1
|
Jiang T, Song Y, Chang L, Huang Q, He W, Liu H. Sustainable active packaging developed using starch-based foam incorporating 1-Methylcyclopropene@α-Cyclodextrin. Carbohydr Polym 2025; 347:122696. [PMID: 39486937 DOI: 10.1016/j.carbpol.2024.122696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/06/2024] [Accepted: 08/30/2024] [Indexed: 11/04/2024]
Abstract
The preservation of fruit freshness during long-distance transportation frequently faces significant challenges, especially a high risk of spoilage. 1-Methylcyclopropene (1-MCP), an effective ethylene inhibitor, is widely used to slow down fruit ripening and maintain freshness. However, achieving a controllable release of 1-MCP is challenging, and traditional carrier materials such as paper, chitosan films, and microcapsules have proven unsatisfactory. Here, we introduced an innovative sustainable packaging featuring a "sandwich" structure based on starch-based foam sheets. The hydrophilic properties and porous structure of the foam ensure the controllable and slow release of 1-MCP. Additionally, its mechanical durability provides a cushioning role to minimize physical damage to fruits during transport process. This method achieves a significant reduction in ethylene production and respiration rates by up to 60.49 % and 57.50 % respectively, leading to an extension of the shelf life of climacteric fruits by 5-10 days. The novel active packaging not only effectively prolongs the shelf life and improves the quality of fruit but is also economical and environmentally friendly due to its biodegradable starch-based composition.
Collapse
Affiliation(s)
- Tianyu Jiang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Advanced Materials Thrust, Function Hub, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, China
| | - Yuqing Song
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Sino-Singapore International Joint Research Institute, Knowledge City, Guangzhou 510663, China
| | - Limeng Chang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Qiang Huang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Wanlin He
- Center for Immuno-Oncology, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, UK.
| | - Hongsheng Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Sino-Singapore International Joint Research Institute, Knowledge City, Guangzhou 510663, China.
| |
Collapse
|
2
|
Zhao C, Bai H, Li C, Pang Z, Xuan L, Lv D, Niu S. Genome-Wide Identification of the DOF Gene Family in Kiwifruit ( Actinidia chinensis) and Functional Validation of AcDOF22 in Response to Drought Stress. Int J Mol Sci 2024; 25:9103. [PMID: 39201789 PMCID: PMC11354610 DOI: 10.3390/ijms25169103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/18/2024] [Accepted: 08/21/2024] [Indexed: 09/03/2024] Open
Abstract
DNA-binding one zinc finger (DOF) transcription factors are crucial plant-specific regulators involved in growth, development, signal transduction, and abiotic stress response generation. However, the genome-wide identification and characterization of AcDOF genes and their regulatory elements in kiwifruit (Actinidia chinensis) has not been thoroughly investigated. In this study, we screened the kiwifruit genome database and identified 42 AcDOF genes (AcDOF1 to AcDOF42). Phylogenetic analysis facilitated the categorization of these genes into five subfamilies (DOF-a, DOF-b, DOF-c, DOF-d, and DOF-e). We further analyzed the motifs, conserved domains, gene structures, and collinearity of the AcDOFgene family. Gene ontology (GO) enrichment analysis indicated significant enrichment in the "flower development" term and the "response to abiotic stress" category. Promoter prediction analysis revealed numerous cis-regulatory elements related to responses to light, hormones, and low-temperature and drought stress in AcDOF promoters. RNA-seq expression profiles demonstrated the tissue-specific expression of AcDOF genes. Quantitative real-time PCR results showed that six selected genes (AcDOF04, AcDOF09, AcDOF11, AcDOF13, AcDOF21, and AcDOF22) were differentially induced by abscisic acid (ABA), methyl jasmonate (MeJA), and cold, salt, and drought stresses, with AcDOF22 specifically expressed at high levels in drought-tolerant cultivars. Further experiments indicated that transient AcDOF22 overexpression in kiwifruit leaf disks reduced water loss and chlorophyll degradation. Additionally, AcDOF22 was localized to the nucleus and exhibited transcriptional activation, enhancing drought resistance by activating the downstream drought marker gene AcDREB2A. These findings lay the foundation for elucidating the molecular mechanisms of drought resistance in kiwifruit and offer new insights into drought-resistant breeding.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shuaike Niu
- Biotechnology Laboratory, Shijiazhuang Institute of Pomology, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 05000, China; (C.Z.); (H.B.); (C.L.); (Z.P.); (L.X.); (D.L.)
