1
|
Liu PP, Han X, Li X, Dai SK, Xu YJ, Jiao LF, Du HZ, Zhao LH, Li RF, Teng ZQ, Yang YG, Liu CM. An EED/PRC2-H19 Loop Regulates Cerebellar Development. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2403591. [PMID: 39498824 DOI: 10.1002/advs.202403591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 08/29/2024] [Indexed: 11/07/2024]
Abstract
EED (embryonic ectoderm development) is a core subunit of the polycomb repressive complex 2 (PRC2), which senses the trimethylation of histone H3 lysine 27 (H3K27). However, its biological function in cerebellar development remains unknown. Here, we show that EED deletion from neural stem cells (NSCs) or cerebellar granule cell progenitors (GCPs) leads to reduced GCPs proliferation, cell death, cerebellar hypoplasia, and motor deficits in mice. Joint profiling of transcripts and ChIP-seq analysis in cerebellar granule cells reveals that EED regulates bunches of genes involved in cerebellar development. EED ablation exhibits overactivation of a developmental repressor long non-coding RNA H19. Importantly, an obvious H3K27ac enrichment is found at Ctcf, a trans-activator of H19, and H3K27me3 enrichment at the H19 imprinting control region (ICR), suggesting that EED regulates H19 in an H3K27me3-dependent manner. Intriguingly, H19 deletion reduces EED expression and the reprogramming of EED-mediated H3K27me3 profiles, resulting in increased proliferation, differentiation, and decreased apoptosis of GCPs. Finally, molecular and genetic evidence provides that increased H19 expression is responsible for cerebellar hypoplasia and motor defects in EED mutant mice. Thus, this study demonstrates that EED, H19 forms a negative feedback loop, which plays a crucial role in cerebellar morphogenesis and controls cerebellar development.
Collapse
Affiliation(s)
- Pei-Pei Liu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiao Han
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, College of Future Technology, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao Li
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shang-Kun Dai
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ya-Jie Xu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
| | - Lin-Fei Jiao
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hong-Zhen Du
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
| | - Li-Hua Zhao
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, 211166, China
| | - Rong-Feng Li
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, 211166, China
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Zhao-Qian Teng
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yun-Gui Yang
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, College of Future Technology, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 100049, China
- China National Center for Bioinformation, Beijing, 100101, China
| | - Chang-Mei Liu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
2
|
Lin IH, Li YR, Chang CH, Cheng YW, Wang YT, Tsai YS, Lin PY, Kao CH, Su TY, Hsu CS, Tung CY, Hsu PH, Ayrault O, Chung BC, Tsai JW, Wang WJ. Regulation of primary cilia disassembly through HUWE1-mediated TTBK2 degradation plays a crucial role in cerebellar development and medulloblastoma growth. Cell Death Differ 2024; 31:1349-1361. [PMID: 38879724 PMCID: PMC11445238 DOI: 10.1038/s41418-024-01325-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/04/2024] [Accepted: 06/10/2024] [Indexed: 10/03/2024] Open
Abstract
Development of the cerebellum requires precise regulation of granule neuron progenitor (GNP) proliferation. Although it is known that primary cilia are necessary to support GNP proliferation, the exact molecular mechanism governing primary cilia dynamics within GNPs remains elusive. Here, we establish the pivotal roles for the centrosomal kinase TTBK2 (Tau tubulin kinase-2) and the E3 ubiquitin ligase HUWE1 in GNP proliferation. We show that TTBK2 is highly expressed in proliferating GNPs under Sonic Hedgehog (SHH) signaling, coinciding with active GNP proliferation and the presence of primary cilia. TTBK2 stabilizes primary cilia by inhibiting their disassembly, thereby promoting GNP proliferation in response to SHH. Mechanistically, we identify HUWE1 as a novel centrosomal E3 ligase that facilitates primary cilia disassembly by targeting TTBK2 degradation. Disassembly of primary cilia serves as a trigger for GNP differentiation, allowing their migration from the external granule layer (EGL) of the cerebellum to the internal granule layer (IGL) for subsequent maturation. Moreover, we have established a link between TTBK2 and SHH-type medulloblastoma (SHH-MB), a tumor characterized by uncontrolled GNP proliferation. TTBK2 depletion inhibits SHH-MB proliferation, indicating that TTBK2 may be a potential therapeutic target for this cancer type. In summary, our findings reveal the mechanism governing cerebellar development and highlight a potential anti-cancer strategy for SHH-MB.
Collapse
Affiliation(s)
- I-Hsuan Lin
- Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Yue-Ru Li
- Institute of Brain Science, School of Medicine, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Chia-Hsiang Chang
- Institute of Brain Science, School of Medicine, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Yu-Wen Cheng
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Yu-Ting Wang
- Institute of Molecular Biology, Academia Sinica, Taipei, 115, Taiwan
- Department of Life Sciences, National Central University, Taoyuan, 300, Taiwan
| | - Yu-Shuen Tsai
- Cancer and Immunology Research Center, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Pei-Yi Lin
- Institute of Molecular Biology, Academia Sinica, Taipei, 115, Taiwan
- Department of Life Sciences, National Central University, Taoyuan, 300, Taiwan
| | - Chien-Han Kao
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Ting-Yu Su
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Chih-Sin Hsu
- Cancer and Immunology Research Center, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Chien-Yi Tung
- Cancer and Immunology Research Center, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Pang-Hung Hsu
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, 202, Taiwan
| | - Olivier Ayrault
- Institut Curie, PSL Research University, CNRS UMR, INSERM, Orsay, France
- Université Paris Sud, Université Paris-Saclay, CNRS UMR, INSERM U, Orsay, France
| | - Bon-Chu Chung
- Institute of Molecular Biology, Academia Sinica, Taipei, 115, Taiwan
- Graduate Institute of Biomedical Sciences, Neuroscience and Brain Disease Center, China Medical University, Taichung, 404, Taiwan
| | - Jin-Wu Tsai
- Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan.
- Institute of Brain Science, School of Medicine, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan.
- Advanced Therapeutics Research Center, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan.
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan.
| | - Won-Jing Wang
- Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan.
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan.
- Advanced Therapeutics Research Center, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan.
| |
Collapse
|
3
|
Yoo KH, Marianayagam NJ, Park DJ, Zamarud A, Gu X, Pollom E, Soltys SG, Meola A, Chang SD. The Role of CyberKnife Stereotactic Radiosurgery in Recurrent Cranial Medulloblastomas across Pediatric and Adult Populations. J Clin Med 2024; 13:3592. [PMID: 38930121 PMCID: PMC11205184 DOI: 10.3390/jcm13123592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/11/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Background/Objectives: Medulloblastoma is the most common malignant brain tumor in children. In recent decades, the therapeutic landscape has undergone significant changes, with stereotactic radiosurgery (SRS) emerging as a promising treatment for recurrent cases. Our study provides a comprehensive analysis of the long-term efficacy and safety of SRS in recurrent medulloblastomas across both pediatric and adult patients at a single institution. Methods: We retrospectively reviewed the clinical and radiological records of patients who underwent CyberKnife SRS for recurrent cranial medulloblastomas at our institution between 1998 and 2023. Follow-up data were available for 15 medulloblastomas in 10 patients. The cohort comprised eight pediatric patients (ages 3-18) and two adult patients (ages 19-75). The median age at the time of SRS was 13 years, the median tumor volume accounted for 1.9 cc, the median biologically equivalent dose (BED) was 126 Gy, and the single-fraction equivalent dose (SFED) was 18 Gy. The SRS was administered at 75% of the median isodose line. Results: Following a median follow-up of 39 months (range: 6-78), 53.3% of the medulloblastomas progressed, 13.3% regressed, and 33.3% remained stable. The 3-year local tumor control (LTC) rate for all medulloblastomas was 65%, with lower rates observed in the adult cohort (50%) and higher rates in pediatric patients (67%). The 3-year overall survival (OS) rate was 70%, with significantly higher rates in pediatric patients (75%) compared to adult patients (50%). The 3-year progression-free survival (PFS) rate was 58.3%, with higher rates in pediatric patients (60%) compared to adult patients (50%). Two pediatric patients developed radiation-induced edema, while two adult patients experienced radiation necrosis at the latest follow-up, with both adult patients passing away. Conclusions: Our study provides a complex perspective on the efficacy and safety of CyberKnife SRS in treating recurrent cranial medulloblastomas across pediatric and adult populations. The rarity of adverse radiation events (AREs) underscores the safety profile of SRS, reinforcing its role in enhancing treatment outcomes. The intricacies of symptomatic outcomes, intertwined with factors such as age, tumor location, and prior surgeries, emphasize the need for personalized treatment approaches. Our findings underscore the imperative for ongoing research and the development of more refined treatment strategies for recurrent medulloblastomas. Given the observed disparities in treatment outcomes, a more meticulous tailoring of treatment approaches becomes crucial.
Collapse
Affiliation(s)
- Kelly H. Yoo
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94304, USA; (N.J.M.); (D.J.P.); (A.Z.); (A.M.)
| | - Neelan J. Marianayagam
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94304, USA; (N.J.M.); (D.J.P.); (A.Z.); (A.M.)
| | - David J. Park
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94304, USA; (N.J.M.); (D.J.P.); (A.Z.); (A.M.)
| | - Aroosa Zamarud
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94304, USA; (N.J.M.); (D.J.P.); (A.Z.); (A.M.)
| | - Xuejun Gu
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94304, USA; (X.G.); (E.P.); (S.G.S.)
| | - Erqi Pollom
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94304, USA; (X.G.); (E.P.); (S.G.S.)
| | - Scott G. Soltys
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94304, USA; (X.G.); (E.P.); (S.G.S.)
| | - Antonio Meola
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94304, USA; (N.J.M.); (D.J.P.); (A.Z.); (A.M.)
| | - Steven D. Chang
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94304, USA; (N.J.M.); (D.J.P.); (A.Z.); (A.M.)
| |
Collapse
|
4
|
Collins RRJ, Gee RRF, Sanchez MCH, Tozandehjani S, Bayat T, Breznik B, Lee AK, Peters ST, Connelly JP, Pruett-Miller SM, Roussel MF, Rakheja D, Tillman HS, Potts PR, Fon Tacer K. Melanoma antigens in pediatric medulloblastoma contribute to tumor heterogeneity and species-specificity of group 3 tumors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.14.594201. [PMID: 38798351 PMCID: PMC11118370 DOI: 10.1101/2024.05.14.594201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Background Medulloblastoma (MB) is the most malignant childhood brain cancer. Group 3 MB subtype accounts for about 25% of MB diagnoses and is associated with the most unfavorable outcomes. Herein, we report that more than half of group 3 MB tumors express melanoma antigens (MAGEs), which are potential prognostic and therapeutic markers. MAGEs are tumor antigens, expressed in several types of adult cancers and associated with poorer prognosis and therapy resistance; however, their expression in pediatric cancers is mostly unknown. The aim of this study was to determine whether MAGEs are activated in pediatric MB. Methods To determine MAGE frequency in pediatric MB, we obtained formalin-fixed paraffin-embedded tissue (FFPE) samples of 34 patients, collected between 2008 - 2015, from the Children's Medical Center Dallas pathology archives and applied our validated reverse transcription quantitative PCR (RT-qPCR) assay to measure the relative expression of 23 MAGE cancer-testis antigen genes. To validate our data, we analyzed several published datasets from pediatric MB patients and patient-derived orthotopic xenografts, totaling 860 patients. We then examined how MAGE expression affects the growth and oncogenic potential of medulloblastoma cells by CRISPR-Cas9- and siRNA-mediated gene depletion. Results Our RT-qPCR analysis suggested that MAGEs were expressed in group 3/4 medulloblastoma. Further mining of bulk and single-cell RNA-sequencing datasets confirmed that 50-75% of group 3 tumors activate a subset of MAGE genes. Depletion of MAGEAs, B2, and Cs alter MB cell survival, viability, and clonogenic growth due to decreased proliferation and increased apoptosis. Conclusions These results indicate that targeting MAGEs in medulloblastoma may be a potential therapeutic option for group 3 medulloblastomas. Key Points Several Type I MAGE CTAs are expressed in >60% of group 3 MBs. Type I MAGEs affect MB cell proliferation and apoptosis. MAGEs are potential biomarkers and therapeutic targets for group 3 MBs. Importance of the Study This study is the first comprehensive analysis of all Type I MAGE CTAs ( MAGEA , -B , and -C subfamily members) in pediatric MBs. Our results show that more than 60% of group 3 MBs express MAGE genes, which are required for the viability and growth of cells in which they are expressed. Collectively, these data provide novel insights into the antigen landscape of pediatric MBs. The activation of MAGE genes in group 3 MBs presents potential stratifying and therapeutic options. Abstract Figure
Collapse
|
5
|
Hallada LP, Shirinifard A, Solecki DJ. Junctional Adhesion Molecule (JAM)-C recruitment of Pard3 and drebrin to cell contacts initiates neuron-glia recognition and layer-specific cell sorting in developing cerebella. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.26.586832. [PMID: 38585827 PMCID: PMC10996703 DOI: 10.1101/2024.03.26.586832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Sorting maturing neurons into distinct layers is critical for brain development, with disruptions leading to neurological disorders and pediatric cancers. Lamination coordinates where, when, and how cells interact, facilitating events that direct migrating neurons to their destined positions within emerging neural networks and control the wiring of connections in functional circuits. While the role of adhesion molecule expression and presentation in driving adhesive recognition during neuronal migration along glial fibers is recognized, the mechanisms by which the spatial arrangement of these molecules on the cell surface dictates adhesive specificity and translates contact-based external cues into intracellular responses like polarization and cytoskeletal organization remain largely unexplored. We used the cerebellar granule neuron (CGN) system to demonstrate that JAM-C receptor cis-binding on the same cell and trans-binding to neighboring cells controls the recruitment of the Pard3 polarity protein and drebrin microtubule-actin crosslinker at CGN to glial adhesion sites, complementing previous studies that showed Pard3 controls JAM-C exocytic surface presentation. Leveraging advanced imaging techniques, specific probes for cell recognition, and analytical methods to dissect adhesion dynamics, our findings reveal: 1) JAM-C cis or trans mutants result in reduced adhesion formation between CGNs and cerebellar glia, 2) these mutants exhibit delayed recruitment of Pard3 at the adhesion sites, and 3) CGNs with JAM-C mutations experience postponed sorting and entry into the cerebellar molecular layer (ML). By developing a conditional system to image adhesion components from two different cells simultaneously, we made it possible to investigate the dynamics of cell recognition on both sides of neuron-glial contacts and the subsequent recruitment of proteins required for CGN migration. This system and an approach that calculates local correlation based on convolution kernels at the cell adhesions site revealed that CGN to CGN JAM recognition preferentially recruits higher levels of Pard3 and drebrin than CGN to glia JAM recognition. The long latency time of CGNs in the inner external germinal layer (EGL) can be attributed to the combined strength of CGN-CGN contacts and the less efficient Pard3 recruitment by CGN-BG contacts, acting as gatekeepers to ML entry. As CGNs eventually transition to glia binding for radial migration, our research demonstrates that establishing permissive JAM-recognition sites on glia via cis and trans interactions of CGN JAM-C serves as a critical temporal checkpoint for sorting at the EGL to ML boundary. This mechanism integrates intrinsic and extrinsic cellular signals, facilitating heterotypic cell sorting into the ML and dictating the precise spatial organization within the cerebellar architecture.
