1
|
Zhang L, Li Y, Xu X, Feng M, Turak R, Liu X, Pan H. Functional analysis of AgJHAMT gene related to developmental period in Aphis gossypii Glover. BULLETIN OF ENTOMOLOGICAL RESEARCH 2024:1-10. [PMID: 39328178 DOI: 10.1017/s000748532400049x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Aphis gossypii is one of the most economically important agricultural pests that cause serious crop losses worldwide, and the indiscriminate chemical application causes resistance development in A. gossypii, a major obstacle to successful control. In this study, we selected the up-regulated expression gene AgJHAMT, which was enriched into juvenile hormone pathway though transcriptome sequencing analysis of the cotton aphids that fed on transgenic cotton lines expressing dsAgCYP6CY3 (the TG cotton). The AgJHAMT gene was overexpressed in cotton aphids which fed on the TG cotton, and its expression profile during the nymphs was clarified. Then, silencing AgJHAMT could advance the developmental period of cotton aphids by 0.5 days compared with control groups. The T and t values of cotton aphids in the dsJHAMT treatment group (6.88 ± 0.15, 1.65 ± 0.06) were significantly shorter than that of the sprayed H2O control group (7.6 ± 0.14, 1.97 ± 0.09) (P < 0.05), respectively. The fast growth caused by AgJHAMT silencing was rescued by applying the JH analogue, methoprene. Overall, these findings clarified the function of AgJHAMT in the developmental period of A. gossypii. This study contributes to further clarify the molecular mechanisms of delaying the growth and development of cotton aphids by the transgenic cotton lines expressing dsAgCYP6CY3.
Collapse
Affiliation(s)
- Lianjun Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering/National Demonstration Center for Experimental Biology Education, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| | - Yuan Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering/National Demonstration Center for Experimental Biology Education, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| | - Xinhui Xu
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering/National Demonstration Center for Experimental Biology Education, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| | - Mengmeng Feng
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering/National Demonstration Center for Experimental Biology Education, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| | - Rukiya Turak
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering/National Demonstration Center for Experimental Biology Education, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| | - Xiaoning Liu
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering/National Demonstration Center for Experimental Biology Education, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| | - Hongsheng Pan
- National Plant Protection Scientific Observation and Experiment Station of Korla, Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| |
Collapse
|
2
|
Cheng Y, Zhou Y, Li C, Jin J. Cloning and functional analysis of the juvenile hormone receptor gene CsMet in Coccinella septempunctata. JOURNAL OF INSECT SCIENCE (ONLINE) 2024; 24:2. [PMID: 38958929 PMCID: PMC11221319 DOI: 10.1093/jisesa/ieae065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/10/2024] [Accepted: 06/04/2024] [Indexed: 07/04/2024]
Abstract
The potential role of the juvenile hormone receptor gene (methoprene-tolerant, Met) in reproduction of Coccinella septempunctata L. (Coleoptera: Coccinellidae)(Coleoptera: Coccinellidae), was investigated by cloning, analyzing expression profiles by quantitative real-time PCR, and via RNA interference (RNAi). CsMet encoded a 1518-bp open reading frames with a predicted protein product of 505 amino acids; the latter contained 2 Per-Arnt-Sim repeat profile at amino acid residues 30-83 and 102-175. CsMet was expressed in different C. septempunctata larvae developmental stages and was most highly expressed in third instar. CsMet expression in female adults gradually increased from 20 to 30 d, and expression levels at 25 and 30 d were significantly higher than levels at 1-15 d. CsMet expression in 20-d-old male adults was significantly higher than in males aged 1-15 d. CsMet expression levels in fat body tissues of male and female adults were significantly higher than expression in the head, thorax, and reproductive system. At 5 and 10 d after CsMet-dsRNA injection, CsMet expression was significantly lower than the controls by 75.05% and 58.38%, respectively. Ovary development and vitellogenesis in C. septempunctata injected with CsMet-dsRNA were significantly delayed and fewer mature eggs were produced. This study provides valuable information for the large-scale rearing of C. septempunctata.
Collapse
Affiliation(s)
- Ying Cheng
- Insect Research Group, Institute of Plant Protection, Guizhou Provincial Academy of Agricultural Sciences, Guiyang, China
| | - Yuhang Zhou
- Insect Research Group, Institute of Plant Protection, Guizhou Provincial Academy of Agricultural Sciences, Guiyang, China
| | - Cao Li
- Insect Research Group, Guizhou Provincial Pollution-free Engineering Center of Plant Protection, Guiyang, China
| | - Jianxue Jin
- Insect Research Group, Institute of Plant Protection, Guizhou Provincial Academy of Agricultural Sciences, Guiyang, China
| |
Collapse
|
3
|
Sun YX, Chen MJ, Hao YN, Wang SS, Zhang CL. Canola bee pollen is an effective artificial diet additive for improving larval development of predatory coccinellids: a lesson from Harmonia axyridis. PEST MANAGEMENT SCIENCE 2024; 80:2920-2928. [PMID: 38288907 DOI: 10.1002/ps.8000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/08/2024] [Accepted: 01/28/2024] [Indexed: 02/10/2024]
Abstract
BACKGROUND Pollen is a common plant-derived food source for predatory ladybird beetles under field conditions, yet the potential for pollen to improve the quality of artificial diets remains largely unexplored. In this study, we developed three pollen diets by incorporating varying proportions of canola bee pollen (7.5%, 15.0% and 22.5% with 2.5%, 5.0%, and 7.5% of water, respectively) into a conventional diet. The feeding efficiency of Harmonia axyridis, an omnivorous predator, was evaluated and compared on three pollen diets, a conventional nonpollen diet and pea aphids. RESULTS The larvae fed a medium or high pollen diet exhibited significantly higher survival in the 4th instar, pupa and adult stages than those fed a nonpollen diet. These larvae also developed into significantly heavier adults, and their survival rates in adulthood were comparable to those fed pea aphids. Specifically, we revealed the underlying mechanisms through which a high pollen diet enhances pupal development. Consumption of high pollen diet versus nonpollen diet resulted not only in a significant decrease in pupal glycogen content, but also an increase in adult lipid content. Both diet treatments induced similar changes in carbohydrate and glycogen content compared to the aphid diet while exhibiting different alterations in pupal protein content and adult lipid content. Furthermore, the transcriptome analysis revealed that the nutrient metabolism, immune response, and cuticle development pathways were predominantly enriched among the differentially expressed genes (DEGs). CONCLUSION Canola bee pollen offers diverse advantages in terms of rearing H. axyridis larvae with an artificial diet, which will advance the development of effective diets for predaceous coccinellids. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yuan-Xing Sun
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou, China
| | - Ming-Juan Chen
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou, China
| | - Ya-Nan Hao
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou, China
| | - Sen-Shan Wang
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou, China
| | - Chu-Lin Zhang
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
4
|
Zheng H, Yang Y, Hu Y, Shi J, Li Q, Wang Y, Xia Q, Guo P. Structural Characterization and Functional Analysis of Mevalonate Kinase from Tribolium castaneum (Red Flour Beetle). Int J Mol Sci 2024; 25:2552. [PMID: 38473803 DOI: 10.3390/ijms25052552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
Mevalonate kinase (MevK) is an important enzyme in the mevalonate pathway that catalyzes the phosphorylation of mevalonate into phosphomevalonate and is involved in juvenile hormone biosynthesis. Herein, we present a structure model of MevK from the red flour beetle Tribolium castaneum (TcMevK), which adopts a compact α/β conformation that can be divided into two parts: an N-terminal domain and a C-terminal domain. A narrow, deep cavity accommodating the substrate and cofactor was observed at the junction between the two domains of TcMevK. Computational simulation combined with site-directed mutagenesis and biochemical analyses allowed us to define the binding mode of TcMevK to cofactors and substrates. Moreover, TcMevK showed optimal enzyme activity at pH 8.0 and an optimal temperature of 40 °C for mevalonate as the substrate. The expression profiles and RNA interference of TcMevK indicated its critical role in controlling juvenile hormone biosynthesis, as well as its participation in the production of other terpenoids in T. castaneum. These findings improve our understanding of the structural and biochemical features of insect Mevk and provide a structural basis for the design of MevK inhibitors.
Collapse
Affiliation(s)
- Haogang Zheng
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Yuanyuan Yang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Ying Hu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China
| | - Jiaxuan Shi
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Qiaohui Li
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Yuanqiang Wang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Qingyou Xia
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Pengchao Guo
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| |
Collapse
|
5
|
Barton LJ, Sanny J, Packard Dawson E, Nouzova M, Noriega FG, Stadtfeld M, Lehmann R. Juvenile hormones direct primordial germ cell migration to the embryonic gonad. Curr Biol 2024; 34:505-518.e6. [PMID: 38215744 PMCID: PMC10872347 DOI: 10.1016/j.cub.2023.12.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 10/31/2023] [Accepted: 12/12/2023] [Indexed: 01/14/2024]
Abstract
Germ cells are essential to sexual reproduction. Across the animal kingdom, extracellular signaling isoprenoids, such as retinoic acids (RAs) in vertebrates and juvenile hormones (JHs) in invertebrates, facilitate multiple processes in reproduction. Here we investigated the role of these potent signaling molecules in embryonic germ cell development, using JHs in Drosophila melanogaster as a model system. In contrast to their established endocrine roles during larval and adult germline development, we found that JH signaling acts locally during embryonic development. Using an in vivo biosensor, we observed active JH signaling first within and near primordial germ cells (PGCs) as they migrate to the developing gonad. Through in vivo and in vitro assays, we determined that JHs are both necessary and sufficient for PGC migration. Analysis into the mechanisms of this newly uncovered paracrine JH function revealed that PGC migration was compromised when JHs were decreased or increased, suggesting that specific titers or spatiotemporal JH dynamics are required for robust PGC colonization of the gonad. Compromised PGC migration can impair fertility and cause germ cell tumors in many species, including humans. In mammals, retinoids have many roles in development and reproduction. We found that like JHs in Drosophila, RA was sufficient to impact mouse PGC migration in vitro. Together, our study reveals a previously unanticipated role of isoprenoids as local effectors of pre-gonadal PGC development and suggests a broadly shared mechanism in PGC migration.
Collapse
Affiliation(s)
- Lacy J Barton
- Department of Cell Biology, Skirball Institute of Biomolecular Medicine, and Howard Hughes Medical Institute, NYU Grossman School of Medicine, 540 First Avenue, New York, NY 10016, USA; Department of Neuroscience, Developmental and Regenerative Biology, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA.
| | - Justina Sanny
- Department of Cell Biology, Skirball Institute of Biomolecular Medicine, and Howard Hughes Medical Institute, NYU Grossman School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | - Emily Packard Dawson
- Department of Cell Biology, Skirball Institute of Biomolecular Medicine, and Howard Hughes Medical Institute, NYU Grossman School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | - Marcela Nouzova
- Department of Biological Sciences and Biomolecular Sciences Institute, Florida International University, 11200 SW 8(th) Street, Miami, FL 33199, USA; Institute of Parasitology, Biology Centre CAS, 37005 Ceske Budejovice, Czech Republic
| | - Fernando Gabriel Noriega
- Department of Biological Sciences and Biomolecular Sciences Institute, Florida International University, 11200 SW 8(th) Street, Miami, FL 33199, USA; Department of Parasitology, University of South Bohemia, 37005 České Budějovice, Czech Republic
| | - Matthias Stadtfeld
- Sanford I. Weill Department of Medicine, Weill Cornell Medicine, 413 E 69th Street, New York, NY, USA
| | - Ruth Lehmann
- Department of Cell Biology, Skirball Institute of Biomolecular Medicine, and Howard Hughes Medical Institute, NYU Grossman School of Medicine, 540 First Avenue, New York, NY 10016, USA; Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, 455 Main Street, Cambridge, MA 02142, USA.
| |
Collapse
|
6
|
Cheng Y, Zhou Y, Li F. Cloning and spatio-temporal expression of CsKr-h1 encoding the juvenile hormone response gene in Coccinella septempunctata L. BULLETIN OF ENTOMOLOGICAL RESEARCH 2024; 114:99-106. [PMID: 38178801 DOI: 10.1017/s0007485323000652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
The gene encoding juvenile hormone response (Krüppel homolog1, Kr-hl) in Coccinella septempunctata was investigated by cloning and analysing expression profiles in different developmental stages and tissues by quantitative real-time polymerase chain reaction (PCR). C. septempunctata Kr-hl (CsKr-hl) encoded a 1338 bp open reading frame (ORF) with a predicted protein product of 445 amino acids; the latter showed high similarity to orthologs in other species and contained eight highly-conserved Zn-finger motifs for DNA-binding. CsKr-hl was expressed in different developmental stages of C. septempunctata. The expression levels of CsKr-hl in eggs, 2nd, 3rd, 4th instar larvae, and pupa were 3.31, 2.30, 7.09, 0.58, and 7.48 times the number of 1st instar larvae, respectively. CsKr-hl expression levels in female adults gradually increased at 25-30 days and were significantly higher than expression at 1-20 days. CsKr-hl expression in 20-30 days-old male adults was significantly higher than males aged 1-15 days. CsKr-hl expression levels in heads of male and female adults were significantly higher than expression levels in the thorax, adipose, and reproductive system. Interestingly, CsKr-hl expression levels in the adipose and reproductive system of female adults were significantly higher than in adult male corresponding organs, which suggest that CsKr-hl plays an important role in regulating reproductive development in C. septempunctata.