| |
Collapse
|
3
|
Naoom AY, Kang W, Ghanem NF, Abdel-Daim MM, El-Demerdash FM. Actinidia deliciosa as a complemental therapy against nephropathy and oxidative stress in diabetic rats. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2023.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
|
4
|
Shi M, Gao M, Sun H, Yang W, Zhao H, Zhang L, Xu H. Exogenous 2-keto-L-gulonic Acid Supplementation as a Novel Approach to Enhancing L-ascorbic Acid Biosynthesis in Zebrafish ( Danio rerio). Animals (Basel) 2023; 13:2502. [PMID: 37570309 PMCID: PMC10417347 DOI: 10.3390/ani13152502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/23/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
L-ascorbic acid (ASA) is a micronutrient that is essential for reproduction, growth, and immunity in animals. Due to the loss of enzyme L-gulono-1,4-lactone oxidase (GLO), most aquatic animals lack the capacity for ASA biosynthesis and therefore require supplementation with exogenous ASA. Recent studies have shown that 2-keto-L-gulonic acid (2KGA), a novel potential precursor of ASA, can enhance plant growth and improve stress resistance by promoting the synthesis and accumulation of ASA. Our hypothesis is that 2-keto-L-gulonic acid (2KGA) plays a similar role in aquatic animals. To investigate this, we conducted an in vivo trial to examine the effects of exogenous 2KGA supplementation on ASA metabolism and growth of zebrafish (Danio rerio). Zebrafish were categorized into groups based on their dietary intake, including a basal diet (CK group), a basal diet supplemented with 800 mg/kg ASA (ASA group), and 800 mg/kg 2KGA-Na (2KGA group) for a duration of three weeks. The results demonstrated a significant increase in ASA content in zebrafish treated with 2KGA (34.82% increase, p < 0.05) compared to the CK group, reaching a consistent level with the ASA group (39.61% increase, p < 0.05). Furthermore, the supplementation of 2KGA significantly improved growth parameters relevant to zebrafish (specific growth rate increased by 129.04%, p < 0.05) and enhanced feed utilization (feed intake increased by 15.65%, p < 0.05). Positive correlations were observed between growth parameters, feed utilization, whole-body chemical composition, and ASA content. Our findings suggest that supplementation with exogenous 2KGA can serve as a novel approach for elevating ASA synthesis in aquatic animals, and further investigation of its underlying mechanism is required.
Collapse
Affiliation(s)
- Meijun Shi
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Mingfu Gao
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
- Modern Agricultural Science and Technology Innovation Center of Kuqa City, Kuqa 842000, China
| | - Hao Sun
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
- Modern Agricultural Science and Technology Innovation Center of Kuqa City, Kuqa 842000, China
| | - Weichao Yang
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
- Modern Agricultural Science and Technology Innovation Center of Kuqa City, Kuqa 842000, China
| | - Hongxia Zhao
- Modern Agricultural Science and Technology Innovation Center of Kuqa City, Kuqa 842000, China
| | - Lixin Zhang
- State Key Laboratory of Bioreactor Engineering and School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Hui Xu
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
- Modern Agricultural Science and Technology Innovation Center of Kuqa City, Kuqa 842000, China
| |
Collapse
|
5
|
Woelber JP, Reichenbächer K, Groß T, Vach K, Ratka-Krüger P, Bartha V. Dietary and Nutraceutical Interventions as an Adjunct to Non-Surgical Periodontal Therapy-A Systematic Review. Nutrients 2023; 15:nu15061538. [PMID: 36986267 PMCID: PMC10052653 DOI: 10.3390/nu15061538] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/16/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
