1
|
Hegazi NM, Mohamed TA, Salama A, Hamed AR, Saad HH, Saleh IA, Reda EH, Elsayed AAA, Ibrahim MAA, Paré PW, Efferth T, Hegazy MEF. Molecular networking-guided investigation of the secondary metabolome of four Morus species and their in vivo neuroprotective potential for the mitigation of Alzheimer's disease. Food Funct 2024; 15:4354-4364. [PMID: 38533683 DOI: 10.1039/d3fo05711a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Alzheimer's Disease (AD) is a fatal age-related neurodegenerative condition with a multifactorial etiology contributing to 70% of dementia globally. The search for a multi-target agent to hit different targets involved in the pathogenesis of AD is crucial. In the present study, the neuroprotective effects of four Morus extracts were assessed in LPS-induced AD in mice. Among the studied species, M. macroura exhibited a profound effect on alleviating the loss of cognitive function, improved the learning ability, restored the acetylcholine esterase (AChE) levels to normal, and significantly reduced the tumor necrosis factor alpha (TNF-α) brain content in LPS-treated mice. To investigate the secondary metabolome of the studied Morus species, ultra-performance liquid chromatography coupled to tandem mass spectrometry (UPLC-HRMS/MS), aided with feature-based molecular networking, was employed. Among the annotated features, aryl benzofurans and prenylated flavonoids were suggested as being responsible for the observed neuroprotective effect. Furthermore, some of the detected metabolites were proposed as new natural products such as moranoline di-O-hexoside (1), isomers of trimethoxy-dihydrochalcone-O-dihexoside (59 & 76), (hydroxy-dimethoxyphenyl)butenone-O-hexoside (82), and O-methylpreglabridin-O-sulphate (105). In conclusion, our findings advocate the potential usage of M. macroura leaves for the management of AD, yet after considering further clinical trials.
Collapse
Affiliation(s)
- Nesrine M Hegazi
- Phytochemistry and Plant Systematics Department, National Research Centre, 33 El-Bohouth St, Dokki, Giza 12622, Egypt.
| | - Tarik A Mohamed
- Chemistry of Medicinal Plants Department, National Research Centre, 33 El-Bohouth St, Dokki, Giza 12622, Egypt.
| | - Abeer Salama
- Pharmacology Department, National Research Centre, 33 El-Bohouth St, Dokki, Giza 12622, Egypt.
| | - Ahmed R Hamed
- Chemistry of Medicinal Plants Department, National Research Centre, 33 El-Bohouth St, Dokki, Giza 12622, Egypt.
| | - Hamada H Saad
- Phytochemistry and Plant Systematics Department, National Research Centre, 33 El-Bohouth St, Dokki, Giza 12622, Egypt.
- Department of Pharmaceutical Biology, Pharmaceutical Institute, Eberhard Karls University of Tübingen, 72074 Tübingen, Germany
| | - Ibrahim A Saleh
- Chemistry of Medicinal Plants Department, National Research Centre, 33 El-Bohouth St, Dokki, Giza 12622, Egypt.
| | - Eman H Reda
- Phytochemistry Laboratory, National Organization for Drug Control and Research, Giza 12622, Egypt.
| | - Ahmed A A Elsayed
- Medicinal and Aromatic Plants Research Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 El-Bohouth St, Dokki, Giza 12622, Egypt.
| | - Mahmoud A A Ibrahim
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt.
- School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa
| | - Paul W Paré
- Department of Chemistry & Biochemistry, Texas Tech University, Lubbock, TX 79409, USA.
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences Chemistry, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany.
| | - Mohamed-Elamir F Hegazy
- Chemistry of Medicinal Plants Department, National Research Centre, 33 El-Bohouth St, Dokki, Giza 12622, Egypt.
| |
Collapse
|
2
|
Martínez-Bailén M, Matassini C, Clemente F, Faggi C, Goti A, Cardona F. Stereoselective Synthesis of Heavily Hydroxylated Azepane Iminosugars via Osmium-Catalyzed Tethered Aminohydroxylation. Org Lett 2023; 25:5833-5837. [PMID: 37515782 PMCID: PMC10425973 DOI: 10.1021/acs.orglett.3c02087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Indexed: 07/31/2023]
Abstract
A novel stereoselective synthetic approach to pentahydroxyazepane iminosugars is described. The strategy relies on a key osmium-catalyzed aminohydroxylation reaction of allylic alcohols obtained via addition of vinylmagnesium bromide to a d-mannose-derived aldehyde, which forms the new C-N bond with complete regio- and stereocontrol according to the tethering approach. Subsequent intramolecular reductive amination afforded the desired azepanes. This method represents the first application of the osmium-catalyzed tethered aminohydroxylation reaction to the synthesis of iminosugars.
Collapse
Affiliation(s)
| | - Camilla Matassini
- Dipartimento di Chimica “Ugo
Schiff” (DICUS), Università
di Firenze, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, FI, Italy
| | - Francesca Clemente
- Dipartimento di Chimica “Ugo
Schiff” (DICUS), Università
di Firenze, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, FI, Italy
| | - Cristina Faggi
- Dipartimento di Chimica “Ugo
Schiff” (DICUS), Università
di Firenze, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, FI, Italy
| | - Andrea Goti
- Dipartimento di Chimica “Ugo
Schiff” (DICUS), Università
di Firenze, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, FI, Italy
| | - Francesca Cardona
- Dipartimento di Chimica “Ugo
Schiff” (DICUS), Università
di Firenze, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, FI, Italy
| |
Collapse
|
3
|
Kalník M, Šesták S, Kóňa J, Bella M, Poláková M. Synthesis, α-mannosidase inhibition studies and molecular modeling of 1,4-imino-ᴅ-lyxitols and their C-5-altered N-arylalkyl derivatives. Beilstein J Org Chem 2023; 19:282-293. [PMID: 36925565 PMCID: PMC10012049 DOI: 10.3762/bjoc.19.24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/22/2023] [Indexed: 03/08/2023] Open
Abstract
A synthesis of 1,4-imino-ᴅ-lyxitols and their N-arylalkyl derivatives altered at C-5 is reported. Their inhibitory activity and selectivity toward four GH38 α-mannosidases (two Golgi types: GMIIb from Drosophila melanogaster and AMAN-2 from Caenorhabditis elegans, and two lysosomal types: LManII from Drosophila melanogaster and JBMan from Canavalia ensiformis) were investigated. 6-Deoxy-DIM was found to be the most potent inhibitor of AMAN-2 (K i = 0.19 μM), whose amino acid sequence and 3D structure of the active site are almost identical to the human α-mannosidase II (GMII). Although 6-deoxy-DIM was 3.5 times more potent toward AMAN-2 than DIM, their selectivity profiles were almost the same. N-Arylalkylation of 6-deoxy-DIM resulted only in a partial improvement as the selectivity was enhanced at the expense of potency. Structural and physicochemical properties of the corresponding inhibitor:enzyme complexes were analyzed by molecular modeling.
Collapse
Affiliation(s)
- Martin Kalník
- Institute of Chemistry, Center for Glycomics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38 Bratislava, Slovakia
| | - Sergej Šesták
- Institute of Chemistry, Center for Glycomics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38 Bratislava, Slovakia
| | - Juraj Kóňa
- Institute of Chemistry, Center for Glycomics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38 Bratislava, Slovakia.,Medical Vision, Civic Research Association, Záhradnícka 4837/55, 82108 Bratislava, Slovakia
| | - Maroš Bella
- Institute of Chemistry, Center for Glycomics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38 Bratislava, Slovakia
| | - Monika Poláková
- Institute of Chemistry, Center for Glycomics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38 Bratislava, Slovakia
| |
Collapse
|
4
|
De Masi R, Orlando S. GANAB and N-Glycans Substrates Are Relevant in Human Physiology, Polycystic Pathology and Multiple Sclerosis: A Review. Int J Mol Sci 2022; 23:7373. [PMID: 35806376 PMCID: PMC9266668 DOI: 10.3390/ijms23137373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/22/2022] [Accepted: 06/28/2022] [Indexed: 11/29/2022] Open
Abstract
Glycans are one of the four fundamental macromolecular components of living matter, and they are highly regulated in the cell. Their functions are metabolic, structural and modulatory. In particular, ER resident N-glycans participate with the Glc3Man9GlcNAc2 highly conserved sequence, in protein folding process, where the physiological balance between glycosylation/deglycosylation on the innermost glucose residue takes place, according GANAB/UGGT concentration ratio. However, under abnormal conditions, the cell adapts to the glucose availability by adopting an aerobic or anaerobic regimen of glycolysis, or to external stimuli through internal or external recognition patterns, so it responds to pathogenic noxa with unfolded protein response (UPR). UPR can affect Multiple Sclerosis (MS) and several neurological and metabolic diseases via the BiP stress sensor, resulting in ATF6, PERK and IRE1 activation. Furthermore, the abnormal GANAB expression has been observed in MS, systemic lupus erythematous, male germinal epithelium and predisposed highly replicating cells of the kidney tubules and bile ducts. The latter is the case of Polycystic Liver Disease (PCLD) and Polycystic Kidney Disease (PCKD), where genetically induced GANAB loss affects polycystin-1 (PC1) and polycystin-2 (PC2), resulting in altered protein quality control and cyst formation phenomenon. Our topics resume the role of glycans in cell physiology, highlighting the N-glycans one, as a substrate of GANAB, which is an emerging key molecule in MS and other human pathologies.