Collapse
Affiliation(s)
- Ying Cheng
- Institute of Plant Protection, Guizhou Provincial Academy of Agricultural Sciences, Guizhou, Guiyang 550006, China
| | - Yuhang Zhou
- Institute of Plant Protection, Guizhou Provincial Academy of Agricultural Sciences, Guizhou, Guiyang 550006, China
| | - Fengliang Li
- Institute of Plant Protection, Guizhou Provincial Academy of Agricultural Sciences, Guizhou, Guiyang 550006, China
| |
Collapse
|
7
|
Fang H, Zheng H, Yang Y, Hu Y, Wang Z, Xia Q, Guo P. Structural Insights into the Substrate Binding of Farnesyl Diphosphate Synthase FPPS1 from Silkworm, Bombyx mori. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:1787-1796. [PMID: 38214248 DOI: 10.1021/acs.jafc.3c06741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Farnesyl diphosphate synthase (FPPS) is an important enzyme involved in the juvenile hormone (JH) biosynthesis pathway. Herein, we report the crystal structure of a type-I Lepidopteran FPPS from Bombyx mori (BmFPPS1) at 2.80 Å resolution. BmFPPS1 adopts an α-helix structure with a deep cavity at the center of the overall structure. Computational simulations combined with biochemical analysis allowed us to define the binding mode of BmFPPS1 to its substrates. Structural comparison revealed that BmFPPS1 adopts a structural pattern similar to that of type-II FPPS but exhibits a distinct substrate-binding site. These findings provide a structural basis for understanding substrate preferences and designing FPPS inhibitors. Furthermore, the expression profiles and RNA interference of BmFPPSs indicated that they play critical roles in the JH biosynthesis and larval-pupal metamorphosis. These findings enhance our understanding of the structural features of type-I Lepidopteran FPPS while providing direct evidence for the physiological role of BmFPPSs in silkworm development.
Collapse
Affiliation(s)
- Huan Fang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Haogang Zheng
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Yuanyuan Yang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Ying Hu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China
| | - Zhan Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Qingyou Xia
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Pengchao Guo
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| |
Collapse
|
8
|
Mshiywa FM, Edwards S, Bradley G. Rhodophyta DNA Barcoding: Ribulose-1, 5-Bisphosphate Carboxylase Gene and Novel Universal Primers. Int J Mol Sci 2023; 25:58. [PMID: 38203228 PMCID: PMC10871077 DOI: 10.3390/ijms25010058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 01/12/2024] Open
Abstract
Red algae (Rhodophyta) are a heterogeneous group of marine algal species that have served as a source of high-value molecules, including antioxidants and scaffolds, for novel drug development. However, it is challenging to identify Rhodophytes through morphological features alone, and in most instances, that has been the prevailing approach to identification. Consequently, this study undertook the identification of red algae species in Kenton-on-Sea, South Africa, as a baseline for future research on red algae biodiversity and conservation. The identification was achieved by designing, analysing, and using a set of universal primers through DNA barcoding of the rbcL gene. The PCR products of the rbcL gene were sequenced, and 96% of the amplicons were successfully sequenced from this set and matched with sequences on BOLD, which led to these species being molecularly described. Amongst these species are medicinally essential species, such as Laurencia natalensis and Hypnea spinella, and potential cryptic species. This calls for further investigation into the biodiversity of the studied region. Meanwhile, the availability of these primers will ease the identification process of red algae species from other coastal regions.
Collapse
Affiliation(s)
- Faith Masilive Mshiywa
- Department of Biochemistry and Microbiology, University of Fort Hare, Alice 5700, South Africa
| | - Shelley Edwards
- Department of Zoology & Entomology, Rhodes University, Makhanda 6139, South Africa;
| | - Graeme Bradley
- Department of Biochemistry and Microbiology, University of Fort Hare, Alice 5700, South Africa
| |
Collapse
|
9
|
Li G, Li Y, He C, Wei Y, Cai K, Lu Q, Liu X, Zhu Y, Xu K. The promoting effects of pyriproxyfen on autophagy and apoptosis in silk glands of non-target insect silkworm, Bombyx mori. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 196:105586. [PMID: 37945223 DOI: 10.1016/j.pestbp.2023.105586] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 08/12/2023] [Accepted: 08/23/2023] [Indexed: 11/12/2023]
Abstract
Pyriproxyfen is a juvenile hormone analogue. The physiological effects of its low-concentration drift during the process of controlling agricultural and forestry pests on non-target organisms in the ecological environment are unpredictable, especially the effects on organs that play a key role in biological function are worthy of attention. The silk gland is an important organ for silk-secreting insects. Herein, we studied the effects of trace pyriproxyfen on autophagy and apoptosis of the silk gland in the lepidopteran model insect, Bombyx mori (silkworm). After treating fifth instar silkworm larvae with pyriproxyfen for 24 h, we found significant shrinkage, vacuolization, and fragmentation in the posterior silk gland (PSG). In addition, the results of autophagy-related genes of ATG8 and TUNEL assay also demonstrated that autophagy and apoptosis in the PSG of the silkworm was induced by pyriproxyfen. RNA-Seq results showed that pyriproxyfen treatment resulted in the activation of juvenile hormone signaling pathway genes and inhibition of 20-hydroxyecdysone (20E) signaling pathway genes. Among the 1808 significantly differentially expressed genes, 796 were upregulated and 1012 were downregulated. Among them, 30 genes were identified for autophagy-related signaling pathways, such as NOD-like receptor signaling pathway and mTOR signaling pathway, and 30 genes were identified for apoptosis-related signaling pathways, such as P53 signaling pathway and TNF signaling pathway. Further qRT-PCR and in vitro gland culture studies showed that the autophagy-related genes Atg5, Atg6, Atg12, Atg16 and the apoptosis-related genes Aif, Dronc, Dredd, and Caspase1 were responsive to the treatment of pyriproxyfen, with transcription levels up-regulated from 24 to 72 h. In addition, ATG5, ATG6, and Dronc genes had a more direct response to pyriproxyfen treatment. These results suggested that pyriproxyfen treatment could disrupt the hormone regulation in silkworms, promoting autophagy and apoptosis in the PSG. This study provides more evidence for the research on the damage of juvenile hormone analogues to non-target organisms or organs in the environment, and provides reference information for the scientific and rational use of juvenile hormone pesticides.
Collapse
Affiliation(s)
- Guoli Li
- College of Agriculture, Guangxi University, Nanning, Guangxi 530004, PR China
| | - Yizhe Li
- College of Agriculture, Guangxi University, Nanning, Guangxi 530004, PR China
| | - Chunhui He
- College of Agriculture, Guangxi University, Nanning, Guangxi 530004, PR China
| | - Yuting Wei
- College of Agriculture, Guangxi University, Nanning, Guangxi 530004, PR China
| | - Kunpei Cai
- College of Agriculture, Guangxi University, Nanning, Guangxi 530004, PR China
| | - Qingyu Lu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Xuebin Liu
- College of Agriculture, Guangxi University, Nanning, Guangxi 530004, PR China
| | - Yizhou Zhu
- College of Agriculture, Guangxi University, Nanning, Guangxi 530004, PR China
| | - Kaizun Xu
- College of Agriculture, Guangxi University, Nanning, Guangxi 530004, PR China; Guangxi Key Laboratory for Agro-Environment and Agric-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, PR China; Sericulture Institute of Guangxi University, Nanning, Guangxi 530004, PR China.
| |
Collapse
|
10
|
Malhotra P, Basu S. The Intricate Role of Ecdysis Triggering Hormone Signaling in Insect Development and Reproductive Regulation. INSECTS 2023; 14:711. [PMID: 37623421 PMCID: PMC10455322 DOI: 10.3390/insects14080711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/10/2023] [Accepted: 08/12/2023] [Indexed: 08/26/2023]
Abstract
Insect growth is interrupted by molts, during which the insect develops a new exoskeleton. The exoskeleton confers protection and undergoes shedding between each developmental stage through an evolutionarily conserved and ordered sequence of behaviors, collectively referred to as ecdysis. Ecdysis is triggered by Ecdysis triggering hormone (ETH) synthesized and secreted from peripheral Inka cells on the tracheal surface and plays a vital role in the orchestration of ecdysis in insects and possibly in other arthropod species. ETH synthesized by Inka cells then binds to ETH receptor (ETHR) present on the peptidergic neurons in the central nervous system (CNS) to facilitate synthesis of various other neuropeptides involved in ecdysis. The mechanism of ETH function on ecdysis has been well investigated in holometabolous insects such as moths Manduca sexta and Bombyx mori, fruit fly Drosophila melanogaster, the yellow fever mosquito Aedes aegypti and beetle Tribolium castaneum etc. In contrast, very little information is available about the role of ETH in sequential and gradual growth and developmental changes associated with ecdysis in hemimetabolous insects. Recent studies have identified ETH precursors and characterized functional and biochemical features of ETH and ETHR in a hemimetabolous insect, desert locust, Schistocerca gregaria. Recently, the role of ETH in Juvenile hormone (JH) mediated courtship short-term memory (STM) retention and long-term courtship memory regulation and retention have also been investigated in adult male Drosophila. Our review provides a novel synthesis of ETH signaling cascades and responses in various insects triggering diverse functions in adults and juvenile insects including their development and reproductive regulation and might allow researchers to develop sustainable pest management strategies by identifying novel compounds and targets.
Collapse
Affiliation(s)
| | - Saumik Basu
- Department of Entomology, Washington State University, Pullman, WA 99164, USA;
| |
Collapse
|
11
|
Aguilar P, Bourgeois T, Maria A, Couzi P, Demondion E, Bozzolan F, Gassias E, Force E, Debernard S. Methoprene-tolerant and Krüppel homolog 1 are actors of juvenile hormone-signaling controlling the development of male sexual behavior in the moth Agrotis ipsilon. Horm Behav 2023; 150:105330. [PMID: 36791650 DOI: 10.1016/j.yhbeh.2023.105330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 02/15/2023]
Abstract
In insects, juvenile hormone (JH) is critical for the orchestration of male reproductive maturation. For instance, in the male moth, Agrotis ipsilon, the behavioral response and the neuronal sensitivity within the primary olfactory centers, the antennal lobes (ALs), to the female-emitted sex pheromone increase with fertility during adulthood and the coordination between these events is governed by JH. However, the molecular basis of JH action in the development of sexual behavior remains largely unknown. Here, we show that the expression of the paralogous JH receptors, Methoprene-tolerant 1 and 2 (Met1, Met2) and of the JH-inducible transcription factor, Krüppel homolog 1 (Kr-h1) within ALs raised from the third day of adult life and this dynamic is correlated with increased behavioral responsiveness to sex pheromone. Met1-, Met2- and Kr-h1-depleted sexually mature males exhibited altered sex pheromone-guided orientation flight. Moreover, injection of JH-II into young males enhanced the behavioral response to sex pheromone with increased AL Met1, Met2 and Kr-h1 mRNA levels. By contrast, JH deficiency suppressed the behavioral response to sex pheromone coupled with reduced AL Met1, Met2 and Kr-h1 mRNA levels in allatectomized old males and these inhibitions were compensated by an injection of JH-II in operated males. Our results demonstrated that JH acts through Met-Kr-h1 signaling pathway operating in ALs, to promote the pheromone information processing and consequently the display of sexual behavior in synchronization with fertility to optimize male reproductive fitness. Thus, this study provides insights into the molecular mechanisms underlying the hormonal regulation of reproductive behavior in insects.