The aim of this study was to conduct a systematic literature review on the influence of dietary and nutraceutical interventions as an adjunct to non-surgical periodontal therapy (NSPT). A literature search for randomized, controlled clinical trials (RCTs) was performed in PubMed, the Cochrane Library, and the Web of Science. Trial inclusion criteria included the application of a defined nutritional intervention (food, beverages, or supplements) adjunctive to NSPT compared to NSPT alone with at least one measured periodontal parameter (pocket probing depths (PPD) or clinical attachment level (CAL)). Of 462 search results, 20 clinical trials relating to periodontitis and nutritional interventions were identified, of which, in total, 14 studies could be included. Eleven studies examined supplements containing lycopene, folate, chicory extract, juice powder, micronutrients and plant extracts, omega-3 fatty acids, vitamin E, or vitamin D. Three studies examined food-based interventions (kiwifruit, green or oolong tea). Due to limited information on within-group differences in the studies, results were descriptively analyzed. A significant positive effect on periodontal parameters (PPD, bleeding on probing) was found for vitamin E, chicory extract, juice powder, green tea, and oolong tea. Heterogeneous effects were found for lycopene, folate, omega-3 fatty acids, and vitamin D. No effects on PPD were found for adjunct kiwifruit (in combination with NSPT). Risk of bias via RoB2 revealed a low risk of bias with some concerns. There was a high heterogeneity in the type of nutritional interventions. The adjunctive use of various supplements and green/oolong tea led to positive and significant effects of the nutritional interventions on clinical periodontal outcome parameters. In the context of non-surgical periodontal therapy, an adjunctive intake of micronutrients, omega-3 fatty acids, green/oolong tea, and polyphenols and flavonoids could be beneficial. Long-term clinical studies with full data reports (especially within-group differences) are needed for conducting a meta-analysis.
Collapse
Affiliation(s)
- Johan Peter Woelber
- Department for Operative Dentistry and Periodontology, Faculty of Medicine, University of Freiburg, Hugstetter Str. 75, 79106 Freiburg, Germany
| | - Katharina Reichenbächer
- Department for Operative Dentistry and Periodontology, Faculty of Medicine, University of Freiburg, Hugstetter Str. 75, 79106 Freiburg, Germany
| | - Tara Groß
- Department for Operative Dentistry and Periodontology, Faculty of Medicine, University of Freiburg, Hugstetter Str. 75, 79106 Freiburg, Germany
| | - Kirstin Vach
- Institute of Medical Biometry and Statistics, Faculty of Medicine, University of Freiburg, Zinkmattenstr. 6A, 79108 Freiburg, Germany
| | - Petra Ratka-Krüger
- Department for Operative Dentistry and Periodontology, Faculty of Medicine, University of Freiburg, Hugstetter Str. 75, 79106 Freiburg, Germany
| | - Valentin Bartha
- Department for Conservative Dentistry, University of Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| |
Collapse
|
6
|
Ghalibaf MHE, Kianian F, Beigoli S, Behrouz S, Marefati N, Boskabady M, Boskabady MH. The effects of vitamin C on respiratory, allergic and immunological diseases: an experimental and clinical-based review. Inflammopharmacology 2023; 31:653-672. [PMID: 36849854 PMCID: PMC9970132 DOI: 10.1007/s10787-023-01169-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 03/01/2023]
Abstract
Vitamin C is used in modern medicine supplements for treatment of various disorders associated with oxidative stress, inflammation and immune dysregulation. In this review article, experimental and clinical results regarding the effects of vitamin C on respiratory immunologic, and allergic diseases are reviewed. Various databases and appropriate keywords are used to search the effect of vitamin C on respiratory diseases until the end of May 2022. Books, theses and articles were included. These studies assessed the effects of vitamin C on respiratory disorders including asthma, chronic obstructive pulmonary disease (COPD), lung infection and lung cancer. Vitamin C showed relaxant effect on tracheal smooth muscle via various mechanisms. The preventive effects of vitamin C were mediated by antioxidant, immunomodulatory and anti-inflammatory mechanisms in the experimental animal models of different respiratory diseases. Some clinical studies also indicated the effect of vitamin C on lung cancer and lung infections. Therefore, vitamin C could be used a preventive and/or relieving therapy in respiratory diseases.
