1
|
Management Strategies to Mitigate N2O Emissions in Agriculture. Life (Basel) 2022; 12:life12030439. [PMID: 35330190 PMCID: PMC8949344 DOI: 10.3390/life12030439] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/03/2022] [Accepted: 03/07/2022] [Indexed: 12/25/2022] Open
Abstract
The concentration of greenhouse gases (GHGs) in the atmosphere has been increasing since the beginning of the industrial revolution. Nitrous oxide (N2O) is one of the mightiest GHGs, and agriculture is one of the main sources of N2O emissions. In this paper, we reviewed the mechanisms triggering N2O emissions and the role of agricultural practices in their mitigation. The amount of N2O produced from the soil through the combined processes of nitrification and denitrification is profoundly influenced by temperature, moisture, carbon, nitrogen and oxygen contents. These factors can be manipulated to a significant extent through field management practices, influencing N2O emission. The relationships between N2O occurrence and factors regulating it are an important premise for devising mitigation strategies. Here, we evaluated various options in the literature and found that N2O emissions can be effectively reduced by intervening on time and through the method of N supply (30–40%, with peaks up to 80%), tillage and irrigation practices (both in non-univocal way), use of amendments, such as biochar and lime (up to 80%), use of slow-release fertilizers and/or nitrification inhibitors (up to 50%), plant treatment with arbuscular mycorrhizal fungi (up to 75%), appropriate crop rotations and schemes (up to 50%), and integrated nutrient management (in a non-univocal way). In conclusion, acting on N supply (fertilizer type, dose, time, method, etc.) is the most straightforward way to achieve significant N2O reductions without compromising crop yields. However, tuning the rest of crop management (tillage, irrigation, rotation, etc.) to principles of good agricultural practices is also advisable, as it can fetch significant N2O abatement vs. the risk of unexpected rise, which can be incurred by unwary management.
Collapse
|
2
|
Berendt J, Tenspolde A, Rex D, Clough TJ, Wrage‐Mönnig N. Application methods of tracers for N 2O source determination lead to inhomogeneous distribution in field plots. ANALYTICAL SCIENCE ADVANCES 2020; 1:221-232. [PMID: 38716385 PMCID: PMC10989093 DOI: 10.1002/ansa.202000100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 09/07/2020] [Indexed: 11/17/2024]
Abstract
Source determination of N2O has often been performed using stable isotope incubation experiments. In situ experiments with isotopic tracers are an important next step. However, the challenge is to distribute the tracers in the field as homogeneously as possible. To examine this, a bromide solution was applied as a stand-in tracer using either a watering can, a sprayer, or syringes to a relatively dry (25% gravimetric moisture content) or wet (30%) silt loam. After 1 h, samples were taken from three soil depths (0-10 cm), and analyzed for their water content and bromide concentration. The application with syringes was unsuccessful due to blocked cannulas. Therefore, further laboratory experiments were conducted with side-port cannulas. Despite a larger calculated gravimetric soil moisture difference with watering can application, more Br- tracer was recovered in the sprayer treatment, probably due to faster transport of Br- through macropore flow in the wetter conditions caused by the watering can treatment. The losses of Br- (33% for the watering can, 28% for the sprayer treatment) are equivalent to potential losses of isotopic tracer solutions. For application of 60 at% 15NH4 +, this resulted in theoretical enrichments of 44-53 at% in the upper 2.5 cm and 7-48 at% in 5-10 cm. As there was hardly any NO3 - in the soil, extrapolations for 15NO3 - calculated enrichments were 57-59 at% in the upper 2.5 cm and 26-57 at% in 5-10 cm. Overall, no method, including the side-port cannulas, was able to achieve a homogeneous distribution of the tracer. Future search for optimal tracer application should therefore investigate methods that utilize capillary forces and avoid overhead pressure. We recommend working on rather dry soil when applying tracers, as tracer recovery was larger here. Furthermore, larger amounts of tracer lead to more uniform distributions. Further studies should also investigate the importance of plant surfaces.