Collapse
Affiliation(s)
- Paleo Aguilar
- Institute of Biology, University of Madrid, Pozuelo de Alarcon, 28223 Madrid, Spain
| | - Thomas Bourgeois
- Sorbonne Université, INRA, CNRS, UPEC, IRD, Univ. P7, Institute of Ecology and Environmental Sciences of Paris, 78026 Versailles, France
| | - Annick Maria
- Sorbonne Université, INRA, CNRS, UPEC, IRD, Univ. P7, Institute of Ecology and Environmental Sciences of Paris, 75005 Paris, France
| | - Philippe Couzi
- Sorbonne Université, INRA, CNRS, UPEC, IRD, Univ. P7, Institute of Ecology and Environmental Sciences of Paris, 78026 Versailles, France
| | - Elodie Demondion
- Sorbonne Université, INRA, CNRS, UPEC, IRD, Univ. P7, Institute of Ecology and Environmental Sciences of Paris, 78026 Versailles, France
| | - Françoise Bozzolan
- Sorbonne Université, INRA, CNRS, UPEC, IRD, Univ. P7, Institute of Ecology and Environmental Sciences of Paris, 75005 Paris, France
| | - Edmundo Gassias
- Institute of Biology, University of Madrid, Pozuelo de Alarcon, 28223 Madrid, Spain
| | - Evan Force
- Sorbonne Université, INRA, CNRS, UPEC, IRD, Univ. P7, Institute of Ecology and Environmental Sciences of Paris, 75005 Paris, France
| | - Stéphane Debernard
- Sorbonne Université, INRA, CNRS, UPEC, IRD, Univ. P7, Institute of Ecology and Environmental Sciences of Paris, 75005 Paris, France.
| |
Collapse
|
12
|
Yu J, Wang H, Chen W, Song H, Wang Y, Liu Z, Xu B. 20-Hydroxyecdysone and Receptor Interplay in the Regulation of Hemolymph Glucose Level in Honeybee ( Apis mellifera) Larvae. Metabolites 2023; 13:metabo13010080. [PMID: 36677005 PMCID: PMC9865031 DOI: 10.3390/metabo13010080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 01/06/2023] Open
Abstract
The hormone 20-hydroxyecdysone (20E) and the ecdysone receptors (ECR and USP) play critical roles in the growth and metabolism of insects, including honeybees. In this study, we investigated the effect of 20E on the growth and development of honeybee larvae by rearing them in vitro and found reduced food consumption and small-sized pupae with increasing levels of 20E. A liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based analysis of widely targeted metabolomics was used to examine the changes in the metabolites after an exogenous 20E application to honeybee larvae and the underlying mechanisms. A total of 374 different metabolites were detected between the control group and the 20E treatment group, covering 12 subclasses. The most significant changes occurred in 7-day-old larvae, where some monosaccharides, such as D-Glucose and UDP-galactose, were significantly upregulated. In addition, some metabolic pathways, such as glycolysis/gluconeogenesis and galactose metabolism, were affected by the 20E treatment, suggesting that the 20E treatment disrupts the metabolic homeostasis of honeybee larvae hemolymph and that the response of honeybee larvae to the 20E treatment is dynamic and contains many complex pathways. Many genes involved in carbohydrate metabolism, including genes of the glycolysis and glycogen synthesis pathways, were downregulated during molting and pupation after the 20E treatment. In contrast, the expression levels of the genes related to gluconeogenesis and glycogenolysis were significantly increased, which directly or indirectly upregulated glucose levels in the hemolymph, whereas RNA interference with the 20E receptor EcR-USP had an opposite effect to that of the 20E treatment. Taken together, 20E plays a critical role in the changes in carbohydrate metabolism during metamorphosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Baohua Xu
- Correspondence: ; Tel.: +86-13805488930
| |
Collapse
|
13
|
Zhang L, Xu H, Zhang Y, Zhang H, Wang Z, Guo P, Zhao P. Structural characterization and functional analysis of juvenile hormone acid methyltransferase JHAMT3 from the silkworm, Bombyx mori. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 151:103863. [PMID: 36341863 DOI: 10.1016/j.ibmb.2022.103863] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 10/21/2022] [Accepted: 10/22/2022] [Indexed: 06/16/2023]
Abstract
Juvenile hormone acid methyltransferase (JHAMT) is a rate-limiting enzyme of juvenile hormone (JH) biosynthesis in insects. It transfers the methyl group of S-adenosyl methionine to either the carboxyl group of JH acids or farnesoic acid to produce JH. Six JHAMT paralogues have been identified in the silkworm (Bombyx mori); among them, JHAMT1 and JHAMT2 display a methyltransferase activity. Here, the three-dimensional crystal structure of inactive JHAMT3 and the binary complex of JHAMT3 with its cofactor S-adenosyl-l-homocysteine were determined through X-ray crystallization. Comparative structural analysis revealed that JHAMT3 adopted a similar structural pattern to that of functional JHAMT2, which comprised one core Rossmann fold domain and one substrate-binding domain. Similar to JHAMT2, JHAMT3 underwent a conformational change at the Rossmann fold domain because of cofactor binding, which promoted ligand accommodation. However, it exhibited a relatively rigid substrate-binding pocket compared with that of JHAMT2. JHAMT3 was also highly expressed in the silk gland of fourth- and fifth-instar B. mori larvae. The results of expression profiling combined with activity analysis suggested that JHAMT3 might function as a binding protein of JH acids for the regulation of JH acid titers. These findings provide a structural basis for enhancing the understanding of the physiological function of JHAMT3 and a rational framework for the development of potent and specific inhibitors of JHAMT family members.
Collapse
Affiliation(s)
- Li Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China; Biological Science Research Center, Southwest University, Chongqing, 400716, China
| | - Haiyang Xu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China; Biological Science Research Center, Southwest University, Chongqing, 400716, China
| | - Yunshi Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China; Biological Science Research Center, Southwest University, Chongqing, 400716, China
| | - Huan Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China; Biological Science Research Center, Southwest University, Chongqing, 400716, China
| | - Zhan Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China; Biological Science Research Center, Southwest University, Chongqing, 400716, China
| | - Pengchao Guo
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China; Biological Science Research Center, Southwest University, Chongqing, 400716, China; Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Southwest University, Chongqing, 400716, China.
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China; Biological Science Research Center, Southwest University, Chongqing, 400716, China; Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Southwest University, Chongqing, 400716, China.
| |
Collapse
|
14
|
Zhang H, Liu J, Wang H, Fang H, Zhao P, Xia Q, Guo P. Structural insights into the substrate binding of phosphomevalonate kinase from the silkworm, Bombyx mori. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 150:103849. [PMID: 36209956 DOI: 10.1016/j.ibmb.2022.103849] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/19/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
Phosphomevalonate kinase (PMK) is an important enzyme involved in the juvenile hormone (JH) biosynthesis pathway that catalyzes the phosphorylation of mevalonate 5-phosphate into mevalonate 5-diphosphate in the mevalonate pathway. Herein, we report the crystal structure of insect PMK from Bombyx mori (BmPMK) at a resolution of 1.60 Å. The overall structure of BmPMK adopts a compact α/β conformation with two parts: the core and lid regions. The interface between the core and lid regions forms a continuous and negatively charged groove to accommodate the substrates. Using computational simulation combined with site-directed mutagenesis and biochemical analysis, we define the binding mode of BmPMK with the cofactor and the substrate, which provides a structural basis for understanding the catalytic mechanism and the design of inhibitors of PMK. Moreover, BmPMK showed the optimal enzyme activity at pH 8.0, and the optimal temperature was 30 °C, using mevalonate 5-phosphate as the substrate. The expression profiles and kinetic analyses of BmPMK indicated that it plays critical role in the control of JH biosynthesis in silkworms. Collectively, these findings provide a better understanding of the structural and biochemical features of insect PMK.
Collapse
Affiliation(s)
- Huan Zhang
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400716, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400715, China
| | - Jie Liu
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400716, China
| | - Hanlin Wang
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400716, China
| | - Huan Fang
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400716, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400715, China
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400716, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400715, China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400716, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400715, China
| | - Pengchao Guo
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400716, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
15
|
Effect of Insulin Receptor on Juvenile Hormone Signal and Fecundity in Spodoptera litura (F.). INSECTS 2022; 13:insects13080701. [PMID: 36005325 PMCID: PMC9409390 DOI: 10.3390/insects13080701] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/23/2022] [Accepted: 08/02/2022] [Indexed: 02/01/2023]
Abstract
Simple Summary The tobacco cutworm, Spodoptera litura (F.), exemplifies strong reproductive capacities and damages many agricultural crops. The insulin signaling pathway is known as a key determinant of female reproduction in insects. However, the detailed molecular mechanisms in these processes are poorly studied. Here, we injected bovine insulin into the newly emerged moth, resulting in gene expression changes in the insulin pathway, while knockdown of SlInR caused an inverse gene expression change involved in the insulin pathway. Further studies indicated that the content of JH-III, Vg, total proteins and triacylgycerol could be suppressed by SlInR dsRNA injection. Furthermore, stunted ovaries and lower fecundity were observed by RNAi. Our studies indicated that SlInR plays a key role in JH-III synthesis and the ovarian development in S. litura. Abstract Insulin signaling can regulate various physiological functions, such as energy metabolism and reproduction and so on, in many insects, including mosquito and locust. However, the molecular mechanism of this physiological process remains elusive. The tobacco cutworm, Spodoptera litura, is one of the most important pests of agricultural crops around the world. In this study, phosphoinositide 3-kinase (SlPI3K), protein kinase B (SlAKT), target of rapamycin (SlTOR), ribosomal protein S6 kinase (SlS6K) and transcription factor cAMP-response element binding protein (SlCREB) genes, except transcription factor forkhead box class O (SlFoxO), can be activated by bovine insulin injection. Then, we studied the influence of the insulin receptor gene (SlInR) on the reproduction of S. litura using RNA interference technology. qRT-PCR analysis revealed that SlInR was most abundant in the head. The SlPI3K, SlAKT, SlTOR, SlS6K and SlCREB genes were decreased, except SlFoxO, after the SlInR gene knockdown. Further studies revealed that the expression of vitellogenin mRNA and protein, Methoprene-tolerant gene (SlMet), could be down-regulated by the injection of dsRNA of SlInR significantly. Furthermore, a depletion in the insulin receptor by RNAi significantly decreased the content of juvenile hormone III (JH-III), total proteins and triacylgycerol. These changes indicated that a lack of SlInR could impair ovarian development and decrease fecundity in S. litura. Our studies contribute to a comprehensive insight into reproduction, regulated by insulin and the juvenile hormone signaling pathway through nutrition, and a provide theoretical basis for the reproduction process in pest insects.
Collapse
|
16
|
Shen ZJ, Zhu F, Liu YJ, Li Z, Moural TW, Liu XM, Liu X. MicroRNAs miR-14 and miR-2766 regulate tyrosine hydroxylase to control larval-pupal metamorphosis in Helicoverpa armigera. PEST MANAGEMENT SCIENCE 2022; 78:3540-3550. [PMID: 35587569 DOI: 10.1002/ps.6997] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/06/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The cotton bollworm, Helicoverpa armigera, is a worldwide polyphagous pest, causing huge economic losses in vegetable, cotton and corn crops, among others. Owing to long-term exposure to Bacillus thuringiensis (Bt) toxins, evolution of resistance has been detected in this pest. As a conservative and effective neurotransmitter, dopamine (DA) has an important role in insect growth and development. In this study, we investigated the regulatory functions of DA and its associated non-coding RNA in metamorphosis in H. armigera. RESULTS Expression profiles indicated that DA and DA pathway genes were highly expressed during larval-pupal metamorphosis in H. armigera. RNA interference and pharmacological experiments confirmed that tyrosine hydroxylase (TH), dopa decarboxylase, vesicular amine transporter and DA receptor 2 are critical genes related to the development of H. armigera from larvae to pupae. We also found that miR-14 and miR-2766 targeted the 3' untranslated region to post-transcriptionally regulate HaTH function. Application of miR-2766 and miR-14 antagomirs significantly increased levels of HaTH transcripts and proteins, while injection of miR-2766 and miR-14 agomirs not only suppressed messenger RNA and protein levels of HaTH, but also resulted in defective pupation in H. armigera. CONCLUSION These results suggest that DA deficiency inhibits larval-pupal metamorphosis in H. armigera. Potentially, DA pathway genes and their microRNAs could be used as a novel target for H. armigera management. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhong-Jian Shen
- Department of Entomology, MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Haidian, Beijing, China
| | - Fang Zhu
- Department of Entomology, Pennsylvania State University, University Park, State College, PA, USA
| | - Yan-Jun Liu
- Department of Entomology, MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Haidian, Beijing, China
| | - Zhen Li
- Department of Entomology, MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Haidian, Beijing, China
| | - Timothy W Moural
- Department of Entomology, Pennsylvania State University, University Park, State College, PA, USA
| | - Xiao-Ming Liu
- Department of Entomology, MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Haidian, Beijing, China
| | - Xiaoxia Liu
- Department of Entomology, MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Haidian, Beijing, China
| |
Collapse
|
17
|
Liu Z, Huang Z, Zheng X, Zheng Z, Yao D, Zhang Y, Aweya JJ. The juvenile hormone epoxide hydrolase homolog in Penaeus vannamei plays immune-related functions. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 132:104410. [PMID: 35398160 DOI: 10.1016/j.dci.2022.104410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/31/2022] [Accepted: 04/04/2022] [Indexed: 06/14/2023]
Abstract
Juvenile hormone epoxide hydrolase (JHEH) participates in the degradation of juvenile hormone and also involved in the development and molting process in insects. Here, the JHEH homolog in Pennaus vannamei was cloned and found to consist of a full-length cDNA of 2543 bp and an open reading frame (ORF) of 1386 bp. Transcripts of PvJHEH1 were expressed in most tissues of healthy shrimp with the highest found in the hepatopancreas and lowest in hemocytes. Both Gram-negative (Vibrio parahaemolyticus) and Gram-positive (Streptococcus iniae) bacteria induced PvJHEH1 expression in shrimp hemocytes and hepatopancreas, suggesting the involvement of PvJHEH1 in P. vannamei immune responses. Moreover, the mRNA levels of ecdysone inducible nuclear transcription factor PvE75 and crustacean hyperglycemic hormone (PvCHH), two endocrine-related genes with roles in shrimp innate immune response, decreased significantly in shrimp hemocytes after PvJHEH1 knockdown. Shrimp survival was also affected after PvJHEH1 knockdown followed by V. parahaemolyticus challenge, indicating that JHEH1 plays an essential role in shrimp survival during bacterial infection.