Collapse
Affiliation(s)
- Mohammad Hossein Eshaghi Ghalibaf
- Applied Biomedical Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Post Code 9177948564, IR, Iran
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Farzaneh Kianian
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sima Beigoli
- Applied Biomedical Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Post Code 9177948564, IR, Iran
| | - Sepideh Behrouz
- Applied Biomedical Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Post Code 9177948564, IR, Iran
| | - Narges Marefati
- Department of Physiology and Medical Physics, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Marzie Boskabady
- Dental Materials Research Center and Department of Pediatric Dentistry, School of Dentistry, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pediatric Dentistry, School of Dentistry, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Hossein Boskabady
- Applied Biomedical Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Post Code 9177948564, IR, Iran.
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
7
|
Dujmović M, Radman S, Opačić N, Fabek Uher S, Mikuličin V, Voća S, Šic Žlabur J. Edible Flower Species as a Promising Source of Specialized Metabolites. PLANTS (BASEL, SWITZERLAND) 2022; 11:2529. [PMID: 36235395 PMCID: PMC9570977 DOI: 10.3390/plants11192529] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 01/22/2023]
Abstract
Eating habits are changing over time and new innovative nutrient-rich foods will play a great role in the future. Awareness of the importance of a healthy diet is growing, so consumers are looking for new creative food products rich in phytochemicals, i.e., specialized metabolites (SM). The consumption of fruits, vegetables and aromatic species occupies an important place in the daily diet, but different edible flower species are still neglected and unexplored. Flowers are rich in SM, have strong antioxidant capacities and also possess significant functional and biological values with favorable impacts on human health. The main aim of this study was to evaluate the content of SM and the antioxidant capacities of the edible flower species: Calendula officinalis L. (common marigold), Tagetes erecta L. (African marigold), Tropaeolum majus L. (nasturtium), Cucurbita pepo L. convar. giromontiina (zucchini) and Centaurea cyanus L. (cornflower). The obtained results showed the highest content of ascorbic acid (129.70 mg/100 g fw) and anthocyanins (1012.09 mg/kg) recorded for cornflower, phenolic compounds (898.19 mg GAE/100 g fw) and carotenoids (0.58 mg/g) for African marigold and total chlorophylls (0.75 mg/g) for common marigold. In addition to the esthetic impression of the food, they represent an important source of SM and thus can have a significant impact if incorporated in the daily diet.
Collapse
Affiliation(s)
- Mia Dujmović
- Department of Agricultural Technology, Storage and Transport, University of Zagreb Faculty of Agriculture, Svetošimunska cesta 25, 10000 Zagreb, Croatia
| | - Sanja Radman
- Department of Vegetable Crops, University of Zagreb Faculty of Agriculture, Svetošimunska cesta 25, 10000 Zagreb, Croatia
| | - Nevena Opačić
- Department of Vegetable Crops, University of Zagreb Faculty of Agriculture, Svetošimunska cesta 25, 10000 Zagreb, Croatia
| | - Sanja Fabek Uher
- Department of Vegetable Crops, University of Zagreb Faculty of Agriculture, Svetošimunska cesta 25, 10000 Zagreb, Croatia
| | - Vida Mikuličin
- Department of Agricultural Technology, Storage and Transport, University of Zagreb Faculty of Agriculture, Svetošimunska cesta 25, 10000 Zagreb, Croatia
| | - Sandra Voća
- Department of Agricultural Technology, Storage and Transport, University of Zagreb Faculty of Agriculture, Svetošimunska cesta 25, 10000 Zagreb, Croatia
| | - Jana Šic Žlabur
- Department of Agricultural Technology, Storage and Transport, University of Zagreb Faculty of Agriculture, Svetošimunska cesta 25, 10000 Zagreb, Croatia
| |
Collapse
|
8
|
