal cortex in which ipsilateral labeling was also observed. Contralateral corticothalamic cells accounted for 15% of the labeled neurons in the orbital and agranular insular areas, while their proportion was lower (3%) in the anterior cingulate cortex. Up to 70% of the contralateral cortical neurons were double labeled by bilateral injections in the mediodorsal nuclei. At the electron microscopic level, unilateral injections of biotinylated dextran-amine in the orbitofrontal cortex resulted in anterograde labeling of small terminals and a few large boutons in the ipsilateral mediodorsal nucleus, while only small boutons were identified contralaterally. The diameter of postsynaptic dendritic profiles contacted by labeled small cortical endings was significantly larger in the ipsilateral mediodorsal nucleus than contralaterally. These findings demonstrate that dense contralateral cortical projections to the mediodorsal nucleus derive from the orbital and agranular insular areas, and that crossed corticothalamic afferents are mostly formed by collaterals of the ipsilateral connections. Our observations also point out the heterogeneity of corticothalamic boutons in the rat mediodorsal nucleus and morphological differences in the synaptic organization of prefrontal fibers innervating the two sides, indicating that ipsilateral cortical afferents may be more proximally distributed than crossed cortical fibers on dendrites of mediodorsal neurons.
Collapse
Affiliation(s)
- L Négyessy
- Department of Anatomy, Semmelweis University Medical School, Budapest, Hungary
| | | | | |
Collapse
|
23
|
Wang XM, Basso DM, Terman JR, Bresnahan JC, Martin GF. Adult opossums (Didelphis virginiana) demonstrate near normal locomotion after spinal cord transection as neonates. Exp Neurol 1998; 151:50-69. [PMID: 9582254 DOI: 10.1006/exnr.1998.6795] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
When the thoracic spinal cord of the North American opossum (Didelphis virginiana) is transected on postnatal day (PD) 5, the site of injury becomes bridged by histologically recognizable spinal cord and axons which form major long tracts grow through the lesion. In the present study we asked whether opossums lesioned on PD5 have normal use of the hindlimbs as adults and, if so, whether that use is dependent upon axons which grow through the lesion site. The thoracic spinal cord was transected on PD5 and 6 months later, hindlimb function was evaluated using the Basso, Beattie, and Bresnahan (BBB) locomotor scale. All animals supported their weight with the hindlimbs and used their hindlimbs normally during overground locomotion. In some cases, the spinal cord was retransected at the original lesion site or just caudal to it 6 months after the original transection and paralysis of the hindlimbs ensued. Surprisingly, however, these animals gradually recovered some ability to support their weight and to step with the hindlimbs. Similar recovery was not seen in animals transected only as adults. In order to verify that descending axons which grew through the lesion during development were still present in the adult animal, opossums subjected to transection of the thoracic cord on PD5 were reoperated and Fast blue was injected several segments caudal to the lesion. In all cases, neurons were labeled rostral to the lesion in each of the spinal and supraspinal nuclei labeled by comparable injections in unlesioned, age-matched controls. The results of orthograde tracing studies indicated that axons which grew through the lesion innervated areas that were appropriate for them.
Collapse
Affiliation(s)
- X M Wang
- Department of Cell Biology, Neurobiology and Anatomy, The Ohio State University, College of Medicine, Columbus, Ohio 43210, USA
| | | | | | | | | |
Collapse
|
24
|
Vajkoczy P, Schilling L, Ullrich A, Schmiedek P, Menger MD. Characterization of angiogenesis and microcirculation of high-grade glioma: an intravital multifluorescence microscopic approach in the athymic nude mouse. J Cereb Blood Flow Metab 1998; 18:510-20. [PMID: 9591843 DOI: 10.1097/00004647-199805000-00006] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The current study follows angiogenesis and microcirculatory changes associated with malignant glioma growth by means of an intravital fluorescence microscopic approach, which allows for the direct and continuous visualization of the glioma microvasculature and its quantitative analysis. Fluorescently labeled C6 rat glioma cells (5 x 10(5)) were implanted into dorsal skinfold chamber preparations of athymic nude mice. Glioma growth, vascularization, microhemodynamics, vascular permeability, and leukocyte-endothelial cell interactions were simultaneously followed over a 22-day observation period using intravital epiillumination microscopy and a multifluorescent labeling technique. Analysis of the process of glioma vascularization revealed three stages with distinct microvascular characteristics: avascular stage (days 0 to 6), lag of glioma growth but initial glioma-induced angiogenesis within the host tissue in peritumoral areas; early vascular stage (days 6 to 14), glioma cell proliferation associated with a spatially homogeneous development of a glioma microvasculature; and late vascular stage (days 14 to 22), exponential tumor growth and expansion (> 400 mm3) with high vascular densities in the peritumoral region and reduced vascularization (microvascular perfusion) in the glioma center. Within the center, the functional vessel length per area correlated inversely with glioma size (P < 0.01). In the peritumoral region, functional vessel length per area was independent of glioma size, indicating persistent, high angiogenic activity throughout the observation period. Thus, the microvasculature of mature gliomas revealed a microvascular zonal division with a progressive reduction of the functional vessel length per area within the tumor center. The perfusion failure of individual microvessels within the glioma center was partly compensated by an increase of diameters (P < 0.05), and thus by an increase of blood flow in these functional microvessels (P < 0.05) over time. Histologic analysis demonstrated both expanding and infiltrating growth patterns, as well as focal necroses on day 22. These are the first data from repeated in vivo analysis of glioma growth, vascularization, and microcirculation.