Collapse
Affiliation(s)
- Jacqueline Berendt
- Grassland and Fodder SciencesFaculty of Agricultural and Environmental SciencesUniversity of RostockRostockGermany
| | - Arne Tenspolde
- Grassland and Fodder SciencesFaculty of Agricultural and Environmental SciencesUniversity of RostockRostockGermany
| | - David Rex
- Soil and Physical Sciences DepartmentFaculty of Agriculture and Life SciencesLincoln UniversityLincolnNew Zealand
| | - Tim J. Clough
- Soil and Physical Sciences DepartmentFaculty of Agriculture and Life SciencesLincoln UniversityLincolnNew Zealand
| | - Nicole Wrage‐Mönnig
- Grassland and Fodder SciencesFaculty of Agricultural and Environmental SciencesUniversity of RostockRostockGermany
| |
Collapse
|
3
|
Lin W, Ding J, Xu C, Zheng Q, Zhuang S, Mao L, Li Q, Liu X, Li Y. Evaluation of N 2O sources after fertilizers application in vegetable soil by dual isotopocule plots approach. ENVIRONMENTAL RESEARCH 2020; 188:109818. [PMID: 32599391 DOI: 10.1016/j.envres.2020.109818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/21/2020] [Accepted: 06/11/2020] [Indexed: 06/11/2023]
Abstract
Nitrogen (N) fertilizer is the major deriver of nitrous oxide (N2O) emissions in agricultural soil. In the vegetable fields in China both inorganic and organic fertilizers are largely applied as basic sources of nitrogen. Identifying the effects of fertilizer type on soil microbial activities involved in N2O emissions would be of great help for future development of N2O reduction strategies. N2O isotopocule deltas, including δ15Nbulk, δ18O and SP (the 15N site preference in N2O), have been used to analyze microbial pathways of N2O production under different treatments, including bio-organic fertilizer treatment, half bio-organic fertilizer and half urea (mixed fertilizer) treatment, urea treatment and no fertilizer treatment. We measured environmental factors, N2O fluxes and N2O isotopocule deltas to evaluate the dynamics of N2O emissions and constructed the dual isotopocule plots (δ15Nbulk vs. SP and δ18O vs. SP) of the main N2O emission phases to assess contribution of the involved microbial processes (bacterial nitrification, bacterial denitrification, nitrifier denitrification and fungal denitrification). According to the results of the main N2O emission phases, we found that bio-organic fertilizer and mix fertilizer treatments had significantly lower N2O emissions compared to urea treatment, with average N2O fluxes of 1477 ± 204, 1243 ± 187 and 1941 ± 164 μg m-3 h-1, respectively, but there were no significant effects on mineral N and cabbage yield. In addition, the urea treatment and the mixed fertilizer treatment had close and higher nitrogen use efficiency. Furthermore, the δ18O vs. SP plot was useful for providing insight into microbial processes, showing that fungal denitrification/bacterial nitrification was the dominant microbial pathway and bio-organic fertilizer and mix fertilizer treatments had higher denitrification and N2O reduction compared to urea treatment. Those findings demonstrated that the partial replacement of urea with bio-organic fertilizer was a better choice, by means of enhancing denitrification to reduce N2O emissions and also guaranteeing the nitrogen use efficiency and the cabbage yield.