Collapse
|
6
|
Sheng H, Li H, Zeng H, Zhang B, Lu Y, Liu X, Xu Z, Zhang J, Zhang L. Heterogeneity and tumoral origin of medulloblastoma in the single-cell era. Oncogene 2024; 43:839-850. [PMID: 38355808 PMCID: PMC10942862 DOI: 10.1038/s41388-024-02967-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 02/05/2024] [Indexed: 02/16/2024]
Abstract
Medulloblastoma is one of the most common malignant pediatric brain tumors derived from posterior fossa. The current treatment includes maximal safe surgical resection, radiotherapy, whole cranio-spinal radiation and adjuvant with chemotherapy. However, it can only limitedly prolong the survival time with severe side effects and relapse. Defining the intratumoral heterogeneity, cellular origin and identifying the interaction network within tumor microenvironment are helpful for understanding the mechanisms of medulloblastoma tumorigenesis and relapse. Due to technological limitations, the mechanisms of cellular heterogeneity and tumor origin have not been fully understood. Recently, the emergence of single-cell technology has provided a powerful tool for achieving the goal of understanding the mechanisms of tumorigenesis. Several studies have demonstrated the intratumoral heterogeneity and tumor origin for each subtype of medulloblastoma utilizing the single-cell RNA-seq, which has not been uncovered before using conventional technologies. In this review, we present an overview of the current progress in understanding of cellular heterogeneity and tumor origin of medulloblastoma and discuss novel findings in the age of single-cell technologies.
Collapse
Affiliation(s)
- Hui Sheng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Haotai Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Han Zeng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Bin Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yu Lu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xixi Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhongwen Xu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Zhang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Liguo Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
7
|
Yang F, Zhao Z, Zhang D, Xiong Y, Dong X, Wang Y, Yang M, Pan T, Liu C, Liu K, Lin Y, Liu Y, Tu Q, Dang Y, Xia M, Mi D, Zhou W, Xu Z. Single-cell multi-omics analysis of lineage development and spatial organization in the human fetal cerebellum. Cell Discov 2024; 10:22. [PMID: 38409116 PMCID: PMC10897198 DOI: 10.1038/s41421-024-00656-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/30/2024] [Indexed: 02/28/2024] Open
Abstract
Human cerebellum encompasses numerous neurons, exhibiting a distinct developmental paradigm from cerebrum. Here we conducted scRNA-seq, scATAC-seq and spatial transcriptomic analyses of fetal samples from gestational week (GW) 13 to 18 to explore the emergence of cellular diversity and developmental programs in the developing human cerebellum. We identified transitory granule cell progenitors that are conserved across species. Special patterns in both granule cells and Purkinje cells were dissected multidimensionally. Species-specific gene expression patterns of cerebellar lobes were characterized and we found that PARM1 exhibited inconsistent distribution in human and mouse granule cells. A novel cluster of potential neuroepithelium at the rhombic lip was identified. We also resolved various subtypes of Purkinje cells and unipolar brush cells and revealed gene regulatory networks controlling their diversification. Therefore, our study offers a valuable multi-omics landscape of human fetal cerebellum and advances our understanding of development and spatial organization of human cerebellum.
Collapse
Affiliation(s)
- Fuqiang Yang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Ziqi Zhao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Dan Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Yu Xiong
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Xinran Dong
- Center for Molecular Medicine, Children's Hospital of Fudan University, Shanghai, China
| | - Yuchen Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Min Yang
- Department of Neonatology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | | | - Chuanyu Liu
- BGI-Beijing, Beijing, China
- BGI-Shenzhen, Shenzhen, China
| | - Kaiyi Liu
- Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Shanghai, China
| | - Yifeng Lin
- Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Shanghai, China
| | - Yongjie Liu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Qiang Tu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Yashan Dang
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing, China
| | - Mingyang Xia
- Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Shanghai, China.
| | - Da Mi
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing, China.
| | - Wenhao Zhou
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China.
| | - Zhiheng Xu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
8
|
Zhang W, Oh JH, Zhang W, Rathi S, Larson JD, Wechsler-Reya RJ, Sirianni RW, Elmquist WF. Central Nervous System Distribution of Panobinostat in Preclinical Models to Guide Dosing for Pediatric Brain Tumors. J Pharmacol Exp Ther 2023; 387:315-327. [PMID: 37827699 PMCID: PMC10658912 DOI: 10.1124/jpet.123.001826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/24/2023] [Accepted: 09/28/2023] [Indexed: 10/14/2023] Open
Abstract
Achieving adequate exposure of the free therapeutic agent at the target is a critical determinant of efficacious chemotherapy. With this in mind, a major challenge in developing therapies for central nervous system (CNS) tumors is to overcome barriers to delivery, including the blood-brain barrier (BBB). Panobinostat is a nonselective pan-histone deacetylase inhibitor that is being tested in preclinical and clinical studies, including for the treatment of pediatric medulloblastoma, which has a propensity for leptomeningeal spread and diffuse midline glioma, which can infiltrate into supratentorial brain regions. In this study, we examined the rate, extent, and spatial heterogeneity of panobinostat CNS distribution in mice. Transporter-deficient mouse studies show that panobinostat is a dual substrate of P-glycoprotein (P-gp) and breast cancer resistant protein (Bcrp), which are major efflux transporters expressed at the BBB. The CNS delivery of panobinostat was moderately limited by P-gp and Bcrp, and the unbound tissue-to-plasma partition coefficient of panobinostat was 0.32 and 0.21 in the brain and spinal cord in wild-type mice. In addition, following intravenous administration, panobinostat demonstrated heterogeneous distribution among brain regions, indicating that its efficacy would be influenced by tumor location or the presence and extent of leptomeningeal spread. Simulation using a compartmental BBB model suggests inadequate exposure of free panobinostat in the brain following a recommended oral dosing regimen in patients. Therefore, alternative approaches to CNS delivery may be necessary to have adequate exposure of free panobinostat for the treatment of a broad range of pediatric brain tumors. SIGNIFICANCE STATEMENT: This study shows that the central nervous system (CNS) penetration of panobinostat is limited by P-gp and Bcrp, and its efficacy may be limited by inadequate distribution to the tumor. Panobinostat has heterogeneous distribution into various brain regions, indicating that its efficacy might depend on the anatomical location of the tumors. These distributional parameters in the mouse CNS can inform both preclinical and clinical trial study design and may guide treatment for these devastating brain tumors in children.
Collapse
Affiliation(s)
- Wenqiu Zhang
- Department of Pharmaceutics, Brain Barriers Research Center, University of Minnesota, Minneapolis, Minnesota (Wenq.Z, J.-H.O., Wenj.Z., S.R., W.F.E.); Tumor Initiation & Maintenance Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California (J.D.L.); Herbert Irving Comprehensive Cancer Center, Columbia University Medical, New York, New York (R.J.W.-R.); and Department of Neurologic Surgery, UMass Chan Medical School, Worcester, Massachusetts (R.W.S.)
| | - Ju-Hee Oh
- Department of Pharmaceutics, Brain Barriers Research Center, University of Minnesota, Minneapolis, Minnesota (Wenq.Z, J.-H.O., Wenj.Z., S.R., W.F.E.); Tumor Initiation & Maintenance Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California (J.D.L.); Herbert Irving Comprehensive Cancer Center, Columbia University Medical, New York, New York (R.J.W.-R.); and Department of Neurologic Surgery, UMass Chan Medical School, Worcester, Massachusetts (R.W.S.)
| | - Wenjuan Zhang
- Department of Pharmaceutics, Brain Barriers Research Center, University of Minnesota, Minneapolis, Minnesota (Wenq.Z, J.-H.O., Wenj.Z., S.R., W.F.E.); Tumor Initiation & Maintenance Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California (J.D.L.); Herbert Irving Comprehensive Cancer Center, Columbia University Medical, New York, New York (R.J.W.-R.); and Department of Neurologic Surgery, UMass Chan Medical School, Worcester, Massachusetts (R.W.S.)
| | - Sneha Rathi
- Department of Pharmaceutics, Brain Barriers Research Center, University of Minnesota, Minneapolis, Minnesota (Wenq.Z, J.-H.O., Wenj.Z., S.R., W.F.E.); Tumor Initiation & Maintenance Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California (J.D.L.); Herbert Irving Comprehensive Cancer Center, Columbia University Medical, New York, New York (R.J.W.-R.); and Department of Neurologic Surgery, UMass Chan Medical School, Worcester, Massachusetts (R.W.S.)
| | - Jon D Larson
- Department of Pharmaceutics, Brain Barriers Research Center, University of Minnesota, Minneapolis, Minnesota (Wenq.Z, J.-H.O., Wenj.Z., S.R., W.F.E.); Tumor Initiation & Maintenance Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California (J.D.L.); Herbert Irving Comprehensive Cancer Center, Columbia University Medical, New York, New York (R.J.W.-R.); and Department of Neurologic Surgery, UMass Chan Medical School, Worcester, Massachusetts (R.W.S.)
| | - Robert J Wechsler-Reya
- Department of Pharmaceutics, Brain Barriers Research Center, University of Minnesota, Minneapolis, Minnesota (Wenq.Z, J.-H.O., Wenj.Z., S.R., W.F.E.); Tumor Initiation & Maintenance Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California (J.D.L.); Herbert Irving Comprehensive Cancer Center, Columbia University Medical, New York, New York (R.J.W.-R.); and Department of Neurologic Surgery, UMass Chan Medical School, Worcester, Massachusetts (R.W.S.)
| | - Rachael W Sirianni
- Department of Pharmaceutics, Brain Barriers Research Center, University of Minnesota, Minneapolis, Minnesota (Wenq.Z, J.-H.O., Wenj.Z., S.R., W.F.E.); Tumor Initiation & Maintenance Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California (J.D.L.); Herbert Irving Comprehensive Cancer Center, Columbia University Medical, New York, New York (R.J.W.-R.); and Department of Neurologic Surgery, UMass Chan Medical School, Worcester, Massachusetts (R.W.S.)
| | - William F Elmquist
- Department of Pharmaceutics, Brain Barriers Research Center, University of Minnesota, Minneapolis, Minnesota (Wenq.Z, J.-H.O., Wenj.Z., S.R., W.F.E.); Tumor Initiation & Maintenance Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California (J.D.L.); Herbert Irving Comprehensive Cancer Center, Columbia University Medical, New York, New York (R.J.W.-R.); and Department of Neurologic Surgery, UMass Chan Medical School, Worcester, Massachusetts (R.W.S.)
| |
Collapse
|
9
|
Yang W, Ma W, Huang J, Cai Y, Peng X, Zhao F, Zhang D, Zou Z, Sun H, Qi X, Ge M. Beijing Children's Hospital guidelines on the design and conduction of the first standardized database for medulloblastoma. Metab Brain Dis 2023; 38:2393-2400. [PMID: 37261631 DOI: 10.1007/s11011-023-01233-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/09/2023] [Indexed: 06/02/2023]
Abstract
Medulloblastoma (MB) is one of the most common malignant childhood brain tumors (WHO grade IV). Its high degree of malignancy leads to an unsatisfactory prognosis, requiring more precise and personalized treatment in the near future. Multi-omics and artificial intelligence have been playing a significant role in precise medical research, but their implementation needs a large amount of clinical information and biomaterials. For these reasons, it is urgent for current MB researchers to establish a large sample-size database of MB that contains complete clinical data and sufficient biomaterials such as blood, cerebrospinal fluid (CSF), cancer tissue, and urine. Unfortunately, there are few biobanks of pediatric central nervous system (CNS) tumors throughout the world for limited specimens, scarce funds, different standards collecting methods and et cl. Even though, China falls behind western countries in this area. The present research set up a standard workflow to construct the Beijing Children's Hospital Medulloblastoma (BCH-MB) biobank. Clinical data from children with MB and for collecting and storing biomaterials, along with regular follow-up has been collected and recorded in this database. In the future, the BCH-MB biobank could make it possible to validate the promising biomarkers already identified, discover unrevealed MB biomarkers, develop novel therapies, and establish personalized prognostic models for children with MB upon the support of its sufficient data and biomaterials, laying the foundation for individualized therapies of children with MB.
Collapse
Affiliation(s)
- Wei Yang
- Department of Neurosurgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Wenping Ma
- Department of Neurosurgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Jiansong Huang
- Department of Neurosurgery, Peking University International Hospital, Peking University Health Science Center, Peking University, Beijing, 102200, China
| | - Yingjie Cai
- Department of Neurosurgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Xiaojiao Peng
- Department of Neurosurgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Fengmao Zhao
- Department of Neurosurgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Di Zhang
- Department of Neurosurgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Zhewei Zou
- Department of Neurosurgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Hailang Sun
- Department of Neurosurgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China.
| | - Xiang Qi
- Department of Neurosurgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China.
| | - Ming Ge
- Department of Neurosurgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China.
| |
Collapse
|
10
|
Boxy P, Nykjær A, Kisiswa L. Building better brains: the pleiotropic function of neurotrophic factors in postnatal cerebellar development. Front Mol Neurosci 2023; 16:1181397. [PMID: 37251644 PMCID: PMC10213292 DOI: 10.3389/fnmol.2023.1181397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 04/26/2023] [Indexed: 05/31/2023] Open
Abstract
The cerebellum is a multifunctional brain region that controls diverse motor and non-motor behaviors. As a result, impairments in the cerebellar architecture and circuitry lead to a vast array of neuropsychiatric and neurodevelopmental disorders. Neurotrophins and neurotrophic growth factors play essential roles in the development as well as maintenance of the central and peripheral nervous system which is crucial for normal brain function. Their timely expression throughout embryonic and postnatal stages is important for promoting growth and survival of both neurons and glial cells. During postnatal development, the cerebellum undergoes changes in its cellular organization, which is regulated by a variety of molecular factors, including neurotrophic factors. Studies have shown that these factors and their receptors promote proper formation of the cerebellar cytoarchitecture as well as maintenance of the cerebellar circuits. In this review, we will summarize what is known on the neurotrophic factors' role in cerebellar postnatal development and how their dysregulation assists in developing various neurological disorders. Understanding the expression patterns and signaling mechanisms of these factors and their receptors is crucial for elucidating their function within the cerebellum and for developing therapeutic strategies for cerebellar-related disorders.
Collapse
Affiliation(s)
- Pia Boxy
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Danish Research Institute of Translational Neuroscience (DANDRITE)–Nordic EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus, Denmark
- The Danish National Research Foundation Center, PROMEMO, Aarhus University, Aarhus, Denmark
| | - Anders Nykjær
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Danish Research Institute of Translational Neuroscience (DANDRITE)–Nordic EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus, Denmark
- The Danish National Research Foundation Center, PROMEMO, Aarhus University, Aarhus, Denmark
| | - Lilian Kisiswa
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Danish Research Institute of Translational Neuroscience (DANDRITE)–Nordic EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus, Denmark
- The Danish National Research Foundation Center, PROMEMO, Aarhus University, Aarhus, Denmark
| |
Collapse
|
11
|
Arora S, Szulzewsky F, Jensen M, Nuechterlein N, Pattwell SS, Holland EC. Visualizing genomic characteristics across an RNA-Seq based reference landscape of normal and neoplastic brain. Sci Rep 2023; 13:4228. [PMID: 36918656 PMCID: PMC10014937 DOI: 10.1038/s41598-023-31180-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/07/2023] [Indexed: 03/16/2023] Open
Abstract
In order to better understand the relationship between normal and neoplastic brain, we combined five publicly available large-scale datasets, correcting for batch effects and applying Uniform Manifold Approximation and Projection (UMAP) to RNA-Seq data. We assembled a reference Brain-UMAP including 702 adult gliomas, 802 pediatric tumors and 1409 healthy normal brain samples, which can be utilized to investigate the wealth of information obtained from combining several publicly available datasets to study a single organ site. Normal brain regions and tumor types create distinct clusters and because the landscape is generated by RNA-Seq, comparative gene expression profiles and gene ontology patterns are readily evident. To our knowledge, this is the first meta-analysis that allows for comparison of gene expression and pathways of interest across adult gliomas, pediatric brain tumors, and normal brain regions. We provide access to this resource via the open source, interactive online tool Oncoscape, where the scientific community can readily visualize clinical metadata, gene expression patterns, gene fusions, mutations, and copy number patterns for individual genes and pathway over this reference landscape.