Collapse
Affiliation(s)
- P Vajkoczy
- Department of Neurosurgery, Klinikum Mannheim, University of Heidelberg, Germany
| | | | | | | | | |
Collapse
|
25
|
Orihara YI, Kishikawa M, Ono K. The fates of the callosal neurons in neocortex after bisection of the corpus callosum, using the technique of retrograde neuronal labeling with two fluorescent dyes. Brain Res 1997; 778:393-6. [PMID: 9459557 DOI: 10.1016/s0006-8993(97)01023-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The fate of callosal neurons after callosotomy is yet unclear although this has become a common surgical procedure for intractable generalized epilepsies. Using retrograde neuronal labeling with two fluorescent dyes, we demonstrated that callosal neurons in the parietal cortex of the adult rat survive up to 20 weeks after callosotomy. Our data suggest that these neurons possess numerous ipsilateral axon collaterals with indispensable functions in the ipsilateral hemisphere.
Collapse
Affiliation(s)
- Y I Orihara
- Department of Pediatrics, Nagasaki University School of Medicine, Sakamoto, Japan.
| | | | | |
Collapse
|
26
|
Kudo M, Moriya M, Mizuno N. Auditory projections from the IC to the SCN by way of the LG in the mole, Mogera. Neuroreport 1997; 8:3405-9. [PMID: 9351681 DOI: 10.1097/00001756-199710200-00042] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
To study morphological substrates for sensory specialization in subterranean mammals, we investigated both auditory and visual pathways in the mole. The inferior colliculus (IC), an auditory relay, projects not only to the medial geniculate, the major gateway to the auditory cortex, but also to the lateral geniculate (LG), the major gateway to visual cortex. Further evidence is that the LG does not send many fibers to the cortex in the mole. Instead, the auditory inputs to the LG are likely to be conveyed to the suprachiasmatic hypothalamic nucleus (SCN), which plays a role in photoperiodic functions in common mammals. Auditory inputs to the SCN may subserve periodic reproductive behaviors in the exclusively separated territorial domains of subterranean mammals.
Collapse
Affiliation(s)
- M Kudo
- Department of Anatomy, School of Medicine, Kanazawa University, Takaramachi, Japan
| | | | | |
Collapse
|
27
|
Vince GH, Bouterfa H, Goldbrunner R, Roosen K, Tonn JC. Fast blue, a fluorescent tracer in glioma cell culture, affects cell proliferation and motility. Neurosci Lett 1997; 233:148-50. [PMID: 9350854 DOI: 10.1016/s0304-3940(97)00637-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The azo-dye, Fast Blue (FB), initially employed for retrograde neuronal tracing is increasingly used in cell invasion and migration studies to detect living cells in monolayer and glioma tumor cell spheroid models. As yet, it is assumed that a cell stained with a tracker dye retains the characteristics of the original cell. The following experiments compared the adhesion, migration and proliferation properties of the cell lines U373 and GaMG with and without FB staining. FB staining reduced cell adhesion (P < 0.01) and proliferative activity (P < 0.01) and also had a significant inhibitory effect on cell migration (P < 0.001). From the results presented it follows that FB staining markedly influences basic cell characteristics.
Collapse
Affiliation(s)
- G H Vince
- Department of Neurosurgery, University of Würzburg, Germany.
| | | | | | | | | |
Collapse
|
28
|
Novikova L, Novikov L, Kellerth JO. Persistent neuronal labeling by retrograde fluorescent tracers: a comparison between Fast Blue, Fluoro-Gold and various dextran conjugates. J Neurosci Methods 1997; 74:9-15. [PMID: 9210570 DOI: 10.1016/s0165-0270(97)02227-9] [Citation(s) in RCA: 133] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The permanence of retrograde neuronal labeling by the fluorescent tracers Fast Blue, Fluoro-Gold, Mini-Ruby, Fluoro-Ruby and Fluoro-Emerald was investigated in adult rat spinal motorneurons at 1, 4, 12 and 24 weeks after tracer application to a transected muscle nerve. After 1 week, the largest number of retrogradely labeled motoneurons was found with Mini-Ruby, Fluoro-Gold and Fluoro-Ruby, while Fluoro-Emerald yielded a smaller number of labeled cells. With increasing survival time, all of these tracers exhibited a marked decrease in the number of labeled neurons. Fast Blue also produced very efficient staining after 1 week and, in addition, the number of Fast Blue-labeled cells remained constant over the entire time period studied. Also in embryonic spinal cord tissue exposed to Fast Blue. the label persisted for at least 6 months after transplantation into adult spinal cord. Double-labeling experiments combining Fast Blue with Fluoro-Gold, Mini-Ruby, Fluoro-Ruby or Fluoro-Emerald showed that all these substances were non-toxic and that the time-related decrease in the number of neurons labeled by the latter tracers was due to degradation or leakage of the dyes. Thus, Fast Blue would be the tracer of choice for motoneuronal labeling in long-term experiments, whereas the usage of the other tracers should be restricted to experiments of limited duration.