Collapse
Affiliation(s)
- Wei Lin
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, 610213, China; Environmental Stable Isotope Lab., Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Junjun Ding
- Key Laboratory of Dryland Agriculture Ministry of Agriculture and Rural Affairs of the People's Republic of China, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Chunying Xu
- Key Laboratory of Dryland Agriculture Ministry of Agriculture and Rural Affairs of the People's Republic of China, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Qian Zheng
- Key Laboratory of Dryland Agriculture Ministry of Agriculture and Rural Affairs of the People's Republic of China, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shan Zhuang
- Key Laboratory of Dryland Agriculture Ministry of Agriculture and Rural Affairs of the People's Republic of China, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Lili Mao
- Key Laboratory of Dryland Agriculture Ministry of Agriculture and Rural Affairs of the People's Republic of China, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Qiaozhen Li
- Key Laboratory of Dryland Agriculture Ministry of Agriculture and Rural Affairs of the People's Republic of China, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiaoying Liu
- Key Laboratory of Dryland Agriculture Ministry of Agriculture and Rural Affairs of the People's Republic of China, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yuzhong Li
- Key Laboratory of Dryland Agriculture Ministry of Agriculture and Rural Affairs of the People's Republic of China, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; Environmental Stable Isotope Lab., Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
4
|
Abstract
Of all terrestrial ecosystems, peatlands store carbon most effectively in long-term scales of millennia. However, many peatlands have been drained for peat extraction or agricultural use. This converts peatlands from sinks to sources of carbon, causing approx. 5% of the anthropogenic greenhouse effect and additional negative effects on other ecosystem services. Rewetting peatlands can mitigate climate change and may be combined with management in the form of paludiculture. Rewetted peatlands, however, do not equal their pristine ancestors and their ecological functioning is not understood. This holds true especially for groundwater-fed fens. Their functioning results from manifold interactions and can only be understood following an integrative approach of many relevant fields of science, which we merge in the interdisciplinary project WETSCAPES. Here, we address interactions among water transport and chemistry, primary production, peat formation, matter transformation and transport, microbial community, and greenhouse gas exchange using state of the art methods. We record data on six study sites spread across three common fen types (Alder forest, percolation fen, and coastal fen), each in drained and rewetted states. First results revealed that indicators reflecting more long-term effects like vegetation and soil chemistry showed a stronger differentiation between drained and rewetted states than variables with a more immediate reaction to environmental change, like greenhouse gas (GHG) emissions. Variations in microbial community composition explained differences in soil chemical data as well as vegetation composition and GHG exchange. We show the importance of developing an integrative understanding of managed fen peatlands and their ecosystem functioning.
Collapse
|
5
|
Li N, Zeng W, Wang B, Li S, Guo Y, Peng Y. Nitritation, nitrous oxide emission pathways and in situ microbial community in a modified University of Cape Town process. BIORESOURCE TECHNOLOGY 2019; 271:289-297. [PMID: 30290321 DOI: 10.1016/j.biortech.2018.09.107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 09/19/2018] [Accepted: 09/20/2018] [Indexed: 06/08/2023]
Abstract
Achieving nitritation is a prerequisite to promote nutrients removal and save energy, but emission of nitrous oxide as a greenhouse gas cannot be ignored. This study established the nitritation in a continuous-flow MUCT process and investigated the mechanism of N2O generation. The nitrite accumulation ratio (NAR) reached 95% by controlling the low DO of 0.3-0.5 mg/L and short HRT of 8 h. The 15N-isotope tracer experiment indicated that the percentage of nitrifier-denitrification (ND) pathway increased by 12.7% under the limited-aeration mode, improving the stable operating of nitritation. Meanwhile, the autotrophic anammox pathway increased with the contribution ratio of 14.7% to N2 emission under the nitritation mode. The 15N-DNA-SIP revealed that the Nitrosomonas executed the ND pathway and the Planctomycetes conducted the anammox process, respectively. The integration of autotrophic and heterotrophic process based on nitritation technique has potential to solve the carbon-limited issue for total nitrogen removal in mainstream WWTPs.
Collapse
Affiliation(s)
- Ning Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Wei Zeng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China.
| | - Baogui Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Shuaishuai Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Yu Guo
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
6
|
Storer K, Coggan A, Ineson P, Hodge A. Arbuscular mycorrhizal fungi reduce nitrous oxide emissions from N 2 O hotspots. THE NEW PHYTOLOGIST 2018; 220:1285-1295. [PMID: 29206293 PMCID: PMC6282961 DOI: 10.1111/nph.14931] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 10/26/2017] [Indexed: 05/05/2023]
Abstract
Nitrous oxide (N2 O) is a potent, globally important, greenhouse gas, predominantly released from agricultural soils during nitrogen (N) cycling. Arbuscular mycorrhizal fungi (AMF) form a mutualistic symbiosis with two-thirds of land plants, providing phosphorus and/or N in exchange for carbon. As AMF acquire N, it was hypothesized that AMF hyphae may reduce N2 O production. AMF hyphae were either allowed (AMF) or prevented (nonAMF) access to a compartment containing an organic matter and soil patch in two independent microcosm experiments. Compartment and patch N2 O production was measured both before and after addition of ammonium and nitrate. In both experiments, N2 O production decreased when AMF hyphae were present before inorganic N addition. In the presence of AMF hyphae, N2 O production remained low following ammonium application, but increased in the nonAMF controls. By contrast, negligible N2 O was produced following nitrate application to either AMF treatment. Thus, the main N2 O source in this system appeared to be via nitrification, and the production of N2 O was reduced in the presence of AMF hyphae. It is hypothesized that AMF hyphae may be outcompeting slow-growing nitrifiers for ammonium. This has significant global implications for our understanding of soil N cycling pathways and N2 O production.