Collapse
Affiliation(s)
- Zhuoyan Liu
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Zishu Huang
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Xiaoyu Zheng
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Zhihong Zheng
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Defu Yao
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Yueling Zhang
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, China
| | - Jude Juventus Aweya
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China; College of Ocean Food and Biological Engineering, Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Jimei University, Xiamen, 361021, Fujian, China.
| |
Collapse
|
18
|
Burdina EV, Gruntenko NE. Physiological Aspects of Wolbachia pipientis–Drosophila melanogaster Relationship. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022020016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Li D, He C, Wang M, Liu H, Liu R, Xu L. Toxicity of Ribavirin to Spodoptera litura by Inhibiting the Juvenile Hormone. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:3117-3126. [PMID: 35229607 DOI: 10.1021/acs.jafc.1c06172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Ribavirin is an antiviral drug showing high and delayed toxicity to the destructive agricultural pest Spodoptera litura. Larvae fed with artificial diets containing ribavirin could not molt successfully and showed abnormal phenotypes, including cuticle melanization and heavy wrinkle of the newly formed procuticle. RNA-Seq analysis suggested that ribavirin has great negative influence on cuticle. Quantitative real-time-polymerase chain reaction results indicated that ribavirin treatment decreased the expression of key genes in juvenile hormone (JH) biosynthesis (CYP15C1 and JH acid methyltransferase) and most cuticle protein genes, whereas the genes in melanin biosynthesis and bursicon genes were upregulated by ribavirin treatment. These results coincided with the decreased titer of JH I, JH II, and JH III determined by enzyme-linked immunosorbent assay, the much thinner procuticle layer exhibited by histopathological examination, and the cuticle melanization after ribavirin treatment. These results provided a valuable theoretical basis for the creation of green insecticides targeting JH and the development of new insecticide derivatives from 1,2,4-triazole.
Collapse
Affiliation(s)
- Dongzhi Li
- College of Resources and Environment, Henan Institute of Science and Technology, Xinxiang 453003, Henan Province, China
- Henan Engineering Research Center of Green Pesticide Creation & Intelligent Pesticide Residue Sensor Detection, Henan Institute of Science and Technology, Xinxiang 453003, Henan Province, China
| | - Chengshuai He
- College of Resources and Environment, Henan Institute of Science and Technology, Xinxiang 453003, Henan Province, China
| | - Meizi Wang
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, Henan Province, China
| | - Hongyu Liu
- College of Resources and Environment, Henan Institute of Science and Technology, Xinxiang 453003, Henan Province, China
| | - Runqiang Liu
- College of Resources and Environment, Henan Institute of Science and Technology, Xinxiang 453003, Henan Province, China
- Henan Engineering Research Center of Green Pesticide Creation & Intelligent Pesticide Residue Sensor Detection, Henan Institute of Science and Technology, Xinxiang 453003, Henan Province, China
| | - Li Xu
- College of Resources and Environment, Henan Institute of Science and Technology, Xinxiang 453003, Henan Province, China
- Henan Engineering Research Center of Green Pesticide Creation & Intelligent Pesticide Residue Sensor Detection, Henan Institute of Science and Technology, Xinxiang 453003, Henan Province, China
| |
Collapse
|
20
|
Lei Y, Guo J, Chen Q, Mo J, Tian Y, Iwata H, Song J. Transcriptomic Alterations in Water Flea ( Daphnia magna) following Pravastatin Treatments: Insect Hormone Biosynthesis and Energy Metabolism. TOXICS 2022; 10:toxics10030110. [PMID: 35324735 PMCID: PMC8952691 DOI: 10.3390/toxics10030110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 02/04/2023]
Abstract
Pravastatin, used for lowering cholesterol and further decreasing blood lipid, has been frequently detected in the contaminated freshwaters, whereas its long-term exposure effects on non-target aquatic invertebrates remains undetermined. Therefore, the purpose of this study was to evaluate the toxic effects of pravastatin (PRA) with the concentration gradients (0, 0.5, 50, 5000 μg/L) on a model water flea Daphnia magna (D. magna) over 21 d based on phenotypic and genome-wide transcriptomic analyses. After 21 d, exposure to PRA at 5000 μg/L significantly reduced the body length and increased the number of offspring. The 76, 167, and 499 differentially expressed genes (DEGs) were identified by using absolute log2 fold change < 1 and adj p < 0.05 as a cutoff in the 0.5, 50, and 5000 μg/L PRA treatment groups, respectively. Three pathways, including xenobiotic metabolism, insect hormone biosynthesis pathway, and energy metabolism were significantly (p < 0.05) enriched after exposure to PRA. These suggested that the upregulation of genes in insect biosynthetic hormone pathway increased the juvenile hormone III content, which further reduced the body length of D. magna. The positive effect of methyl farnesoate synthesis on the ovarian may result in the increased number of offspring. Furthermore, energy tended to be allocated to detoxification process and survival under stress conditions, as the amount of energy that an individual can invest in maintenance and growth is limited. Taken together, our results unraveled the toxic mechanism of cardiovascular and lipid pharmaceuticals in aquatic invertebrate.
Collapse
Affiliation(s)
- Yuan Lei
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi’an 710127, China; (Y.L.); (Q.C.); (Y.T.)
| | - Jiahua Guo
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi’an 710127, China; (Y.L.); (Q.C.); (Y.T.)
- Correspondence: (J.G.); (J.S.); Tel.: +86-189-9233-8259 (J.G.); +86-150-0929-4609 (J.S.)
| | - Qiqi Chen
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi’an 710127, China; (Y.L.); (Q.C.); (Y.T.)
| | - Jiezhang Mo
- State Key Laboratory of Marine Pollution, Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, China;
| | - Yulu Tian
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi’an 710127, China; (Y.L.); (Q.C.); (Y.T.)
| | - Hisato Iwata
- Center for Marine Environmental Studies, Ehime University, Bunkyo-cho 2-5, Matsuyama 790-8577, Ehime Prefecture, Japan;
| | - Jinxi Song
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi’an 710127, China; (Y.L.); (Q.C.); (Y.T.)
- Correspondence: (J.G.); (J.S.); Tel.: +86-189-9233-8259 (J.G.); +86-150-0929-4609 (J.S.)
| |
Collapse
|
21
|
Zhang X, Li S, Liu S. Juvenile Hormone Studies in Drosophila melanogaster. Front Physiol 2022; 12:785320. [PMID: 35222061 PMCID: PMC8867211 DOI: 10.3389/fphys.2021.785320] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 10/29/2021] [Indexed: 12/02/2022] Open
Abstract
In the field of insect endocrinology, juvenile hormone (JH) is one of the most wondrous entomological terms. As a unique sesquiterpenoid hormone produced and released by the endocrine gland, corpus allatum (CA), JH is a critical regulator in multiple developmental and physiological processes, such as metamorphosis, reproduction, and behavior. Benefited from the precise genetic interventions and simplicity, the fruit fly, Drosophila melanogaster, is an indispensable model in JH studies. This review is aimed to present the regulatory factors on JH biosynthesis and an overview of the regulatory roles of JH in Drosophila. The future directions of JH studies are also discussed, and a few hot spots are highlighted.
Collapse
Affiliation(s)
- Xiaoshuai Zhang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangmeiyuan R&D Center, South China Normal University, Meizhou, China
| | - Sheng Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangmeiyuan R&D Center, South China Normal University, Meizhou, China
| | - Suning Liu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangmeiyuan R&D Center, South China Normal University, Meizhou, China
| |
Collapse
|
22
|
Han H, Feng Z, Han S, Chen J, Wang D, He Y. Molecular Identification and Functional Characterization of Methoprene-Tolerant (Met) and Krüppel-Homolog 1 (Kr-h1) in Harmonia axyridis (Coleoptera: Coccinellidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2022; 115:334-343. [PMID: 35020924 DOI: 10.1093/jee/toab252] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Indexed: 06/14/2023]
Abstract
Juvenile hormone (JH) plays a key role in regulating insect reproductive processes. Methoprene-tolerant (Met), as a putative JH receptor, transduces JH signals by activating the transcription factor krüppel homolog 1 (Kr-h1). To understand the effects of Met and Kr-h1 genes on female reproduction of natural enemy insects, the Met and Kr-h1 were identified and analyzed from Harmonia axyridis Pallas (HmMet and HmKr-h1). The HmMet protein belonged to the bHLH-PAS family with bHLH domain, PAS domains, and PAC domain. HmMet mRNA was detected in all developmental stages, and the highest expression was found in the ovaries of female adults. The HmKr-h1 protein had eight C2H2-type zinc finger domains. HmKr-h1 mRNA was highly expressed from day 7 to day 9 of female adults. The tissue expression showed that HmKr-h1 was highly expressed in its wing, leg, and fat body. Knockdown of HmMet and HmKr-h1 substantially reduced the transcription of HmVg1 and HmVg2, inhibited yolk protein deposition, and reduced fecundity using RNA interference. In addition, the preoviposition period was significantly prolonged after dsMet-injection, but there was no significant difference after dsKr-h1-silencing. However, the effect on hatchability results was the opposite. Therefore, we infer that both HmMet and HmKr-h1 are involved in female reproduction of H. axyridis, and their specific functions are different in certain physiological processes. In several continents, H. axyridis are not only beneficial insects, but also invasive pests. This report will provide basis for applying or controlling the H. axyridis.
Collapse
Affiliation(s)
- Hui Han
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - ZhaoYang Feng
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - ShiPeng Han
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Jie Chen
- College of Plant Protection, Hebei Agricultural University, Baoding, China
- Laboratory of Plant Protection, Handan Academy of Agricultural Sciences, Handan, China
| | - Da Wang
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - YunZhuan He
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| |
Collapse
|
23
|
Toyota K, Watanabe H, Hirano M, Abe R, Miyakawa H, Song Y, Sato T, Miyagawa S, Tollefsen KE, Yamamoto H, Tatarazako N, Iguchi T. Juvenile hormone synthesis and signaling disruption triggering male offspring induction and population decline in cladocerans (water flea): Review and adverse outcome pathway development. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 243:106058. [PMID: 34965494 DOI: 10.1016/j.aquatox.2021.106058] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 12/12/2021] [Accepted: 12/13/2021] [Indexed: 05/21/2023]
Abstract
Juvenile hormone (JH) are a family of multifunctional hormones regulating larval development, molting, metamorphosis, reproduction, and phenotypic plasticity in arthropods. Based on its importance in arthropod life histories, many insect growth regulators (IGRs) mimicking JH have been designed to control harmful insects in agriculture and aquaculture. These JH analogs (JHAs) may also pose hazards to nontarget species by causing unexpected endocrine-disrupting (ED) effects such as molting and metamorphosis defects, larval lethality, and disruption of the sexual identity. This critical review summarizes the current knowledge of the JH-mediated effects in the freshwater cladoceran crustaceans such as Daphnia species on JHA-triggered endocrine disruptive outputs to establish a systematic understanding of JHA effects. Based on the current knowledge, adverse outcome pathways (AOPs) addressing the JHA-mediated ED effects in cladoceran leading to male offspring production and subsequent population decline were developed. The weight of evidence (WoE) of AOPs was assessed according to established guidelines. The review and AOP development aim to present the current scientific understanding of the JH pathway and provide a robust reference for the development of tiered testing strategies and new risk assessment approaches for JHAs in future ecotoxicological research and regulatory processes.