Collapse
Affiliation(s)
- L Novikova
- Department of Anatomy, Umeå University, Sweden
| | | | | |
Collapse
|
29
|
Wang XM, Qin YQ, Terman JR, Martin GF. Early development and developmental plasticity of the fasciculus gracilis in the North American opossum (Didelphis virginiana). BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1997; 98:151-63. [PMID: 9051256 DOI: 10.1016/s0165-3806(96)00167-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The first objective of the present study was to ask when axons of the fasciculus gracilis reach the nucleus gracilis in the North American opossum (Didelphis virginiana). When Fast Blue (FB) was injected into the lumbar cord on postnatal day (PD) 1 and the pups were killed 2 days later, labeled axons were present within a distinct fasciculus gracilis at thoracic and cervical levels of the cord. When comparable injections were made at PD3 or 5 and the pups were allowed to survive for the same time period, a few labeled axons could be followed to the caudal medulla where they were located dorsal to the presumptive nucleus gracilis. In order to verify these observations and to determine if any of the axons which innervate the nucleus gracilis early in development originate within dorsal root ganglia, we also employed cholera toxin conjugated to horseradish peroxidase (CT-HRP) to label dorsal root axons transganglionically. When CT-HRP was injected into the hindlimb on PD1 and the pups were maintained for 1 day prior to death and HRP histochemistry, labeled axons were present within the fasciculus gracilis at thoracic and cervical levels, but they could not be traced into the medulla. When comparable injections were made on PD3, and the pups were maintained for 2 days, labeled axons were present within the caudal medulla. Our second objective was to determine whether axons of the fasciculus gracilis grow through a lesion of their spinal pathway during early development. In one group of animals, the thoracic cord was transected at PD5, 8, 12, 20 and 26 and bilateral injections of Fast Blue (FB) were made four segments caudal to the lesion 30-40 days later. After a 3-5 day survival, the pups were killed and perfused so that the spinal cord and brainstem could be removed and sectioned for fluorescence microscopy. In all of the cases lesioned at PD5, axons of the fasciculus gracilis were labeled rostral to the site of transection and they could be followed to the nucleus gracilis. Evidence for growth of fasciculus gracilis axons into the caudal medulla was also seen in cases lesioned at PD8. In contrast, labeled axons were not observed rostral to the lesion when it was made at PD12 or at later stages of development. In order to verify that some of the axons which crossed the lesion originated within dorsal root ganglia, the thoracic cord was transected at PD5 in another group of animals and 7 days later, injections of CT-HRP were made into one of the hindlimbs. After a 3 day survival, labeled axons could be traced through the lesion site and into the caudal medulla. We conclude that axons of the fasciculus gracilis reach the nucleus gracilis by at least PD5 in the opossum and that they grow through a lesion of their spinal pathway when it is made at the same age or shortly thereafter. The critical period for such growth appears to end between PD8 and PD12.
Collapse
Affiliation(s)
- X M Wang
- Department of Cell Biology, Neurobiology and Anatomy, Ohio State University, College of Medicine, Columbus 43210, USA
| | | | | | | |
Collapse
|
30
|
Kacza J, Härtig W, Seeger J. Oxygen-enriched photoconversion of fluorescent dyes by means of a closed conversion chamber. J Neurosci Methods 1997; 71:225-32. [PMID: 9128160 DOI: 10.1016/s0165-0270(96)00150-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The goal of the present study was an improvement of the widely used photoconversion technique, which still represents the major approach to the ultrastructural analysis of tissue labelled with fluorescent dyes. Since free access of oxygen to the tissue is essential for the dye-dependent photooxidation of diaminobenzidine (DAB), we attempted to facilitate the process using a closed conversion chamber (CCC), which allows photoconversion in an atmosphere of pure oxygen. Fixed rat tissue samples, containing 4Di-10ASP labelled retinal ganglion cells and Cy3 stained cortical perineuronal nets, were choosen to test the applicability and efficiency of the proposed system. The results are compared to corresponding structures photoconverted without pure oxygen. As a result, the employment of the CCC helps saving up to 50% of time required to achieve a comparable degree of photoconversion. Electron microscopical inspection showed no differences between both approaches regarding the distribution of DAB reaction product. However, probably due to the reduced time of irradiation, the ultrastructural integrity of tissue sometimes appeared considerably less affected after photoconversion in the CCC. Additionally, the chamber allowed for safety measures in handling DAB, as the unintentional emission of the presumable carcinogenic substance was completely avoided.
Collapse
Affiliation(s)
- J Kacza
- Institute of Veterinary Anatomy, University of Leipzig, Germany
| | | | | |
Collapse
|
31
|
Tamura R, Mizumura K, Sato J, Kitoh J, Kumazawa T. Segmental distribution of afferent neurons innervating the canine testis. JOURNAL OF THE AUTONOMIC NERVOUS SYSTEM 1996; 58:101-7. [PMID: 8740666 DOI: 10.1016/0165-1838(95)00125-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
To clarify the afferent innervation of the canine scrotal contents, retrograde labeling of neurons in the dorsal root ganglia (DRG) has been carried out using two methods: (1) horseradish peroxidase (HRP) injection into the surface of the testis and epididymis; and (2) exposure of the superior spermatic nerve to a fluorescent dye (Fast blue; FB). Injections of HRP resulted in labeling of DRG cells located predominantly from T10 to L4 (87%) and, to a lesser extent, at S1-S3 (13%). Transection of the vas deferens previous to testicular injections eliminated labeling in the S1-S3 DRG, but not at thoracolumbar levels. These findings indicated that primary afferent fibers of the testis and epididymis project mainly to the DRG at higher than L4 through the superior spermatic nerve, but an additional population of the fibers also projects the sacral level through the inferior spermatic nerve. Exposure of the superior spermatic nerve to FB resulted in a similar distribution of labeled cells as compared with testicular injections of HRP after vasectomy. Labeled cells (8.1%) were also observed in the contralateral T13-L3 DRG. In both FB and HRP groups, the major part of the labeled cells was located in L1 and L2. The sizes of HRP- and FB-labeled cells were smaller than those of unlabeled cells in the L1 and L2 DRG. The cumulative frequency distribution histogram for the diameter of HRP- and FB-labeled cells could be fitted by a normal distribution.