Collapse
Affiliation(s)
- Kate Storer
- Department of BiologyUniversity of YorkWentworth WayYorkYO10 5DDUK
- Present address:
ADAS High MowthorpeDuggleby, MaltonNorth YorkshireYO17 8BPUK
| | - Aisha Coggan
- Department of BiologyUniversity of YorkWentworth WayYorkYO10 5DDUK
| | - Phil Ineson
- Department of BiologyUniversity of YorkWentworth WayYorkYO10 5DDUK
| | - Angela Hodge
- Department of BiologyUniversity of YorkWentworth WayYorkYO10 5DDUK
| |
Collapse
|
7
|
Bakken LR, Frostegård Å. Sources and sinks for N2
O, can microbiologist help to mitigate N2
O emissions? Environ Microbiol 2017; 19:4801-4805. [DOI: 10.1111/1462-2920.13978] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 10/30/2017] [Indexed: 11/27/2022]
Affiliation(s)
- Lars R. Bakken
- Faculty of Chemistry, Biotechnology and Food Science; Norwegian University of Life Sciences; Ås Norway
| | - Åsa Frostegård
- Faculty of Chemistry, Biotechnology and Food Science; Norwegian University of Life Sciences; Ås Norway
| |
Collapse
|
8
|
Duan H, Ye L, Erler D, Ni BJ, Yuan Z. Quantifying nitrous oxide production pathways in wastewater treatment systems using isotope technology - A critical review. WATER RESEARCH 2017; 122:96-113. [PMID: 28595125 DOI: 10.1016/j.watres.2017.05.054] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 05/01/2017] [Accepted: 05/25/2017] [Indexed: 06/07/2023]
Abstract
Nitrous oxide (N2O) is an important greenhouse gas and an ozone-depleting substance which can be emitted from wastewater treatment systems (WWTS) causing significant environmental impacts. Understanding the N2O production pathways and their contribution to total emissions is the key to effective mitigation. Isotope technology is a promising method that has been applied to WWTS for quantifying the N2O production pathways. Within the scope of WWTS, this article reviews the current status of different isotope approaches, including both natural abundance and labelled isotope approaches, to N2O production pathways quantification. It identifies the limitations and potential problems with these approaches, as well as improvement opportunities. We conclude that, while the capabilities of isotope technology have been largely recognized, the quantification of N2O production pathways with isotope technology in WWTS require further improvement, particularly in relation to its accuracy and reliability.
Collapse
Affiliation(s)
- Haoran Duan
- Advanced Water Management Centre, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Liu Ye
- School of Chemical Engineering, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Dirk Erler
- Centre for Coastal Biogeochemistry, School of Environmental Science and Engineering, Southern Cross University, Lismore, NSW 2480 Australia
| | - Bing-Jie Ni
- Advanced Water Management Centre, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Zhiguo Yuan
- Advanced Water Management Centre, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia.