Collapse
Affiliation(s)
- Roberto De Masi
- Complex Operative Unit of Neurology, “F. Ferrari” Hospital, Casarano, 73042 Lecce, Italy;
- Laboratory of Neuroproteomics, Multiple Sclerosis Centre, “F. Ferrari” Hospital, Casarano, 73042 Lecce, Italy
| | - Stefania Orlando
- Laboratory of Neuroproteomics, Multiple Sclerosis Centre, “F. Ferrari” Hospital, Casarano, 73042 Lecce, Italy
| |
Collapse
|
5
|
Debbah Z, Marrot J, Auberger N, Désiré J, Blériot Y. Stereoselective Access to Iminosugar C, C-Glycosides from 6-Azidoketopyranoses. Org Lett 2022; 24:4542-4546. [PMID: 35731688 DOI: 10.1021/acs.orglett.2c01560] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report the synthesis of iminosugar C,C-glycosides starting from 6-azidoketopyranoses. Their Staudinger-azaWittig-mediated cyclization provided bicyclic N,O-acetals, which were stereoselectively opened with AllMgBr to afford β-hydroxyazepanes with a quaternary carbon α to the nitrogen. Their ring contraction via a β-aminoalcohol rearrangement produced the six-membered l-iminosugars with two functional handles at the pseudoanomeric position. Inversion of the free OH at the azepane level furnished the d-iminosugars.
Collapse
Affiliation(s)
- Zakaria Debbah
- Université de Poitiers, IC2MP, UMR CNRS 7285, Equipe "OrgaSynth", Groupe Glycochimie, 4 rue Michel Brunet, 86073 Poitiers Cedex 9, France
| | - Jérôme Marrot
- Institut Lavoisier de Versailles, UMR-CNRS 8180, Université de Versailles, 5 avenue des États-Unis, 78035 Versailles Cedex, France
| | - Nicolas Auberger
- Université de Poitiers, IC2MP, UMR CNRS 7285, Equipe "OrgaSynth", Groupe Glycochimie, 4 rue Michel Brunet, 86073 Poitiers Cedex 9, France
| | - Jérôme Désiré
- Université de Poitiers, IC2MP, UMR CNRS 7285, Equipe "OrgaSynth", Groupe Glycochimie, 4 rue Michel Brunet, 86073 Poitiers Cedex 9, France
| | - Yves Blériot
- Université de Poitiers, IC2MP, UMR CNRS 7285, Equipe "OrgaSynth", Groupe Glycochimie, 4 rue Michel Brunet, 86073 Poitiers Cedex 9, France
| |
Collapse
|
6
|
Thangarasu AK, Sambyal S, Kumar HMS, Lankalapalli RS. Design, synthesis, and preliminary immunopotentiating activity of new analogues of nojirimycin. Carbohydr Res 2021; 511:108479. [PMID: 34798489 DOI: 10.1016/j.carres.2021.108479] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 11/11/2021] [Accepted: 11/11/2021] [Indexed: 11/16/2022]
Abstract
Three new classes of nojirimycin analogues viz. N-alkyl with C1-substituent (4-phenylbutyl), N-substituted 1-deoxynojirimycin and its congener δ-lactam, and a 4-phenylbutyl-β-C-glycoside were designed and synthesized for immunological studies. The resulting diverse compound library exhibited proliferation of B Cells and T cells induced by LPS and Con A, respectively. The majority of the analogues augmented the secretion of IL-12 in dendritic cells and TNF-α secretion in murine peritoneal macrophages compared to LPS (10 μg/ml). A deoxynojirimycin-triazole conjugate of phytosphingosine analogue was superior in the responses mentioned above and exhibited nitric oxide response equal to LPS. In comparison to findings on its congeners with immunosuppressive action, early immunological tests show that the novel nojirimycin analogues have immunopotentiating effect. Hence, nojirimycin analogues offer tremendous potential in tuning the immunomodulatory activity of iminosugars by subtle to substantial structural variations.
Collapse
Affiliation(s)
- Arun K Thangarasu
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, 695019, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shainy Sambyal
- Vaccine Immunology Laboratory, Natural Products Chemistry Division, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Halmuthur Mahabalarao Sampath Kumar
- Vaccine Immunology Laboratory, Natural Products Chemistry Division, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ravi S Lankalapalli
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, 695019, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
7
|
Clemente F, Matassini C, Giachetti S, Goti A, Morrone A, Martínez-Bailén M, Orta S, Merino P, Cardona F. Piperidine Azasugars Bearing Lipophilic Chains: Stereoselective Synthesis and Biological Activity as Inhibitors of Glucocerebrosidase (GCase). J Org Chem 2021; 86:12745-12761. [PMID: 34469155 PMCID: PMC8453635 DOI: 10.1021/acs.joc.1c01308] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
We report a straightforward
synthetic strategy for the preparation
of trihydroxypiperidine azasugars decorated with lipophilic chains
at both the nitrogen and the adjacent carbon as potential inhibitors
of the lysosomal enzyme glucocerebrosidase (GCase), which is involved
in Gaucher disease. The procedure relies on the preparation of C-erythrosyl N-alkylated nitrones 10 through reaction of aldehyde 8 and primary
amines 13 followed by oxidation of the imines formed in situ with the methyltrioxorhenium catalyst and urea hydrogen
peroxide. The addition of octylMgBr to nitrone 10e provided
access to both epimeric hydroxylamines 21 and 22 with opposite configuration at the newly created stereocenter in
a stereodivergent and completely stereoselective way, depending on
the absence or presence of BF3·Et2O. Final
reductive amination and acetonide deprotection provided compounds 14 and 15 from low-cost d-mannose in
remarkable 43 and 32% overall yields, respectively, over eight steps.
The C-2 R-configured bis-alkylated trihydroxypiperidine 15 was the best ligand for GCase (IC50 = 15 μM),
in agreement with MD simulations that allowed us to identify the chair
conformation corresponding to the best binding affinity.
Collapse
Affiliation(s)
- Francesca Clemente
- Dipartimento di Chimica "Ugo Schiff" (DICUS), University of Firenze, Via Della Lastruccia 3-13, 50019 Sesto Fiorentino (FI), Italy
| | - Camilla Matassini
- Dipartimento di Chimica "Ugo Schiff" (DICUS), University of Firenze, Via Della Lastruccia 3-13, 50019 Sesto Fiorentino (FI), Italy
| | - Sara Giachetti
- Dipartimento di Chimica "Ugo Schiff" (DICUS), University of Firenze, Via Della Lastruccia 3-13, 50019 Sesto Fiorentino (FI), Italy
| | - Andrea Goti
- Dipartimento di Chimica "Ugo Schiff" (DICUS), University of Firenze, Via Della Lastruccia 3-13, 50019 Sesto Fiorentino (FI), Italy
| | - Amelia Morrone
- Paediatric Neurology Unit and Laboratories, Neuroscience Department, Meyer Children's Hospital, and Department of Neurosciences, Pharmacology and Child Health, University of Florence, Viale Pieraccini n. 24, 50139 Firenze, Italy
| | - Macarena Martínez-Bailén
- Dipartimento di Chimica "Ugo Schiff" (DICUS), University of Firenze, Via Della Lastruccia 3-13, 50019 Sesto Fiorentino (FI), Italy.,Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, c/ Prof. García González 1, E-41012 Sevilla, Spain
| | - Sara Orta
- Unidad de Glicobiología, Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Pedro Merino
- Unidad de Glicobiología, Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Francesca Cardona
- Dipartimento di Chimica "Ugo Schiff" (DICUS), University of Firenze, Via Della Lastruccia 3-13, 50019 Sesto Fiorentino (FI), Italy
| |
Collapse
|
8
|
A Convenient Approach towards the Synthesis of ADMDP Type Iminosugars and Nojirimycin Derivatives from Sugar-Derived Lactams. Molecules 2021; 26:molecules26185459. [PMID: 34576929 PMCID: PMC8464940 DOI: 10.3390/molecules26185459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/30/2021] [Accepted: 09/02/2021] [Indexed: 12/04/2022] Open
Abstract
An efficient method for the synthesis of nojirimycin- and pyrrolidine-based iminosugar derivatives has been developed. The strategy is based on the partial reduction in sugar-derived lactams by Schwartz’s reagent and tandem stereoselective nucleophilic addition of cyanide or a silyl enol ether dictated by Woerpel’s or diffusion control models, which affords amino-modified iminosugars, such as ADMDP or higher nojirimycin derivatives.
Collapse
|
9
|
Breitinger U, Farag NS, Ali NKM, Ahmed M, El-Azizi MA, Breitinger HG. Cell viability assay as a tool to study activity and inhibition of hepatitis C p7 channels. J Gen Virol 2021; 102. [PMID: 33709903 DOI: 10.1099/jgv.0.001571] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The p7 viroporin of the hepatitis C virus (HCV) forms an intracellular proton-conducting transmembrane channel in virus-infected cells, shunting the pH of intracellular compartments and thus helping virus assembly and release. This activity is essential for virus infectivity, making viroporins an attractive target for drug development. The protein sequence and drug sensitivity of p7 vary between the seven major genotypes of the hepatitis C virus, but the essential channel activity is preserved. Here, we investigated the effect of several inhibitors on recombinant HCV p7 channels corresponding to genotypes 1a-b, 2a-b, 3a and 4a using patch-clamp electrophysiology and cell-based assays. We established a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT)-based cell viability assay for recombinant p7 expressed in HEK293 cells to assess channel activity and its sensitivity to inhibitors. The results from the cell viability assay were consistent with control measurements using established assays of haemadsorption and intracellular pH, and agreed with data from patch-clamp electrophysiology. Hexamethylene amiloride (HMA) was the most potent inhibitor of p7 activity, but possessed cytotoxic activity at higher concentrations. Rimantadine was active against p7 of all genotypes, while amantadine activity was genotype-dependent. The alkyl-chain iminosugars NB-DNJ, NN-DNJ and NN-DGJ were tested and their activity was found to be genotype-specific. In the current study, we introduce cell viability assays as a rapid and cost-efficient technique to assess viroporin activity and identify channel inhibitors as potential novel antiviral drugs.