Collapse
Affiliation(s)
- R Tamura
- Department of Neural Regulation, Nagoya University, Japan
| | | | | | | | | |
Collapse
|
32
|
Abstract
To characterize rat glioma cell invasion, 2 x 10(6) fluorophore-labeled or transfection-labeled C6 rat glioma cells were implanted in the rat frontal lobe. Eighty percent of the rats implanted formed bulk tumors (3-4 mm in diameter). Two weeks after implantation, fluorescence microscopy revealed single tumor cells in sites over 16 mm from the bulk brain tumor. Tumor cells distant from the bulk tumor remained single without mass formation and invaded primarily along white matter tracts. Two weeks after tumor implantation, three cell lines were created from each brain by disaggregation and initiation in culture of 1) bulk tumor, 2) contralateral hemisphere, and 3) cerebellum; all disaggregated specimens generated viable cultures. Cells cultured from the contralateral hemisphere were morphologically indistinguishable from cells from the bulk tumor and from the original C6 cell line. Cells cultured from the cerebellum were morphologically quite distinct from the C6 cell line. Cells from disaggregated specimens obtained from the tumor, contralateral hemisphere, and cerebellum were implanted in the frontal lobe of naive rats to test tumorgenicity. Bulk tumor formed in 58% of the rats implanted with specimens from tumor, in 75% of the rats implanted with specimens from contralateral hemisphere, and in only 12.5% of the rats implanted with specimens from the cerebellar hemispheres. Experiments using C6 cells labeled by transfection with the p3' ss DNA vector prior to implantation confirmed that the cells cultured from the contralateral hemisphere were derived from the implanted C6 cells. Experiments with C6 cells anchored in agar served to verify that movement to the contralateral hemisphere was secondary to parenchymal invasion rather than dispersion in the cerebrospinal fluid.
Collapse
Affiliation(s)
- M R Chicoine
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | | |
Collapse
|
33
|
Okoyama S, Moriizumi T, Kitao Y, Kawano J, Kudo M. Anatomical plasticity in the medial superior olive following ablation of the inferior colliculus in neonatal and adult rats. Hear Res 1995; 88:71-8. [PMID: 8576006 DOI: 10.1016/0378-5955(95)00101-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We evaluated the consequences of unilateral ablation of the inferior colliculus (IC) upon the ascending projection from the medial superior olive (MSO) to the IC. Ablation of the IC was performed in rats aged between postnatal day 1 (P1) and maturity. All the rats were given injections of Fluoro-Gold (FG) into the ipsilateral IC at birth (P0) (before the ipsilateral IC was ablated in any case) so that growth of early-developing axons to the ipsilateral IC could be examined for any labeled neurons in the ipsilateral MSO. Upon reaching adulthood, the rats received injections of Fluoro-Ruby (FR) into the contralateral (intact) IC so that aberrant crossed projections to the intact IC could be examined for any labeled neurons in the ipsilateral MSO. These rats were killed 2 days after FR injections. The number of surviving cells in the ipsilateral MSO were counted in Nissl-stained sections for quantitative analysis of retrograde degeneration. The results show that: (1) the total number of neurons was reduced to 64-34% in the ipsilateral MSO as a result of IC ablation; (2) cell reduction by retrograde degeneration followed a U-shaped curve with a maximal effect in rats operated at P7 (reduced to 34%); (3) adult ablation of the IC led to retrograde degeneration that was less severe than that in late neonatal (P7) ablation; (4) an aberrant projection from the MSO to the contralateral IC occurred in rats operated at P1 and P3 but not in rats operated at P7 or maturity. Thus, our findings suggest that growth of late-developing axons is a major factor in the plasticity of this system of projection.
Collapse
Affiliation(s)
- S Okoyama
- Department of Anatomy, School of Medicine, Kanazawa University, Japan
| | | | | | | | | |
Collapse
|
34
|
Abstract
Brain tumor dispersal far from bulk tumor contributes to and, in some instances, dominates disease progression. Three methods were used to characterize brain tumor cell motility in vivo and in vitro: 1) 2 weeks after implantation in rat cerebral cortex, single C6 cells labeled with a fluorescent tag had migrated to brain sites greater than 16 mm distant from bulk tumor; 2) time-lapse videomicroscopy of human brain tumor cells revealed motility of 12.5 microns/hr. Ruffling leading edges and pseudopod formation were most elaborate in more malignant cells; 3) an in vitro assay was devised to quantitatively evaluate motility from a region of high cell density to one of lower cell density. Human brain tumor cells were plated in the center of a petri dish, washed, and refed, establishing a 2-cm circular zone of cells in the dish center. Motility was determined by counting cells daily at predetermined distances from the central zone perimeter. Cells were found 1 cm from the perimeter by 24 hours and 3 cm from the perimeter by 4 days. Increasing serum concentration increased motility; however, neither fibronectin nor arrest of cells in the G0 phase by hydroxyurea altered motility. The addition of cytochalasin B to block cytoskeletal assembly prevented cell motility. Motility increased with increased malignancy. Subpopulations of cells were created by clonal amplification of cells that had migrated most rapidly to the dish periphery. Although morphologically indistinguishable when compared to the original cell line from which they were derived, these subpopulations demonstrated significantly increased motility.