Antioxidative Properties and Phenolic Profile of the Core, Pulp and Peel of Commercialized Kiwifruit by LC-ESI-QTOF-MS/MS. Processes (Basel) 2022. [DOI: 10.3390/pr10091811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The kiwifruit is cultivated globally due to its diversity of phytochemicals, especially phenolic compounds, which have antioxidant, anti-inflammatory and anti-cancer medical effects. However, only the pulp of the kiwifruit is consumed, while the peels and cores—which are also rich in phytochemicals—are usually wasted. Meanwhile, detailed information on the comparison among the three parts is still limited. In this study, the antioxidant potentials in the core, pulp, and peel of the three most commercialized kiwifruit cultivars (Australian-grown Hayward kiwifruit, New Zealand-grown Zesy002 kiwifruit, and New Zealand-grown organic Hayward kiwifruit) were selected. Their antioxidant capacities were tested, and their phenolic profiles were identified and characterized by liquid chromatography-electrospray ionization quadrupole time-of-flight mass spectrometry (LC-ESI-QTOF-MS/MS). The antioxidant results showed that the peel of New Zealand-grown organic Hayward kiwifruit contained the highest total phenolic content (9.65 mg gallic acid equivalent (GAE) mg/g) and total antioxidant capacity (4.43 mg ascorbic acid equivalent (AAE) mg/g), respectively. In addition, the antioxidant capacity of the peel is generally higher than that of the pulp and cores in all species, especially ABTS (2,2-Azino-bis-3ethylbenzothiazoline-6-sulfonic acid (ABTS) radical scavenging ability), ranging from 13.25 mg AAE/g to 18.31 mg AAE/g. The LC-ESI-QTOF-MS/MS tentatively identified the phenolic compounds present in the three kiwifruit species, including 118 unique compounds in kiwifruit peel, 12 unique compounds in the kiwifruit cores, and three unique compounds in kiwifruit pulp. The comprehensive characterization of the phenolics in the kiwifruits’ parts indicates the importance of their waste part as a promising source of phenolics with antioxidant properties. Therefore, this study can guide the industry with meaningful information on kiwifruit waste, and can provide it with the utilization of food and pharmacological aspects.
Collapse
|
9
|
Peng M, Gao Z, Liao Y, Guo J, Shan Y. Development of Functional Kiwifruit Jelly with chenpi (FKJ) by 3D Food Printing Technology and Its Anti-Obesity and Antioxidant Potentials. Foods 2022; 11:foods11131894. [PMID: 35804710 PMCID: PMC9265498 DOI: 10.3390/foods11131894] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/20/2022] [Accepted: 06/23/2022] [Indexed: 11/16/2022] Open
Abstract
With the growing popularity of the concept of healthy diet, modern obesity treatment is gradually shifting from surgical or pharmacological treatment to nutritional intervention. As a safe and effective measure, natural product interventions are a potential strategy of obesity management. The present study aimed to develop a kind of functional food rich in bioactive compounds (chenpi, kiwifruit, and pectin as raw materials) and investigate their bioactive effects on a mouse model. For development of functional kiwifruit jelly with chenpi (FKJ), the results of single-factor and response surface experiments showed that the optimized formulation was composed of a 30.26% addition of chenpi, 35% addition of kiwifruit juice, and 2.88% addition of pectin. The FKJ obtained with the optimal formulation could be used as a 3D printing raw material to print the desired food shapes successfully. For bioactivity evaluation of FKJ, the results with a mouse model showed that the food intake, liver weight, and adipose tissue weight were significantly decreased after administration of FKJ with dose-dependent effect compared to the CON group (p < 0.05). Meanwhile, the serum levels of several inflammatory factors (TG, IL-6, and TNF-α) were decreased and the activities of several antioxidant-related enzymes (SOD, GSH-PX, and CAT) were increased. In short, a functional kiwifruit jelly with chenpi was developed in this study. It is a functional snack food rich in active phenolic compounds, low in calories, with antioxidant and anti-inflammatory activity, and prevents fat accumulation. FKJ could well meet the needs of modern people for nutrition and health and also promote the processing and utilization of natural products, and has good development prospects in the functional food industry.