| |
Collapse
|
9
|
Hink L, Lycus P, Gubry-Rangin C, Frostegård Å, Nicol GW, Prosser JI, Bakken LR. Kinetics of NH 3 -oxidation, NO-turnover, N 2 O-production and electron flow during oxygen depletion in model bacterial and archaeal ammonia oxidisers. Environ Microbiol 2017; 19:4882-4896. [PMID: 28892283 DOI: 10.1111/1462-2920.13914] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 08/26/2017] [Indexed: 11/28/2022]
Abstract
Ammonia oxidising bacteria (AOB) are thought to emit more nitrous oxide (N2 O) than ammonia oxidising archaea (AOA), due to their higher N2 O yield under oxic conditions and denitrification in response to oxygen (O2 ) limitation. We determined the kinetics of growth and turnover of nitric oxide (NO) and N2 O at low cell densities of Nitrosomonas europaea (AOB) and Nitrosopumilus maritimus (AOA) during gradual depletion of TAN (NH3 + NH4+) and O2 . Half-saturation constants for O2 and TAN were similar to those determined by others, except for the half-saturation constant for ammonium in N. maritimus (0.2 mM), which is orders of magnitudes higher than previously reported. For both strains, cell-specific rates of NO turnover and N2 O production reached maxima near O2 half-saturation constant concentration (2-10 μM O2 ) and decreased to zero in response to complete O2 -depletion. Modelling of the electron flow in N. europaea demonstrated low electron flow to denitrification (≤1.2% of the total electron flow), even at sub-micromolar O2 concentrations. The results corroborate current understanding of the role of NO in the metabolism of AOA and suggest that denitrification is inconsequential for the energy metabolism of AOB, but possibly important as a route for dissipation of electrons at high ammonium concentration.
Collapse
Affiliation(s)
- Linda Hink
- School of Biological Sciences, University of Aberdeen, Cruickshank Building, Aberdeen, AB24 3UU, UK
| | - Pawel Lycus
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, 1432, Ås, Norway
| | - Cécile Gubry-Rangin
- School of Biological Sciences, University of Aberdeen, Cruickshank Building, Aberdeen, AB24 3UU, UK
| | - Åsa Frostegård
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, 1432, Ås, Norway
| | - Graeme W Nicol
- Laboratoire Ampère, École Centrale de Lyon, Université de Lyon, Ecully CEDEX 69134, France
| | - James I Prosser
- School of Biological Sciences, University of Aberdeen, Cruickshank Building, Aberdeen, AB24 3UU, UK
| | - Lars R Bakken
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, 1432, Ås, Norway
| |
Collapse
|
10
|
Rohe L, Well R, Lewicka-Szczebak D. Use of oxygen isotopes to differentiate between nitrous oxide produced by fungi or bacteria during denitrification. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2017; 31:1297-1312. [PMID: 28556299 DOI: 10.1002/rcm.7909] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 05/23/2017] [Accepted: 05/23/2017] [Indexed: 06/07/2023]
Abstract
RATIONALE Fungal denitrifiers can contribute substantially to N2 O emissions from arable soil and show a distinct site preference for N2 O (SP(N2 O)). This study sought to identify another process-specific isotopic tool to improve precise identification of N2 O of fungal origin by mass spectrometric analysis of the N2 O produced. METHODS Three pure bacterial and three fungal species were incubated under denitrifying conditions in treatments with natural abundance and stable isotope labelling to analyse the N2 O produced. Combining different applications of isotope ratio mass spectrometry enabled us to estimate the oxygen (O) exchange accelerated by denitrifying enzymes and the ongoing microbial pathway in parallel. This experimental set-up allowed the determination of δ18 O(N2 O) values and isotopic fractionation of O, as well as SP(N2 O) values, as a perspective to differentiate between microbial denitrifiers. RESULTS Oxygen exchange during N2 O production was lower for bacteria than for fungi, differed between species, and depended also on incubation time. Apparent O isotopic fractionation during denitrification was in a similar range for bacteria and fungi, but application of the fractionation model indicated that different enzymes in bacteria and fungi were responsible for O exchange. This difference was associated with different isotopic fractionation for bacteria and fungi. CONCLUSIONS δ18 O(N2 O) values depend on isotopic fractionation and isotopic fractionation may differ between processes and organism groups. By comparing SP(N2 O) values, O exchange and the isotopic signature of precursors, we propose here a novel tool for differentiating between different sources of N2 O.