Collapse
Affiliation(s)
- Sonali Arora
- Human Biology Division, Fred Hutchinson Cancer Center, 1100 Fairview Avenue North, Mailstop C3-168, Seattle, WA, 98109, USA
| | - Frank Szulzewsky
- Human Biology Division, Fred Hutchinson Cancer Center, 1100 Fairview Avenue North, Mailstop C3-168, Seattle, WA, 98109, USA
| | - Matt Jensen
- Human Biology Division, Fred Hutchinson Cancer Center, 1100 Fairview Avenue North, Mailstop C3-168, Seattle, WA, 98109, USA
| | - Nicholas Nuechterlein
- Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, WA, USA
| | - Siobhan S Pattwell
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, USA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
| | - Eric C Holland
- Human Biology Division, Fred Hutchinson Cancer Center, 1100 Fairview Avenue North, Mailstop C3-168, Seattle, WA, 98109, USA.
| |
Collapse
|
12
|
Guzman G, Pellot K, Reed MR, Rodriguez A. CAR T-cells to treat brain tumors. Brain Res Bull 2023; 196:76-98. [PMID: 36841424 DOI: 10.1016/j.brainresbull.2023.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 01/18/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023]
Abstract
Tremendous success using CAR T therapy in hematological malignancies has garnered significant interest in developing such treatments for solid tumors, including brain tumors. This success, however, has yet to be mirrored in solid organ neoplasms. CAR T function has shown limited efficacy against brain tumors due to several factors including the immunosuppressive tumor microenvironment, blood-brain barrier, and tumor-antigen heterogeneity. Despite these considerations, CAR T-cell therapy has the potential to be implemented as a treatment modality for brain tumors. Here, we review adult and pediatric brain tumors, including glioblastoma, diffuse midline gliomas, and medulloblastomas that continue to portend a grim prognosis. We describe insights gained from different preclinical models using CAR T therapy against various brain tumors and results gathered from ongoing clinical trials. Furthermore, we outline the challenges limiting CAR T therapy success against brain tumors and summarize advancements made to overcome these obstacles.
Collapse
Affiliation(s)
- Grace Guzman
- Department of Neurosurgery, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | | | - Megan R Reed
- Department of Neurosurgery, University of Arkansas for Medical Sciences, Little Rock, AR, United States; Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Analiz Rodriguez
- Department of Neurosurgery, University of Arkansas for Medical Sciences, Little Rock, AR, United States.
| |
Collapse
|
13
|
Cleveland AH, Malawsky D, Churiwal M, Rodriguez C, Reed F, Schniederjan M, Velazquez Vega JE, Davis I, Gershon TR. PRC2 disruption in cerebellar progenitors produces cerebellar hypoplasia and aberrant myoid differentiation without blocking medulloblastoma growth. Acta Neuropathol Commun 2023; 11:8. [PMID: 36635771 PMCID: PMC9838053 DOI: 10.1186/s40478-023-01508-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 01/06/2023] [Indexed: 01/13/2023] Open
Abstract
We show that Polycomb Repressive Complex-2 (PRC2) components EED and EZH2 maintain neural identity in cerebellar granule neuron progenitors (CGNPs) and SHH-driven medulloblastoma, a cancer of CGNPs. Proliferating CGNPs and medulloblastoma cells inherit neural fate commitment through epigenetic mechanisms. The PRC2 is an epigenetic regulator that has been proposed as a therapeutic target in medulloblastoma. To define PRC2 function in cerebellar development and medulloblastoma, we conditionally deleted PRC2 components Eed or Ezh2 in CGNPs and analyzed medulloblastomas induced in Eed-deleted and Ezh2-deleted CGNPs by expressing SmoM2, an oncogenic allele of Smo. Eed deletion destabilized the PRC2, depleting EED and EZH2 proteins, while Ezh2 deletion did not deplete EED. Eed-deleted cerebella were hypoplastic, with reduced proliferation, increased apoptosis, and inappropriate muscle-like differentiation. Ezh2-deleted cerebella showed similar, milder phenotypes, with fewer muscle-like cells and without reduced growth. Eed-deleted and Ezh2-deleted medulloblastomas both demonstrated myoid differentiation and progressed more rapidly than PRC2-intact controls. The PRC2 thus maintains neural commitment in CGNPs and medulloblastoma, but is not required for SHH medulloblastoma progression. Our data define a role for the PRC2 in preventing inappropriate, non-neural fates during postnatal neurogenesis, and caution that targeting the PRC2 in SHH medulloblastoma may not produce durable therapeutic effects.
Collapse
Affiliation(s)
- Abigail H. Cleveland
- grid.10698.360000000122483208Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA ,grid.10698.360000000122483208Cancer Cell Biology Training Program, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Daniel Malawsky
- grid.10698.360000000122483208Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA ,grid.10306.340000 0004 0606 5382Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Mehal Churiwal
- grid.10698.360000000122483208Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Claudia Rodriguez
- grid.10698.360000000122483208Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Frances Reed
- grid.10698.360000000122483208Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Matthew Schniederjan
- grid.189967.80000 0001 0941 6502Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Jose E. Velazquez Vega
- grid.189967.80000 0001 0941 6502Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Ian Davis
- grid.10698.360000000122483208Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Timothy R. Gershon
- grid.10698.360000000122483208Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA ,grid.189967.80000 0001 0941 6502Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322 USA ,grid.189967.80000 0001 0941 6502Children’s Center for Neurosciences Research, Emory University School of Medicine, Atlanta, GA 30322 USA ,grid.189967.80000 0001 0941 6502Aflac Cancer and Blood Disorders Center, Emory University School of Medicine, Atlanta, GA 30322 USA
| |
Collapse
|
14
|
De la Cruz G, Nikolaishvili Feinberg N, Williams SE. Automated Immunofluorescence Staining for Analysis of Mitotic Stages and Division Orientation in Brain Sections. Methods Mol Biol 2023; 2583:63-79. [PMID: 36418726 DOI: 10.1007/978-1-0716-2752-5_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Microcephaly often results from mitotic defects in neuronal progenitors, frequently by decreasing proliferation rates or shifting cell fates. During neurogenesis, oriented cell division-the molecular control of mitotic spindle positioning to control the axis of division-represents an important mechanism to balance expansion of the progenitor pool with generating cellular diversity. While mostly studied in the context of cortical development, more recently, spindle orientation has emerged as a key player in the formation of other brain regions such as the cerebellum. Here we describe methods to perform automated dual-color fluorescent immunohistochemistry on murine cerebellar sections using the mitotic markers phospho-Histone H3 and Survivin, and detail analytical and statistical approaches to display and compare division orientation datasets.
Collapse
Affiliation(s)
- Gabriela De la Cruz
- Department of Pathology & Laboratory Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Pathology Services Core, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nana Nikolaishvili Feinberg
- Department of Pathology & Laboratory Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Pathology Services Core, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Scott E Williams
- Department of Pathology & Laboratory Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
15
|
Splicing-Disrupting Mutations in Inherited Predisposition to Solid Pediatric Cancer. Cancers (Basel) 2022; 14:cancers14235967. [PMID: 36497448 PMCID: PMC9739414 DOI: 10.3390/cancers14235967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/09/2022] Open
Abstract
The prevalence of hereditary cancer in children was estimated to be very low until recent studies suggested that at least 10% of pediatric cancer patients carry a germline mutation in a cancer predisposition gene. A significant proportion of pathogenic variants associated with an increased risk of hereditary cancer are variants affecting splicing. RNA splicing is an essential process involved in different cellular processes such as proliferation, survival, and differentiation, and alterations in this pathway have been implicated in many human cancers. Hereditary cancer genes are highly susceptible to splicing mutations, and among them there are several genes that may contribute to pediatric solid tumors when mutated in the germline. In this review, we have focused on the analysis of germline splicing-disrupting mutations found in pediatric solid tumors, as the discovery of pathogenic splice variants in pediatric cancer is a growing field for the development of personalized therapies. Therapies developed to correct aberrant splicing in cancer are also discussed as well as the options to improve the diagnostic yield based on the increase in the knowledge in splicing.
Collapse
|
16
|
Luo Z, Xia M, Shi W, Zhao C, Wang J, Xin D, Dong X, Xiong Y, Zhang F, Berry K, Ogurek S, Liu X, Rao R, Xing R, Wu LMN, Cui S, Xu L, Lin Y, Ma W, Tian S, Xie Q, Zhang L, Xin M, Wang X, Yue F, Zheng H, Liu Y, Stevenson CB, de Blank P, Perentesis JP, Gilbertson RJ, Li H, Ma J, Zhou W, Taylor MD, Lu QR. Human fetal cerebellar cell atlas informs medulloblastoma origin and oncogenesis. Nature 2022; 612:787-794. [PMID: 36450980 DOI: 10.1038/s41586-022-05487-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 10/26/2022] [Indexed: 12/05/2022]
Abstract
Medulloblastoma (MB) is the most common malignant childhood brain tumour1,2, yet the origin of the most aggressive subgroup-3 form remains elusive, impeding development of effective targeted treatments. Previous analyses of mouse cerebella3-5 have not fully defined the compositional heterogeneity of MBs. Here we undertook single-cell profiling of freshly isolated human fetal cerebella to establish a reference map delineating hierarchical cellular states in MBs. We identified a unique transitional cerebellar progenitor connecting neural stem cells to neuronal lineages in developing fetal cerebella. Intersectional analysis revealed that the transitional progenitors were enriched in aggressive MB subgroups, including group 3 and metastatic tumours. Single-cell multi-omics revealed underlying regulatory networks in the transitional progenitor populations, including transcriptional determinants HNRNPH1 and SOX11, which are correlated with clinical prognosis in group 3 MBs. Genomic and Hi-C profiling identified de novo long-range chromatin loops juxtaposing HNRNPH1/SOX11-targeted super-enhancers to cis-regulatory elements of MYC, an oncogenic driver for group 3 MBs. Targeting the transitional progenitor regulators inhibited MYC expression and MYC-driven group 3 MB growth. Our integrated single-cell atlases of human fetal cerebella and MBs show potential cell populations predisposed to transformation and regulatory circuitries underlying tumour cell states and oncogenesis, highlighting hitherto unrecognized transitional progenitor intermediates predictive of disease prognosis and potential therapeutic vulnerabilities.
Collapse
Affiliation(s)
- Zaili Luo
- Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Mingyang Xia
- Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Fudan University, Shanghai, China
| | - Wei Shi
- Department of Neurosurgery, Children's Hospital of Fudan University, Shanghai, China
| | - Chuntao Zhao
- Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Jiajia Wang
- Department of Pediatric Neurosurgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dazhuan Xin
- Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Xinran Dong
- Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Fudan University, Shanghai, China
| | - Yu Xiong
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, China
| | - Feng Zhang
- Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Kalen Berry
- Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Sean Ogurek
- Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Xuezhao Liu
- Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Rohit Rao
- Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Rui Xing
- Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Lai Man Natalie Wu
- Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Siying Cui
- Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Fudan University, Shanghai, China
| | - Lingli Xu
- Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Fudan University, Shanghai, China
| | - Yifeng Lin
- Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Fudan University, Shanghai, China
| | - Wenkun Ma
- Department of Pediatric Neurosurgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuaiwei Tian
- Department of Pediatric Neurosurgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qi Xie
- School of Life Sciences, Westlake University, Hangzhou, China
| | - Li Zhang
- Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Mei Xin
- Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Xiaotao Wang
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine Northwestern University, Chicago, IL, USA
| | - Feng Yue
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine Northwestern University, Chicago, IL, USA
| | - Haizi Zheng
- Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Yaping Liu
- Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Charles B Stevenson
- Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Peter de Blank
- Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - John P Perentesis
- Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Richard J Gilbertson
- Cancer Research UK Cambridge Centre, CRUK Cambridge Institute, Li Ka Shing Centre, Cambridge, UK
| | - Hao Li
- Department of Neurosurgery, Children's Hospital of Fudan University, Shanghai, China.
| | - Jie Ma
- Department of Pediatric Neurosurgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Wenhao Zhou
- Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Fudan University, Shanghai, China.
| | - Michael D Taylor
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Q Richard Lu
- Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| |
Collapse
|
17
|
Diaz-Coronado RY, Reinecke JB, Stanek JR, Finlay JL, Hernández Broncano E, Chávez Paredes S, Tunque YM, Heredia Zelaya A, Casavilca Zambrano S, García-Corrochano Medina P, Ojeda Medina L, Orrego Puelles E, Torres Malca E, Sernaque Quintana R, Quispe Valverde W, García León JL, Osorio DS. Factors influencing outcomes of older children with medulloblastoma over 15 years in Peru, a resource-limited setting. Pediatr Blood Cancer 2022; 69:e29770. [PMID: 35593532 DOI: 10.1002/pbc.29770] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/18/2022] [Accepted: 04/26/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Medulloblastoma is the most common malignant brain tumor in children. While survival has improved in high-income countries (HIC), the outcomes for patients in low-to-middle-income countries (LMIC) are unclear. Therefore, we sought to determine the survival of children with medulloblastoma at the Instituto Nacional de Enfermedades Neoplasicas (INEN) between 1997 and 2013 in Peru. METHODS Between 1997 and 2013, data from 103 children older than 3 years with medulloblastoma were analyzed. Fourteen patients were excluded. The patients were split into two distinct cohorts, 1997-2008 and 2009-2013, corresponding with chemotherapy regimen changes. Event-free (EFS) and overall survival (OS) were calculated using the Kaplan-Meier method, whereas prognostic factors were determined by univariate analysis (log-rank test). RESULTS Eighty-nine patients were included; median age was 8.1 years (range: 3-13.9 years). The 5-year OS was 62% (95% CI: 53%-74%), while EFS was 57% (95% CI: 48%-69%). The variables adversely affecting survival were anaplastic histology (compared to desmoplastic; OS: HR = 3.4, p = .03), metastasis (OS: HR = 3.5, p = .01; EFS: HR = 4.3, p = .004), delay in radiation therapy of 31-60 days (compared to ≤30 days; EFS: HR = 2.1, p = .04), and treatment 2009-2013 cohort (OS: HR = 2.2, p = .02; EFS: HR = 2.0, p = .03). CONCLUSIONS Outcomes for medulloblastoma at INEN were low compared with HIC. Anaplastic subtype, metastasis at diagnosis, delay in radiation therapy, and treatment in the period 2009-2013 negatively affected the outcomes in our study. Multidisciplinary teamwork, timely delivery of treatment, and partnerships with loco-regional groups and colleagues in HIC is likely beneficial.