Collapse
Affiliation(s)
- Kenji Toyota
- Marine Biological Station, Sado Center for Ecological Sustainability, Niigata University, 87 Tassha, Sado, Niigata 952-2135, Japan; Department of Biological Sciences, Faculty of Science, Kanagawa University, 2946 Tsuchiya, Hiratsuka, Kanagawa 259-1293, Japan; Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan.
| | - Haruna Watanabe
- Health and Environmental Risk Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan.
| | - Masashi Hirano
- Department of Bioscience, School of Agriculture, Tokai University, Kumamoto City, Kumamoto 862-8652, Japan
| | - Ryoko Abe
- Health and Environmental Risk Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Hitoshi Miyakawa
- Center for Bioscience Research and Education, Utsunomiya University, 350 Mine-machi, Utsunomiya, Tochigi 321-8505, Japan
| | - You Song
- Norwegian Institute for Water Research (NIVA), Section of Ecotoxicology and Risk Assessment, Gaustadalléen, Oslo, Norway
| | - Tomomi Sato
- Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, Kanagawa 236-0027, Japan
| | - Shinichi Miyagawa
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Knut Erik Tollefsen
- Norwegian Institute for Water Research (NIVA), Section of Ecotoxicology and Risk Assessment, Gaustadalléen, Oslo, Norway; Norwegian University of Life Sciences (NMBU), Faculty of Environmental Science and Technology, Department of Environmental Sciences (IMV), Ås, Norway
| | - Hiroshi Yamamoto
- Health and Environmental Risk Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Norihisa Tatarazako
- Department of Science and Technology for Biological Resources and Environment, Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, Japan
| | - Taisen Iguchi
- Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, Kanagawa 236-0027, Japan.
| |
Collapse
|
24
|
Bayer EA, Liberatore KM, Schneider JR, Schlesinger E, He Z, Birnbaum S, Wightman B. Insulin signaling and osmotic stress response regulate arousal and developmental progression of C. elegans at hatching. Genetics 2022; 220:iyab202. [PMID: 34788806 PMCID: PMC8733457 DOI: 10.1093/genetics/iyab202] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/03/2021] [Indexed: 12/29/2022] Open
Abstract
The progression of animal development from embryonic to juvenile life depends on the coordination of organism-wide responses with environmental conditions. We found that two transcription factors that function in interneuron differentiation in Caenorhabditis elegans, fax-1, and unc-42, are required for arousal and progression from embryogenesis to larval life by potentiating insulin signaling. The combination of mutations in either transcription factor and a mutation in daf-2 insulin receptor results in a novel perihatching arrest phenotype; embryos are fully developed but inactive, often remaining trapped within the eggshell, and fail to initiate pharyngeal pumping. This pathway is opposed by an osmotic sensory response pathway that promotes developmental arrest and a sleep state at the end of embryogenesis in response to elevated salt concentration. The quiescent state induced by loss of insulin signaling or by osmotic stress can be reversed by mutations in genes that are required for sleep. Therefore, countervailing signals regulate late embryonic arousal and developmental progression to larval life, mechanistically linking the two responses. Our findings demonstrate a role for insulin signaling in an arousal circuit, consistent with evidence that insulin-related regulation may function in control of sleep states in many animals. The opposing quiescent arrest state may serve as an adaptive response to the osmotic threat from high salinity environments.
Collapse
Affiliation(s)
- Emily A Bayer
- Biology Department, Muhlenberg College, Allentown, PA 18104, USA
| | | | | | - Evan Schlesinger
- Biology Department, Muhlenberg College, Allentown, PA 18104, USA
| | - Zhengying He
- Biology Department, Muhlenberg College, Allentown, PA 18104, USA
| | - Susanna Birnbaum
- Biology Department, Muhlenberg College, Allentown, PA 18104, USA
| | - Bruce Wightman
- Biology Department, Muhlenberg College, Allentown, PA 18104, USA
| |
Collapse
|
25
|
Casillas-Pérez B, Pull CD, Naiser F, Naderlinger E, Matas J, Cremer S. Early queen infection shapes developmental dynamics and induces long-term disease protection in incipient ant colonies. Ecol Lett 2021; 25:89-100. [PMID: 34725912 PMCID: PMC9298059 DOI: 10.1111/ele.13907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 10/04/2021] [Accepted: 10/04/2021] [Indexed: 11/30/2022]
Abstract
Infections early in life can have enduring effects on an organism's development and immunity. In this study, we show that this equally applies to developing 'superorganisms'--incipient social insect colonies. When we exposed newly mated Lasius niger ant queens to a low pathogen dose, their colonies grew more slowly than controls before winter, but reached similar sizes afterwards. Independent of exposure, queen hibernation survival improved when the ratio of pupae to workers was small. Queens that reared fewer pupae before worker emergence exhibited lower pathogen levels, indicating that high brood rearing efforts interfere with the ability of the queen's immune system to suppress pathogen proliferation. Early-life queen pathogen exposure also improved the immunocompetence of her worker offspring, as demonstrated by challenging the workers to the same pathogen a year later. Transgenerational transfer of the queen's pathogen experience to her workforce can hence durably reduce the disease susceptibility of the whole superorganism.
Collapse
Affiliation(s)
| | - Christopher D Pull
- IST Austria (Institute of Science and Technology Austria), Klosterneuburg, Austria
| | - Filip Naiser
- Department of Cybernetics, Faculty of Electrical Engineering, Czech Technical University in Prague, Czech Republic
| | | | - Jiri Matas
- Department of Cybernetics, Faculty of Electrical Engineering, Czech Technical University in Prague, Czech Republic
| | - Sylvia Cremer
- IST Austria (Institute of Science and Technology Austria), Klosterneuburg, Austria
| |
Collapse
|
26
|
Structural basis for juvenile hormone biosynthesis by the juvenile hormone acid methyltransferase. J Biol Chem 2021; 297:101234. [PMID: 34562453 PMCID: PMC8526772 DOI: 10.1016/j.jbc.2021.101234] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/19/2021] [Accepted: 09/21/2021] [Indexed: 11/25/2022] Open
Abstract
Juvenile hormone (JH) acid methyltransferase (JHAMT) is a rate-limiting enzyme that converts JH acids or inactive precursors of JHs to active JHs at the final step of JH biosynthesis in insects and thus presents an excellent target for the development of insect growth regulators or insecticides. However, the three-dimensional properties and catalytic mechanism of this enzyme are not known. Herein, we report the crystal structure of the JHAMT apoenzyme, the three-dimensional holoprotein in binary complex with its cofactor S-adenosyl-l-homocysteine, and the ternary complex with S-adenosyl-l-homocysteine and its substrate methyl farnesoate. These structures reveal the ultrafine definition of the binding patterns for JHAMT with its substrate/cofactor. Comparative structural analyses led to novel findings concerning the structural specificity of the progressive conformational changes required for binding interactions that are induced in the presence of cofactor and substrate. Importantly, structural and biochemical analyses enabled identification of one strictly conserved catalytic Gln/His pair within JHAMTs required for catalysis and further provide a molecular basis for substrate recognition and the catalytic mechanism of JHAMTs. These findings lay the foundation for the mechanistic understanding of JH biosynthesis by JHAMTs and provide a rational framework for the discovery and development of specific JHAMT inhibitors as insect growth regulators or insecticides.
Collapse
|
27
|
Taubenheim J, Kortmann C, Fraune S. Function and Evolution of Nuclear Receptors in Environmental-Dependent Postembryonic Development. Front Cell Dev Biol 2021; 9:653792. [PMID: 34178983 PMCID: PMC8222990 DOI: 10.3389/fcell.2021.653792] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 05/06/2021] [Indexed: 12/14/2022] Open
Abstract
Nuclear receptors (NRs) fulfill key roles in the coordination of postembryonal developmental transitions in animal species. They control the metamorphosis and sexual maturation in virtually all animals and by that the two main environmental-dependent developmental decision points. Sexual maturation and metamorphosis are controlled by steroid receptors and thyroid receptors, respectively in vertebrates, while both processes are orchestrated by the ecdysone receptor (EcR) in insects. The regulation of these processes depends on environmental factors like nutrition, temperature, or photoperiods and by that NRs form evolutionary conserved mediators of phenotypic plasticity. While the mechanism of action for metamorphosis and sexual maturation are well studied in model organisms, the evolution of these systems is not entirely understood and requires further investigation. We here review the current knowledge of NR involvement in metamorphosis and sexual maturation across the animal tree of life with special attention to environmental integration and evolution of the signaling mechanism. Furthermore, we compare commonalities and differences of the different signaling systems. Finally, we identify key gaps in our knowledge of NR evolution, which, if sufficiently investigated, would lead to an importantly improved understanding of the evolution of complex signaling systems, the evolution of life history decision points, and, ultimately, speciation events in the metazoan kingdom.
Collapse
Affiliation(s)
| | | | - Sebastian Fraune
- Zoology and Organismic Interactions, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
28
|
Gassias E, Maria A, Couzi P, Demondion E, Durand N, Bozzolan F, Aguilar P, Debernard S. Involvement of Methoprene-tolerant and Krüppel homolog 1 in juvenile hormone-signaling regulating the maturation of male accessory glands in the moth Agrotis ipsilon. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 132:103566. [PMID: 33741430 DOI: 10.1016/j.ibmb.2021.103566] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 02/26/2021] [Accepted: 03/09/2021] [Indexed: 06/12/2023]
Abstract
Male accessory glands (MAGs) produce seminal fluid proteins that are essential for the fertility and also influence the reproductive physiology and behavior of mated females. In many insect species, and especially in the moth Agrotis ipsilon, juvenile hormone (JH) promotes the maturation of the MAGs but the underlying molecular mechanisms in this hormonal regulation are not yet well identified. Here, we examined the role of the JH receptor, Methoprene-tolerant (Met) and the JH-inducible transcription factor, Krüppel homolog 1 (Kr-h1) in transmitting the JH signal that upregulates the growth and synthetic activity of the MAGs in A. ipsilon. We cloned two full length cDNAs encoding Met1 and Met2 which are co-expressed with Kr-h1 in the MAGs where their expression levels increase with age in parallel with the length and protein content of the MAGs. RNAi-mediated knockdown of either Met1, Met2, or Kr-h1 resulted in reduced MAG length and protein amount. Moreover, injection of JH-II into newly emerged adult males induced the transcription of Met1, Met2 and Kr-h1 associated to an increase in the length and protein content of the MAGs. By contrast, JH deficiency decreased Met1, Met2 and Kr-h1 mRNA levels as well as the length and protein reserves of the MAGs of allatectomized old males and these declines were partly compensated by a combined injection of JH-II in operated males. Taken together, our results highlighted an involvement of the JH-Met-Kr-h1 signaling pathway in the development and secretory activity of the MAGs in A. ipsilon.
Collapse
Affiliation(s)
- Edmundo Gassias
- Institute of Biology, University of Madrid, Pozuelo de Alarcon, 28223, Madrid, Spain
| | - Annick Maria
- Sorbonne Université, INRA, CNRS, UPEC, IRD, Univ. P7, Institute of Ecology and Environmental Sciences of Paris, 75005, Paris, France
| | - Philippe Couzi
- Sorbonne Université, INRA, CNRS, UPEC, IRD, Univ. P7, Institute of Ecology and Environmental Sciences of Paris, 78026, Versailles, France
| | - Elodie Demondion
- Sorbonne Université, INRA, CNRS, UPEC, IRD, Univ. P7, Institute of Ecology and Environmental Sciences of Paris, 78026, Versailles, France
| | - Nicolas Durand
- FRE CNRS 3498, Ecologie et Dynamique des Systèmes Anthropisés, Université de Picardie, Jules Verne, 80039 Amiens, France
| | - Françoise Bozzolan
- Sorbonne Université, INRA, CNRS, UPEC, IRD, Univ. P7, Institute of Ecology and Environmental Sciences of Paris, 75005, Paris, France
| | - Paleo Aguilar
- Institute of Biology, University of Madrid, Pozuelo de Alarcon, 28223, Madrid, Spain
| | - Stéphane Debernard
- Sorbonne Université, INRA, CNRS, UPEC, IRD, Univ. P7, Institute of Ecology and Environmental Sciences of Paris, 75005, Paris, France.
| |
Collapse
|
29
|
Martín D, Chafino S, Franch-Marro X. How stage identity is established in insects: the role of the Metamorphic Gene Network. CURRENT OPINION IN INSECT SCIENCE 2021; 43:29-38. [PMID: 33075581 DOI: 10.1016/j.cois.2020.10.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/07/2020] [Accepted: 10/07/2020] [Indexed: 06/11/2023]
Abstract
Proper formation of adult insects requires the integration of spatial and temporal regulatory axes. Whereas spatial information confers identity to each tissue, organ and appendage, temporal information specifies at which stage of development the animal is. Regardless of the type of post-embryonic development, either hemimetabolous or holometabolous, temporal specificity is achieved through interactions between the temporal identity genes Kr-h1, E93 and Br-C, whose sequential expression is controlled by the two major developmental hormones, 20-hydroxyecdysone and Juvenile hormone. Given the intimate regulatory connection between these three factors to specify life stage identity, we dubbed the regulatory axis that comprises these genes as the Metamorphic Gene Network (MGN). In this review, we survey the molecular mechanisms underlying the control by the MGN of stage identity and progression in hemimetabolous and holometabolous insects.