Collapse
Affiliation(s)
- M R Chicoine
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, Missouri
| | | |
Collapse
|
35
|
Moos T. Age-dependent uptake and retrograde axonal transport of exogenous albumin and transferrin in rat motor neurons. Brain Res 1995; 672:14-23. [PMID: 7749735 DOI: 10.1016/0006-8993(94)01329-g] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
This study presents evidence for retrograde axonal transport of exogenous albumin and transferrin in adult brainstem motor neurons, whereas plasma proteins are not transported in neonatal motor neurons. The plasma protein uptake in motor neurons was dose-dependent, suggesting a nonspecific (fluid-phase) uptake mechanism. Further evidence for nonspecific uptake of exogenous transferrin in the motor neuron was found in the presence of transferrin receptor only on the soma and not on the axon terminal. The immunoreaction product of the exogenous plasma proteins was localized as perinuclear granules in association with the lysosomal system, as verified by staining for the lysosomal marker cathepsin D and by ultrastructural examinations. The results suggest that albumin and transferrin derived from hepatic synthesis gain access to motor neurons nonspecifically by retrograde axonal transport, whereas transferrin derived from intracerebral synthesis specifically gains access to motor neurons due to receptor-mediated uptake at the soma of the neuron. The lack of plasma proteins in developing motor neurons suggests that retrograde axonal transport of plasma proteins has no significance for developing axons. Plasma proteins have a potential for transporting toxic metals to motor neurons. Intraneuronal uptake of aluminum-transferrin either by nonspecific uptake in axon terminals or by receptor-mediated uptake at the soma may have a role in the pathogenesis of the motor neuron disease amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- T Moos
- Institute of Medical Anatomy, Panum Institute, University of Copenhagen, Denmark
| |
Collapse
|
36
|
|
37
|
Suzuki WA, Amaral DG. Perirhinal and parahippocampal cortices of the macaque monkey: cortical afferents. J Comp Neurol 1994; 350:497-533. [PMID: 7890828 DOI: 10.1002/cne.903500402] [Citation(s) in RCA: 806] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Neuropsychological studies have recently demonstrated that the macaque monkey perirhinal (areas 35 and 36) and parahippocampal (areas TH and TF) cortices contribute importantly to normal memory function. Unfortunately, neuroanatomical information concerning the cytoarchitectonic organization and extrinsic connectivity of these cortical regions is meager. We investigated the organization of cortical inputs to the macaque monkey perirhinal and parahippocampal cortices by placing discrete injections of the retrograde tracers fast blue, diamidino yellow, and wheat germ agglutinin conjugated to horseradish peroxidase throughout these areas. We found that the macaque monkey perirhinal and parahippocampal cortices receive different complements of cortical inputs. The major cortical inputs to the perirhinal cortex arise from the unimodal visual areas TE and rostral TEO and from area TF of the parahippocampal cortex. The perirhinal cortex also receives projections from the dysgranular and granular subdivisions of the insular cortex and from area 13 of the orbitofrontal cortex. In contrast, area TF of the parahippocampal cortex receives its strongest input from more caudal visual areas V4, TEO, and caudal TE, as well as prominent inputs from polymodal association cortices, including the retrosplenial cortex and the dorsal bank of the superior temporal sulcus. Area TF also receives projections from areas 7a and LIP of the posterior parietal lobe, insular cortex, and areas 46, 13, 45, and 9 of the frontal lobe. As with area TF, area TH receives substantial projections from the retrosplenial cortex as well as moderate projections from the dorsal bank of the superior temporal sulcus; unlike area TF, area TH receives almost no innervation from areas TE and TEO. It does, however, receive relatively strong inputs from auditory association areas on the convexity of the superior temporal gyrus.
Collapse
Affiliation(s)
- W A Suzuki
- Laboratory of Neuropsychology, NIMH, Bethesda, Maryland 20892
| | | |
Collapse
|
38
|
Theriault E, Tator CH. Persistence of rubrospinal projections following spinal cord injury in the rat. J Comp Neurol 1994; 342:249-58. [PMID: 8201034 DOI: 10.1002/cne.903420208] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Recent neurophysiological and magnetic resonance imaging studies of clinically "complete" human spinal cord injuries indicate that some patients have considerable subclinical function and substantial morphological integrity of descending spinal tracts. In contrast, extensive histopathological changes, including cell death, have been described in central nervous system nuclei projecting to the cord following experimental transection or hemisection of the spinal cord in animal models. We have used a rodent model of severe compression cord injury that more closely resembles the clinical pathophysiology to investigate the extent of the persistence of the rubrospinal projection. Counts of red nucleus neurons retrogradely labelled with Fluorogold demonstrate that in contrast to the results obtained with transection models, compression injuries of the spinal cord do not result in massive loss of rubrospinal projections, at least up to 8 weeks postinjury. The results also suggest that many of the axons persist distal to the lesion site and that they are functionally intact with respect to retrograde transport capabilities.
Collapse
Affiliation(s)
- E Theriault
- Department of Surgery (Division of Neurosurgery), University of Toronto, Ontario, Canada
| | | |
Collapse
|
39
|
Lu MT, Preston JB, Strick PL. Interconnections between the prefrontal cortex and the premotor areas in the frontal lobe. J Comp Neurol 1994; 341:375-92. [PMID: 7515081 DOI: 10.1002/cne.903410308] [Citation(s) in RCA: 354] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We examined interconnections between a portion of the prefrontal cortex and the premotor areas in the frontal lobe to provide insights into the routes by which the prefrontal cortex gains access to the primary motor cortex and the central control of movement. We placed multiple injections of one retrograde tracer in the arm area of the primary motor cortex to define the premotor areas in the frontal lobe. Then, in the same animal, we placed multiple injections of another retrograde tracer in and around the principal sulcus (Walker's area 46). This double labeling strategy enabled us to determine which premotor areas are interconnected with the prefrontal cortex. There are three major results of this study. First, we found that five of the six premotor areas in the frontal lobe are interconnected with the dorsolateral prefrontal cortex. Second, the major site for interactions between the prefrontal cortex and the premotor areas is the ventral premotor area. Third, the prefrontal cortex is interconnected with only a portion of the arm representation in three premotor areas (supplementary motor area, the caudal cingulate motor area on the ventral bank of the cingulate sulcus, and the dorsal premotor area), whereas it is interconnected with the entire arm representation in the ventral premotor area and the rostral cingulate motor area. These observations indicate that the output of the prefrontal cortex targets specific premotor areas and even subregions within individual premotor areas.