Collapse
Affiliation(s)
| | - James Brandon Reinecke
- Pediatrics Department, Nationwide Children's Hospital, Columbus, Ohio, USA.,Division of Hematology, Oncology, Blood and Marrow Transplant Department, Nationwide Children's Hospital and The Ohio State University, Columbus, Ohio, USA
| | - Joseph R Stanek
- Division of Hematology, Oncology, Blood and Marrow Transplant Department, Nationwide Children's Hospital and The Ohio State University, Columbus, Ohio, USA
| | - Jonathan L Finlay
- Pediatrics Department, Nationwide Children's Hospital, Columbus, Ohio, USA.,Division of Hematology, Oncology, Blood and Marrow Transplant Department, Nationwide Children's Hospital and The Ohio State University, Columbus, Ohio, USA
| | | | - Sharon Chávez Paredes
- Pediatric Oncology Department, Instituto Nacional de Enfermedades Neoplásica, Lima, Perú
| | | | - Adela Heredia Zelaya
- Radiotherapy Department, Instituto Nacional de Enfermedades Neoplasicas, Lima, Perú
| | | | | | - Luis Ojeda Medina
- Neurosurgery Department, Instituto Nacional de Enfermedades Neoplasicas, Lima, Perú
| | | | - Ebert Torres Malca
- Pathology Department, Instituto Nacional de Enfermedades Neoplasicas, Lima, Perú
| | | | | | - Juan L García León
- Pediatric Oncology Department, Instituto Nacional de Enfermedades Neoplásica, Lima, Perú
| | - Diana S Osorio
- Pediatrics Department, Nationwide Children's Hospital, Columbus, Ohio, USA.,Division of Hematology, Oncology, Blood and Marrow Transplant Department, Nationwide Children's Hospital and The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
18
|
O-GlcNAcylation promotes cerebellum development and medulloblastoma oncogenesis via SHH signaling. Proc Natl Acad Sci U S A 2022; 119:e2202821119. [PMID: 35969743 PMCID: PMC9407465 DOI: 10.1073/pnas.2202821119] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Cerebellar development relies on a precise coordination of metabolic signaling, epigenetic signaling, and transcriptional regulation. Here, we reveal that O-GlcNAc transferase (OGT) regulates cerebellar neurogenesis and medulloblastoma growth via a Sonic hedgehog (Shh)-Smo-Gli2 pathway. We identified Gli2 as a substrate of OGT, and unveiled cross-talk between O-GlcNAc and epigenetic signaling as a means to regulate Gli2 transcriptional activity. Moreover, genetic ablation or chemical inhibition of OGT significantly suppresses tumor progression and increases survival in a mouse model of Shh subgroup medulloblastoma. Taken together, the data in our study provide a line of inquiry to decipher the signaling mechanisms underlying cerebellar development, and highlights a potential target to investigate related pathologies, such as medulloblastoma. Sonic hedgehog (Shh) signaling plays a critical role in regulating cerebellum development by maintaining the physiological proliferation of granule neuron precursors (GNPs), and its dysregulation leads to the oncogenesis of medulloblastoma. O-GlcNAcylation (O-GlcNAc) of proteins is an emerging regulator of brain function that maintains normal development and neuronal circuitry. Here, we demonstrate that O-GlcNAc transferase (OGT) in GNPs mediate the cerebellum development, and the progression of the Shh subgroup of medulloblastoma. Specifically, OGT regulates the neurogenesis of GNPs by activating the Shh signaling pathway via O-GlcNAcylation at S355 of GLI family zinc finger 2 (Gli2), which in turn promotes its deacetylation and transcriptional activity via dissociation from p300, a histone acetyltransferases. Inhibition of OGT via genetic ablation or chemical inhibition improves survival in a medulloblastoma mouse model. These data uncover a critical role for O-GlcNAc signaling in cerebellar development, and pinpoint a potential therapeutic target for Shh-associated medulloblastoma.
Collapse
|
19
|
Wu H, Wei M, Li Y, Ma Q, Zhang H. Research Progress on the Regulation Mechanism of Key Signal Pathways Affecting the Prognosis of Glioma. Front Mol Neurosci 2022; 15. [DOI: https:/doi.org/10.3389/fnmol.2022.910543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023] Open
Abstract
As is known to all, glioma, a global difficult problem, has a high malignant degree, high recurrence rate and poor prognosis. We analyzed and summarized signal pathway of the Hippo/YAP, PI3K/AKT/mTOR, miRNA, WNT/β-catenin, Notch, Hedgehog, TGF-β, TCS/mTORC1 signal pathway, JAK/STAT signal pathway, MAPK signaling pathway, the relationship between BBB and signal pathways and the mechanism of key enzymes in glioma. It is concluded that Yap1 inhibitor may become an effective target for the treatment of glioma in the near future through efforts of generation after generation. Inhibiting PI3K/Akt/mTOR, Shh, Wnt/β-Catenin, and HIF-1α can reduce the migration ability and drug resistance of tumor cells to improve the prognosis of glioma. The analysis shows that Notch1 and Sox2 have a positive feedback regulation mechanism, and Notch4 predicts the malignant degree of glioma. In this way, notch cannot only be treated for glioma stem cells in clinic, but also be used as an evaluation index to evaluate the prognosis, and provide an exploratory attempt for the direction of glioma treatment. MiRNA plays an important role in diagnosis, and in the treatment of glioma, VPS25, KCNQ1OT1, KB-1460A1.5, and CKAP4 are promising prognostic indicators and a potential therapeutic targets for glioma, meanwhile, Rheb is also a potent activator of Signaling cross-talk etc. It is believed that these studies will help us to have a deeper understanding of glioma, so that we will find new and better treatment schemes to gradually conquer the problem of glioma.
Collapse
|
20
|
Wu H, Wei M, Li Y, Ma Q, Zhang H. Research Progress on the Regulation Mechanism of Key Signal Pathways Affecting the Prognosis of Glioma. Front Mol Neurosci 2022; 15:910543. [PMID: 35935338 PMCID: PMC9354928 DOI: 10.3389/fnmol.2022.910543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/30/2022] [Indexed: 11/17/2022] Open
Abstract
As is known to all, glioma, a global difficult problem, has a high malignant degree, high recurrence rate and poor prognosis. We analyzed and summarized signal pathway of the Hippo/YAP, PI3K/AKT/mTOR, miRNA, WNT/β-catenin, Notch, Hedgehog, TGF-β, TCS/mTORC1 signal pathway, JAK/STAT signal pathway, MAPK signaling pathway, the relationship between BBB and signal pathways and the mechanism of key enzymes in glioma. It is concluded that Yap1 inhibitor may become an effective target for the treatment of glioma in the near future through efforts of generation after generation. Inhibiting PI3K/Akt/mTOR, Shh, Wnt/β-Catenin, and HIF-1α can reduce the migration ability and drug resistance of tumor cells to improve the prognosis of glioma. The analysis shows that Notch1 and Sox2 have a positive feedback regulation mechanism, and Notch4 predicts the malignant degree of glioma. In this way, notch cannot only be treated for glioma stem cells in clinic, but also be used as an evaluation index to evaluate the prognosis, and provide an exploratory attempt for the direction of glioma treatment. MiRNA plays an important role in diagnosis, and in the treatment of glioma, VPS25, KCNQ1OT1, KB-1460A1.5, and CKAP4 are promising prognostic indicators and a potential therapeutic targets for glioma, meanwhile, Rheb is also a potent activator of Signaling cross-talk etc. It is believed that these studies will help us to have a deeper understanding of glioma, so that we will find new and better treatment schemes to gradually conquer the problem of glioma.
Collapse
Affiliation(s)
- Hao Wu
- Graduate School of Dalian Medical University, Dalian, China
- Department of Neurosurgery, The Yangzhou School of Clinical Medicine of Dalian Medical University, Dalian, China
| | - Min Wei
- Graduate School of Dalian Medical University, Dalian, China
- Department of Neurosurgery, The Yangzhou School of Clinical Medicine of Dalian Medical University, Dalian, China
| | - Yuping Li
- Department of Neurosurgery, The Yangzhou School of Clinical Medicine of Dalian Medical University, Dalian, China
| | - Qiang Ma
- Department of Neurosurgery, The Yangzhou School of Clinical Medicine of Dalian Medical University, Dalian, China
| | - Hengzhu Zhang
- Graduate School of Dalian Medical University, Dalian, China
- Department of Neurosurgery, The Yangzhou School of Clinical Medicine of Dalian Medical University, Dalian, China
- *Correspondence: Hengzhu Zhang,
| |
Collapse
|
21
|
McSwain LF, Parwani KK, Shahab SW, Hambardzumyan D, MacDonald TJ, Spangle JM, Kenney AM. Medulloblastoma and the DNA Damage Response. Front Oncol 2022; 12:903830. [PMID: 35747808 PMCID: PMC9209741 DOI: 10.3389/fonc.2022.903830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/10/2022] [Indexed: 12/04/2022] Open
Abstract
Medulloblastoma (MB) is the most common malignant brain tumor in children with standard of care consisting of surgery, radiation, and chemotherapy. Recent molecular profiling led to the identification of four molecularly distinct MB subgroups – Wingless (WNT), Sonic Hedgehog (SHH), Group 3, and Group 4. Despite genomic MB characterization and subsequent tumor stratification, clinical treatment paradigms are still largely driven by histology, degree of surgical resection, and presence or absence of metastasis rather than molecular profile. Patients usually undergo resection of their tumor followed by craniospinal radiation (CSI) and a 6 month to one-year multi-agent chemotherapeutic regimen. While there is clearly a need for development of targeted agents specific to the molecular alterations of each patient, targeting proteins responsible for DNA damage repair could have a broader impact regardless of molecular subgrouping. DNA damage response (DDR) protein inhibitors have recently emerged as targeted agents with potent activity as monotherapy or in combination in different cancers. Here we discuss the molecular underpinnings of genomic instability in MB and potential avenues for exploitation through DNA damage response inhibition.
Collapse
Affiliation(s)
- Leon F. McSwain
- Department of Pediatrics, Emory University, Atlanta, GA, United States
| | - Kiran K. Parwani
- Winship Cancer Institute, Emory University, Atlanta, GA, United States
- Department of Radiation Oncology, Emory University, Atlanta, GA, United States
| | - Shubin W. Shahab
- Winship Cancer Institute, Emory University, Atlanta, GA, United States
| | - Dolores Hambardzumyan
- Departments of Neurosurgery and Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Tobey J. MacDonald
- Department of Pediatrics, Emory University, Atlanta, GA, United States
- Winship Cancer Institute, Emory University, Atlanta, GA, United States
| | - Jennifer M. Spangle
- Winship Cancer Institute, Emory University, Atlanta, GA, United States
- Department of Radiation Oncology, Emory University, Atlanta, GA, United States
| | - Anna Marie Kenney
- Department of Pediatrics, Emory University, Atlanta, GA, United States
- *Correspondence: Anna Marie Kenney,
| |
Collapse
|
22
|
Solecki DJ. Neuronal Polarity Pathways as Central Integrators of Cell-Extrinsic Information During Interactions of Neural Progenitors With Germinal Niches. Front Mol Neurosci 2022; 15:829666. [PMID: 35600073 PMCID: PMC9116468 DOI: 10.3389/fnmol.2022.829666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
Germinal niche interactions and their effect on developing neurons have become the subject of intense investigation. Dissecting the complex interplay of cell-extrinsic and cell-intrinsic factors at the heart of these interactions reveals the critical basic mechanisms of neural development and how it goes awry in pediatric neurologic disorders. A full accounting of how developing neurons navigate their niches to mature and integrate into a developing neural circuit requires a combination of genetic characterization of and physical access to neurons and their supporting cell types plus transformative imaging to determine the cell biological and gene-regulatory responses to niche cues. The mouse cerebellar cortex is a prototypical experimental system meeting all of these criteria. The lessons learned therein have been scaled to other model systems and brain regions to stimulate discoveries of how developing neurons make many developmental decisions. This review focuses on how mouse cerebellar granule neuron progenitors interact with signals in their germinal niche and how that affects the neuronal differentiation and cell polarization programs that underpin lamination of the developing cerebellum. We show how modeling of these mechanisms in other systems has added to the growing evidence of how defective neuronal polarity contributes to developmental disease.
Collapse
|
23
|
Lin YJ, Mashouf LA, Lim M. CAR T Cell Therapy in Primary Brain Tumors: Current Investigations and the Future. Front Immunol 2022; 13:817296. [PMID: 35265074 PMCID: PMC8899093 DOI: 10.3389/fimmu.2022.817296] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/20/2022] [Indexed: 12/15/2022] Open
Abstract
Chimeric antigen receptor T cells (CAR T cells) are engineered cells expressing a chimeric antigen receptor (CAR) against a specific tumor antigen (TA) that allows for the identification and elimination of cancer cells. The remarkable clinical effect seen with CAR T cell therapies against hematological malignancies have attracted interest in developing such therapies for solid tumors, including brain tumors. Glioblastoma (GBM) is the most common primary brain tumor in adults and is associated with poor prognosis due to its highly aggressive nature. Pediatric brain cancers are similarly aggressive and thus are a major cause of pediatric cancer-related death. CAR T cell therapy represents a promising avenue for therapy against these malignancies. Several specific TAs, such as EGFR/EGFRvIII, IL13Rα2, B7-H3, and HER2, have been targeted in preclinical studies and clinical trials. Unfortunately, CAR T cells against brain tumors have showed limited efficacy due to TA heterogeneity, difficulty trafficking from blood to tumor sites, and the immunosuppressive tumor microenvironment. Here, we review current CAR T cell approaches in treating cancers, with particular focus on brain cancers. We also describe a novel technique of focused ultrasound controlling the activation of engineered CAR T cells to achieve the safer cell therapies. Finally, we summarize the development of combinational strategies to improve the efficacy and overcome historical limitations of CAR T cell therapy.
Collapse
Affiliation(s)
- Ya-Jui Lin
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA, United States.,Department of Neurosurgery, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan
| | - Leila A Mashouf
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA, United States.,Harvard Medical School, Boston, MA, United States
| | - Michael Lim
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA, United States
| |
Collapse
|
24
|
Chang CH, Chen TY, Tang TK. Using in vivo cerebellar electroporation to study neuronal cell proliferation and differentiation in a Joubert syndrome mouse model. Methods Cell Biol 2022; 175:235-249. [PMID: 36967143 DOI: 10.1016/bs.mcb.2022.07.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Joubert syndrome (JS) is an autosomal recessive ciliopathy that mainly affects the morphogenesis of the cerebellum and brain stem. To date, mutations in at least 39 genes have been identified in JS; all these gene-encoding proteins are involved in the biogenesis of the primary cilium and centrioles. Recent studies using the mouse model carrying deleted or mutated JS-related genes exhibited cerebellar hypoplasia with a reduction in neurogenesis; however, investigating specific neuronal behaviors during their development in vivo remains challenging. Here, we describe an in vivo cerebellar electroporation technique that can be used to deliver plasmids carrying GFP and/or shRNAs into the major cerebellar cell type, granule neurons, from their progenitor state to their maturation in a spatiotemporal-specific manner. By combining this method with cerebellar immunostaining and EdU incorporation, these approaches enable the investigation of the cell-autonomous effect of JS-related genes in granule neuron progenitors, including the pathogenesis of ectopic neurons and the defects in neuronal differentiation. This approach provides information toward understanding the multifaceted roles of JS-related genes during cerebellar development in vivo.
Collapse
Affiliation(s)
| | - Ting-Yu Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Tang K Tang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
25
|
The RNA-Binding Protein Musashi1 Regulates a Network of Cell Cycle Genes in Group 4 Medulloblastoma. Cells 2021; 11:cells11010056. [PMID: 35011618 PMCID: PMC8750343 DOI: 10.3390/cells11010056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 11/17/2022] Open
Abstract
Medulloblastoma is the most common malignant brain tumor in children. Treatment with surgery, irradiation, and chemotherapy has improved survival in recent years, but patients are frequently left with devastating neurocognitive and other sequelae. Patients in molecular subgroups 3 and 4 still experience a high mortality rate. To identify new pathways contributing to medulloblastoma development and create new routes for therapy, we have been studying oncogenic RNA-binding proteins. We defined Musashi1 (Msi1) as one of the main drivers of medulloblastoma development. The high expression of Msi1 is prevalent in Group 4 and correlates with poor prognosis while its knockdown disrupted cancer-relevant phenotypes. Genomic analyses (RNA-seq and RIP-seq) indicated that cell cycle and division are the main biological categories regulated by Msi1 in Group 4 medulloblastoma. The most prominent Msi1 targets include CDK2, CDK6, CCND1, CDKN2A, and CCNA1. The inhibition of Msi1 with luteolin affected the growth of CHLA-01 and CHLA-01R Group 4 medulloblastoma cells and a synergistic effect was observed when luteolin and the mitosis inhibitor, vincristine, were combined. These findings indicate that a combined therapeutic strategy (Msi1 + cell cycle/division inhibitors) could work as an alternative to treat Group 4 medulloblastoma.