Collapse
Affiliation(s)
- David Martín
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain.
| | - Silvia Chafino
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Xavier Franch-Marro
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain.
| |
Collapse
|
30
|
Naim N, Amrit FRG, McClendon TB, Yanowitz JL, Ghazi A. The molecular tug of war between immunity and fertility: Emergence of conserved signaling pathways and regulatory mechanisms. Bioessays 2020; 42:e2000103. [PMID: 33169418 DOI: 10.1002/bies.202000103] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 09/11/2020] [Accepted: 09/17/2020] [Indexed: 12/21/2022]
Abstract
Reproduction and immunity are energy intensive, intimately linked processes in most organisms. In women, pregnancy is associated with widespread immunological adaptations that alter immunity to many diseases, whereas, immune dysfunction has emerged as a major cause for infertility in both men and women. Deciphering the molecular bases of this dynamic association is inherently challenging in mammals. This relationship has been traditionally studied in fast-living, invertebrate species, often in the context of resource allocation between life history traits. More recently, these studies have advanced our understanding of the mechanistic underpinnings of the immunity-fertility dialogue. Here, we review the molecular connections between reproduction and immunity from the perspective of human pregnancy to mechanistic discoveries in laboratory organisms. We focus particularly on recent invertebrate studies identifying conserved signaling pathways and transcription factors that regulate resource allocation and shape the balance between reproductive status and immune health.
Collapse
Affiliation(s)
- Nikki Naim
- Departments of Pediatrics, Developmental Biology and Cell Biology and Physiology, John, G. Rangos Sr. Research Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Francis R G Amrit
- Departments of Pediatrics, Developmental Biology and Cell Biology and Physiology, John, G. Rangos Sr. Research Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - T Brooke McClendon
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Judith L Yanowitz
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Arjumand Ghazi
- Departments of Pediatrics, Developmental Biology and Cell Biology and Physiology, John, G. Rangos Sr. Research Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
31
|
Pereira MF, Rossi CC. Overview of rearing and testing conditions and a guide for optimizing Galleria mellonella breeding and use in the laboratory for scientific purposes. APMIS 2020; 128:607-620. [PMID: 32970339 DOI: 10.1111/apm.13082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The greater wax moth Galleria mellonella is an increasingly popular and consolidated alternative infection model to assess microbial virulence and the effectiveness of antimicrobial compounds. The lack of G. mellonella suppliers aiming at scientific purposes and a lack of well-established protocols for raising and testing these animals may impact results and reproducibility between different laboratories. In this review, we discuss the state of the art of rearing the larvae in situ, providing an overview of breeding and testing conditions commonly used and their influence on larval health and experiments results, from setting up the environment, providing the ideal diet, understanding the effects of pretreatments, choosing the best testing conditions, to exploring the most from the results obtained. Meanwhile, we guide the reader through the most practical ways of dealing with G. mellonella to achieve successful experiments.
Collapse
Affiliation(s)
- Monalessa Fábia Pereira
- Laboratório de Bioquímica e Microbiologia, Departamento de Ciências Biológicas, Universidade do Estado de Minas Gerais, Carangola, MG, Brazil
| | - Ciro César Rossi
- Laboratório de Microbiologia Molecular, Departamento de Microbiologia Médica, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
32
|
Riddiford LM. Rhodnius, Golden Oil, and Met: A History of Juvenile Hormone Research. Front Cell Dev Biol 2020; 8:679. [PMID: 32850806 PMCID: PMC7426621 DOI: 10.3389/fcell.2020.00679] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 07/06/2020] [Indexed: 12/13/2022] Open
Abstract
Juvenile hormone (JH) is a unique sesquiterpenoid hormone which regulates both insect metamorphosis and insect reproduction. It also may be utilized by some insects to mediate polyphenisms and other life history events that are environmentally regulated. This article details the history of the research on this versatile hormone that began with studies by V. B. Wigglesworth on the "kissing bug" Rhodnius prolixus in 1934, through the discovery of a natural source of JH in the abdomen of male Hyalophora cecropia moths by C. M. Williams that allowed its isolation ("golden oil") and identification, to the recent research on its receptor, termed Methoprene-tolerant (Met). Our present knowledge of cellular actions of JH in metamorphosis springs primarily from studies on Rhodnius and the tobacco hornworm Manduca sexta, with recent studies on the flour beetle Tribolium castaneum, the silkworm Bombyx mori, and the fruit fly Drosophila melanogaster contributing to the molecular understanding of these actions. Many questions still need to be resolved including the molecular basis of competence to metamorphose, differential tissue responses to JH, and the interaction of nutrition and other environmental signals regulating JH synthesis and degradation.
Collapse
Affiliation(s)
- Lynn M Riddiford
- Department of Biology, Friday Harbor Laboratories, University of Washington, Friday Harbor, WA, United States
| |
Collapse
|
33
|
Chafino S, Ureña E, Casanova J, Casacuberta E, Franch-Marro X, Martín D. Upregulation of E93 Gene Expression Acts as the Trigger for Metamorphosis Independently of the Threshold Size in the Beetle Tribolium castaneum. Cell Rep 2020; 27:1039-1049.e2. [PMID: 31018122 DOI: 10.1016/j.celrep.2019.03.094] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 02/25/2019] [Accepted: 03/25/2019] [Indexed: 11/19/2022] Open
Abstract
Body size in holometabolous insects is determined by the size at which the juvenile larva undergoes metamorphosis to the pupal stage. To undergo larva-pupa transition, larva must reach a critical developmental checkpoint, the threshold size (TS); however, the molecular mechanisms through which the TS cues this transition remain to be fully characterized. Here, we use the flour beetle Tribolium castaneum to characterize the molecular mechanisms underlying entry into metamorphosis. We found that T. castaneum reaches a TS at the beginning of the last larval instar, which is associated with the downregulation of TcKr-h1 and the upregulation of TcE93 and TcBr-C. Unexpectedly, we found that while there is an association between TS and TcE93 upregulation, it is the latter that constitutes the molecular trigger for metamorphosis initiation. In light of our results, we evaluate the interactions that control the larva-pupa transition and suggest alternative models.
Collapse
Affiliation(s)
- Silvia Chafino
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain
| | - Enric Ureña
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain
| | - Jordi Casanova
- Institut de Biologia Molecular de Barcelona (CSIC), Baldiri Reixac, 4, 08028 Barcelona, Spain; Institut de Recerca Biomèdica de Barcelona, (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Elena Casacuberta
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain
| | - Xavier Franch-Marro
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain.
| | - David Martín
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain.
| |
Collapse
|
34
|
Cruz J, Martín D, Franch-Marro X. Egfr Signaling Is a Major Regulator of Ecdysone Biosynthesis in the Drosophila Prothoracic Gland. Curr Biol 2020; 30:1547-1554.e4. [DOI: 10.1016/j.cub.2020.01.092] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 12/13/2019] [Accepted: 01/30/2020] [Indexed: 12/21/2022]
|
35
|
Conspecific and heterospecific pheromones stimulate dispersal of entomopathogenic nematodes during quiescence. Sci Rep 2020; 10:5738. [PMID: 32235877 PMCID: PMC7109026 DOI: 10.1038/s41598-020-62817-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 03/18/2020] [Indexed: 01/21/2023] Open
Abstract
Ascaroside pheromones stimulate dispersal, a key nematode behavior to find a new food source. Ascarosides produced by entomopathogenic nematodes (EPNs) drive infective juvenile (IJ) emergence from consumed cadavers and dispersal in soil. Without ascarosides from host cadavers, Steinernema feltiae (EPN) reduce dispersal substantially. To determine whether other Steinernema spp. exhibit the same behavior, we compared S. feltiae and S. carpocapsae IJs without host cadaver pheromones. Unlike S. feltiae, S. carpocapsae IJs continued to disperse. However, S. carpocapsae IJs exhibited a temperature-dependent quiescent period. The IJ quiescent period increased at ≤20 °C but did not appear at ≥25 °C. Consistent with this, S. carpocapsae IJ quiescence increased from 30 min to 24 h at ≤20 °C over 60 days. The quiescent period was overcome by dispersal pheromone extracts of their own, other Steinernema spp. and Heterorhabditis spp. Furthermore, S. carpocapsae IJ ambush foraging associated behaviors (tail standing, waving, and jumping) were unaffected by the absence or presence of host cadaver pheromones. For S. feltiae, IJ dispersal declined at all temperatures tested. Understanding the interaction between foraging strategies and pheromone signals will help uncover molecular mechanisms of host seeking, pathogenicity and practical applications to improve the EPN’s efficacy as biocontrol agents.
Collapse
|
36
|
Yin Y, Qiu YW, Huang J, Tobe SS, Chen SS, Kai ZP. Enzymes in the juvenile hormone biosynthetic pathway can be potential targets for pest control. PEST MANAGEMENT SCIENCE 2020; 76:1071-1077. [PMID: 31515949 DOI: 10.1002/ps.5617] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 08/29/2019] [Accepted: 09/09/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Discovery of novel insecticides and targets has received global attention in recent years. Ten genes coding for enzymes involved in the juvenile hormone biosynthetic pathway of Manduca sexta were studied as potential insecticide targets. RESULTS We determined the expression of genes encoding some critical enzymes in the JH biosynthetic pathway. Farnesol dehydrogenase (FOLD), Juvenile hormone acid O-methyltransferase (JHAMT) and Juvenile hormone epoxidase (CYP15C1) were selected as the candidate targets based on gene expression results. RNAi silencing and enzyme inhibitor tests were performed to validate whether these candidate genes could be the potential insecticide targets. The down-regulation of FOLD, JHAMT and CYP15C1 resulted in a 68%, 82% and 79% reduction in the rates of JH biosynthesis in vitro, respectively. In addition, RNA interference and inhibitor studies of these enzymes following oral administration demonstrated the potential application in pest management, with respect to high mortality and effects on growth. CONCLUSION Based on our study, FOLD, JHAMT and CYP15C1 could be potential targets for pest control as a consequence of their important roles in insect development. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yue Yin
- Institute of Agro-food Standards and Testing Technologies, Shanghai Academy of Agricultural Science, Shanghai, China
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, China
| | - Yan-Wei Qiu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, China
| | - Juan Huang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Stephen S Tobe
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Shan-Shan Chen
- Institute of Agro-food Standards and Testing Technologies, Shanghai Academy of Agricultural Science, Shanghai, China
| | - Zhen-Peng Kai
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, China
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, P. R. China
| |
Collapse
|
37
|
Genetics in the Honey Bee: Achievements and Prospects toward the Functional Analysis of Molecular and Neural Mechanisms Underlying Social Behaviors. INSECTS 2019; 10:insects10100348. [PMID: 31623209 PMCID: PMC6835989 DOI: 10.3390/insects10100348] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/13/2019] [Accepted: 10/14/2019] [Indexed: 12/31/2022]
Abstract
The European honey bee is a model organism for studying social behaviors. Comprehensive analyses focusing on the differential expression profiles of genes between the brains of nurse bees and foragers, or in the mushroom bodies—the brain structure related to learning and memory, and multimodal sensory integration—has identified candidate genes related to honey bee behaviors. Despite accumulating knowledge on the expression profiles of genes related to honey bee behaviors, it remains unclear whether these genes actually regulate social behaviors in the honey bee, in part because of the scarcity of genetic manipulation methods available for application to the honey bee. In this review, we describe the genetic methods applied to studies of the honey bee, ranging from classical forward genetics to recently developed gene modification methods using transposon and CRISPR/Cas9. We then discuss future functional analyses using these genetic methods targeting genes identified by the preceding research. Because no particular genes or neurons unique to social insects have been found yet, further exploration of candidate genes/neurons correlated with sociality through comprehensive analyses of mushroom bodies in the aculeate species can provide intriguing targets for functional analyses, as well as insight into the molecular and neural bases underlying social behaviors.
Collapse
|
38
|
Ishimaru Y, Tomonari S, Watanabe T, Noji S, Mito T. Regulatory mechanisms underlying the specification of the pupal-homologous stage in a hemimetabolous insect. Philos Trans R Soc Lond B Biol Sci 2019; 374:20190225. [PMID: 31438810 DOI: 10.1098/rstb.2019.0225] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Juvenile hormones and the genetic interaction between the transcription factors Krüppel homologue 1 (Kr-h1) and Broad (Br) regulate the transformation of insects from immature to adult forms in both types of metamorphosis (holometaboly with a pupal stage versus hemimetaboly with no pupal stage); however, knowledge about the exact instar in which this occurs is limited. Using the hemimetabolous cricket Gryllus bimaculatus (Gb), we demonstrate that a genetic interaction occurs among Gb'Kr-h1, Gb'Br and the adult-specifier transcription factor Gb'E93 from the sixth to final (eighth) nymphal instar. Gb'Kr-h1 and Gb'Br mRNAs were strongly expressed in the abdominal tissues of sixth instar nymphs, with precocious adult moults being induced by Gb'Kr-h1 or Gb'Br knockdown in the sixth instar. The depletion of Gb'Kr-h1 or Gb'Br upregulates Gb'E93 in the sixth instar. By contrast, Gb'E93 knockdown at the sixth instar prevents nymphs transitioning to adults, instead producing supernumerary nymphs. Gb'E93 also represses Gb'Kr-h1 and Gb'Br expression in the penultimate nymphal instar, demonstrating its important role in adult differentiation. Our results suggest that the regulatory mechanisms underlying the pupal transition in holometabolous insects are evolutionarily conserved in hemimetabolous G. bimaculatus, with the penultimate and final nymphal periods being equivalent to the pupal stage. This article is part of the theme issue 'The evolution of complete metamorphosis'.