Collapse
Affiliation(s)
- Ulrike Breitinger
- Department of Biochemistry, German University in Cairo, New Cairo, Egypt
| | - Noha S Farag
- Department of Microbiology and Immunology, German University in Cairo, New Cairo, Egypt
| | - Nourhan K M Ali
- Department of Biochemistry, German University in Cairo, New Cairo, Egypt
| | - Marwa Ahmed
- Present address: Institute of Biochemistry and Biophysics Friedrich-Schiller-University Jena, Hans-Knöll-Str. 2, D-07745, Jena, Germany.,Department of Biochemistry, German University in Cairo, New Cairo, Egypt
| | - Mohamed A El-Azizi
- Department of Microbiology and Immunology, German University in Cairo, New Cairo, Egypt
| | | |
Collapse
|
10
|
Klunda T, Hricovíni M, Šesták S, Kóňa J, Poláková M. Selective Golgi α-mannosidase II inhibitors: N-alkyl substituted pyrrolidines with a basic functional group. NEW J CHEM 2021. [DOI: 10.1039/d1nj01176f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Enzymatic assays, molecular modeling and NMR studies of novel 1,4-dideoxy-1,4-imino-l-lyxitols provided new information on the GH38 family enzyme inhibitors and their selectivity.
Collapse
Affiliation(s)
- Tomáš Klunda
- Institute of Chemistry
- Center for Glycomics
- Slovak Academy of Sciences
- SK-845 38 Bratislava
- Slovakia
| | - Michal Hricovíni
- Institute of Chemistry
- Center for Glycomics
- Slovak Academy of Sciences
- SK-845 38 Bratislava
- Slovakia
| | - Sergej Šesták
- Institute of Chemistry
- Center for Glycomics
- Slovak Academy of Sciences
- SK-845 38 Bratislava
- Slovakia
| | - Juraj Kóňa
- Institute of Chemistry
- Center for Glycomics
- Slovak Academy of Sciences
- SK-845 38 Bratislava
- Slovakia
| | - Monika Poláková
- Institute of Chemistry
- Center for Glycomics
- Slovak Academy of Sciences
- SK-845 38 Bratislava
- Slovakia
| |
Collapse
|
11
|
Affiliation(s)
- Yoshihiro Natori
- Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University
| |
Collapse
|
12
|
Blériot Y. Contributing to the Study of Enzymatic and Chemical Glycosyl Transfer Through the Observation and Mimicry of Glycosyl Cations. SYNTHESIS-STUTTGART 2020. [DOI: 10.1055/s-0040-1706073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
AbstractThis account describes our efforts dedicated to: 1) the design of glycomimetics aimed at targeting therapeutically relevant carbohydrate processing enzymes, and 2) the observation, characterization, and exploitation of glycosyl cations as a tool for studying the glycosylation reaction. These findings have brought important data regarding this key ionic species as well as innovative strategies to access iminosugars of interest.1 Introduction2 The Glycosyl Cation, A Central Species in Glycosciences2.1 A Selection of the Strategies Developed so far to Gain Insights into Glycosyl Cations Structure2.2 When Superacids Meet Carbohydrates3 Chemical Probes to Gain Insights into the Pseudorotational Itinerary of Glycosides During Glycosidic Bond Hydrolysis3.1 Conformationally Locked Glycosides3.1.1 The Xylopyranose Case3.1.2 The Mannopyranose Case3.2 Conformationally Flexible Iminosugars3.2.1 Nojirimycin Ring Homologues3.2.2 Noeuromycin Ring Homologues3.2.3 Seven-Membered Iminosugar C-Glycosides4 N-Acetyl-d-glucosamine Mimics5 Ring Contraction: A Useful Tool to Increase Iminosugar’s Structural Diversity6 Regioselective Deprotection of Iminosugar C-Glycosides to Introduce Diversity at C2 Position7 Conclusion
Collapse
|
13
|
Domingues M, Jaszczyk J, Ismael MI, Figueiredo JA, Daniellou R, Lafite P, Schuler M, Tatibouët A. Conformationally Restricted Oxazolidin‐2‐one Fused Bicyclic Iminosugars as Potential Glycosidase Inhibitors. European J Org Chem 2020. [DOI: 10.1002/ejoc.202001053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Maria Domingues
- Institut de Chimie Organique et Analytique (ICOA) Université d'Orléans CNRS‐UMR 7311, BP 6759 45067 Orléans cedex 02 France
- Departamento de Química Unidade I&D FibEnTech da Universidade da Beira Interior Av. Marquês d'Ávila e Bolama 6201‐001 Covilhã Portugal
| | - Justyna Jaszczyk
- Institut de Chimie Organique et Analytique (ICOA) Université d'Orléans CNRS‐UMR 7311, BP 6759 45067 Orléans cedex 02 France
| | - Maria Isabel Ismael
- Departamento de Química Unidade I&D FibEnTech da Universidade da Beira Interior Av. Marquês d'Ávila e Bolama 6201‐001 Covilhã Portugal
| | - José Albertino Figueiredo
- Departamento de Química Unidade I&D FibEnTech da Universidade da Beira Interior Av. Marquês d'Ávila e Bolama 6201‐001 Covilhã Portugal
| | - Richard Daniellou
- Institut de Chimie Organique et Analytique (ICOA) Université d'Orléans CNRS‐UMR 7311, BP 6759 45067 Orléans cedex 02 France
| | - Pierre Lafite
- Institut de Chimie Organique et Analytique (ICOA) Université d'Orléans CNRS‐UMR 7311, BP 6759 45067 Orléans cedex 02 France
| | - Marie Schuler
- Institut de Chimie Organique et Analytique (ICOA) Université d'Orléans CNRS‐UMR 7311, BP 6759 45067 Orléans cedex 02 France
| | - Arnaud Tatibouët
- Institut de Chimie Organique et Analytique (ICOA) Université d'Orléans CNRS‐UMR 7311, BP 6759 45067 Orléans cedex 02 France
| |
Collapse
|
14
|
Dashnyam P, Lin HY, Chen CY, Gao S, Yeh LF, Hsieh WC, Tu Z, Lin CH. Substituent Position of Iminocyclitols Determines the Potency and Selectivity for Gut Microbial Xenobiotic-Reactivating Enzymes. J Med Chem 2020; 63:4617-4627. [PMID: 32105467 DOI: 10.1021/acs.jmedchem.9b01918] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Selective inhibitors of gut bacterial β-glucuronidases (GUSs) are of particular interest in the prevention of xenobiotic-induced toxicities. This study reports the first structure-activity relationships on potency and selectivity of several iminocyclitols (2-7) for the GUSs. Complex structures of Ruminococcus gnavus GUS with 2-7 explained how charge, conformation, and substituent of iminocyclitols affect their potency and selectivity. N1 of uronic isofagomine (2) made strong electrostatic interactions with two catalytic glutamates of GUSs, resulting in the most potent inhibition (Ki ≥ 11 nM). C6-propyl analogue of 2 (6) displayed 700-fold selectivity for opportunistic bacterial GUSs (Ki = 74 nM for E. coli GUS and 51.8 μM for RgGUS). In comparison with 2, there was 200-fold enhancement in the selectivity, which was attributed to differential interactions between the propyl group and loop 5 residues of the GUSs. The results provide useful insights to develop potent and selective inhibitors for undesired GUSs.
Collapse
Affiliation(s)
- Punsaldulam Dashnyam
- Institute of Biological Chemistry, Academia Sinica, No 128, Academia Road, Taipei 11529, Taiwan.,Molecular and Biological Agricultural Sciences, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan.,National Chung-Hsing University, Taichung 40227, Taiwan.,Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung 40227, Taiwan
| | - Hsien-Ya Lin
- Institute of Biological Chemistry, Academia Sinica, No 128, Academia Road, Taipei 11529, Taiwan
| | - Chia-Yu Chen
- Institute of Biological Chemistry, Academia Sinica, No 128, Academia Road, Taipei 11529, Taiwan
| | - Shijay Gao
- Institute of Biological Chemistry, Academia Sinica, No 128, Academia Road, Taipei 11529, Taiwan
| | - Lun-Fu Yeh
- Institute of Biological Chemistry, Academia Sinica, No 128, Academia Road, Taipei 11529, Taiwan
| | - Wei-Che Hsieh
- Institute of Biological Chemistry, Academia Sinica, No 128, Academia Road, Taipei 11529, Taiwan
| | - Zhijay Tu
- Institute of Biological Chemistry, Academia Sinica, No 128, Academia Road, Taipei 11529, Taiwan
| | - Chun-Hung Lin
- Institute of Biological Chemistry, Academia Sinica, No 128, Academia Road, Taipei 11529, Taiwan.,Molecular and Biological Agricultural Sciences, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan.,National Chung-Hsing University, Taichung 40227, Taiwan.,Biotechnology Center, National Chung-Hsing University, Taichung 40227, Taiwan.,Department of Chemistry and Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
15
|
Bordes A, Poveda A, Troadec T, Franconetti A, Ardá A, Perrin F, Ménand M, Sollogoub M, Guillard J, Désiré J, Tripier R, Jiménez-Barbero J, Blériot Y. Synthesis, Conformational Analysis, and Complexation Study of an Iminosugar-Aza-Crown, a Sweet Chiral Cyclam Analog. Org Lett 2020; 22:2344-2349. [PMID: 32153195 PMCID: PMC7114874 DOI: 10.1021/acs.orglett.0c00503] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
A new family of chiral C2 symmetric
tetraazamacrocycles, coined ISAC for IminoSugar Aza-Crown, incorporating
two iminosugars adopting a 4C1 conformation
is disclosed. Multinuclear NMR experiments on the corresponding Cd2+ complex show that the ISAC is a strong chelator in water
and its tetramine cavity adopts a conformation similar to that of
the parent Cd–cyclam complex. Similar behavior is observed
with Cu2+ in solution, with enhanced stability compared
to the Cu–cyclam complex.