Collapse
|
26
|
Shaik S, Maegawa S, Gopalakrishnan V. Medulloblastoma: novel insights into emerging therapeutic targets. Expert Opin Ther Targets 2021; 25:615-619. [PMID: 34602009 DOI: 10.1080/14728222.2021.1982896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Shavali Shaik
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shinji Maegawa
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vidya Gopalakrishnan
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
27
|
Liu F, Shao J, Yang H, Yang G, Zhu Q, Wu Y, Zhu L, Wu H. Disruption of rack1 suppresses SHH-type medulloblastoma formation in mice. CNS Neurosci Ther 2021; 27:1518-1530. [PMID: 34480519 PMCID: PMC8611787 DOI: 10.1111/cns.13728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 08/19/2021] [Accepted: 08/24/2021] [Indexed: 11/27/2022] Open
Abstract
Introduction Medulloblastoma (MB) is a malignant pediatric brain tumor that arises in the cerebellar granular neurons. Sonic Hedgehog subtype of MB (SHH‐MB) is one of the major subtypes of MB in the clinic. However, the molecular mechanisms underlying MB tumorigenesis are still not fully understood. Aims Our previous work demonstrated that the receptor for activated C kinase 1 (Rack1) is essential for SHH signaling activation in granule neuron progenitors (GNPs) during cerebellar development. To investigate the potential role of Rack1 in MB development, human MB tissue array and SHH‐MB genetic mouse model were used to study the expression of function of Rack1 in MB pathogenesis. Results We found that the expression of Rack1 was significantly upregulated in the majority of human cerebellar MB tumors. Genetic ablation of Rack1 expression in SHH‐MB tumor mice could significantly inhibit MB proliferation, reduce the tumor size, and prolong the survival of tumor rescue mice. Interestingly, neither apoptosis nor autophagy levels were affected in Rack1‐deletion rescue mice compared to WT mice, but the expression of Gli1 and HDAC2 was significantly decreased suggesting the inactivation of SHH signaling pathway in rescue mice. Conclusion Our results demonstrated that Rack1 may serve as a potential candidate for the diagnostic marker and therapeutic target of MB, including SHH‐MB.
Collapse
Affiliation(s)
- Fengjiao Liu
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Jingyuan Shao
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Haihong Yang
- Department of Anesthesiology, The General Hospital of Western Theater Command, Chengdu, China
| | - Guochao Yang
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Qian Zhu
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Yan Wu
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Lingling Zhu
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Haitao Wu
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, China.,Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China.,Chinese Institute for Brain Research, Beijing, China
| |
Collapse
|
28
|
Hor CHH, Lo JCW, Cham ALS, Leong WY, Goh ELK. Multifaceted Functions of Rab23 on Primary Cilium-Mediated and Hedgehog Signaling-Mediated Cerebellar Granule Cell Proliferation. J Neurosci 2021; 41:6850-6863. [PMID: 34210780 PMCID: PMC8360682 DOI: 10.1523/jneurosci.3005-20.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 06/20/2021] [Accepted: 06/23/2021] [Indexed: 01/04/2023] Open
Abstract
Sonic hedgehog (Shh) signaling from the primary cilium drives cerebellar granule cell precursor (GCP) proliferation. Mutations of hedgehog (Hh) pathway repressors commonly cause medulloblastoma, the most prevalent and malignant childhood brain tumor that arises from aberrant GCP proliferation. We demonstrate that Nestin Cre-driven conditional knock-out (CKO) of a Shh pathway repressor-Rab23 in the mouse brain of both genders caused mis-patterning of cerebellar folia and elevated GCP proliferation during early development, but with no prevalent occurrence of medulloblastoma at adult stage. Strikingly, Rab23-depleted GCPs exhibited upregulated basal level of Shh pathway activities despite showing an abnormal ciliogenesis of primary cilia. In line with the compromised ciliation, Rab23-depleted GCPs were desensitized against Hh pathway activity stimulations by Shh ligand and Smoothened (Smo) agonist-SAG, and exhibited attenuated stimulation of Smo-localization on the primary cilium in response to SAG. These results implicate multidimensional actions of Rab23 on Hh signaling cascade. Rab23 represses the basal level of Shh signaling, while facilitating primary cilium-dependent extrinsic Shh signaling activation. Collectively, our findings unravel instrumental roles of Rab23 in GCP proliferation and ciliogenesis. Furthermore, Rab23's potentiation of Shh signaling pathway through the primary cilium and Smo suggests a potential new therapeutic strategy for Smo/primary cilium-driven medulloblastoma.SIGNIFICANCE STATEMENT Primary cilium and Sonic hedgehog (Shh) signaling are known to regulate granule cell precursor (GCP) proliferation. Aberrant overactivation of Shh signaling pathway ectopically increases GCP proliferation and causes malignant childhood tumor called medulloblastoma. However, the genetic and molecular regulatory cascade of GCP tumorigenesis remains incompletely understood. Our finding uncovers Rab23 as a novel regulator of hedgehog (Hh) signaling pathway activity and cell proliferation in GCP. Intriguingly, we demonstrated that Rab23 confers dual functions in regulating Shh signaling; it potentiates primary cilium and Shh/Smoothened (Smo)-dependent signaling activation, while antagonizes basal level Hh activity. Our data present a previously underappreciated aspect of Rab23 in mediating extrinsic Shh signaling upstream of Smo. This study sheds new light on the mechanistic insights underpinning Shh signaling-mediated GCP proliferation and tumorigenesis.
Collapse
Affiliation(s)
- C H H Hor
- Department of Chemistry, Faculty of Science, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
- Duke-NUS Medical School, Neuroscience Academic Clinical Programme, Singapore, 169857
| | - J C W Lo
- Department of Chemistry, Faculty of Science, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - A L S Cham
- Department of Chemistry, Faculty of Science, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - W Y Leong
- Duke-NUS Medical School, Neuroscience Academic Clinical Programme, Singapore, 169857
| | - E L K Goh
- Duke-NUS Medical School, Neuroscience Academic Clinical Programme, Singapore, 169857
- Department of Research, National Neuroscience Institute, Singapore, 308433
- Neuroscience and Mental Health Faculty, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232
- KK Research Center, KK Women's and Children's Hospital, Singapore, 229899
| |
Collapse
|
29
|
Mani S, Radhakrishnan S, Cheramangalam RN, Harkar S, Rajendran S, Ramanan N. Shh-Mediated Increase in β-Catenin Levels Maintains Cerebellar Granule Neuron Progenitors in Proliferation. THE CEREBELLUM 2021; 19:645-664. [PMID: 32495183 DOI: 10.1007/s12311-020-01138-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cerebellar granule neuron progenitors (CGNPs) give rise to the cerebellar granule neurons in the developing cerebellum. Generation of large number of these neurons is made possible by the high proliferation rate of CGNPs in the external granule layer (EGL) in the dorsal cerebellum. Here, we show that upregulation of β-catenin can maintain murine CGNPs in a state of proliferation. Further, we show that β-catenin mRNA and protein levels can be regulated by the mitogen Sonic hedgehog (Shh). Shh signaling led to an increase in the level of the transcription factor N-myc. N-myc was found to bind the β-catenin promoter, and the increase in β-catenin mRNA and protein levels could be prevented by blocking N-myc upregulation downstream of Shh signaling. Furthermore, blocking Wingless-type MMTV integration site (Wnt) signaling by Wnt signaling pathway inhibitor Dickkopf 1 (Dkk-1) in the presence of Shh did not prevent the upregulation of β-catenin. We propose that in culture, Shh signaling regulates β-catenin expression through N-myc and results in increased CGNP proliferation.
Collapse
Affiliation(s)
- Shyamala Mani
- Centre for Neuroscience, Indian Institute of Science, Bengaluru, 560012, India. .,Curadev Pharma, Pvt. Ltd., B-87, Sector 83, Noida, Uttar Pradesh, 201305, India. .,Université de Paris, Inserm UMR 1141 NeuroDiderot, F-75019, Paris, France.
| | | | | | - Shalini Harkar
- Centre for Neuroscience, Indian Institute of Science, Bengaluru, 560012, India
| | - Samyutha Rajendran
- Centre for Neuroscience, Indian Institute of Science, Bengaluru, 560012, India
| | | |
Collapse
|
30
|
Martirosian V, Deshpande K, Zhou H, Shen K, Smith K, Northcott P, Lin M, Stepanosyan V, Das D, Remsik J, Isakov D, Boire A, De Feyter H, Hurth K, Li S, Wiemels J, Nakamura B, Shao L, Danilov C, Chen T, Neman J. Medulloblastoma uses GABA transaminase to survive in the cerebrospinal fluid microenvironment and promote leptomeningeal dissemination. Cell Rep 2021; 35:109302. [PMID: 34192534 PMCID: PMC8848833 DOI: 10.1016/j.celrep.2021.109302] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/02/2020] [Accepted: 06/03/2021] [Indexed: 12/12/2022] Open
Abstract
Medulloblastoma (MB) is a malignant pediatric brain tumor arising in the cerebellum. Although abnormal GABAergic receptor activation has been described in MB, studies have not yet elucidated the contribution of receptor-independent GABA metabolism to MB pathogenesis. We find primary MB tumors globally display decreased expression of GABA transaminase (ABAT), the protein responsible for GABA metabolism, compared with normal cerebellum. However, less aggressive WNT and SHH subtypes express higher ABAT levels compared with metastatic G3 and G4 tumors. We show that elevated ABAT expression results in increased GABA catabolism, decreased tumor cell proliferation, and induction of metabolic and histone characteristics mirroring GABAergic neurons. Our studies suggest ABAT expression fluctuates depending on metabolite changes in the tumor microenvironment, with nutrient-poor conditions upregulating ABAT expression. We find metastatic MB cells require ABAT to maintain viability in the metabolite-scarce cerebrospinal fluid by using GABA as an energy source substitute, thereby facilitating leptomeningeal metastasis formation.
Collapse
Affiliation(s)
- Vahan Martirosian
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA; USC Brain Tumor Center, University of Southern California, Los Angeles, CA 90089, USA
| | - Krutika Deshpande
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA; USC Brain Tumor Center, University of Southern California, Los Angeles, CA 90089, USA
| | - Hao Zhou
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Keyue Shen
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA; Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA
| | - Kyle Smith
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Paul Northcott
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Michelle Lin
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Vazgen Stepanosyan
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Diganta Das
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Jan Remsik
- Human Oncology and Pathogenesis Program, Department of Neuro-Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Danielle Isakov
- Human Oncology and Pathogenesis Program, Department of Neuro-Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Adrienne Boire
- Human Oncology and Pathogenesis Program, Department of Neuro-Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Henk De Feyter
- Magnetic Resonance Research Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Kyle Hurth
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA; USC Brain Tumor Center, University of Southern California, Los Angeles, CA 90089, USA
| | - Shaobo Li
- Center for Genetic Epidemiology, Department of Preventative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Joseph Wiemels
- Center for Genetic Epidemiology, Department of Preventative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA; Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA
| | - Brooke Nakamura
- Division of Gastrointestinal and Liver Diseases, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Ling Shao
- Division of Gastrointestinal and Liver Diseases, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA; Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA
| | - Camelia Danilov
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Thomas Chen
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA; USC Brain Tumor Center, University of Southern California, Los Angeles, CA 90089, USA
| | - Josh Neman
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA; Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA; USC Brain Tumor Center, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
31
|
Lambrou GI, Zaravinos A, Braoudaki M. Co-Deregulated miRNA Signatures in Childhood Central Nervous System Tumors: In Search for Common Tumor miRNA-Related Mechanics. Cancers (Basel) 2021; 13:cancers13123028. [PMID: 34204289 PMCID: PMC8235499 DOI: 10.3390/cancers13123028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/09/2021] [Accepted: 06/14/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Childhood tumors of the central nervous system (CNS) constitute a grave disease and their diagnosis is difficult to be handled. To gain better knowledge of the tumor’s biology, it is essential to understand the underlying mechanisms of the disease. MicroRNAs (miRNAs) are small noncoding RNAs that are dysregulated in many types of CNS tumors and regulate their occurrence and development through specific signal pathways. However, different types of CNS tumors’ area are characterized by different deregulated miRNAs. Here, we hypothesized that CNS tumors could have commonly deregulated miRNAs, i.e., miRNAs that are simultaneously either upregulated or downregulated in all tumor types compared to the normal brain tissue, irrespectively of the tumor sub-type and/or diagnosis. The only criterion is that they are present in brain tumors. This approach could lead us to the discovery of miRNAs that could be used as pan-CNS tumoral therapeutic targets, if successful. Abstract Despite extensive experimentation on pediatric tumors of the central nervous system (CNS), related to both prognosis, diagnosis and treatment, the understanding of pathogenesis and etiology of the disease remains scarce. MicroRNAs are known to be involved in CNS tumor oncogenesis. We hypothesized that CNS tumors possess commonly deregulated miRNAs across different CNS tumor types. Aim: The current study aims to reveal the co-deregulated miRNAs across different types of pediatric CNS tumors. Materials: A total of 439 CNS tumor samples were collected from both in-house microarray experiments as well as data available in public databases. Diagnoses included medulloblastoma, astrocytoma, ependydoma, cortical dysplasia, glioblastoma, ATRT, germinoma, teratoma, yoc sac tumors, ocular tumors and retinoblastoma. Results: We found miRNAs that were globally up- or down-regulated in the majority of the CNS tumor samples. MiR-376B and miR-372 were co-upregulated, whereas miR-149, miR-214, miR-574, miR-595 and miR-765 among others, were co-downregulated across all CNS tumors. Receiver-operator curve analysis showed that miR-149, miR-214, miR-574, miR-595 and miR765 could distinguish between CNS tumors and normal brain tissue. Conclusions: Our approach could prove significant in the search for global miRNA targets for tumor diagnosis and therapy. To the best of our knowledge, there are no previous reports concerning the present approach.
Collapse
Affiliation(s)
- George I. Lambrou
- Choremeio Research Laboratory, First Department of Pediatrics, National and Kapodistrian University of Athens, Thivon & Levadeias 8, Goudi, 11527 Athens, Greece;
| | - Apostolos Zaravinos
- Department of Life Sciences, European University Cyprus, Diogenis Str., 6, Nicosia 2404, Cyprus
- Cancer Genetics, Genomics and Systems Biology Group, Basic and Translational Cancer Research Center (BTCRC), Nicosia 1516, Cyprus
- Correspondence: (A.Z.); (M.B.); Tel.: +974-4403-7819 (A.Z.); +44-(0)-1707286503 (ext. 3503) (M.B.)
| | - Maria Braoudaki
- Department of Clinical, Pharmaceutical and Biological Science, School of Life and Medical Sciences, University of Hertfordshire, College Lane, Hatfield AL10 9AB, Hertfordshire, UK
- Correspondence: (A.Z.); (M.B.); Tel.: +974-4403-7819 (A.Z.); +44-(0)-1707286503 (ext. 3503) (M.B.)
| |
Collapse
|
32
|
Shrestha S, Morcavallo A, Gorrini C, Chesler L. Biological Role of MYCN in Medulloblastoma: Novel Therapeutic Opportunities and Challenges Ahead. Front Oncol 2021; 11:694320. [PMID: 34195095 PMCID: PMC8236857 DOI: 10.3389/fonc.2021.694320] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 05/19/2021] [Indexed: 12/13/2022] Open
Abstract
The constitutive and dysregulated expression of the transcription factor MYCN has a central role in the pathogenesis of the paediatric brain tumour medulloblastoma, with an increased expression of this oncogene correlating with a worse prognosis. Consequently, the genomic and functional alterations of MYCN represent a major therapeutic target to attenuate tumour growth in medulloblastoma. This review will provide a comprehensive synopsis of the biological role of MYCN and its family components, their interaction with distinct signalling pathways, and the implications of this network in medulloblastoma development. We will then summarise the current toolbox for targeting MYCN and highlight novel therapeutic avenues that have the potential to results in better-tailored clinical treatments.