Collapse
Affiliation(s)
- Yoshiyasu Ishimaru
- Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minami-Jyosanjima-cho, Tokushima City, Tokushima 770-8513, Japan
| | - Sayuri Tomonari
- Division of Chemical and Physical Analyses, Center for Technical Support, Institute of Technology and Science, Tokushima University, 2-1 Minami-Jyosanjima-cho, Tokushima City, Tokushima 770-8506, Japan
| | - Takahito Watanabe
- Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minami-Jyosanjima-cho, Tokushima City, Tokushima 770-8513, Japan
| | - Sumihare Noji
- Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minami-Jyosanjima-cho, Tokushima City, Tokushima 770-8513, Japan
| | - Taro Mito
- Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minami-Jyosanjima-cho, Tokushima City, Tokushima 770-8513, Japan
| |
Collapse
|
39
|
Pinet K, McLaughlin KA. Mechanisms of physiological tissue remodeling in animals: Manipulating tissue, organ, and organism morphology. Dev Biol 2019; 451:134-145. [DOI: 10.1016/j.ydbio.2019.04.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 03/29/2019] [Accepted: 04/03/2019] [Indexed: 12/21/2022]
|
40
|
Elgendy AM, Tufail M, Mohamed AA, Takeda M. A putative direct repeat element plays a dual role in the induction and repression of insect vitellogenin-1 gene expression. Comp Biochem Physiol B Biochem Mol Biol 2019; 234:1-8. [PMID: 31022468 DOI: 10.1016/j.cbpb.2019.04.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 04/06/2019] [Accepted: 04/15/2019] [Indexed: 11/15/2022]
Abstract
Juvenile hormones (JH) regulate wide-ranging physiological and developmental processes in insects. However, molecular mechanisms underlying JH signaling remain to be determined. Vitellogenin (Vg) is primarily an egg-yolk protein, but recently proposed to serve many functions in insects. In the female American cockroach (Periplaneta americana), vitellogenin (Vg) genes are activated by JH III and suppressed by 20-hydroxyecdysone (20E) via cis-regulatory elements in a dose-dependent manner. In the present study, the upstream promoter region (935 bp) of Vg1 was cloned to elucidate the action of these hormones. A luciferase reporter assay identified an 81 bp region in the promoter region of Vg1 (-120 to -39 bp) that we found to be critical for JH III activation and 20E suppression. This 81 bp region contains a direct repeat separated by a 2-nucleotide spacer-designated Vg1HRE- that is similar to the Drosophila ecdysone response element direct repeat 4. Moreover, nuclear proteins isolated from nymphs, males, females, and Sf9 cells successfully bound to Vg1HRE, while binding was outcompeted by a 100-fold excess of cold probe or dephosphorylated nuclear protein extracts. In addition, binding was outcompeted by other ecdysone and JH response elements with similar half-site sequences (direct repeats) but to varying extents. Ultimately, we postulate that JH III indirectly activates Vg expression by interfering with or inhibiting the phosphorylation of nuclear proteins bound to Vg1HRE. Involvement of JH III in both induction of Vg1 and control of nuclear proteins binding to Vg1HRE suggest the latter to play an important role in JH signaling.
Collapse
Affiliation(s)
- Azza M Elgendy
- Department of Entomology, Faculty of Science, Cairo University, PO Box 12613, Giza, Egypt.
| | - Muhammad Tufail
- Economic Entomology Research Unit, Plant Protection Department, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia; Organization of Advanced Science and Technology, Kobe University, Kobe 657-8501, Japan.
| | - Amr A Mohamed
- Department of Entomology, Faculty of Science, Cairo University, PO Box 12613, Giza, Egypt.
| | - Makio Takeda
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Hyogo, Japan.
| |
Collapse
|
41
|
Chafino S, López-Escardó D, Benelli G, Kovac H, Casacuberta E, Franch-Marro X, Kathirithamby J, Martín D. Differential expression of the adult specifier E93 in the strepsipteran Xenos vesparum Rossi suggests a role in female neoteny. Sci Rep 2018; 8:14176. [PMID: 30242215 PMCID: PMC6155025 DOI: 10.1038/s41598-018-32611-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 09/10/2018] [Indexed: 11/10/2022] Open
Abstract
Holometaboly is a key evolutionary innovation that has facilitated the spectacular radiation of insects. Despite the undeniable advantage of complete metamorphosis, the female of some holometabolous species have lost the typical holometabolous development through neoteny. In Xenos vesparum Rossi (Strepsiptera: Stylopidae), a derived species of the holometabolous endoparasitic order Strepsiptera, neotenic females reach sexual maturity without the pupal and the imaginal stages, thus retaining their larval morphology (with the exception of the anterior part of the body or cephalothorax), while males undergo normal pupal-based metamorphosis. Expression of the “adult-specifier” E93 factor has been shown to be required for proper metamorphosis in holometabolous insects. Here, we investigated the involvement of E93 in female neoteny by cloning XvE93. Interestingly, while we detected a clear up-regulation of XvE93 expression in pupal and adult stages of males, persistent low levels of XvE93 were detected in X. vesparum females. However, a specific up-regulation of XvE93 was observed in the cephalothorax of late 4th female instar larva, which correlates with the occurrence of neotenic-specific features in the anterior part of the female body. Moreover, the same expression dynamic in the cephalothorax and abdomen was also observed for other two critical metamorphic regulators, the anti-metamorphic XvKr-h1 and the pupal specifier XvBr-C. The specific up-regulation of XvE93 and XvBr-C in the female cephalothorax seems to be the result of an increase in 20-hydroxyecdysone (20E) signaling in this region for we detected higher expression levels of the 20E-dependent nuclear receptors XvHR3 and XvE75 in the cephalothorax. Overall, our results detect a sex-specific expression pattern of critical metamorphic genes in X. vesparum, suggesting that neoteny in Strepsiptera results from the modification of the normal expression of E93, Br-C and Kr-h1 genes.
Collapse
Affiliation(s)
- S Chafino
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra) Passeig Marítim de la Barceloneta 37-49, 08003, Barcelona, Spain
| | - D López-Escardó
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra) Passeig Marítim de la Barceloneta 37-49, 08003, Barcelona, Spain
| | - G Benelli
- Department of Agriculture, Food and Environment, University of Pisa via del Borghetto 80, 56124, Pisa, Italy
| | - H Kovac
- Institut für Biologie, Universitaet Graz, Universitaetsplatz 2, A-8010, Graz, Austria
| | - E Casacuberta
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra) Passeig Marítim de la Barceloneta 37-49, 08003, Barcelona, Spain
| | - X Franch-Marro
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra) Passeig Marítim de la Barceloneta 37-49, 08003, Barcelona, Spain
| | - J Kathirithamby
- Department of Zoology, University of Oxford, Oxford, United Kingdom.
| | - D Martín
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra) Passeig Marítim de la Barceloneta 37-49, 08003, Barcelona, Spain.
| |
Collapse
|
42
|
Winkler P, Sieg F, Buttstedt A. Transcriptional Control of Honey Bee ( Apis mellifera) Major Royal Jelly Proteins by 20-Hydroxyecdysone. INSECTS 2018; 9:insects9030122. [PMID: 30235865 PMCID: PMC6163268 DOI: 10.3390/insects9030122] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/14/2018] [Accepted: 09/17/2018] [Indexed: 12/04/2022]
Abstract
One of the first tasks of worker honey bees (Apis mellifera) during their lifetime is to feed the larval offspring. In brief, young workers (nurse bees) secrete a special food jelly that contains a large amount of unique major royal jelly proteins (MRJPs). The regulation of mrjp gene expression is not well understood, but the large upregulation in well-fed nurse bees suggests a tight repression until, or a massive induction upon, hatching of the adult worker bees. The lipoprotein vitellogenin, the synthesis of which is regulated by the two systemic hormones 20-hydroxyecdysone and juvenile hormone, is thought to be a precursor for the production of MRJPs. Thus, the regulation of mrjp expression by the said systemic hormones is likely. This study focusses on the role of 20-hydroxyecdysone by elucidating its effect on mrjp gene expression dynamics. Specifically, we tested whether 20-hydroxyecdysone displayed differential effects on various mrjps. We found that the expression of the mrjps (mrjp1–3) that were finally secreted in large amounts into the food jelly, in particular, were down regulated by 20-hydroxyecdysone treatment, with mrjp3 showing the highest repression value.
Collapse
Affiliation(s)
- Paul Winkler
- Institut für Biologie, Molekulare Ökologie, Martin-Luther-Universität Halle-Wittenberg, Hoher Weg 4, 06120 Halle (Saale), Germany.
| | - Frank Sieg
- CuroNZ, 173 Cames Road, Mangawhai 0975, New Zealand.
| | - Anja Buttstedt
- Institut für Biologie, Molekulare Ökologie, Martin-Luther-Universität Halle-Wittenberg, Hoher Weg 4, 06120 Halle (Saale), Germany.
- B CUBE-Center for Molecular Bioengineering, Technische Universität Dresden, Arnoldstraße 18, 01307 Dresden, Germany.
| |
Collapse
|
43
|
Yue Y, Yang RL, Wang WP, Zhou QH, Chen EH, Yuan GR, Wang JJ, Dou W. Involvement of Met and Kr-h1 in JH-Mediated Reproduction of Female Bactrocera dorsalis (Hendel). Front Physiol 2018; 9:482. [PMID: 29780329 PMCID: PMC5945869 DOI: 10.3389/fphys.2018.00482] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 04/16/2018] [Indexed: 12/23/2022] Open
Abstract
Juvenile hormone (JH) prevents metamorphosis during insect larval stages and promotes adult reproductive processes. Krüppel-homolog 1 (Kr-h1), a zinc finger transcription factor assumed to be induced by JH via the JH receptor methoprene-tolerant (Met), mediates the antimetamorphic effect of JH in insects, but its function in JH-mediated reproductive processes has not been fully explored. In this study, Met and Kr-h1 involved in the JH signaling pathway were first cloned and identified from the oriental fruit fly, Bactrocera dorsalis, an important pest infesting fruit and vegetables worldwide. Subsequent spatiotemporal expression analysis revealed that Met and Kr-h1 were both highly expressed in 7-day-old adults and fat body of female adults, respectively. Treatment with a JH analog (methoprene) significantly induced the expression of JH signaling and vitellogenin (Vg) genes and accelerated ovary development. RNA interference (RNAi) further revealed that either Met or Kr-h1 depletion at the adult stage of B. dorsalis impeded ovary development, with significantly lower egg production noted as well. In addition, rescue through methoprene application after RNAi stimulated the expression of JH signaling and Vg genes. Although there were still differences in ovary phenotype between rescued insects and the pre-RNAi control, ovary redevelopment with a larger surface area was observed, consistent with the spatiotemporal expression and phenotypes recorded in the original methoprene experiment. Our data reveal the involvement of Met and Kr-h1 in insect vitellogenesis and egg production, thus indicating the crucial role of the JH signaling pathway in insect reproduction.
Collapse
Affiliation(s)
- Yong Yue
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China.,Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Rui-Lin Yang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China.,Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Wei-Ping Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China.,Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Qi-Hao Zhou
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China.,Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Er-Hu Chen
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China.,Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Guo-Rui Yuan
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China.,Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China.,Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Wei Dou
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China.,Academy of Agricultural Sciences, Southwest University, Chongqing, China
| |
Collapse
|
44
|
Antagonistic actions of juvenile hormone and 20-hydroxyecdysone within the ring gland determine developmental transitions in Drosophila. Proc Natl Acad Sci U S A 2017; 115:139-144. [PMID: 29255055 PMCID: PMC5776822 DOI: 10.1073/pnas.1716897115] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In vertebrates, steroid hormones regulate developmental transition from juveniles to adults. Insect steroid hormone, 20-hydroxyecdysone (20E), coordinates with juvenile hormone (JH) to regulate metamorphosis; however, the precise cross-talk mechanism is not well understood. Here, we report that JH and 20E antagonize each other’s biosynthesis in a major endocrine organ of Drosophila larvae: JH suppresses ecdysone biosynthesis and inhibits metamorphosis, whereas 20E suppresses JH biosynthesis and promotes metamorphosis. These data answer a long-standing question on how the mutual antagonism between the two major insect hormones regulates metamorphosis and may help to understand the hormonal regulation of developmental transition in mammals. In both vertebrates and insects, developmental transition from the juvenile stage to adulthood is regulated by steroid hormones. In insects, the steroid hormone, 20-hydroxyecdysone (20E), elicits metamorphosis, thus promoting this transition, while the sesquiterpenoid juvenile hormone (JH) antagonizes 20E signaling to prevent precocious metamorphosis during the larval stages. However, not much is known about the mechanisms involved in cross-talk between these two hormones. In this study, we discovered that in the ring gland (RG) of Drosophila larvae, JH and 20E control each other’s biosynthesis. JH induces expression of a Krüppel-like transcription factor gene Kr-h1 in the prothoracic gland (PG), a portion of the RG that produces the 20E precursor ecdysone. By reducing both steroidogenesis autoregulation and PG size, high levels of Kr-h1 in the PG inhibit ecdysteriod biosynthesis, thus maintaining juvenile status. JH biosynthesis is prevented by 20E in the corpus allatum, the other portion of the RG that produces JH, to ensure the occurrence of metamorphosis. Hence, antagonistic actions of JH and 20E within the RG determine developmental transitions in Drosophila. Our study proposes a mechanism of cross-talk between the two major hormones in the regulation of insect metamorphosis.