Collapse
Affiliation(s)
- Alexandra Bordes
- Université de Poitiers, IC2MP, UMR CNRS 7285, Equipe "Synthèse Organique", Groupe Glycochimie 4 rue Michel Brunet, 86073 Poitiers cedex 9, France
| | - Ana Poveda
- CIC bioGUNE, Parque Tecnológico de Bizkaia, Edif. 801A-1°, Derio-Bizkaia 48160, Spain
| | - Thibault Troadec
- Universite de Brest, UMR-CNRS 6521 CEMCA, 6 Avenue Victor le Gorgeu, 29200 Brest, France
| | - Antonio Franconetti
- CIC bioGUNE, Parque Tecnológico de Bizkaia, Edif. 801A-1°, Derio-Bizkaia 48160, Spain
| | - Ana Ardá
- CIC bioGUNE, Parque Tecnológico de Bizkaia, Edif. 801A-1°, Derio-Bizkaia 48160, Spain
| | - Flavie Perrin
- Université de Poitiers, IC2MP, UMR CNRS 7285, Equipe "Synthèse Organique", Groupe Glycochimie 4 rue Michel Brunet, 86073 Poitiers cedex 9, France
| | - Mickaël Ménand
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 4 place Jussieu, 75005 Paris, France
| | - Matthieu Sollogoub
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 4 place Jussieu, 75005 Paris, France
| | - Jerôme Guillard
- Université de Poitiers, IC2MP, UMR CNRS 7285, Equipe "Synthèse Organique", Groupe Glycochimie 4 rue Michel Brunet, 86073 Poitiers cedex 9, France
| | - Jérôme Désiré
- Université de Poitiers, IC2MP, UMR CNRS 7285, Equipe "Synthèse Organique", Groupe Glycochimie 4 rue Michel Brunet, 86073 Poitiers cedex 9, France
| | - Raphaël Tripier
- Universite de Brest, UMR-CNRS 6521 CEMCA, 6 Avenue Victor le Gorgeu, 29200 Brest, France
| | - Jesús Jiménez-Barbero
- CIC bioGUNE, Parque Tecnológico de Bizkaia, Edif. 801A-1°, Derio-Bizkaia 48160, Spain.,IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain.,Dept. Organic Chemistry II, Faculty of Science and Technology, University of the Basque Country, 48940 Leioa, Spain
| | - Yves Blériot
- Université de Poitiers, IC2MP, UMR CNRS 7285, Equipe "Synthèse Organique", Groupe Glycochimie 4 rue Michel Brunet, 86073 Poitiers cedex 9, France
| |
Collapse
|
16
|
Hevey R. Bioisosteres of Carbohydrate Functional Groups in Glycomimetic Design. Biomimetics (Basel) 2019; 4:E53. [PMID: 31357673 PMCID: PMC6784292 DOI: 10.3390/biomimetics4030053] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 02/07/2023] Open
Abstract
The aberrant presentation of carbohydrates has been linked to a number of diseases, such as cancer metastasis and immune dysregulation. These altered glycan structures represent a target for novel therapies by modulating their associated interactions with neighboring cells and molecules. Although these interactions are highly specific, native carbohydrates are characterized by very low affinities and inherently poor pharmacokinetic properties. Glycomimetic compounds, which mimic the structure and function of native glycans, have been successful in producing molecules with improved pharmacokinetic (PK) and pharmacodynamic (PD) features. Several strategies have been developed for glycomimetic design such as ligand pre-organization or reducing polar surface area. A related approach to developing glycomimetics relies on the bioisosteric replacement of carbohydrate functional groups. These changes can offer improvements to both binding affinity (e.g., reduced desolvation costs, enhanced metal chelation) and pharmacokinetic parameters (e.g., improved oral bioavailability). Several examples of bioisosteric modifications to carbohydrates have been reported; this review aims to consolidate them and presents different possibilities for enhancing core interactions in glycomimetics.
Collapse
Affiliation(s)
- Rachel Hevey
- Molecular Pharmacy, Department Pharmaceutical Sciences, University of Basel, Klingelbergstr. 50, 4056 Basel, Switzerland.
| |
Collapse
|
17
|
Natori Y, Sakuma T, Watanabe H, Wakamatsu H, Kato A, Adachi I, Takahata H, Yoshimura Y. Catalytic asymmetric synthesis of stereoisomers of 1-C-n-butyl-LABs for the SAR study of α-glucosidase inhibition. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.04.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
18
|
Santhanam V, Pant P, Jayaram B, Ramesh NG. Design, synthesis and glycosidase inhibition studies of novel triazole fused iminocyclitol-δ-lactams. Org Biomol Chem 2019; 17:1130-1140. [DOI: 10.1039/c8ob03084g] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Synthesis of novel triazole fused iminocyclitol-δ-lactams, from tri-O-benzyl-d-glucal, involving intermolecular [3 + 2]cycloaddition and intramolecular lactamisation reactions as key steps is described.
Collapse
Affiliation(s)
- Venkatesan Santhanam
- Department of Chemistry
- Indian Institute of Technology Delhi
- New Delhi – 110016
- India
| | - Pradeep Pant
- Department of Chemistry
- Indian Institute of Technology Delhi
- New Delhi – 110016
- India
| | - B. Jayaram
- Department of Chemistry
- Indian Institute of Technology Delhi
- New Delhi – 110016
- India
| | - Namakkal G. Ramesh
- Department of Chemistry
- Indian Institute of Technology Delhi
- New Delhi – 110016
- India
| |
Collapse
|
19
|
Kothari S, Saravana M, Muthusamy S, Mozingo A, Soni M. Safety assessment of a standardized cucumber extract (Q-Actin ™): Oral repeat-dose toxicity and mutagenicity studies. Toxicol Rep 2018; 5:1078-1086. [PMID: 30425929 PMCID: PMC6224328 DOI: 10.1016/j.toxrep.2018.10.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 10/16/2018] [Accepted: 10/20/2018] [Indexed: 12/18/2022] Open
Abstract
Cucumus sativus (cucumber) is one of the most widely consumed fruit vegetables worldwide. Recent discovery of iminosugars in commonly consumed fruits and vegetables has promoted the interest in isolating these compounds and understanding the potential benefits to human health. The objective of the present study was to investigate the general toxicity and mutagenic effects of an aqueous extract of cucumber (Q-Actin), standardized to ≥1% (1-2%) ido-BR1 iminosugar. Single dose of Q-Actin was well tolerated without mortality at 2000 mg/kg body weight (bw) in Sprague Dawley rats. Oral (gavage) administration of Q-Actin up to 1000 mg/kg bw/day was well tolerated followed by repeated administration for a maximum period of 90 days in Sprague-Dawley rats. There were no treatment related changes in clinical observations, ophthalmic examinations, body weights and body weight gains or feed consumption, clinical chemistry and pathological changes compared to control. The mutagenicity as evaluated by Ames assay, in vitro chromosomal aberration test and in vivo micronucleus assay did not reveal any potential of Q-Actin to induce genotoxicity. The results showed that Q-Actin is well tolerated in general toxicity studies and did not induce mutagenicity. The no-observed-adverse-effect level (NOAEL) of the standardized aqueous cucumber extract (Q-Actin) is considered to be ≥1000 mg/kg bw/day, followed by repeated administration for90 days.
Collapse
Affiliation(s)
- S. Kothari
- Gateway Health Alliances, 4769 Mangles Blvd., Fairfield, CA 94534, USA
| | - M. Saravana
- Vipragen Biosciences Pvt. Ltd., 67B, Hootagalli Industrial Area, Mysore 570 018, Karnataka, India
| | - S. Muthusamy
- Vipragen Biosciences Pvt. Ltd., 67B, Hootagalli Industrial Area, Mysore 570 018, Karnataka, India
| | - A. Mozingo
- RNI Consulting LLC, 822 N. A1A Hwy., Ste 310, Ponte Vedra Beach, FL 32082, USA
| | - M. Soni
- Soni and Associates Inc., 973 37th Place, Vero Beach, FL 32960, USA
| |
Collapse
|
20
|
Fontelle N, Yamamoto A, Arda A, Jiménez-Barbero J, Kato A, Désiré J, Blériot Y. 2-Acetamido-2-deoxy-l-iminosugarC-Alkyl andC-Aryl Glycosides: Synthesis and Glycosidase Inhibition. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800678] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Nathalie Fontelle
- IC2MP-UMR CNRS 7285; Université de Poitiers; Equipe “Synthèse Organique”; Université de Poitiers; 4 rue Michel Brunet 86073 Poitiers cedex 9 France
| | - Arisa Yamamoto
- Department of Hospital Pharmacy; University of Toyama; 2630 Sugitani 930-0194 Toyama Japan
| | - Ana Arda
- Parque Tecnológico de Bizkaia; CIC bioGUNE; Edif. 801A-1° 48160 Derio-Bizkaia Spain
| | | | - Atsushi Kato
- Department of Hospital Pharmacy; University of Toyama; 2630 Sugitani 930-0194 Toyama Japan
| | - Jérôme Désiré
- IC2MP-UMR CNRS 7285; Université de Poitiers; Equipe “Synthèse Organique”; Université de Poitiers; 4 rue Michel Brunet 86073 Poitiers cedex 9 France
| | - Yves Blériot
- IC2MP-UMR CNRS 7285; Université de Poitiers; Equipe “Synthèse Organique”; Université de Poitiers; 4 rue Michel Brunet 86073 Poitiers cedex 9 France
| |
Collapse
|
21
|
Prasad SS, Reddy NR, Baskaran S. One-Pot Synthesis of Structurally Diverse Iminosugar-Based Hybrid Molecules. J Org Chem 2018; 83:9604-9618. [DOI: 10.1021/acs.joc.8b00748] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Sure Siva Prasad
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | | | - Sundarababu Baskaran
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
22
|
Synthesis and glycosidase inhibition potency of all- trans substituted 1- C -perfluoroalkyl iminosugars. Carbohydr Res 2018; 464:2-7. [DOI: 10.1016/j.carres.2018.05.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 05/09/2018] [Accepted: 05/09/2018] [Indexed: 01/28/2023]
|
23
|
Malinowski M, Hensienne R, Kern N, Tardieu D, Bodlenner A, Hazelard D, Compain P. Stereocontrolled synthesis of polyhydroxylated bicyclic azetidines as a new class of iminosugars. Org Biomol Chem 2018; 16:4688-4700. [PMID: 29892731 DOI: 10.1039/c8ob01065j] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We report herein the development of a stereodivergent route towards polyhydroxylated bicyclic azetidine scaffolds, namely 6-azabicyclo[3.2.0]heptane derivatives. The strategy hinges on a common bicyclic β-lactam precursor, which is forged by way of a rare example of a cationic Dieckmann-type reaction, followed by IBX-mediated desaturation. Substrate-controlled diastereoselective oxidations then allow the divergent preparation of novel iminosugar mimics.