Collapse
Affiliation(s)
- Sumana Shrestha
- Division of Clinical Studies, Institute of Cancer Research (ICR), London and Royal Marsden NHS Trust, Sutton, United Kingdom
| | - Alaide Morcavallo
- Division of Clinical Studies, Institute of Cancer Research (ICR), London and Royal Marsden NHS Trust, Sutton, United Kingdom
| | - Chiara Gorrini
- Division of Clinical Studies, Institute of Cancer Research (ICR), London and Royal Marsden NHS Trust, Sutton, United Kingdom
| | - Louis Chesler
- Division of Clinical Studies, Institute of Cancer Research (ICR), London and Royal Marsden NHS Trust, Sutton, United Kingdom.,Division of Cancer Therapeutics, The Institute of Cancer Research (ICR), and The Royal Marsden NHS Trust, Sutton, United Kingdom
| |
Collapse
|
33
|
Miyashita S, Owa T, Seto Y, Yamashita M, Aida S, Sone M, Ichijo K, Nishioka T, Kaibuchi K, Kawaguchi Y, Taya S, Hoshino M. Cyclin D1 controls development of cerebellar granule cell progenitors through phosphorylation and stabilization of ATOH1. EMBO J 2021; 40:e105712. [PMID: 34057742 PMCID: PMC8280807 DOI: 10.15252/embj.2020105712] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 03/28/2021] [Accepted: 04/01/2021] [Indexed: 12/27/2022] Open
Abstract
During development, neural progenitors are in proliferative and immature states; however, the molecular machinery that cooperatively controls both states remains elusive. Here, we report that cyclin D1 (CCND1) directly regulates both proliferative and immature states of cerebellar granule cell progenitors (GCPs). CCND1 not only accelerates cell cycle but also upregulates ATOH1 protein, an essential transcription factor that maintains GCPs in an immature state. In cooperation with CDK4, CCND1 directly phosphorylates S309 of ATOH1, which inhibits additional phosphorylation at S328 and consequently prevents S328 phosphorylation-dependent ATOH1 degradation. Additionally, PROX1 downregulates Ccnd1 expression by histone deacetylation of Ccnd1 promoter in GCPs, leading to cell cycle exit and differentiation. Moreover, WNT signaling upregulates PROX1 expression in GCPs. These findings suggest that WNT-PROX1-CCND1-ATOH1 signaling cascade cooperatively controls proliferative and immature states of GCPs. We revealed that the expression and phosphorylation levels of these molecules dynamically change during cerebellar development, which are suggested to determine appropriate differentiation rates from GCPs to GCs at distinct developmental stages. This study contributes to understanding the regulatory mechanism of GCPs as well as neural progenitors.
Collapse
Affiliation(s)
- Satoshi Miyashita
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, NCNP, Tokyo, Japan
| | - Tomoo Owa
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, NCNP, Tokyo, Japan
| | - Yusuke Seto
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, NCNP, Tokyo, Japan.,Laboratory of Developmental Systems, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Mariko Yamashita
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, NCNP, Tokyo, Japan
| | - Shogo Aida
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, NCNP, Tokyo, Japan.,Department of Biomolecular Science, Faculty of Science, Toho University, Chiba, Japan
| | - Masaki Sone
- Department of Biomolecular Science, Faculty of Science, Toho University, Chiba, Japan
| | - Kentaro Ichijo
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, NCNP, Tokyo, Japan.,Department of Otolaryngology and Head and Neck Surgery, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tomoki Nishioka
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kozo Kaibuchi
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshiya Kawaguchi
- Department of Life Science Frontiers, Center for iPS cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Shinichiro Taya
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, NCNP, Tokyo, Japan
| | - Mikio Hoshino
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, NCNP, Tokyo, Japan
| |
Collapse
|
34
|
Malawsky DS, Weir SJ, Ocasio JK, Babcock B, Dismuke T, Cleveland AH, Donson AM, Vibhakar R, Wilhelmsen K, Gershon TR. Cryptic developmental events determine medulloblastoma radiosensitivity and cellular heterogeneity without altering transcriptomic profile. Commun Biol 2021; 4:616. [PMID: 34021242 PMCID: PMC8139976 DOI: 10.1038/s42003-021-02099-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 04/12/2021] [Indexed: 12/20/2022] Open
Abstract
It is unclear why medulloblastoma patients receiving similar treatments experience different outcomes. Transcriptomic profiling identified subgroups with different prognoses, but in each subgroup, individuals remain at risk of incurable recurrence. To investigate why similar-appearing tumors produce variable outcomes, we analyzed medulloblastomas triggered in transgenic mice by a common driver mutation expressed at different points in brain development. We genetically engineered mice to express oncogenic SmoM2, starting in multipotent glio-neuronal stem cells, or committed neural progenitors. Both groups developed medulloblastomas with similar transcriptomic profiles. We compared medulloblastoma progression, radiosensitivity, and cellular heterogeneity, determined by single-cell transcriptomic analysis (scRNA-seq). Stem cell-triggered medulloblastomas progressed faster, contained more OLIG2-expressing stem-like cells, and consistently showed radioresistance. In contrast, progenitor-triggered MBs progressed slower, down-regulated stem-like cells and were curable with radiation. Progenitor-triggered medulloblastomas also contained more diverse stromal populations, with more Ccr2+ macrophages and fewer Igf1+ microglia, indicating that developmental events affected the subsequent tumor microenvironment. Reduced mTORC1 activity in M-Smo tumors suggests that differential Igf1 contributed to differences in phenotype. Developmental events in tumorigenesis that were obscure in transcriptomic profiles thus remained cryptic determinants of tumor composition and outcome. Precise understanding of medulloblastoma pathogenesis and prognosis requires supplementing transcriptomic/methylomic studies with analyses that resolve cellular heterogeneity.
Collapse
Affiliation(s)
- Daniel Shiloh Malawsky
- Department of Neurology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Seth J Weir
- Department of Neurology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Jennifer Karin Ocasio
- Department of Neurology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
- UNC Neuroscience Center, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Benjamin Babcock
- Department of Neurology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Taylor Dismuke
- Department of Neurology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Abigail H Cleveland
- Department of Neurology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
- UNC Cancer Cell Biology Training Program, University of North Carolina, Chapel Hill, NC, USA
| | - Andrew M Donson
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's, Hospital Colorado, Aurora, CO, USA
| | - Rajeev Vibhakar
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's, Hospital Colorado, Aurora, CO, USA
| | - Kirk Wilhelmsen
- Department of Neurology, University of North Carolina School of Medicine, Chapel Hill, NC, USA.
- Department of Genetics, University of North Carolina School of Medicine, Chapel Hill, NC, USA.
- RENCI, Chapel Hill, NC, USA.
| | - Timothy R Gershon
- Department of Neurology, University of North Carolina School of Medicine, Chapel Hill, NC, USA.
- UNC Neuroscience Center, University of North Carolina School of Medicine, Chapel Hill, NC, USA.
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC, USA.
| |
Collapse
|
35
|
Nano PR, Johnson TK, Kudo T, Mooney NA, Ni J, Demeter J, Jackson PK, Chen JK. Structure-activity mapping of ARHGAP36 reveals regulatory roles for its GAP homology and C-terminal domains. PLoS One 2021; 16:e0251684. [PMID: 33999959 PMCID: PMC8128262 DOI: 10.1371/journal.pone.0251684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 05/01/2021] [Indexed: 11/24/2022] Open
Abstract
ARHGAP36 is an atypical Rho GTPase-activating protein (GAP) family member that drives both spinal cord development and tumorigenesis, acting in part through an N-terminal motif that suppresses protein kinase A and activates Gli transcription factors. ARHGAP36 also contains isoform-specific N-terminal sequences, a central GAP-like module, and a unique C-terminal domain, and the functions of these regions remain unknown. Here we have mapped the ARHGAP36 structure-activity landscape using a deep sequencing-based mutagenesis screen and truncation mutant analyses. Using this approach, we have discovered several residues in the GAP homology domain that are essential for Gli activation and a role for the C-terminal domain in counteracting an N-terminal autoinhibitory motif that is present in certain ARHGAP36 isoforms. In addition, each of these sites modulates ARHGAP36 recruitment to the plasma membrane or primary cilium. Through comparative proteomics, we also have identified proteins that preferentially interact with active ARHGAP36, and we demonstrate that one binding partner, prolyl oligopeptidase-like protein, is a novel ARHGAP36 antagonist. Our work reveals multiple modes of ARHGAP36 regulation and establishes an experimental framework that can be applied towards other signaling proteins.
Collapse
Affiliation(s)
- Patricia R. Nano
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Taylor K. Johnson
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Takamasa Kudo
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Nancie A. Mooney
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Jun Ni
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Janos Demeter
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Peter K. Jackson
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| | - James K. Chen
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Chemistry, Stanford University, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
36
|
Xiao Z, Yang X, Liu Z, Shao Z, Song C, Zhang K, Wang X, Li Z. GASC1 promotes glioma progression by enhancing NOTCH1 signaling. Mol Med Rep 2021; 23:310. [PMID: 33649841 PMCID: PMC7974312 DOI: 10.3892/mmr.2021.11949] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 01/21/2021] [Indexed: 12/21/2022] Open
Abstract
Recent studies have reported that gene amplified in squamous cell carcinoma 1 (GASC1) is involved in the progression of several types of cancer. However, whether GASC1 promotes glioma progression remains unknown. Therefore, the present study aimed to investigate the effect of GASC1 exposure on glioma tumorigenesis. The western blot demonstrated that grade III and IV glioma tissues exhibited a higher mRNA and protein expression of GASC1. Moreover, CD133+ U87 or U251 cells from magnetic cell separation exhibited a higher GASC1 expression. Invasion Transwell assay, clonogenic assay and wound healing assay have shown that GASC1 inhibition using a pharmacological inhibitor and specific short hairpin (sh)RNA suppressed the invasive, migratory and tumorsphere forming abilities of primary culture human glioma cells. Furthermore, GASC1‑knockdown decreased notch receptor (Notch) responsive protein hes family bHLH transcription factor 1 (Hes1) signaling. GASC1 inhibition reduced notch receptor 1 (NOTCH1) expression, and a NOTCH1 inhibitor enhanced the effects of GASC1 inhibition on the CD133+ U87 or U251 cell tumorsphere forming ability, while NOTCH1 overexpression abrogated these effects. In addition, the GASC1 inhibitor caffeic acid and/or the NOTCH1 inhibitor DAPT (a γ‑Secretase Inhibitor), efficiently suppressed the human glioma xenograft tumors. Thus, the present results demonstrated the importance of GASC1 in the progression of glioma and identified that GASC1 promotes glioma progression, at least in part, by enhancing NOTCH signaling, suggesting that GASC1/NOTCH1 signaling may be a potential therapeutic target for glioma treatment.
Collapse
Affiliation(s)
- Zhengzheng Xiao
- Department of Neurosurgery, Henan Key Laboratory of Cancer Epigenetics, Cancer Institute, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Xiaoli Yang
- Department of General Practice, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Zebin Liu
- Department of Neurosurgery, Henan Key Laboratory of Cancer Epigenetics, Cancer Institute, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Zheng Shao
- Department of Neurosurgery, Henan Key Laboratory of Cancer Epigenetics, Cancer Institute, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Chaojun Song
- Department of Neurosurgery, Henan Key Laboratory of Cancer Epigenetics, Cancer Institute, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Kun Zhang
- Spine Tumor Center, Department of Orthopedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai 210011, P.R. China
| | - Xiaobin Wang
- Department of Urology, Carson International Cancer Centre, Shenzhen University General Hospital and Shenzhen University Clinical Medical Academy Centre, Shenzhen University, Shenzhen, Guangdong 518000, P.R. China
| | - Zhengwei Li
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| |
Collapse
|
37
|
Massimino M, Signoroni S, Boschetti L, Chiapparini L, Erbetta A, Biassoni V, Schiavello E, Ferrari A, Spreafico F, Terenziani M, Chiaravalli S, Puma N, Bergamaschi L, Ricci MT, Cattaneo L, Gattuso G, Buttarelli FR, Gianno F, Miele E, Poggi G, Vitellaro M. Medulloblastoma and familial adenomatous polyposis: Good prognosis and good quality of life in the long-term? Pediatr Blood Cancer 2021; 68:e28912. [PMID: 33459525 DOI: 10.1002/pbc.28912] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 12/23/2020] [Accepted: 01/05/2021] [Indexed: 11/09/2022]
Abstract
INTRODUCTION Mutations of the APC (adenomatous polyposis coli) gene correlate mainly with familial adenomatous polyposis (FAP), but can occasionally be pathogenic for medulloblastoma (MBL) wingless-related integration site (WNT) subtype, the course of which has only recently been described. METHODS We retrieved all patients with documented germline APC mutations and a diagnosis of MBL to examine their outcome, late effects of treatment, and further oncological events. RESULTS Between 2007 and 2016, we treated six patients, all with a pathogenic APC variant mutation and all with MBL, classic histotype. None had metastatic disease. All patients were in complete remission a median 65 months after treatment with craniospinal irradiation at 23.4 Gy, plus a boost on the posterior fossa/tumor bed up to 54 Gy, followed by cisplatin/carboplatin, lomustine, and vincristine for a maximum of eight courses. Five of six diagnostic revised MRI were suggestive of the WNT molecular subgroup typical aspects. Methylation profile score (in two cases) and copy number variation analysis (chromosome 6 deletion in two cases) performed on four of six retrieved samples confirmed WNT molecular subgroup. Four out of six patients had a positive family history of FAP, while gastrointestinal symptoms prompted its identification in the other two cases. Four patients developed other tumors (desmoid, MELTUMP, melanoma, pancreatoblastoma, thyroid Tir3) from 5 to 7 years after MBL. DISCUSSION Our data confirm a good prognosis for patients with MBL associated with FAP. Patients' secondary tumors may or may not be related to their syndrome or treatment, but warrant adequate attention when planning shared guidelines for these patients.