Collapse
Affiliation(s)
- Mingfang Peng
- Key Laboratory of Agro-Products Processing, Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs of China, Beijing 100193, China;
- International Joint Lab on Fruits & Vegetables Processing, Quality and Safety, Hunan Key Lab of Fruits & Vegetables Storage, Processing, Quality and Safety, Hunan Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China;
- Longping Branch, Graduate School of Hunan University, Changsha 410125, China
| | - Zhipeng Gao
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China;
| | - Yanfang Liao
- International Joint Lab on Fruits & Vegetables Processing, Quality and Safety, Hunan Key Lab of Fruits & Vegetables Storage, Processing, Quality and Safety, Hunan Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China;
- Longping Branch, Graduate School of Hunan University, Changsha 410125, China
| | - Jiajing Guo
- Key Laboratory of Agro-Products Processing, Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs of China, Beijing 100193, China;
- International Joint Lab on Fruits & Vegetables Processing, Quality and Safety, Hunan Key Lab of Fruits & Vegetables Storage, Processing, Quality and Safety, Hunan Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China;
- Correspondence: (J.G.); (Y.S.)
| | - Yang Shan
- International Joint Lab on Fruits & Vegetables Processing, Quality and Safety, Hunan Key Lab of Fruits & Vegetables Storage, Processing, Quality and Safety, Hunan Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China;
- Longping Branch, Graduate School of Hunan University, Changsha 410125, China
- Correspondence: (J.G.); (Y.S.)
| |
Collapse
|
10
|
In vitro bioaccessibilities of vitamin C in baby biscuits prepared with or without UHT cow’s milk. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Dynamic Changes in Ascorbic Acid Content during Fruit Development and Ripening of Actinidia latifolia (an Ascorbate-Rich Fruit Crop) and the Associated Molecular Mechanisms. Int J Mol Sci 2022; 23:ijms23105808. [PMID: 35628618 PMCID: PMC9146223 DOI: 10.3390/ijms23105808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/13/2022] [Accepted: 05/20/2022] [Indexed: 11/16/2022] Open
Abstract
Actinidia latifolia is one of the very few kiwifruit genotypes with extremely high ascorbic acid (AsA) content. However, a transcriptome atlas of this species is lacking. The accumulation of AsA during fruit development and ripening and the associated molecular mechanisms are still poorly understood. Herein, dynamic changes in AsA content at six different stages of A. latifolia fruit development and ripening were determined. AsA content of A. latifolia fruit reached 1108.76 ± 35.26 mg 100 g−1 FW at full maturity. A high-quality, full-length (FL) transcriptome of A. latifolia was successfully constructed for the first time using third-generation sequencing technology. The transcriptome comprises 326,926 FL non-chimeric reads, 15,505 coding sequences, 2882 transcription factors, 18,797 simple sequence repeats, 3328 long noncoding RNAs, and 231 alternative splicing events. The genes involved in AsA biosynthesis and recycling pathways were identified and compared with those in different kiwifruit genotypes. The correlation between the AsA content and expression levels of key genes in AsA biosynthesis and recycling pathways was revealed. LncRNAs that participate in AsA-related gene expression regulation were also identified. Gene expression patterns in AsA biosynthesis and metabolism exhibited a trend similar to that of AsA accumulation. Overall, this study paves the way for genetic engineering to develop kiwifruits with super-high AsA content.
Collapse
|
12
|
El-Demerdash FM, Talaat Y, Ghanem NF, Kang W. Actinidia deliciosa Mitigates Oxidative Stress and Changes in Pancreatic α-, β-, and δ-Cells and Immunohistochemical and Histological Architecture in Diabetic Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:5224207. [PMID: 35529919 PMCID: PMC9068294 DOI: 10.1155/2022/5224207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/15/2022] [Accepted: 04/18/2022] [Indexed: 12/30/2022]
Abstract
The present study evaluated the antioxidant capacity and antidiabetic effect of Actinidia deliciosa in diabetic rats. Rats were grouped as follows: control, Actinidia deliciosa aqueous extract (ADAE, 1 g/kg, daily and orally), streptozotocin (STZ, 50 mg/kg BW, single intraperitoneal dose), and STZ plus ADAE, respectively. Twenty-eight components were detected by GC-MS analysis with high phenolic contents and high DPPH scavenging activity. In vivo results revealed that rats treated with STZ showed a highly significant elevation in blood glucose and a decrease in insulin hormone levels. Thiobarbituric acid-reactive substances and hydrogen peroxide levels were elevated, while bodyweight, enzymatic, and nonenzymatic antioxidants were significantly decreased. Furthermore, histopathological and immunohistochemical insulin expression, besides ultrastructure microscopic variations (β-cells, α-cells, and δ-cells), were seen in pancreas sections supporting the obtained biochemical changes. Otherwise, rats supplemented with ADAE alone showed an improved antioxidant status and declined lipid peroxidation. Moreover, diabetic rats augmented with ADAE showed significant modulation in oxidative stress markers and different pancreatic tissue investigations compared to diabetic ones. Conclusively, ADAE has a potent antioxidant and hypoglycemic influence that may be utilized as a health-promoting complementary therapy in diabetes mellitus.