Collapse
Affiliation(s)
- Maciej Malinowski
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), Univ. de Strasbourg
- Univ. de Haute-Alsace
- CNRS (UMR 7042), Equipe de Synthèse Organique et Molécules Bioactives (SYBIO), ECPM, 25 Rue Becquerel, 67000 Strasbourg, France.
| | - Raphaël Hensienne
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), Univ. de Strasbourg
- Univ. de Haute-Alsace
- CNRS (UMR 7042), Equipe de Synthèse Organique et Molécules Bioactives (SYBIO), ECPM, 25 Rue Becquerel, 67000 Strasbourg, France.
| | - Nicolas Kern
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), Univ. de Strasbourg
- Univ. de Haute-Alsace
- CNRS (UMR 7042), Equipe de Synthèse Organique et Molécules Bioactives (SYBIO), ECPM, 25 Rue Becquerel, 67000 Strasbourg, France.
| | - Damien Tardieu
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), Univ. de Strasbourg
- Univ. de Haute-Alsace
- CNRS (UMR 7042), Equipe de Synthèse Organique et Molécules Bioactives (SYBIO), ECPM, 25 Rue Becquerel, 67000 Strasbourg, France.
| | - Anne Bodlenner
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), Univ. de Strasbourg
- Univ. de Haute-Alsace
- CNRS (UMR 7042), Equipe de Synthèse Organique et Molécules Bioactives (SYBIO), ECPM, 25 Rue Becquerel, 67000 Strasbourg, France.
| | - Damien Hazelard
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), Univ. de Strasbourg
- Univ. de Haute-Alsace
- CNRS (UMR 7042), Equipe de Synthèse Organique et Molécules Bioactives (SYBIO), ECPM, 25 Rue Becquerel, 67000 Strasbourg, France.
| | - Philippe Compain
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), Univ. de Strasbourg
- Univ. de Haute-Alsace
- CNRS (UMR 7042), Equipe de Synthèse Organique et Molécules Bioactives (SYBIO), ECPM, 25 Rue Becquerel, 67000 Strasbourg, France.
| |
Collapse
|
24
|
Khosravi M, Gharibi D, Kaviani F, Mohammadidust M. The Antibacterial and Immunomodulatory Effects of Carbohydrate Fractions of the Seaweed Gracilaria persica. JOURNAL OF MEDICAL MICROBIOLOGY AND INFECTIOUS DISEASES 2018. [DOI: 10.29252/jommid.6.2.3.57] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
25
|
Gu X, Gupta V, Yang Y, Zhu JY, Carlson EJ, Kingsley C, Tash JS, Schönbrunn E, Hawkinson J, Georg GI. Structure-Activity Studies of N-Butyl-1-deoxynojirimycin (NB-DNJ) Analogues: Discovery of Potent and Selective Aminocyclopentitol Inhibitors of GBA1 and GBA2. ChemMedChem 2017; 12:1977-1984. [PMID: 28975712 PMCID: PMC5725710 DOI: 10.1002/cmdc.201700558] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Indexed: 12/26/2022]
Abstract
Analogues of N‐butyl‐1‐deoxynojirimycin (NB‐DNJ) were prepared and assayed for inhibition of ceramide‐specific glucosyltransferase (CGT), non‐lysosomal β‐glucosidase 2 (GBA2) and the lysosomal β‐glucosidase 1 (GBA1). Compounds 5 a–6 f, which carry sterically demanding nitrogen substituents, and compound 13, devoid of the C3 and C5 hydroxy groups present in DNJ/NB‐DGJ (N‐butyldeoxygalactojirimycin) showed no inhibitory activity for CGT or GBA2. Inversion of stereochemistry at C4 of N‐(n‐butyl)‐ and N‐(n‐nonyl)‐DGJ (compounds 24) also led to a loss of activity in these assays. The aminocyclopentitols N‐(n‐butyl)‐ (35 a), N‐(n‐nonyl)‐4‐amino‐5‐(hydroxymethyl)cyclopentane‐ (35 b), and N‐(1‐(pentyloxy)methyl)adamantan‐1‐yl)‐1,2,3‐triol (35 f), were found to be selective inhibitors of GBA1 and GBA2 that did not inhibit CGT (>1 mm), with the exception of 35 f, which inhibited CGT with an IC50 value of 1 mm. The N‐butyl analogue 35 a was 100‐fold selective for inhibiting GBA1 over GBA2 (Ki values of 32 nm and 3.3 μm for GBA1 and GBA2, respectively). The N‐nonyl analogue 35 b displayed a Ki value of ≪14 nm for GBA1 inhibition and a Ki of 43 nm for GBA2. The N‐(1‐(pentyloxy)methyl)adamantan‐1‐yl) derivative 35 f had Ki values of ≈16 and 14 nm for GBA1 and GBA2, respectively. The related N‐bis‐substituted aminocyclopentitols were found to be significantly less potent inhibitors than their mono‐substituted analogues. The aminocyclopentitol scaffold should hold promise for further inhibitor development.
Collapse
Affiliation(s)
- Xingxian Gu
- Department of Medicinal Chemistry, University of Kansas, Lawrence, KS, 66045, USA.,Department of Medicinal Chemistry and Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, MN, 55414, USA
| | | | - Yan Yang
- H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, USA
| | - Jin-Yi Zhu
- H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, USA
| | - Erick J Carlson
- Department of Medicinal Chemistry and Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, MN, 55414, USA
| | - Carolyn Kingsley
- Department of Medicinal Chemistry and Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, MN, 55414, USA
| | - Joseph S Tash
- University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Ernst Schönbrunn
- H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, USA
| | - Jon Hawkinson
- Department of Medicinal Chemistry and Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, MN, 55414, USA
| | - Gunda I Georg
- Department of Medicinal Chemistry and Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, MN, 55414, USA
| |
Collapse
|
26
|
Affiliation(s)
- Jiajia Wang
- Henan University Joint National Laboratory for Antibody Drug Engineering; School of Medicine, Henan University, Kaifeng, P. R. China
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug, Nankai University, Tianjin, P. R. China
| | - Yunyan Zhao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug, Nankai University, Tianjin, P. R. China
| | - Wei Zhao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug, Nankai University, Tianjin, P. R. China
| | - Peng Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug, Nankai University, Tianjin, P. R. China
| | - Jing Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug, Nankai University, Tianjin, P. R. China
| |
Collapse
|
27
|
Hazelard D, Compain P. Square sugars: challenges and synthetic strategies. Org Biomol Chem 2017; 15:3806-3827. [DOI: 10.1039/c7ob00386b] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The synthesis of square sugars requires innovative strategies based on efficient stereoselective methodologies, from organocatalysis to metal carbene insertion.
Collapse
Affiliation(s)
- Damien Hazelard
- Laboratoire de Synthèse Organique et Molécules Bioactives (SYBIO)
- Université de Strasbourg/CNRS (UMR 7509)
- Ecole Europèenne de Chimie, Polyméres et Matériaux (ECPM)
- 25 rue Becquerel
- France
| | - Philippe Compain
- Laboratoire de Synthèse Organique et Molécules Bioactives (SYBIO)
- Université de Strasbourg/CNRS (UMR 7509)
- Ecole Europèenne de Chimie, Polyméres et Matériaux (ECPM)
- 25 rue Becquerel
- France
| |
Collapse
|
28
|
Nocquet PA, Hensienne R, Wencel-Delord J, Laigre E, Sidelarbi K, Becq F, Norez C, Hazelard D, Compain P. Pushing the limits of catalytic C-H amination in polyoxygenated cyclobutanes. Org Biomol Chem 2016; 14:2780-96. [PMID: 26860404 DOI: 10.1039/c5ob02602d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A synthetic route to a new class of conformationally constrained iminosugars based on a 5-azaspiro[3.4]octane skeleton has been developed by way of Rh(ii)-catalyzed C(sp(3))-H amination. The pivotal stereocontrolled formation of the quaternary C-N bond by insertion into the C-H bonds of the cyclobutane ring was explored with a series of polyoxygenated substrates. In addition to anticipated regioselective issues induced by the high density of activated α-ethereal C-H bonds, this systematic study showed that cyclobutane C-H bonds were, in general, poorly reactive towards catalytic C-H amination. This was demonstrated inter alia by the unexpected formation of a oxathiazonane derivative, which constitutes a very rare example of the formation of a 9-membered ring by way of catalyzed C(sp(3))-H amination. A complete stereocontrol could be however achieved by activating the key insertion position as an allylic C-H bond in combination with reducing the electron density at the undesired C-H insertion sites by using electron-withdrawing protecting groups. Preliminary biological evaluations of the synthesized spiro-iminosugars were performed, which led to the identification of a new class of correctors of the defective F508del-CFTR gating involved in cystic fibrosis.