Collapse
Affiliation(s)
- M T Lu
- Research Service (151), V.A. Medical Center, Syracuse, New York 13210
| | | | | |
Collapse
|
40
|
Onifer SM, White LA, Whittemore SR, Holets VR. In vitro labeling strategies for identifying primary neural tissue and a neuronal cell line after transplantation in the CNS. Cell Transplant 1993; 2:131-49. [PMID: 8143080 DOI: 10.1177/096368979300200207] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Potential labels for identifying embryonic raphe neurons and a clonal, neuronally differentiating, raphe-derived cell line, RN33B, in CNS transplantation studies were tested by first characterizing the labels in vitro. The labels that were tested included 4',6-diamidino-2-phenylindole hydrochloride, 1,1'-dioctadecyl-3,3,3'-tetramethylindocarbocyanine perchlorate, the Escherichia coli lacZ gene, Fast Blue, Fluoro-Gold, fluorescein-conjugated latex microspheres, fluorescein isothiocyanate-conjugated or nonconjugated Phaseolus vulgaris leucoagglutinin, methyl o-(6-amino-3'-imino-3H-xanthen-9-yl) benzoate monohydrochloride, or tetanus toxin C fragment. Subsequently, the optimal in vitro labels for embryonic raphe neurons and for RN33B cells were characterized in vivo after CNS transplantation. In vitro, 1,1'-dioctadecyl-3,3,3'-tetramethylindocarbocyanine perchlorate (DiI) optimally labeled embryonic neurons. The Escherichia coli lacZ gene optimally labeled RN33B cells. Most labels were rapidly diluted in cultures of embryonic astrocytes and proliferating RN33B cells. Some labels were toxic and were often retained in cellular debris. In vivo, DiI was visualized in transplanted, DiI-labeled raphe neurons, but not in astrocytes up to 1 mo posttransplant. DiI-labeled host cells were seen after transplantation of lysed, DiI-labeled cells. beta-Galactosidase was visualized in transplanted, Escherichia coli lacZ gene-labeled RN33B cells after 15 days in vivo. No beta-galactosidase was seen in host cells after transplantation of lysed, lacZ-labeled RN33B cells. The results demonstrate that labels for use in CNS transplantation studies should be optimized for the specific population of donor cells under study, with the initial step being characterization in vitro followed by in vivo analysis. Appropriate controls for false-positive labeling of host cells should always be assessed.
Collapse
Affiliation(s)
- S M Onifer
- Department of Cell Biology and Anatomy, University of Miami School of Medicine, FL 33136
| | | | | | | |
Collapse
|
41
|
Manaker S, Tischler LJ, Morrison AR. Raphespinal and reticulospinal axon collaterals to the hypoglossal nucleus in the rat. J Comp Neurol 1992; 322:68-78. [PMID: 1385487 DOI: 10.1002/cne.903220106] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Neurons in the medial tegmental field project directly to spinal somatic motoneurons and to cranial motoneuron pools such as the hypoglossal nucleus. The axons of these neurons may be highly collateralized, projecting to multiple levels of the spinal cord and to many diverse regions at different levels of the neuraxis. We employed a double fluorescent retrograde tracer technique to examine whether medial tegmental neurons that project to the spinal cord also project to the hypoglossal nucleus. Injections of Diamidino Yellow into the hypoglossal nucleus and Fast Blue into the spinal cord produced large numbers of double labeled neurons in the medial tegmental field, particularly in the caudal raphe nuclei and adjacent ventromedial reticular formation. In these structures the number of neurons projecting to both the hypoglossal nucleus and the spinal cord was equivalent to the number of neurons projecting to multiple levels of the spinal cord observed in control animals. Fewer neurons projecting to both the hypoglossal nucleus and the spinal cord were observed in several other nuclei and subregions of the medial tegmental field, while almost no such neurons were observed in the lateral tegmental field or other pontomedullary structures. These results demonstrate that neurons of the caudal raphe nuclei and adjacent ventromedial reticular formation project to both the spinal cord and the hypoglossal nucleus, and support the concept that the diffuse projections to motoneuron pools from the medial tegmental field globally modulate both spinal and cranial somatic motoneuron excitability.
Collapse
Affiliation(s)
- S Manaker
- Pulmonary and Critical Care Division, School of Veterinary Medicine, University of Pennsylvania, Philadelphia 19104
| | | | | |
Collapse
|
42
|
Weiss ML, Cobbett P. Intravenous injection of Evans Blue labels magnocellular neuroendocrine cells of the rat supraoptic nucleus in situ and after dissociation. Neuroscience 1992; 48:383-95. [PMID: 1376451 DOI: 10.1016/0306-4522(92)90498-q] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Previous work has demonstrated that intravenous injection of neuronal tracers, e.g. horseradish peroxidase or Fast Blue, can retrogradely label neurons in brain areas that project outside the blood-brain barrier, e.g. magnocellular neuroendocrine neurons of the hypothalamus. Here we have shown that 24 h after intravenous injection of the fluorescent retrograde tracer Evans Blue, the same population of magnocellular neuroendocrine neurons is labeled in the paraventricular, supraoptic and accessory magnocellular nuclei. Parvicellular neuroendocrine cells in the paraventricular nuclei are also labeled. Most Evans Blue-labeled magnocellular neuroendocrine cells in the supraoptic nucleus could be stained immunocytochemically for neurophysins, suggesting that these neurons continue to produce their peptide hormones after taking up the fluorescent dye. Ultrastructural observation of supraoptic cells retrogradely labeled with Evans Blue shows that 95% of the neurons appeared healthy. There was no ultrastructural evidence of degeneration, hyperstimulation, or interruption of the axoplasmic flow. Labeling the neuroendocrine cells with Evans Blue did not alter the size of magnocellular cells, the animal's fluid balance or ingestive behavior. Following enzymatic/mechanical dissociation of the supraoptic nucleus from animals that had been injected with Evans Blue 24 h previously, phase-bright neurons that often contained fluorescent material were observed, thus identifying these neurons as neuroendocrine. Recording from identified neuroendocrine cells showed that these neurons generated spontaneous or current-evoked overshooting action potentials with an afterhyperpolarization and had negative resting membrane potentials. Action potential broadening, a feature of magnocellular neurons, was observed during bursts of action potentials elicited by depolarizing current injection. Taken together, this work would suggest that Evans Blue is non-toxic at the doses used and that it provides a method to identify single neuroendocrine cells in primary cell cultures made from adult hypothalamus for voltage-clamp recordings.