Collapse
Affiliation(s)
- Maura Massimino
- Pediatric Unit, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Stefano Signoroni
- Hereditary Digestive Tract Tumors Unit, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Luna Boschetti
- Pediatric Unit, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Luisa Chiapparini
- Neuroradiology Department, IRCCS Fondazione Istituto Neurologico Carlo Besta, Milan, Italy
| | - Alessandra Erbetta
- Neuroradiology Department, IRCCS Fondazione Istituto Neurologico Carlo Besta, Milan, Italy
| | - Veronica Biassoni
- Pediatric Unit, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | | | - Andrea Ferrari
- Pediatric Unit, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Filippo Spreafico
- Pediatric Unit, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Monica Terenziani
- Pediatric Unit, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | | | - Nadia Puma
- Pediatric Unit, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Luca Bergamaschi
- Pediatric Unit, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Maria Teresa Ricci
- Hereditary Digestive Tract Tumors Unit, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Laura Cattaneo
- Department of Pathology and Laboratory Medicine, First Pathology Division, Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy
| | - Giovanna Gattuso
- Pediatric Unit, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | | | - Francesca Gianno
- Radiologic, Oncologic and Anatomo-Pathological Sciences Department, Sapienza University, Rome, Italy
| | - Evelina Miele
- Department of Paediatric Haematology/Oncology Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Geraldina Poggi
- Neuro-Oncological and Neuropsychological Rehabilitation Unit, Scientific Institute, IRCCS Eugenio Medea, Lecco, Italy
| | - Marco Vitellaro
- Hereditary Digestive Tract Tumors Unit, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy.,Colorectal Surgery Unit, Department of Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| |
Collapse
|
38
|
Jiao X, Rahimi Balaei M, Abu-El-Rub E, Casoni F, Pezeshgi Modarres H, Dhingra S, Kong J, Consalez GG, Marzban H. Reduced Granule Cell Proliferation and Molecular Dysregulation in the Cerebellum of Lysosomal Acid Phosphatase 2 (ACP2) Mutant Mice. Int J Mol Sci 2021; 22:2994. [PMID: 33804256 PMCID: PMC7999993 DOI: 10.3390/ijms22062994] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/08/2021] [Accepted: 03/12/2021] [Indexed: 12/25/2022] Open
Abstract
Lysosomal acid phosphatase 2 (Acp2) mutant mice (naked-ataxia, nax) have a severe cerebellar cortex defect with a striking reduction in the number of granule cells. Using a combination of in vivo and in vitro immunohistochemistry, Western blotting, BrdU assays, and RT-qPCR, we show downregulation of MYCN and dysregulation of the SHH signaling pathway in the nax cerebellum. MYCN protein expression is significantly reduced at P10, but not at the peak of proliferation at around P6 when the number of granule cells is strikingly reduced in the nax cerebellum. Despite the significant role of the SHH-MycN pathway in granule cell proliferation, our study suggests that a broader molecular pathway and additional mechanisms regulating granule cell development during the clonal expansion period are impaired in the nax cerebellum. In particular, our results indicate that downregulation of the protein synthesis machinery may contribute to the reduced number of granule cells in the nax cerebellum.
Collapse
Affiliation(s)
- Xiaodan Jiao
- Department of Human Anatomy and Cell Science, The Children's Hospital Research Institute of Manitoba (CHRIM), Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
| | - Maryam Rahimi Balaei
- Department of Human Anatomy and Cell Science, The Children's Hospital Research Institute of Manitoba (CHRIM), Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
| | - Ejlal Abu-El-Rub
- Department of Physiology and Pathophysiology, Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
- Physiology and Pathophysiology, Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid 21163, Jordan
| | - Filippo Casoni
- Division of Neuroscience, San Raffaele Scientific Institute, San Raffaele University, 20132 Milan, Italy
| | - Hassan Pezeshgi Modarres
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Sanjiv Dhingra
- Department of Physiology and Pathophysiology, Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
| | - Jiming Kong
- Department of Human Anatomy and Cell Science, The Children's Hospital Research Institute of Manitoba (CHRIM), Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
| | - Giacomo G Consalez
- Division of Neuroscience, San Raffaele Scientific Institute, San Raffaele University, 20132 Milan, Italy
| | - Hassan Marzban
- Department of Human Anatomy and Cell Science, The Children's Hospital Research Institute of Manitoba (CHRIM), Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
| |
Collapse
|
39
|
Jug M. A 3D-Printed Model-Assisted Cervical Spine Instrumentation after Tumor Resection in a 4-Year-Old Child: A Case Report. Pediatr Neurosurg 2021; 56:254-260. [PMID: 33784715 DOI: 10.1159/000514248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/01/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION In the case of tumor resection in the upper cervical spine, a multilevel laminectomy with instrumented fixation is required to prevent kyphotic deformity and myelopathy. Nevertheless, instrumentation of the cervical spine in children under the age of 8 years is challenging due to anatomical considerations and unavailability of specific instrumentation. CASE PRESENTATION We present a case of 3D-printed model-assisted cervical spine instrumentation in a 4-year-old child with post-laminectomy kyphotic decompensation of the cervical spine and spinal cord injury 1 year after medulloblastoma metastasis resection in the upper cervical spine. Due to unavailability of specific instrumentation, 3D virtual planning was used to assess and plan posterior cervical fixation. Fixation with 3.5 mm lateral mass and isthmic screws was suggested and the feasibility of fixation was confirmed "in vitro" in a 3D-printed model preoperatively to reduce the possibility of intraoperative implant-spine mismatch. Intraoperative conditions completely resembled the preoperative plan and 3.5 mm polyaxial screws were successfully used as planned. Postoperatively the child made a complete neurological recovery and 2 years after the instrumented fusion is still disease free with no signs of spinal decompensation. DISCUSSION/CONCLUSION Our case shows that posterior cervical fixation with the conventional screw-rod technique in a 4-year-old child is feasible, but we suggest that suitability and positioning of the chosen implants are preoperatively assessed in a printed 3D model. In addition, a printed 3D model offers the possibility to better visualize and sense spinal anatomy "in vivo," thereby helping screw placement and reducing the chance for intraoperative complications, especially in the absence of intraoperative spinal navigation.
Collapse
Affiliation(s)
- Marko Jug
- Department for Traumatology, University medical Centre Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
40
|
Sepulveda E, Patrick H, Freeman CR, Kildea J. Implementation of a DVH Registry to provide constraints and continuous quality monitoring for pediatric CSI treatment planning. J Appl Clin Med Phys 2020; 22:191-202. [PMID: 33315306 PMCID: PMC7856485 DOI: 10.1002/acm2.13131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/13/2020] [Accepted: 11/22/2020] [Indexed: 11/08/2022] Open
Abstract
Craniospinal irradiation (CSI) is a complex radiation therapy technique that is used for patients, often children and teenagers/young adults, with tumors that have a propensity to spread throughout the central nervous system such as medulloblastoma. CSI is associated with important long‐term side effects, the risk of which may be affected by numerous factors including radiation modality and technique. Lack of standardization for a technique that is used even in larger radiation oncology departments only a few times each year may be one such factor and the current ad hoc manner of planning new CSI patients may be greatly improved by implementing a dose–volume histogram registry (DVHR) to use previous patient data to facilitate prospective constraint guidance for organs at risk. In this work, we implemented a DVHR and used it to provide standardized constraints for CSI planning. Mann–Whitney U tests and mean differences at 95% confidence intervals were used to compare two cohorts (pre‐ and post‐DVHR intervention) at specific dosimetric points to determine if observed improvements in standardization were statistically significant. Through this approach, we have shown that the implementation of dosimetric constraints based on DVHR‐derived data helped improve the standardization of pediatric CSI planning at our center. The DVHR also provided guidance for a change in CSI technique, helping to achieve practice standardization across TomoTherapy and IMRT.
Collapse
Affiliation(s)
- Esteban Sepulveda
- Medical Physics Unit, Department of Physics, McGill University, Montréal, Canada
| | - Haley Patrick
- Medical Physics Unit, Department of Physics, McGill University, Montréal, Canada
| | - Carolyn R Freeman
- Division of Radiation Oncology, Department of Oncology, McGill University, Montréal, Canada
| | - John Kildea
- Medical Physics Unit, Department of Physics, McGill University, Montréal, Canada
| |
Collapse
|
41
|
Veleta KA, Cleveland AH, Babcock BR, He YW, Hwang D, Sokolsky-Papkov M, Gershon TR. Antiapoptotic Bcl-2 family proteins BCL-xL and MCL-1 integrate neural progenitor survival and proliferation during postnatal cerebellar neurogenesis. Cell Death Differ 2020; 28:1579-1592. [PMID: 33293647 DOI: 10.1038/s41418-020-00687-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/11/2020] [Accepted: 11/16/2020] [Indexed: 11/09/2022] Open
Abstract
The tendency of brain cells to undergo apoptosis in response to exogenous events varies across neural development, with apoptotic threshold dependent on proliferation state. Proliferative neural progenitors show a low threshold for apoptosis, while terminally differentiated neurons are relatively refractory. To define the mechanisms linking proliferation and apoptotic threshold, we examined the effect of conditionally deleting Bcl2l1, the gene that codes the antiapoptotic protein BCL-xL, in cerebellar granule neuron progenitors (CGNPs), and of co-deleting Bcl2l1 homologs, antiapoptotic Mcl-1, or pro-apoptotic Bax. We found that cerebella in conditional Bcl2l1-deleted (Bcl-xLcKO) mice were severely hypoplastic due to the increased apoptosis of CGNPs and their differentiated progeny, the cerebellar granule neurons (CGNs). Apoptosis was highest as Bcl-xLcKO CGNPs exited the cell cycle to initiate differentiation, with proliferating Bcl-xLcKO CGNPs relatively less affected. Despite the overall reduction in cerebellar growth, SHH-dependent proliferation was prolonged in Bcl-xLcKO mice, as more CGNPs remained proliferative in the second postnatal week. Co-deletion of Bax rescued the Bcl-xLcKO phenotype, while co-deletion of Mcl-1 enhanced the phenotype. These findings show that CGNPs require BCL-xL to regulate BAX-dependent apoptosis, and that this role can be partially compensated by MCL-1. Our data further show that BCL-xL expression regulates MCL-1 abundance in CGNPs, and suggest that excessive MCL-1 in Bcl-xLcKO mice prolongs CGNP proliferation by binding SUFU, resulting in increased SHH pathway activation. Accordingly, we propose that BCL-xL and MCL-1 interact with each other and with developmental mechanisms that regulate proliferation, to adjust the apoptotic threshold as CGNPs progress through postnatal neurogenesis to CGNs.
Collapse
Affiliation(s)
- Katherine A Veleta
- UNC Neuroscience Center, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Abigail H Cleveland
- UNC Cancer Cell Biology Training Program, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Benjamin R Babcock
- Department of Neurology, UNC School of Medicine, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - You-Wen He
- Department of Immunology, Duke University, Durham, NC, 27708, USA
| | - Duhyeong Hwang
- Center for Nanotechnology in Drug Delivery and Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Marina Sokolsky-Papkov
- Center for Nanotechnology in Drug Delivery and Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Timothy R Gershon
- UNC Neuroscience Center, University of North Carolina, Chapel Hill, NC, 27599, USA. .,Department of Neurology, UNC School of Medicine, University of North Carolina, Chapel Hill, NC, 27599, USA. .,Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
42
|
Escudero L, Llort A, Arias A, Diaz-Navarro A, Martínez-Ricarte F, Rubio-Perez C, Mayor R, Caratù G, Martínez-Sáez E, Vázquez-Méndez É, Lesende-Rodríguez I, Hladun R, Gros L, Ramón Y Cajal S, Poca MA, Puente XS, Sahuquillo J, Gallego S, Seoane J. Circulating tumour DNA from the cerebrospinal fluid allows the characterisation and monitoring of medulloblastoma. Nat Commun 2020; 11:5376. [PMID: 33110059 PMCID: PMC7591522 DOI: 10.1038/s41467-020-19175-0] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 09/30/2020] [Indexed: 02/08/2023] Open
Abstract
The molecular characterisation of medulloblastoma, the most common paediatric brain tumour, is crucial for the correct management and treatment of this heterogenous disease. However, insufficient tissue sample, the presence of tumour heterogeneity, or disseminated disease can challenge its diagnosis and monitoring. Here, we report that the cerebrospinal fluid (CSF) circulating tumour DNA (ctDNA) recapitulates the genomic alterations of the tumour and facilitates subgrouping and risk stratification, providing valuable information about diagnosis and prognosis. CSF ctDNA also characterises the intra-tumour genomic heterogeneity identifying small subclones. ctDNA is abundant in the CSF but barely present in plasma and longitudinal analysis of CSF ctDNA allows the study of minimal residual disease, genomic evolution and the characterisation of tumours at recurrence. Ultimately, CSF ctDNA analysis could facilitate the clinical management of medulloblastoma patients and help the design of tailored therapeutic strategies, increasing treatment efficacy while reducing excessive treatment to prevent long-term secondary effects.
Collapse
Affiliation(s)
- Laura Escudero
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron University Hospital, 08035, Barcelona, Spain
| | - Anna Llort
- Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron University Hospital, 08035, Barcelona, Spain
| | - Alexandra Arias
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron University Hospital, 08035, Barcelona, Spain
| | - Ander Diaz-Navarro
- Dpto. de Bioquímica y Biología Molecular, IUOPA-Universidad de Oviedo, 33006, Oviedo, Spain.,CIBERONC, Barcelona, Spain
| | - Francisco Martínez-Ricarte
- Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron University Hospital, 08035, Barcelona, Spain.,Universitat Autònoma de Barcelona (UAB), 08193, Cerdanyola del Vallès, Spain
| | - Carlota Rubio-Perez
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron University Hospital, 08035, Barcelona, Spain
| | - Regina Mayor
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron University Hospital, 08035, Barcelona, Spain
| | - Ginevra Caratù
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron University Hospital, 08035, Barcelona, Spain
| | - Elena Martínez-Sáez
- Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron University Hospital, 08035, Barcelona, Spain
| | - Élida Vázquez-Méndez
- Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron University Hospital, 08035, Barcelona, Spain
| | | | - Raquel Hladun
- Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron University Hospital, 08035, Barcelona, Spain
| | - Luis Gros
- Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron University Hospital, 08035, Barcelona, Spain
| | - Santiago Ramón Y Cajal
- Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron University Hospital, 08035, Barcelona, Spain
| | - Maria A Poca
- Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron University Hospital, 08035, Barcelona, Spain.,Universitat Autònoma de Barcelona (UAB), 08193, Cerdanyola del Vallès, Spain
| | - Xose S Puente
- Dpto. de Bioquímica y Biología Molecular, IUOPA-Universidad de Oviedo, 33006, Oviedo, Spain.,CIBERONC, Barcelona, Spain
| | - Juan Sahuquillo
- Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron University Hospital, 08035, Barcelona, Spain.,Universitat Autònoma de Barcelona (UAB), 08193, Cerdanyola del Vallès, Spain
| | - Soledad Gallego
- Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron University Hospital, 08035, Barcelona, Spain.,Universitat Autònoma de Barcelona (UAB), 08193, Cerdanyola del Vallès, Spain
| | - Joan Seoane
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron University Hospital, 08035, Barcelona, Spain. .,CIBERONC, Barcelona, Spain. .,Universitat Autònoma de Barcelona (UAB), 08193, Cerdanyola del Vallès, Spain. .,Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010, Barcelona, Spain.
| |
Collapse
|
43
|
Doheny D, Manore SG, Wong GL, Lo HW. Hedgehog Signaling and Truncated GLI1 in Cancer. Cells 2020; 9:cells9092114. [PMID: 32957513 PMCID: PMC7565963 DOI: 10.3390/cells9092114] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/10/2020] [Accepted: 09/15/2020] [Indexed: 12/18/2022] Open
Abstract
The hedgehog (HH) signaling pathway regulates normal cell growth and differentiation. As a consequence of improper control, aberrant HH signaling results in tumorigenesis and supports aggressive phenotypes of human cancers, such as neoplastic transformation, tumor progression, metastasis, and drug resistance. Canonical activation of HH signaling occurs through binding of HH ligands to the transmembrane receptor Patched 1 (PTCH1), which derepresses the transmembrane G protein-coupled receptor Smoothened (SMO). Consequently, the glioma-associated oncogene homolog 1 (GLI1) zinc-finger transcription factors, the terminal effectors of the HH pathway, are released from suppressor of fused (SUFU)-mediated cytoplasmic sequestration, permitting nuclear translocation and activation of target genes. Aberrant activation of this pathway has been implicated in several cancer types, including medulloblastoma, rhabdomyosarcoma, basal cell carcinoma, glioblastoma, and cancers of lung, colon, stomach, pancreas, ovarian, and breast. Therefore, several components of the HH pathway are under investigation for targeted cancer therapy, particularly GLI1 and SMO. GLI1 transcripts are reported to undergo alternative splicing to produce truncated variants: loss-of-function GLI1ΔN and gain-of-function truncated GLI1 (tGLI1). This review covers the biochemical steps necessary for propagation of the HH activating signal and the involvement of aberrant HH signaling in human cancers, with a highlight on the tumor-specific gain-of-function tGLI1 isoform.