Collapse
Affiliation(s)
- Pierre-Antoine Nocquet
- Laboratoire de Synthèse Organique et Molécules Bioactives (SYBIO), Université de Strasbourg/CNRS (UMR 7509), Ecole Européenne de Chimie, Polymères et Matériaux (ECPM), 25 rue Becquerel, 67087 Strasbourg, France.
| | - Raphaël Hensienne
- Laboratoire de Synthèse Organique et Molécules Bioactives (SYBIO), Université de Strasbourg/CNRS (UMR 7509), Ecole Européenne de Chimie, Polymères et Matériaux (ECPM), 25 rue Becquerel, 67087 Strasbourg, France.
| | - Joanna Wencel-Delord
- Laboratoire de Synthèse Organique et Molécules Bioactives (SYBIO), Université de Strasbourg/CNRS (UMR 7509), Ecole Européenne de Chimie, Polymères et Matériaux (ECPM), 25 rue Becquerel, 67087 Strasbourg, France.
| | - Eugénie Laigre
- Laboratoire de Synthèse Organique et Molécules Bioactives (SYBIO), Université de Strasbourg/CNRS (UMR 7509), Ecole Européenne de Chimie, Polymères et Matériaux (ECPM), 25 rue Becquerel, 67087 Strasbourg, France.
| | - Khadidja Sidelarbi
- Laboratoire Signalisation et Transports Ioniques Membranaires (STIM), Université de Poitiers et CNRS (ERL7368), 1 rue Georges Bonnet, 86000 Poitiers, France
| | - Frédéric Becq
- Laboratoire Signalisation et Transports Ioniques Membranaires (STIM), Université de Poitiers et CNRS (ERL7368), 1 rue Georges Bonnet, 86000 Poitiers, France
| | - Caroline Norez
- Laboratoire Signalisation et Transports Ioniques Membranaires (STIM), Université de Poitiers et CNRS (ERL7368), 1 rue Georges Bonnet, 86000 Poitiers, France
| | - Damien Hazelard
- Laboratoire de Synthèse Organique et Molécules Bioactives (SYBIO), Université de Strasbourg/CNRS (UMR 7509), Ecole Européenne de Chimie, Polymères et Matériaux (ECPM), 25 rue Becquerel, 67087 Strasbourg, France.
| | - Philippe Compain
- Laboratoire de Synthèse Organique et Molécules Bioactives (SYBIO), Université de Strasbourg/CNRS (UMR 7509), Ecole Européenne de Chimie, Polymères et Matériaux (ECPM), 25 rue Becquerel, 67087 Strasbourg, France.
| |
Collapse
|
29
|
Lenci E, Innocenti R, Biagioni A, Menchi G, Bianchini F, Trabocchi A. Identification of Novel Human Breast Carcinoma (MDA-MB-231) Cell Growth Modulators from a Carbohydrate-Based Diversity Oriented Synthesis Library. Molecules 2016; 21:molecules21101405. [PMID: 27775632 PMCID: PMC6273552 DOI: 10.3390/molecules21101405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 10/12/2016] [Accepted: 10/15/2016] [Indexed: 01/16/2023] Open
Abstract
The application of a cell-based growth inhibition on a library of skeletally different glycomimetics allowed for the selection of a hexahydro-2H-furo[3,2-b][1,4]oxazine compound as candidate inhibitors of MDA-MB-231 cell growth. Subsequent synthesis of analogue compounds and preliminary biological studies validated the selection of a valuable hit compound with a novel polyhydroxylated structure for the modulation of the breast carcinoma cell cycle mechanism.
Collapse
Affiliation(s)
- Elena Lenci
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 13, 50019 Sesto Fiorentino, Florence, Italy.
| | - Riccardo Innocenti
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 13, 50019 Sesto Fiorentino, Florence, Italy.
| | - Alessio Biagioni
- Department of Clinical and Experimental Biomedical Science "Mario Serio", University of Florence, Viale Morgagni 50, 50134 Florence, Italy.
| | - Gloria Menchi
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 13, 50019 Sesto Fiorentino, Florence, Italy.
| | - Francesca Bianchini
- Department of Clinical and Experimental Biomedical Science "Mario Serio", University of Florence, Viale Morgagni 50, 50134 Florence, Italy.
| | - Andrea Trabocchi
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 13, 50019 Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
30
|
Ketenimine mediated synthesis of lactam iminosugars: development of one-pot process via tandem hydrative amidation of amino-alkynes and intramolecular transamidation. Tetrahedron 2016. [DOI: 10.1016/j.tet.2016.07.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
31
|
Malinowski M, Rowicki T, Guzik P, Wielechowska M, Sobiepanek A, Sas W. Diversity-Oriented Synthesis and Biological Evaluation of Iminosugars from Unprotected 2-Deoxy-d
-ribose. European J Org Chem 2016. [DOI: 10.1002/ejoc.201600459] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Maciej Malinowski
- Faculty of Chemistry; Warsaw University of Technology; ul. Noakowskiego 3 00-664 Warsaw Poland
| | - Tomasz Rowicki
- Faculty of Chemistry; Warsaw University of Technology; ul. Noakowskiego 3 00-664 Warsaw Poland
| | - Patrycja Guzik
- Faculty of Chemistry; Warsaw University of Technology; ul. Noakowskiego 3 00-664 Warsaw Poland
| | - Monika Wielechowska
- Faculty of Chemistry; Warsaw University of Technology; ul. Noakowskiego 3 00-664 Warsaw Poland
| | - Anna Sobiepanek
- Faculty of Chemistry; Warsaw University of Technology; ul. Noakowskiego 3 00-664 Warsaw Poland
| | - Wojciech Sas
- Faculty of Chemistry; Warsaw University of Technology; ul. Noakowskiego 3 00-664 Warsaw Poland
| |
Collapse
|
32
|
Muniruzzaman S, McIntosh M, Hossain A, Izumori K, Bhattacharjee PS. A novel rare sugar inhibitor of murine herpes simplex keratitis. J Pharmacol Sci 2016; 131:126-30. [PMID: 27262904 PMCID: PMC5499707 DOI: 10.1016/j.jphs.2016.05.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 05/12/2016] [Accepted: 05/12/2016] [Indexed: 12/26/2022] Open
Abstract
Purpose To determine the therapeutic efficacy of a novel rare sugar, L-psicose, for the treatment of HSV-1 induced herpetic stromal keratitis (HSK) in a mouse eye model. Methods One rare sugar L-psicose was assayed for HSV-1 inhibition of in vitro virus adsorption. The IC50 and IC90 values of L-psicose were determined using plaque reduction assay (PRA) in CV-1 cell. Female Balb/c mice were corneally infected with HSV-1, strain KOS-GFP; A topical eye drop treatment of L-psicose was started 24 h after infection and continued four times daily for ten consecutive days. The severity of HSK was monitored by slit lamp examination in a masked fashion and Infectious HSV-1 shedding was determined by PRA. Results L-psicose was found to have anti-viral activity in vitro at an IC50 dose of 99.5 mM and an IC90 dose of 160 mM. Topical eye drop treatment with 200 mM L-psicose in PBS solution significantly reduced the severity of HSK compared to the mock treatment group. The in vivo mouse ocular model results of L-psicose therapy correlated with accelerated clearance of virus from eye swabs. Conclusion The results suggest that topical treatment with rare sugar L-psicose has efficacy against HSK through inhibition of HSV-1.
Collapse
Affiliation(s)
- Syed Muniruzzaman
- Department of Biology, Xavier University of Louisiana, New Orleans, LA, USA
| | | | - Ahamed Hossain
- Department of Biology, Xavier University of Louisiana, New Orleans, LA, USA
| | - Ken Izumori
- Rare Sugar Research Center, Kagawa University, 2393 Ikenobe, Miki, Takamatsu 761-0795, Japan
| | | |
Collapse
|
33
|
Mishra S, Upadhaya K, Mishra KB, Shukla AK, Tripathi RP, Tiwari VK. Carbohydrate-Based Therapeutics. STUDIES IN NATURAL PRODUCTS CHEMISTRY 2016. [DOI: 10.1016/b978-0-444-63601-0.00010-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
34
|
Arora I, Sharma SK, Shaw AK. Aglycone mimics for tuning of glycosidase inhibition: design, synthesis and biological evaluation of bicyclic pyrrolidotriazole iminosugars. RSC Adv 2016. [DOI: 10.1039/c5ra26005a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Various fuco-configured bicyclic pyrrolidotriazole aglycone mimics were synthesised using copper-catalysed coupling of allyl bromides with terminal alkynes and Sonogashira–Hagihara reaction followed by intramolecular azide-alkyne ‘click’ reaction.