Collapse
Affiliation(s)
- M L Weiss
- Department of Psychology, Michigan State University, East Lansing 48824-1117
| | | |
Collapse
|
43
|
Affiliation(s)
- J D Spikes
- Department of Biology, University of Utah, Salt Lake City 84112
| |
Collapse
|
44
|
Bregman BS, Bernstein-Goral H. Both regenerating and late-developing pathways contribute to transplant-induced anatomical plasticity after spinal cord lesions at birth. Exp Neurol 1991; 112:49-63. [PMID: 1707369 DOI: 10.1016/0014-4886(91)90113-q] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Fetal spinal cord transplants prevent the retrograde cell death of immature axotomized central nervous system (CNS) neurons and provide a terrain which supports axonal elongation in the injured immature spinal cord. The current experiments were designed to determine whether the axons which grow across the site of the neonatal lesion and transplant are derived from axotomized neurons and are therefore regenerating or whether the axons which grow across the transplant are late-growing axons that have not been axotomized directly. We have used an experimental paradigm of midthoracic spinal cord lesion plus transplant at birth and temporally spaced retrograde tracing with the fluorescent tracers fast blue (FB) and diamidino yellow (DY) to address this issue. Fast blue was placed into the site of a spinal cord hemisection in rat pups less than 48 h old. After 3-6 h to allow uptake and transport of the tracer, the source of fast blue was removed by aspiration and the lesion was enlarged to an "over-hemisection." A transplant of Embryonic Day 14 fetal spinal cord tissue was placed into the lesion site. The animals survived 3-6 weeks prior to the injection of the second tracer (DY) bilaterally into the host spinal cord caudal to the lesion plus transplant. Neurons with late-developing axons would not be exposed to the first dye (FB), but could only be exposed to the second tracer, diamidino yellow. Thus, neurons with a diamidino yellow-labeled nucleus are interpreted as "late-developing" neurons. Neurons axotomized by midthoracic spinal cord lesion at birth could be exposed to the first tracer, fast blue. If after axotomy they regrew caudal to the transplant, they could be labeled by the second tracer as well. We interpret these double-labeled neurons as regenerating neurons. If neurons labeled with fast blue and axotomized by the spinal cord hemisection either failed to regenerate or grew into the transplant but not caudal to it, they would be labeled only by the first dye. We have examined the pattern and distribution of single (FB or DY)- and double (FB + DY)-labeled neurons in the sensorimotor cortex, red nucleus, locus coeruleus, and raphe nuclei. The sensorimotor cortex contains only DY-labeled neurons. The red nucleus contains both FB- and FB + DY-labeled neurons.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- B S Bregman
- Department of Anatomy and Cell Biology, Georgetown University School of Medicine, Washington, DC 20007
| | | |
Collapse
|
45
|
McDonald AJ. Organization of amygdaloid projections to the prefrontal cortex and associated striatum in the rat. Neuroscience 1991; 44:1-14. [PMID: 1722886 DOI: 10.1016/0306-4522(91)90247-l] [Citation(s) in RCA: 364] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The organization of connections between the amygdala, prefrontal cortex and striatum was studied using anterograde and retrograde tract tracing techniques in the rat. The anterograde transport of Phaseolus vulgaris leucoagglutinin and wheat germ agglutinin conjugated to horseradish peroxidase was used to examine the striatal projections of the prefrontal cortex. These studies revealed that the prelimbic area of the medial prefrontal cortex projects mainly to the medial part of the striatum, whereas the dorsal agranular insular area of the lateral prefrontal cortex projects mainly to the ventrolateral part of the striatum. The organization of amygdaloid projections to the prefrontal cortex and its associated portions of the striatum was investigated using the fluorescence retrograde tract tracing technique. Different color fluorescent dyes, True Blue and Diamidino Yellow, were injected into the prefrontal cortex and striatum. These studies demonstrated that medial portions of the basolateral nucleus, and adjacent portions of the lateral, basomedial and amygdalo-hippocampal nuclei, project to both the medial prefrontal cortex and its associated medial striatal region. The rostral pole and lateral portions of the basolateral nucleus project to both the lateral prefrontal cortex and its associated lateral striatal region. Many neurons in the basolateral amygdaloid nucleus, and to a lesser extent other amygdaloid nuclei, were double-labeled in these experiments, indicating that these cells send collaterals to both the prefrontal cortex and striatum. These findings indicate that discrete areas of the amygdala, and in some cases individual amygdaloid neurons, can modulate information processing in the first two links of distinct cortico-striato-pallidal systems arising in the medial and lateral prefrontal cortex.
Collapse
Affiliation(s)
- A J McDonald
- Department of Anatomy, Cell Biology and Neurosciences, University of South Carolina School of Medicine, Columbia 29208
| |
Collapse
|
46
|
Hasegawa M, Rosenbluth J. Transplantation of labeled fetal spinal cord fragments into juvenile myelin-deficient rat spinal cord. Anat Rec (Hoboken) 1991; 229:138-43. [PMID: 1996780 DOI: 10.1002/ar.1092290116] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Minced and triturated fragments from the spinal cord of normal rat fetuses (15-18 days gestation) labeled with the fluorescent dye fast blue (FB) were successfully transplanted into juvenile myelin-deficient rat spinal cord under direct observation. Clusters of myelinated fibers were found subsequently in the recipient spinal cord, and, by fluorescence microscopy, clusters of FB-labeled cells were found at corresponding sites. The results indicate that the surgical approach used is suitable for transplantation of tissue fragments into a defined region of juvenile rat spinal cord, that FB can be used to locate the transplanted cells subsequently, and that FB does not interfere with maturation of the donor glia or with myelin formation.