Collapse
|
45
|
Niwa R, Nishimura T. Assembly of insect hormone enthusiasts at Nasu Highland, Japan: Report of the 3rd International Insect Hormone (21st Ecdysone) Workshop. Genes Cells 2017; 23:16-21. [PMID: 29193521 DOI: 10.1111/gtc.12543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 10/31/2017] [Indexed: 11/27/2022]
Abstract
The 3rd International Insect Hormone (21st Ecdysone) Workshop (IIHW2017) was held in July 2017 at Nasu Highland, Japan. In the 40 years of the workshop's history, this was the first to be held in an Asian country. A total of 109 insect hormone researchers from 18 countries (62 overseas and 47 domestic participants) attended IIHW2017. During the workshop, all participants stayed on-site at the venue's hotel; this was ideal for fostering communication between participants, in particular, interactions between principal investigators and young scientists. The workshop featured one keynote, 64 oral, and 35 poster presentations spanning molecular biology, cell biology, developmental biology, neurobiology, chemical biology, physiology, and ecology of insect hormones, including ecdysteroids, juvenile hormones, and a variety of neuropeptides. The workshop provided an ideal platform for discussing insect hormone biology using not only the typical genetic model insect, the fruit fly Drosophila, but also a diversity of interesting insects, such as the silkworm, the red flour beetle, the cricket, the dragonfly, the social ant, the bloodsucking tick, and so on. The participants succeeded in sharing the latest knowledge in a wide range of insect hormone research fields and in joining active and constructive scientific discussions.
Collapse
Affiliation(s)
- Ryusuke Niwa
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Takashi Nishimura
- Laboratory for Growth Control Signaling, RIKEN Center for Developmental Biology (CDB), Kobe, Hyogo, Japan
| |
Collapse
|
46
|
Liu HW, Li YS, Tang X, Guo PC, Wang DD, Zhou CY, Xia QY, Zhao P. A midgut-specific serine protease, BmSP36, is involved in dietary protein digestion in the silkworm, Bombyx mori. INSECT SCIENCE 2017; 24:753-767. [PMID: 27311916 DOI: 10.1111/1744-7917.12369] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/06/2016] [Indexed: 06/06/2023]
Abstract
Serine proteases play important roles in digestion and immune responses during insect development. In the present study, the serine protease gene BmSP36, which encodes a 292-residue protein, was cloned from the midgut cells of Bombyx mori. BmSP36 contains an intact catalytic triad (H57, D102 and S195) and a conserved substrate-binding site (G189, H216 and G226), suggesting that it is a serine protease with chymotrypsin-like specificity. The temporal and spatial expression patterns of BmSP36 indicated that its messenger RNA and protein expression mainly occurred in the midgut at the feeding stages. Western blotting, immunofluorescence and liquid chromatography-tandem mass spectrometry analyses revealed secretion of BmSP36 protein from epithelial cells into the midgut lumen. The transcriptional and translational expression of BmSP36 was down-regulated after starvation but up-regulated after refeeding. Moreover, expression of the BmSP36 gene could be up-regulated by a juvenile hormone analogue. These results enable us to better define the potential role of BmSP36 in dietary protein digestion at the feeding stages during larval development.
Collapse
Affiliation(s)
- Hua-Wei Liu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - You-Shan Li
- Vitamin D Research Institute, Shaanxi Sci-Tech University, Hanzhong, Shaanxi Province, China
| | - Xin Tang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Peng-Chao Guo
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Dan-Dan Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Chun-Yan Zhou
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Qing-You Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| |
Collapse
|
47
|
Devi U, Bora D. Growth inhibitory effect of phenolic extracts of Ziziphus jujuba Mill. in dengue vector Aedes aegypti (L) in parent and F1 generation. ASIAN PAC J TROP MED 2017; 10:787-791. [PMID: 28942827 DOI: 10.1016/j.apjtm.2017.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 07/14/2017] [Accepted: 07/23/2017] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE To evaluate the lethal and emergence inhibitory effect of alkaloid, phenolic and terpenoid extracts of Ziziphus jujuba (Rhamnaceae) against Aedes aegypti (Diptera: Culicidae), and to explore the effect of the most effective fraction on developmental and biochemical parameters of the dengue vector. METHODS The fourth instar larvae of Ae. aegypti were exposed to alkaloid, phenolic and terpenoid extracts from Z. jujuba leaves to test their toxicity and emergence inhibitory effects. Phenolic extract, being the most effective was further tested against the mosquitoes for their growth inhibitory effect supported by biochemical changes in the parent and F1 generation. RESULTS While the different secondary metabolite fractions i.e., alkaloid, phenolics and terpenoid caused mortality at larval and pupal stages, the LC50 value was the lowest for phenolic fraction. Further study carried out with the phenolic fraction revealed that it affected growth by decreasing adult life span, fertility and fecundity of the mosquitoes. The reduction in growth was also accompanied by decrease in carbohydrate and lipid levels. CONCLUSIONS It is concluded that the phenolic extract of the leaves of Z. jujuba is a potential candidate for control of Aedes mosquitoes.
Collapse
Affiliation(s)
- Urbbi Devi
- Department of Life Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | - Dipsikha Bora
- Department of Life Sciences, Dibrugarh University, Dibrugarh, Assam, India.
| |
Collapse
|
48
|
Trible W, Kronauer DJC. Caste development and evolution in ants: it's all about size. ACTA ACUST UNITED AC 2017; 220:53-62. [PMID: 28057828 DOI: 10.1242/jeb.145292] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Female ants display a wide variety of morphological castes, including workers, soldiers, ergatoid (worker-like) queens and queens. Alternative caste development within a species arises from a variable array of genetic and environmental factors. Castes themselves are also variable across species and have been repeatedly gained and lost throughout the evolutionary history of ants. Here, we propose a simple theory of caste development and evolution. We propose that female morphology varies as a function of size, such that larger individuals possess more queen-like traits. Thus, the diverse mechanisms that influence caste development are simply mechanisms that affect size in ants. Each caste-associated trait has a unique relationship with size, producing a phenotypic space that permits some combinations of worker- and queen-like traits, but not others. We propose that castes are gained and lost by modifying the regions of this phenotypic space that are realized within a species. These modifications can result from changing the size-frequency distribution of individuals within a species, or by changing the association of tissue growth and size. We hope this synthesis will help unify the literature on caste in ants, and facilitate the discovery of molecular mechanisms underlying caste development and evolution.
Collapse
Affiliation(s)
- Waring Trible
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, NY 10065, USA
| | - Daniel J C Kronauer
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, NY 10065, USA
| |
Collapse
|
49
|
Keshan B, Thounaojam B, Kh SD. Insulin and 20-hydroxyecdysone action in Bombyx mori: Glycogen content and expression pattern of insulin and ecdysone receptors in fat body. Gen Comp Endocrinol 2017; 241:108-117. [PMID: 27317549 DOI: 10.1016/j.ygcen.2016.06.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 05/25/2016] [Accepted: 06/13/2016] [Indexed: 01/10/2023]
Abstract
Insulin and ecdysone signaling play a critical role on the growth and development of insects including Bombyx mori. Our previous study showed that Bombyx larvae reached critical weight for metamorphosis between day 3.5 and 4 of the fifth larval instar. The present study showed that the effect of insulin on the accumulation of glycogen in fat body of Bombyx larvae depends on the critical growth period. When larvae are in active growth period (before reaching critical weight), insulin caused increased accumulation of glycogen, while its treatment in larvae at terminal growth period (after critical period) resulted in an increased mobilization of glycogen. During terminal growth period, insulin and 20-hydroxyecdysone (20E) showed an antagonistic effect on the accumulation of fat body glycogen in fed, food deprived and decapitated larvae as well as in isolated abdomens. Insulin treatment decreased the glycogen content, whereas, 20E increased it. Food deprivation and decapitation caused an increase in the transcript levels of insulin receptor (InR) and this increase in InR expression might be attributed to a decrease in synthesis/secretion of insulin-like peptides, as insulin treatment in these larvae showed a down-regulation in InR expression. However, insulin showed an up-regulation in InR in isolated abdomens and it suggests that in food deprived and decapitated larvae, the exogenous insulin may interact with some head and/or thoracic factors in modulating the expression of InR. Moreover, in fed larvae, insulin-mediated increase in InR expression indicates that its regulation by insulin-like peptides also depends on the nutritional status of the larvae. The treatment of 20E in fed larvae showed an antagonistic effect on the transcript levels since a down-regulation in InR expression was observed. 20E treatment also led to a decreased expression of InR in food deprived and decapitated larvae as well as in isolated abdomens. Insulin and 20E also modulated the expression level of ecdysone receptors (EcRB1 and USP1). 20E treatment showed an up-regulation in expression of ecdysone receptors, but only in fed larvae, whereas insulin treatment showed a down-regulation in the expression of EcRB1 and USP1 in all the experimental larvae studied. Further, the data indicates that an up-regulation of ecdysone receptors is associated with an increase in fat body glycogen content, whereas an up-regulation of insulin receptor expression causes glycogen mobilization. The study, therefore, suggests that the insulin and ecdysone signaling are linked to each other and that both insulin and ecdysone are involved in regulating the carbohydrate reserves in B. mori.
Collapse
Affiliation(s)
- Bela Keshan
- Department of Zoology, North-Eastern Hill University, Shillong 793022, Meghalaya, India.
| | - Bembem Thounaojam
- Department of Zoology, North-Eastern Hill University, Shillong 793022, Meghalaya, India
| | - Sanathoibi D Kh
- Department of Zoology, North-Eastern Hill University, Shillong 793022, Meghalaya, India
| |
Collapse
|
50
|
Borras-Castells F, Nieva C, Maestro JL, Maestro O, Belles X, Martín D. Juvenile hormone biosynthesis in adult Blattella germanica requires nuclear receptors Seven-up and FTZ-F1. Sci Rep 2017; 7:40234. [PMID: 28074850 PMCID: PMC5225475 DOI: 10.1038/srep40234] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 12/02/2016] [Indexed: 12/19/2022] Open
Abstract
In insects, the transition from juvenile development to the adult stage is controlled by juvenile hormone (JH) synthesized from the corpora allata (CA) glands. Whereas a JH-free period during the last juvenile instar triggers metamorphosis and the end of the growth period, the reappearance of this hormone after the imaginal molt marks the onset of reproductive adulthood. Despite the importance of such transition, the regulatory mechanism that controls it remains mostly unknown. Here, using the hemimetabolous insect Blattella germanica, we show that nuclear hormone receptors Seven-up-B (BgSvp-B) and Fushi tarazu-factor 1 (BgFTZ-F1) have essential roles in the tissue- and stage-specific activation of adult CA JH-biosynthetic activity. Both factors are highly expressed in adult CA cells. Moreover, RNAi-knockdown of either BgSvp-B or BgFTZ-F1 results in adult animals with a complete block in two critical JH-dependent reproductive processes, vitellogenesis and oogenesis. We show that this reproductive blockage is the result of a dramatic impairment of JH biosynthesis, due to the CA-specific reduction in the expression of two key JH biosynthetic enzymes, 3-hydroxy-3-methylglutaryl coenzyme A synthase-1 (BgHMG-S1) and HMG-reductase (BgHMG-R). Our findings provide insights into the regulatory mechanisms underlying the specific changes in the CA gland necessary for the proper transition to adulthood.
Collapse
Affiliation(s)
- Ferran Borras-Castells
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra) Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain
| | - Claudia Nieva
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra) Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain
| | - José L Maestro
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra) Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain
| | - Oscar Maestro
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra) Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain
| | - Xavier Belles
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra) Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain
| | - David Martín
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra) Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain
| |
Collapse
|