Collapse
Affiliation(s)
- Inderpreet Arora
- Division of Medicinal and Process Chemistry
- CSIR-Central Drug Research Institute
- Lucknow 226031
- India
| | - Sandeep K. Sharma
- Microbiology Division
- CSIR-Central Drug Research Institute
- Lucknow 226031
- India
| | - Arun K. Shaw
- Division of Medicinal and Process Chemistry
- CSIR-Central Drug Research Institute
- Lucknow 226031
- India
| |
Collapse
|
35
|
Malinowski M, Rowicki T, Guzik P, Gryszel M, Łapczyński S, Wielechowska M, Czerwińska K, Madura I, Sas W. [1,4]-sigmatropic rearrangement of chiral nitrones and their utilization in the synthesis of new iminosugars. Org Biomol Chem 2016; 14:470-482. [DOI: 10.1039/c5ob01432h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A new mechanism of nitrone epimerization via [1,4]-sigmatropic rearrangement was proposed and a set of epimeric iminosugars was synthesized.
Collapse
Affiliation(s)
- Maciej Malinowski
- Faculty of Chemistry
- Warsaw University of Technology
- 00-664 Warsaw
- Poland
| | - Tomasz Rowicki
- Faculty of Chemistry
- Warsaw University of Technology
- 00-664 Warsaw
- Poland
| | - Patrycja Guzik
- Faculty of Chemistry
- Warsaw University of Technology
- 00-664 Warsaw
- Poland
| | - Maciej Gryszel
- Faculty of Chemistry
- Warsaw University of Technology
- 00-664 Warsaw
- Poland
| | | | | | | | - Izabela Madura
- Faculty of Chemistry
- Warsaw University of Technology
- 00-664 Warsaw
- Poland
| | - Wojciech Sas
- Faculty of Chemistry
- Warsaw University of Technology
- 00-664 Warsaw
- Poland
| |
Collapse
|
36
|
Nocquet PA, Hensienne R, Wencel-Delord J, Wimmer E, Hazelard D, Compain P. Synthesis of a new class of iminosugars based on constrained azaspirocyclic scaffolds by way of catalytic C-H amination. Org Biomol Chem 2015; 13:9176-80. [PMID: 26165187 DOI: 10.1039/c5ob01254f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis of the first examples of a new class of iminosugars based on constrained spirocyclic scaffolds has been achieved via Rh-catalyzed C(sp(3))-H amination. In this process, the needed electronic control in securing high regioselectivity from substrates with a high density of activated C-H bonds was achieved by using a combination of activating and electron-withdrawing groups.
Collapse
Affiliation(s)
- Pierre-Antoine Nocquet
- Laboratoire de Synthèse Organique et Molécules Bioactives (SYBIO), Université de Strasbourg/CNRS (UMR 7509), Ecole Européenne de Chimie, Polymères et Matériaux (ECPM), 25 rue Becquerel, 67087 Strasbourg, France.
| | | | | | | | | | | |
Collapse
|
37
|
Lepage ML, Mirloup A, Ripoll M, Stauffert F, Bodlenner A, Ziessel R, Compain P. Design, synthesis and photochemical properties of the first examples of iminosugar clusters based on fluorescent cores. Beilstein J Org Chem 2015; 11:659-67. [PMID: 26124868 PMCID: PMC4464267 DOI: 10.3762/bjoc.11.74] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 04/17/2015] [Indexed: 12/24/2022] Open
Abstract
The synthesis and photophysical properties of the first examples of iminosugar clusters based on a BODIPY or a pyrene core are reported. The tri- and tetravalent systems designed as molecular probes and synthesized by way of Cu(I)-catalysed azide-alkyne cycloadditions are fluorescent analogues of potent pharmacological chaperones/correctors recently reported in the field of Gaucher disease and cystic fibrosis, two rare genetic diseases caused by protein misfolding.
Collapse
Affiliation(s)
- Mathieu L Lepage
- Laboratoire de Synthèse Organique et Molécules Bioactives (SYBIO), Université de Strasbourg/CNRS (UMR 7509), Ecole Européenne de Chimie, Polymères et Matériaux (ECPM), 25 rue Becquerel, 67087 Strasbourg, France
| | - Antoine Mirloup
- Institut de Chimie et Procédés pour l’Energie, l’Environnement et la Santé (ICPEES), Laboratoire de Chimie Organique et Spectroscopie Avancées (LCOSA), Université de Strasbourg/CNRS (UMR 7515), Ecole Européenne de Chimie, Polymères et Matériaux (ECPM), 25 rue Becquerel, 67087 Strasbourg, France
| | - Manon Ripoll
- Laboratoire de Synthèse Organique et Molécules Bioactives (SYBIO), Université de Strasbourg/CNRS (UMR 7509), Ecole Européenne de Chimie, Polymères et Matériaux (ECPM), 25 rue Becquerel, 67087 Strasbourg, France
| | - Fabien Stauffert
- Laboratoire de Synthèse Organique et Molécules Bioactives (SYBIO), Université de Strasbourg/CNRS (UMR 7509), Ecole Européenne de Chimie, Polymères et Matériaux (ECPM), 25 rue Becquerel, 67087 Strasbourg, France
| | - Anne Bodlenner
- Laboratoire de Synthèse Organique et Molécules Bioactives (SYBIO), Université de Strasbourg/CNRS (UMR 7509), Ecole Européenne de Chimie, Polymères et Matériaux (ECPM), 25 rue Becquerel, 67087 Strasbourg, France
| | - Raymond Ziessel
- Institut de Chimie et Procédés pour l’Energie, l’Environnement et la Santé (ICPEES), Laboratoire de Chimie Organique et Spectroscopie Avancées (LCOSA), Université de Strasbourg/CNRS (UMR 7515), Ecole Européenne de Chimie, Polymères et Matériaux (ECPM), 25 rue Becquerel, 67087 Strasbourg, France
| | - Philippe Compain
- Laboratoire de Synthèse Organique et Molécules Bioactives (SYBIO), Université de Strasbourg/CNRS (UMR 7509), Ecole Européenne de Chimie, Polymères et Matériaux (ECPM), 25 rue Becquerel, 67087 Strasbourg, France
- Institut Universitaire de France, 103 Bd Saint-Michel, 75005 Paris, France
| |
Collapse
|
38
|
Matassini C, Marradi M, Cardona F, Parmeggiani C, Robina I, Moreno-Vargas AJ, Penadés S, Goti A. Gold nanoparticles are suitable cores for building tunable iminosugar multivalency. RSC Adv 2015. [DOI: 10.1039/c5ra22152h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Inhibition in the low micromolar range towards amyloglucosidase.
Collapse
Affiliation(s)
- C. Matassini
- Dipartimento di Chimica “Ugo Schiff”
- Università di Firenze
- 50019 Sesto Fiorentino
- Italy
- CIC biomaGUNE
| | - M. Marradi
- CIC biomaGUNE
- Biofunctional Nanomaterials Unit
- Lab. GlycoNanoTechnology
- San Sebastián
- Spain
| | - F. Cardona
- Dipartimento di Chimica “Ugo Schiff”
- Università di Firenze
- 50019 Sesto Fiorentino
- Italy
| | - C. Parmeggiani
- Dipartimento di Chimica “Ugo Schiff”
- Università di Firenze
- 50019 Sesto Fiorentino
- Italy
- CNR – INO and LENS
| | - I. Robina
- Departamento de Química Orgánica
- Facultad de Química
- Universidad de Sevilla
- Sevilla
- Spain
| | - A. J. Moreno-Vargas
- Departamento de Química Orgánica
- Facultad de Química
- Universidad de Sevilla
- Sevilla
- Spain
| | - S. Penadés
- CIC biomaGUNE
- Biofunctional Nanomaterials Unit
- Lab. GlycoNanoTechnology
- San Sebastián
- Spain
| | - A. Goti
- Dipartimento di Chimica “Ugo Schiff”
- Università di Firenze
- 50019 Sesto Fiorentino
- Italy
| |
Collapse
|
39
|
Azad CS, Saxena AK. Stereoconvergent synthesis of 1-deoxynojirimycin isomers by using the 3 component 4 centred Ugi reaction. Org Chem Front 2015. [DOI: 10.1039/c5qo00019j] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new reductive cyclization/Ugi multicomponent reaction sequence for the synthesis of 1-deoxyallonojirimycin and 1-deoxyaltronojirimycin has been developed.
Collapse
Affiliation(s)
- Chandra S. Azad
- Division of Medicinal and Process Chemistry CSIR-Central Drug Research Institute
- Lucknow-226 031
- India
| | - Anil K. Saxena
- Division of Medicinal and Process Chemistry CSIR-Central Drug Research Institute
- Lucknow-226 031
- India
| |
Collapse
|
40
|
Gavale KS, Chavan SR, Khan A, Joshi R, Dhavale DD. Azetidine- and N-carboxylic azetidine-iminosugars as amyloglucosidase inhibitors: synthesis, glycosidase inhibitory activity and molecular docking studies. Org Biomol Chem 2015; 13:6634-46. [DOI: 10.1039/c5ob00668f] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Azetidine and an unprecedented N-carboxylic azetidine iminosugars were synthesized from d-glucose, which showed prominent amyloglucosidase inhibitory activity.