Collapse
Affiliation(s)
- M Hasegawa
- Department of Physiology, New York University School of Medicine, New York
| | | |
Collapse
|
47
|
Luppi PH, Fort P, Jouvet M. Iontophoretic application of unconjugated cholera toxin B subunit (CTb) combined with immunohistochemistry of neurochemical substances: a method for transmitter identification of retrogradely labeled neurons. Brain Res 1990; 534:209-24. [PMID: 1705851 DOI: 10.1016/0006-8993(90)90131-t] [Citation(s) in RCA: 261] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In this report, we demonstrate that cholera-toxin B subunit (CTb) is a very sensitive retrograde tracer in the central nervous system when recognized by streptavidin-peroxidase immunohistochemistry. We further show that: (1) injection of a small volume of CTb gives rise to small sharply defined injection sites limited to the cell group of interest associated with the labeling of all the known afferent projections, (2) CTb is taken up, and anterogradely as well as retrogradely transported in damaged but not intact fibers of passage, (3) CTb can be applied iontophoretically, allowing us to study the afferents to small cell groups without any evidence of tissue necrosis in the sites and therefore without artefactual labeling due to uptake by damaged fibers of passage, (4) the use of 4% paraformaldehyde fixative ideally suited for the preservation of most neural antigens, the addition of a 48 h colchicine treatment and the development of a double immunohistochemical method allow the biochemical characterization of the cell of origin of particular pathways in the CNS, (5) CTb is also anterogradely transported with an extensive filling of axons and axon terminals and thereby opens up the possibility of identifying simultaneously the afferents as well as the efferents of the group of cells studied and finally (6) the very long conservation of the preparation, the possibility of counterstaining it and of making camera lucida drawings allow easy and precise localization of the retrogradely labeled cells.
Collapse
Affiliation(s)
- P H Luppi
- Département de Médecine Expérimentale, INSERM U. 52, C.N.R.S. UA1195, Université Claude Bernard, Lyon, France
| | | | | |
Collapse
|
48
|
Abstract
The intensity of labelling of neuronal perikarya with Fluoro-gold or rhodamine microspheres appeared unchanged in rats surviving one year after surgery. These tracers may be used for sequential labelling with long intervals and to study brain connections in precious specimens.
Collapse
Affiliation(s)
- I Divac
- Institute of Neurophysiology, University of Copenhagen, School of Medicine, Denmark
| | | |
Collapse
|
49
|
Cobbett P, Weiss ML. Voltage-clamp recordings from identified dissociated neuroendocrine cells of the adult rat supraoptic nucleus. J Neuroendocrinol 1990; 2:267-9. [PMID: 19215345 DOI: 10.1111/j.1365-2826.1990.tb00403.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In vitro intracellular recordings of membrane potential obtained from the oxytocin and vasopressin neurons of the mammalian hypothalamo-neurohypophysial system in slices (1-3) and expiants (4, 5) have demonstrated many of the intrinsic properties of these magnocellular neuroendocrine cells (MNCs). Voltage-clamp techniques, which are required to study directly the currents underlying intrinsic or transmitter-evoked potential changes, have been applied to cultured embryonic (6) or neonatal supraoptic neurons (7-9) and have been successfully applied to adult supraoptic neurons in situ in only one laboratory (10, 11). We have modified a technique for dissociation of viable adult guineapig hippocampal neurons (12) to dissociate supraoptic MNCs from adult rats for voltage-clamp studies. MNCs were selectively labelled with a fluorescent dye in vivo so that they could be identified after dissociation and prior to making recordings. These data have been published in abstract form elsewhere (13, 14).
Collapse
Affiliation(s)
- P Cobbett
- Department of Pharmacology and Toxicology and The Neuroscience Program, Michigan State University, East Lansing, Michigan 48824, USA
| | | |
Collapse
|
50
|
Llewellyn-Smith IJ, Minson JB, Wright AP, Hodgson AJ. Cholera toxin B-gold, a retrograde tracer that can be used in light and electron microscopic immunocytochemical studies. J Comp Neurol 1990; 294:179-91. [PMID: 1692043 DOI: 10.1002/cne.902940203] [Citation(s) in RCA: 66] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The purpose of this study was to test whether a new retrograde tracer, the B subunit of cholera toxin conjugated to colloidal gold particles (CTB-gold), was taken up and transported by neurons in the central nervous system of the rat. Retrograde transport of CTB-gold was assessed from axon terminals, from damaged nerve fibers, and from axons of passage. For light microscopy, CTB-gold was visualized by silver intensification; for electron microscopy, sections were silver-intensified with or without subsequent gold toning. Retrogradely transported CTB-gold was detected in neurons after survival times of 12 hours to 42 days and appeared as black punctate deposits in perikarya and proximal dendrites at the light microscope level. Ultrastructurally, the deposits were usually associated with lysosomes. Injections of CTB-gold into the caudal ventrolateral medulla or into the lateral horn of the spinal cord gave small well-defined injection sites and resulted in retrograde labelling in medullary neurons in the same locations as similarly placed injections of wheat germ agglutinin-horseradish peroxidase. When injected into the superior cervical ganglion, CTB-gold was transported to nerve cell bodies in the spinal cord, but application of CTB-gold to the cut cervical sympathetic trunk did not label neurons in the spinal cord. Injection of CTB-gold into the nodose ganglion retrogradely labelled neurons in the dorsal motor nucleus of the vagus and the nucleus ambiguus. CTB-gold was not transported anterogradely from injections sites within the medulla. Nerve fibers and cell bodies containing neuropeptides, monoamines, or neurotransmitter-synthesizing enzymes were readily immunostained after silver intensification of retrogradely transported CTB-gold. Immunoreactivity for neuropeptides and enzymes was also demonstrated ultrastructurally after silver intensification and gold toning. These results show that CTB-gold is retrogradely transported from nerve terminals and fibers of passage but not from damaged axons. CTB-gold gives well-localized injection sites and persists in neurons for weeks. Transported CTB-gold is easily visualized and its detection is compatible with light and electron microscopic immunocytochemistry. These properties make CTB-gold a valuable tool for studying the connectivity and neurochemistry of pathways in the central nervous system.
Collapse
Affiliation(s)
- I J Llewellyn-Smith
- Department of Medicine, School of Medicine, Flinders University, Bedford Park, South Australia
| | | | | | | |
Collapse
|