Collapse
Affiliation(s)
- Lena Rohe
- Thünen Institute of Climate-Smart Agriculture, Braunschweig, Germany
| | - Reinhard Well
- Thünen Institute of Climate-Smart Agriculture, Braunschweig, Germany
| | | |
Collapse
|
11
|
Shi X, Hu HW, Zhu-Barker X, Hayden H, Wang J, Suter H, Chen D, He JZ. Nitrifier-induced denitrification is an important source of soil nitrous oxide and can be inhibited by a nitrification inhibitor 3,4-dimethylpyrazole phosphate. Environ Microbiol 2017; 19:4851-4865. [DOI: 10.1111/1462-2920.13872] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 07/24/2017] [Indexed: 02/03/2023]
Affiliation(s)
- Xiuzhen Shi
- Faculty of Veterinary and Agricultural Sciences; The University of Melbourne; Parkville Victoria 3010 Australia
| | - Hang-Wei Hu
- Faculty of Veterinary and Agricultural Sciences; The University of Melbourne; Parkville Victoria 3010 Australia
| | - Xia Zhu-Barker
- Biogeochemistry and Nutrient Cycling Laboratory, Department of Land, Air and Water Resources; University of California; Davis CA 95616 USA
| | - Helen Hayden
- Department of Economic Development; Jobs, Transport and Resources, AgriBio, 5 Ring Rd; Bundoora Victoria 3083 Australia
| | - Juntao Wang
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-environmental Sciences; Chinese Academy of Sciences; Beijing 100085 China
| | - Helen Suter
- Faculty of Veterinary and Agricultural Sciences; The University of Melbourne; Parkville Victoria 3010 Australia
| | - Deli Chen
- Faculty of Veterinary and Agricultural Sciences; The University of Melbourne; Parkville Victoria 3010 Australia
| | - Ji-Zheng He
- Faculty of Veterinary and Agricultural Sciences; The University of Melbourne; Parkville Victoria 3010 Australia
| |
Collapse
|
12
|
DeVries SL, Loving M, Li X, Zhang P. The effect of ultralow-dose antibiotics exposure on soil nitrate and N2O flux. Sci Rep 2015; 5:16818. [PMID: 26606964 PMCID: PMC4660347 DOI: 10.1038/srep16818] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 10/20/2015] [Indexed: 11/16/2022] Open
Abstract
Exposure to sub-inhibitory concentrations of antibiotics has been shown to alter the metabolic activity of micro-organisms, but the impact on soil denitrification and N2O production has rarely been reported. In this study, incubation and column transport experiments were conducted on soils exposed to as many as four antibiotics in the ng · kg(-1) range (several orders of magnitude below typical exposure rates) to evaluate the impact of ultralow dose exposure on net nitrate losses and soil N2O flux over time. Under anaerobic incubation conditions, three antibiotics produced statistically significant dose response curves in which denitrification was stimulated at some doses and inhibited at others. Sulfamethoxazole in particular had a stimulatory effect at ultralow doses, an effect also evidenced by a near 17% increase in nitrate removal during column transport. Narasin also showed evidence of stimulating denitrification in anaerobic soils within 3 days of exposure, which is concurrent to a statistically significant increase in N2O flux measured over moist soils exposed to similar doses. The observation that even ultralow levels of residual antibiotics may significantly alter the biogeochemical cycle of nitrogen in soil raises a number of concerns pertaining to agriculture, management of nitrogen pollution, and climate change, and warrants additional investigations.
Collapse
Affiliation(s)
- Stephanie L. DeVries
- Department of Earth and Atmospheric Sciences, City College of New York, 160 Convent Avenue, New York, NY, 10031, USA
- Department of Earth and Environmental Sciences, Graduate School and University Center, City University of New York, 365 5 Avenue, New York, NY, 10016, USA
| | - Madeline Loving
- Department of Earth and Atmospheric Sciences, City College of New York, 160 Convent Avenue, New York, NY, 10031, USA
| | - Xiqing Li
- Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Pengfei Zhang
- Department of Earth and Atmospheric Sciences, City College of New York, 160 Convent Avenue, New York, NY, 10031, USA
- Department of Earth and Environmental Sciences, Graduate School and University Center, City University of New York, 365 5 Avenue, New York, NY, 10016, USA
| |
Collapse
|
13
|
Using stable isotopes to follow excreta N dynamics and N2O emissions in animal production systems. Animal 2013; 7 Suppl 2:418-26. [DOI: 10.1017/s1751731113000773] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|