Collapse
Affiliation(s)
- Kishor S. Gavale
- Department of Chemistry
- Garware Research Centre
- Savitribai Phule Pune University (formerly University of Pune)
- Pune
- India
| | - Shrawan R. Chavan
- Department of Chemistry
- Garware Research Centre
- Savitribai Phule Pune University (formerly University of Pune)
- Pune
- India
| | - Ayesha Khan
- Department of Chemistry
- Garware Research Centre
- Savitribai Phule Pune University (formerly University of Pune)
- Pune
- India
| | - Rakesh Joshi
- Institute of Bioinformatics and Biotechnology
- Savitribai Phule Pune University
- Pune 411007
- India
| | - Dilip D. Dhavale
- Department of Chemistry
- Garware Research Centre
- Savitribai Phule Pune University (formerly University of Pune)
- Pune
- India
| |
Collapse
|
41
|
Viuff AH, Besenbacher LM, Kamori A, Jensen MT, Kilian M, Kato A, Jensen HH. Stable analogues of nojirimycin – synthesis and biological evaluation of nojiristegine and manno-nojiristegine. Org Biomol Chem 2015; 13:9637-58. [DOI: 10.1039/c5ob01281c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two novel iminosugars called nojiristegines, being structural hybrids between nor-tropane alkaloid calystegine and nojirimycins, have been synthesised and the hemiaminal functionality found to be stable.
Collapse
Affiliation(s)
| | | | - Akiko Kamori
- Department of Hospital Pharmacy
- University of Toyama
- Toyama 930-01940
- Japan
| | | | - Mogens Kilian
- Department of Biomedicine
- Aarhus University
- 8000 Aarhus C
- Denmark
| | - Atsushi Kato
- Department of Hospital Pharmacy
- University of Toyama
- Toyama 930-01940
- Japan
| | | |
Collapse
|
42
|
Csatayová K, Davies SG, Fletcher AM, Ford JG, Klauber DJ, Roberts PM, Thomson JE. Asymmetric syntheses of (-)-3-epi-Fagomine, (2R,3S,4R)-dihydroxypipecolic acid, and several polyhydroxylated homopipecolic acids. J Org Chem 2014; 79:10932-44. [PMID: 25337869 DOI: 10.1021/jo501952t] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A range of enantiopure polyhydroxylated piperidines, including (2R,3S,4R)-dihydroxypipecolic acid, (-)-3-epi-fagomine, (2S,3S,4R)-dihydroxyhomopipecolic acid, (2S,3R,4R)-dihydroxyhomopipecolic acid, and two trihydroxy-substituted homopipecolic acids, have been prepared using diastereoselective olefinic oxidations of a range of enantiopure tetrahydropyridines as the key step. The requisite substrates were readily prepared from tert-butyl sorbate using our diastereoselective hydroamination or aminohydroxylation protocols followed by ring-closing metathesis. After diastereoselective olefinic oxidation of the resultant enantiopure tetrahydropyridines and deprotection, enantiopure polyhydroxylated piperidines were isolated as single diastereoisomers (>99:1 dr) in good overall yield.
Collapse
Affiliation(s)
- Kristína Csatayová
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford , Mansfield Road, Oxford OX1 3TA, U.K
| | | | | | | | | | | | | |
Collapse
|
43
|
Aguilar AL, Escribano J, Wentworth P, Butters TD. Synthetic 1-Deoxynojirimycin N-Substituted Peptides Offer Prolonged Disruption to N-Linked Glycan Processing. ChemMedChem 2014; 9:2809-13. [DOI: 10.1002/cmdc.201402186] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Indexed: 11/08/2022]
|
44
|
Blériot Y, Tran AT, Prencipe G, Jagadeesh Y, Auberger N, Zhu S, Gauthier C, Zhang Y, Désiré J, Adachi I, Kato A, Sollogoub M. Synthesis of 1,2-trans-2-Acetamido-2-deoxyhomoiminosugars. Org Lett 2014; 16:5516-9. [DOI: 10.1021/ol502929h] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Yves Blériot
- Glycochemistry
Group of “Organic Synthesis” Team, Université de Poitiers, UMR-CNRS
7285 IC2MP, Bât. B28, 4 rue Michel Brunet,
TSA 51106, 86073 Poitiers Cedex 9, France
| | - Anh Tuan Tran
- Sorbonne Universités,
UPMC Univ Paris 06, Institut Universitaire de France, UMR-CNRS 8232, IPCM, LabEx MiChem, F-75005 Paris, France
| | - Giuseppe Prencipe
- Sorbonne Universités,
UPMC Univ Paris 06, Institut Universitaire de France, UMR-CNRS 8232, IPCM, LabEx MiChem, F-75005 Paris, France
| | - Yerri Jagadeesh
- Glycochemistry
Group of “Organic Synthesis” Team, Université de Poitiers, UMR-CNRS
7285 IC2MP, Bât. B28, 4 rue Michel Brunet,
TSA 51106, 86073 Poitiers Cedex 9, France
| | - Nicolas Auberger
- Glycochemistry
Group of “Organic Synthesis” Team, Université de Poitiers, UMR-CNRS
7285 IC2MP, Bât. B28, 4 rue Michel Brunet,
TSA 51106, 86073 Poitiers Cedex 9, France
| | - Sha Zhu
- Sorbonne Universités,
UPMC Univ Paris 06, Institut Universitaire de France, UMR-CNRS 8232, IPCM, LabEx MiChem, F-75005 Paris, France
| | - Charles Gauthier
- Glycochemistry
Group of “Organic Synthesis” Team, Université de Poitiers, UMR-CNRS
7285 IC2MP, Bât. B28, 4 rue Michel Brunet,
TSA 51106, 86073 Poitiers Cedex 9, France
| | - Yongmin Zhang
- Sorbonne Universités,
UPMC Univ Paris 06, Institut Universitaire de France, UMR-CNRS 8232, IPCM, LabEx MiChem, F-75005 Paris, France
| | - Jérôme Désiré
- Glycochemistry
Group of “Organic Synthesis” Team, Université de Poitiers, UMR-CNRS
7285 IC2MP, Bât. B28, 4 rue Michel Brunet,
TSA 51106, 86073 Poitiers Cedex 9, France
| | - Isao Adachi
- Department
of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Atsushi Kato
- Department
of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Matthieu Sollogoub
- Sorbonne Universités,
UPMC Univ Paris 06, Institut Universitaire de France, UMR-CNRS 8232, IPCM, LabEx MiChem, F-75005 Paris, France
| |
Collapse
|
45
|
Davies SG, Foster EM, Lee JA, Roberts PM, Thomson JE. Stereospecific Cyclization Strategies for α,ε-Dihydroxy-β-amino Esters: Asymmetric Syntheses of Imino and Amino Sugars. J Org Chem 2014; 79:9686-98. [DOI: 10.1021/jo5018298] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Stephen G. Davies
- Department of Chemistry,
Chemistry Research Laboratory, University of Oxford, Mansfield
Road, Oxford OX1 3TA, United Kingdom
| | - Emma M. Foster
- Department of Chemistry,
Chemistry Research Laboratory, University of Oxford, Mansfield
Road, Oxford OX1 3TA, United Kingdom
| | - James A. Lee
- Department of Chemistry,
Chemistry Research Laboratory, University of Oxford, Mansfield
Road, Oxford OX1 3TA, United Kingdom
| | - Paul M. Roberts
- Department of Chemistry,
Chemistry Research Laboratory, University of Oxford, Mansfield
Road, Oxford OX1 3TA, United Kingdom
| | - James E. Thomson
- Department of Chemistry,
Chemistry Research Laboratory, University of Oxford, Mansfield
Road, Oxford OX1 3TA, United Kingdom
| |
Collapse
|
46
|
Hsu CH, Schelwies M, Enck S, Huang LY, Huang SH, Chang YF, Cheng TJR, Cheng WC, Wong CH. Iminosugar C-glycoside analogues of α-D-GlcNAc-1-phosphate: synthesis and bacterial transglycosylase inhibition. J Org Chem 2014; 79:8629-37. [PMID: 25137529 PMCID: PMC4168788 DOI: 10.1021/jo501340s] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
![]()
We
herein describe the first synthesis of iminosugar C-glycosides
of α-d-GlcNAc-1-phosphate in 10 steps starting from
unprotected d-GlcNAc. A diastereoselective intramolecular
iodoamination–cyclization as the key step was employed to construct
the central piperidine ring of the iminosugar and the C-glycosidic
structure of α-d-GlcNAc. Finally, the iminosugar phosphonate
and its elongated phosphate analogue were accessed. These phosphorus-containing
iminosugars were coupled efficiently with lipophilic monophosphates
to give lipid-linked pyrophosphate derivatives, which are lipid II
mimetics endowed with potent inhibitory properties toward bacterial
transglycosylases (TGase).
Collapse
Affiliation(s)
- Che-Hsiung Hsu
- Genomics Research Center, Academica Sinica , Taipei 115, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Synthesis and biological evaluation of α-1-C-4′-arylbutyl-l-arabinoiminofuranoses, a new class of α-glucosidase inhibitors. Bioorg Med Chem Lett 2014; 24:3298-301. [DOI: 10.1016/j.bmcl.2014.06.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 05/29/2014] [Accepted: 06/02/2014] [Indexed: 11/21/2022]
|
48
|
Arora I, Kashyap VK, Singh AK, Dasgupta A, Kumar B, Shaw AK. Design, synthesis and biological evaluation of bicyclic iminosugar hybrids: conformational constraint as an effective tool for tailoring the selectivity of α-glucosidase inhibitors. Org Biomol Chem 2014; 12:6855-68. [DOI: 10.1039/c4ob00486h] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
49
|
Matassini C, Mirabella S, Ferhati X, Faggi C, Robina I, Goti A, Moreno-Clavijo E, Moreno-Vargas AJ, Cardona F. Polyhydroxyamino-Piperidine-Type Iminosugars and Pipecolic Acid Analogues from aD-Mannose-Derived Aldehyde. European J Org Chem 2014. [DOI: 10.1002/ejoc.201402427] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
50
|
Iminosugars: Therapeutic Applications and Synthetic Considerations. TOPICS IN MEDICINAL CHEMISTRY 2014. [DOI: 10.1007/7355_2014_50] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
|