Collapse
Affiliation(s)
- Daniel Doheny
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA; (D.D.); (S.G.M.); (G.L.W.)
| | - Sara G. Manore
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA; (D.D.); (S.G.M.); (G.L.W.)
| | - Grace L. Wong
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA; (D.D.); (S.G.M.); (G.L.W.)
| | - Hui-Wen Lo
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA; (D.D.); (S.G.M.); (G.L.W.)
- Wake Forest Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA
- Correspondence: ; Tel.: +1-336-716-0695
| |
Collapse
|
44
|
Majidi SP, Reddy NC, Moore MJ, Chen H, Yamada T, Andzelm MM, Cherry TJ, Hu LS, Greenberg ME, Bonni A. Chromatin Environment and Cellular Context Specify Compensatory Activity of Paralogous MEF2 Transcription Factors. Cell Rep 2020; 29:2001-2015.e5. [PMID: 31722213 PMCID: PMC6874310 DOI: 10.1016/j.celrep.2019.10.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 09/04/2019] [Accepted: 10/09/2019] [Indexed: 12/16/2022] Open
Abstract
Compensation among paralogous transcription factors (TFs) confers genetic robustness of cellular processes, but how TFs dynamically respond to paralog depletion on a genome-wide scale in vivo remains incompletely understood. Using single and double conditional knockout of myocyte enhancer factor 2 (MEF2) family TFs in granule neurons of the mouse cerebellum, we find that MEF2A and MEF2D play functionally redundant roles in cerebellar-dependent motor learning. Although both TFs are highly expressed in granule neurons, transcriptomic analyses show MEF2D is the predominant genomic regulator of gene expression in vivo. Strikingly, genome-wide occupancy analyses reveal upon depletion of MEF2D, MEF2A occupancy robustly increases at a subset of sites normally bound to MEF2D. Importantly, sites experiencing compensatory MEF2A occupancy are concentrated within open chromatin and undergo functional compensation for genomic activation and gene expression. Finally, motor activity induces a switch from non-compensatory to compensatory MEF2-dependent gene regulation. These studies uncover genome-wide functional interdependency between paralogous TFs in the brain. Majidi et al. study how transcription factors respond to paralog depletion by conditionally depleting MEF2A and MEF2D in mouse cerebellum. Depletion of MEF2D induces functionally compensatory genomic occupancy by MEF2A. Compensation occurs within accessible chromatin in a context-dependent manner. This study explores the interdependency between paralogous transcription factors.
Collapse
Affiliation(s)
- Shahriyar P Majidi
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA; MD-PhD Program, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Naveen C Reddy
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Michael J Moore
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Hao Chen
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Tomoko Yamada
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA; Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Milena M Andzelm
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Timothy J Cherry
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98101, USA; Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, 1900 9(th) Ave., Seattle, WA 98101, USA; Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Linda S Hu
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | | | - Azad Bonni
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
45
|
Haltom AR, Toll SA, Cheng D, Maegawa S, Gopalakrishnan V, Khatua S. Medulloblastoma epigenetics and the path to clinical innovation. J Neurooncol 2020; 150:35-46. [PMID: 32816225 DOI: 10.1007/s11060-020-03591-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/06/2020] [Indexed: 12/30/2022]
Abstract
INTRODUCTION In the last decade, a number of genomic and pharmacological studies have demonstrated the importance of epigenetic dysregulation in medulloblastoma initiation and progression. High throughput approaches including gene expression array, next-generation sequencing (NGS), and methylation profiling have now clearly identified at least four molecular subgroups within medulloblastoma, each with distinct clinical and prognostic characteristics. These studies have clearly shown that despite the overall paucity of mutations, clinically relevant events do occur within the cellular epigenetic machinery. Thus, this review aims to provide an overview of our current understanding of the spectrum of epi-oncogenetic perturbations in medulloblastoma. METHODS Comprehensive review of epigenetic profiles of different subgroups of medulloblastoma in the context of molecular features. Epigenetic regulation is mediated mainly by DNA methylation, histone modifications and microRNAs (miRNA). Importantly, epigenetic mis-events are reversible and have immense therapeutic potential. CONCLUSION The widespread epigenetic alterations present in these tumors has generated intense interest in their use as therapeutic targets. We provide an assessment of the progress that has been made towards the development of molecular subtypes-targeted therapies and the current status of clinical trials that have leveraged these recent advances.
Collapse
Affiliation(s)
- Amanda R Haltom
- Division of Pediatrics, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA.,Center for Cancer Epigenetics, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Stephanie A Toll
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Children's Hospital of Michigan, Detroit, USA
| | - Donghang Cheng
- Division of Pediatrics, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA.,Center for Cancer Epigenetics, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Shinji Maegawa
- Division of Pediatrics, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA.,Center for Cancer Epigenetics, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Vidya Gopalakrishnan
- Division of Pediatrics, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA. .,Department of Molecular and Cellular Oncology, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA. .,Center for Cancer Epigenetics, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA. .,Brain Tumor Center, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA.
| | - Soumen Khatua
- Division of Pediatrics, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA. .,Brain Tumor Center, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
46
|
Patterson JD, Henson JC, Breese RO, Bielamowicz KJ, Rodriguez A. CAR T Cell Therapy for Pediatric Brain Tumors. Front Oncol 2020; 10:1582. [PMID: 32903405 PMCID: PMC7435009 DOI: 10.3389/fonc.2020.01582] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/22/2020] [Indexed: 12/31/2022] Open
Abstract
Chimeric Antigen Receptor (CAR) T cell therapy has recently begun to be used for solid tumors such as glioblastoma multiforme. Many children with pediatric malignant brain tumors develop extensive long-term morbidity of intensive multimodal curative treatment. Others with certain diagnoses and relapsed disease continue to have limited therapies and a dismal prognosis. Novel treatments such as CAR T cells could potentially improve outcomes and ameliorate the toxicity of current treatment. In this review, we discuss the potential of using CAR therapy for pediatric brain tumors. The emerging insights on the molecular subtypes and tumor microenvironment of these tumors provide avenues to devise strategies for CAR T cell therapy. Unique characteristics of these brain tumors, such as location and associated morbid treatment induced neuro-inflammation, are novel challenges not commonly encountered in adult brain tumors. Despite these considerations, CAR T cell therapy has the potential to be integrated into treatment schema for aggressive pediatric malignant brain tumors in the future.
Collapse
Affiliation(s)
- John D Patterson
- Department of Neurosurgery, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Jeffrey C Henson
- Department of Neurosurgery, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Rebecca O Breese
- Department of General Surgery, Wake Forest Baptist Medical Center, Winston-Salem, NC, United States
| | - Kevin J Bielamowicz
- Division of Hematology/Oncology, Department of Pediatrics, Arkansas Children's Research Institute, Little Rock, AR, United States
| | - Analiz Rodriguez
- Department of Neurosurgery, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| |
Collapse
|
47
|
Effects of Phosphatidylserine Source of Docosahexaenoic Acid on Cerebellar Development in Preterm Pigs. Brain Sci 2020; 10:brainsci10080475. [PMID: 32718081 PMCID: PMC7464467 DOI: 10.3390/brainsci10080475] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/15/2020] [Accepted: 07/21/2020] [Indexed: 12/14/2022] Open
Abstract
Preterm birth, a major contributor to infant mortality and morbidity, impairs development of the cerebellum, the brain region involved in cognitive processing and motor function. Previously, we showed that at term-equivalent age, preterm pigs that received formula supplemented with docosahexaenoic acid (DHA) esterified to phosphatidylserine (PS) had cerebellar weights similar to those of newborn term pigs and were heavier than control preterm pigs. However, whether PS-DHA promotes the development of specific cerebellar cell populations or enhances key developmental processes remains unknown. Here we investigated the effects of the PS-DHA on development of the cerebellum in preterm pigs delivered via caesarean section and reared for ten days on a milk replacer with either PS-DHA (experimental group) or sunflower oil (control group). Upon necropsy, key cerebellar populations were analyzed using immunohistochemistry. Consumption of PS-DHA was associated with the expansion of undifferentiated granule cell precursors and increased proliferation in the external granule cell layer (EGL). Preterm pigs that received PS-DHA also had significantly fewer apoptotic cells in the internal granule cell layer (IGL) that contains differentiated granule neurons. PS-DHA did not affect the number of differentiating granule cells in the inner EGL, thickness of the inner EGL, density of Purkinje cells, or Bergmann glial fibers, or diameter of Purkinje cells. Thus, PS-DHA may support cerebellar development in preterm subjects by enhancing proliferation of granule cells, a process specifically inhibited by preterm birth, and increasing the survival of granule cells in the IGL. These findings suggest that PS-DHA is a promising candidate for clinical studies directed at enhancing brain development.
Collapse
|
48
|
Terry TT, Cheng T, Mahjoub M, Zong H. Mosaic Analysis with Double Markers reveals IGF1R function in granule cell progenitors during cerebellar development. Dev Biol 2020; 465:130-143. [PMID: 32697974 DOI: 10.1016/j.ydbio.2020.07.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 07/12/2020] [Accepted: 07/13/2020] [Indexed: 12/13/2022]
Abstract
During cerebellar development, granule cell progenitors (GCPs) proliferate exponentially for a fixed period, promoted by paracrine mitogenic factor Sonic Hedgehog (Shh) secreted from Purkinje cells (PCs). Dysregulation of Shh signaling leads to uncontrolled GCP proliferation and medulloblastoma. Serendipitously our previous work discovered insulin-like growth factor 1 (IGF1) as another key driver for medulloblastoma, which led to the current investigation into the role of IGF1 in GCPs during normal development. While the IGF1R conditional knockout model revealed GCP defects in anterior cerebellum, the posterior cerebellum was mostly intact, likely owing to incomplete excision of floxed alleles. To circumvent this hurdle, we enlisted a mouse genetic system called Mosaic Analysis of Double Markers (MADM), which sporadically generates homozygous null cells unequivocally labeled with GFP and their wildtype sibling cells labeled with RFP, enabling phenotypic analysis at single-cell resolution. Using MADM, we found that loss of IGF1R resulted in a 10-fold reduction of GCs in both anterior and posterior cerebellum; and that hindered S phase entry and increased cell cycle exit collectively led to this phenotype. Genetic interaction studies showed that IGF1 signaling prevents GCP cell cycle exit at least partially through suppressing the level of p27kip1, a negative regulator of cell cycle. Finally, we found that IGF1 is produced by PCs in a temporally regulated fashion: it is highly expressed early in development when GCPs proliferate exponentially, then gradually decline as GCPs commit to cell cycle exit. Taken together, our studies reveal IGF1 as a paracrine factor that positively regulates GCP cell cycle in cooperation with Shh, through dampening the level of p27 to prevent precocious cell cycle exit. Our work not only showcases the power of phenotypic analysis by the MADM system but also provides an excellent example of multi-factorial regulation of robust developmental programs.
Collapse
Affiliation(s)
- Tiffany T Terry
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA
| | - Tao Cheng
- Department of Medicine, Division of Nephrology, Washington University in St. Louis, St. Louis, MO, USA
| | - Moe Mahjoub
- Department of Medicine, Division of Nephrology, Washington University in St. Louis, St. Louis, MO, USA
| | - Hui Zong
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
49
|
Zatoński T, Pazdro-Zastawny K, Morawska-Kochman M, Biela M, Kołtowska A, Rydzanicz M, Rozensztrauch A, Kosińska J, Dorobisz K, Płoski R, Śmigiel R. Single median maxillary central incisor syndrome and variant in SMO gene associated with SHH pathway. Int J Pediatr Otorhinolaryngol 2020; 134:110038. [PMID: 32335464 DOI: 10.1016/j.ijporl.2020.110038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 04/03/2020] [Indexed: 01/08/2023]
Abstract
Solitary median maxillary central incisor syndrome (SMMCI) is a rare congenital oronasal-dental midline anomaly. The aim of this paper is a presentation of a patient with SMMCI without other visible dentofacial anomalies, with a potentially new molecular etiology consisting of a gene-gene reaction and conservative therapeutic approach to nasal obstruction. Potentially pathogenic variants in the SMO gene (p.Gly422Glu) and in P2RY13 gene (p.Trp205*) inherited from the probant's father, and in the PLD2 gene (p.Gln319fs), inherited from the mother were found. A multidisciplinary approach is necessary for the management of patients with SMMCI, including a genetic consultation with genetic tests.
Collapse
Affiliation(s)
- Tomasz Zatoński
- Department and Clinic of Otolaryngology, Head and Neck Surgery, Medical University Hospital Wroclaw, Borowska 213, 50-556, Wroclaw, Poland
| | - Katarzyna Pazdro-Zastawny
- Department and Clinic of Otolaryngology, Head and Neck Surgery, Medical University Hospital Wroclaw, Borowska 213, 50-556, Wroclaw, Poland.
| | - Monika Morawska-Kochman
- Department and Clinic of Otolaryngology, Head and Neck Surgery, Medical University Hospital Wroclaw, Borowska 213, 50-556, Wroclaw, Poland
| | - Mateusz Biela
- Department of Pediatrics, Division Propaedeutic of Pediatrics and Rare Disorders, Medical University, Wroclaw, Poland
| | - Anna Kołtowska
- Department of Radiology, Medical University Hospital Wroclaw, Borowska 213, 50-556, Wroclaw, Poland
| | | | - Anna Rozensztrauch
- Department of Pediatrics, Division Propaedeutic of Pediatrics and Rare Disorders, Medical University, Wroclaw, Poland
| | - Joanna Kosińska
- Department of Genetics, Warsaw Medical University, Warsaw, Poland
| | - Karolina Dorobisz
- Department and Clinic of Otolaryngology, Head and Neck Surgery, Medical University Hospital Wroclaw, Borowska 213, 50-556, Wroclaw, Poland
| | - Rafał Płoski
- Department of Genetics, Warsaw Medical University, Warsaw, Poland
| | - Robert Śmigiel
- Department of Pediatrics, Division Propaedeutic of Pediatrics and Rare Disorders, Medical University, Wroclaw, Poland
| |
Collapse
|
50
|
Forrer Charlier C, Martins RAP. Protective Mechanisms Against DNA Replication Stress in the Nervous System. Genes (Basel) 2020; 11:E730. [PMID: 32630049 PMCID: PMC7397197 DOI: 10.3390/genes11070730] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/25/2020] [Accepted: 06/25/2020] [Indexed: 02/06/2023] Open
Abstract
The precise replication of DNA and the successful segregation of chromosomes are essential for the faithful transmission of genetic information during the cell cycle. Alterations in the dynamics of genome replication, also referred to as DNA replication stress, may lead to DNA damage and, consequently, mutations and chromosomal rearrangements. Extensive research has revealed that DNA replication stress drives genome instability during tumorigenesis. Over decades, genetic studies of inherited syndromes have established a connection between the mutations in genes required for proper DNA repair/DNA damage responses and neurological diseases. It is becoming clear that both the prevention and the responses to replication stress are particularly important for nervous system development and function. The accurate regulation of cell proliferation is key for the expansion of progenitor pools during central nervous system (CNS) development, adult neurogenesis, and regeneration. Moreover, DNA replication stress in glial cells regulates CNS tumorigenesis and plays a role in neurodegenerative diseases such as ataxia telangiectasia (A-T). Here, we review how replication stress generation and replication stress response (RSR) contribute to the CNS development, homeostasis, and disease. Both cell-autonomous mechanisms, as well as the evidence of RSR-mediated alterations of the cellular microenvironment in the nervous system, were discussed.
Collapse
Affiliation(s)
| | - Rodrigo A. P. Martins
- Programa de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil;
| |
Collapse
|