Collapse
Affiliation(s)
- Fatma M. El-Demerdash
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Yousra Talaat
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Nora F. Ghanem
- Department of Zoology, Faculty of Science, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| | - Wenyi Kang
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China
| |
Collapse
|
13
|
Electrochemical Detection of Ascorbic Acid in Oranges at MWCNT-AONP Nanocomposite Fabricated Electrode. NANOMATERIALS 2022; 12:nano12040645. [PMID: 35214973 PMCID: PMC8877794 DOI: 10.3390/nano12040645] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/07/2022] [Accepted: 02/11/2022] [Indexed: 01/22/2023]
Abstract
Ascorbic acid (AA) is an essential vitamin in the body, influencing collagen formation, as well as norepinephrine, folic acids, tryptophan, tyrosine, lysine, and neuronal hormone metabolism. This work reports on electrochemical detection of ascorbic acid (AA) in oranges using screen-print carbon electrodes (SPCEs) fabricated with multi-walled carbon nanotube- antimony oxide nanoparticle (MWCNT-AONP) nanocomposite. The nanocomposite-modified electrode displayed enhanced electron transfer and a better electrocatalytic reaction towards AA compared to other fabricated electrodes. The current response at the nanocomposite-modified electrode was four times bigger than the bare electrode. The sensitivity and limit of detection (LOD) at the nanocomposite modified electrode was 0.3663 [AA]/µM and 140 nM, respectively, with linearity from 0.16–0.640 μM and regression value R2 = 0.985, using square wave voltammetry (SWV) for AA detection. Two well-separated oxidation peaks were observed in a mixed system containing AA and serotonin (5-HT); and the sensitivity and LOD were 0.0224 [AA]/µA, and 5.85 µΜ, respectively, with a concentration range from 23 to 100 µM (R2 = 0.9969) for AA detection. The proposed sensor outperformed other AA sensors reported in the literature. The fabricated electrode showed great applicability with excellent recoveries ranging from 99 to 107 %, with a mean relative standard deviation (RSD) value of 3.52 % (n = 3) towards detecting AA in fresh oranges.
Collapse
|
14
|
Kinugasa S, Hidaka S, Tanaka S, Izumi E, Zaima N, Moriyama T. Kiwifruit defense protein, kiwellin (Act d 5) percutaneously sensitizes mouse models through the epidermal application of crude kiwifruit extract. Food Nutr Res 2021; 65:7610. [PMID: 34776830 PMCID: PMC8559447 DOI: 10.29219/fnr.v65.7610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 08/22/2021] [Accepted: 08/26/2021] [Indexed: 11/29/2022] Open
Abstract
Background Kiwifruit is a popular fruit consumed worldwide and is also used as a cosmetic ingredient. However, it is known to cause allergic reactions in humans. Recent studies have suggested an association between food allergy and food allergens entering the body via the skin. However, percutaneously sensitizing kiwifruit allergens have not been identified in human studies or in animal models. Objective This study aimed to identify kiwifruit proteins that percutaneously sensitized mice through the epidermal application of crude extracts from green and gold kiwifruit on the dorsal skin, and serum IgE and IgG1 levels were used as sensitization markers. Design BALB/c mice were back-shaved and their skin was exposed to crude extracts from green and gold kiwifruit that contained sodium dodecyl sulfate. Specific IgE and IgG1 antibodies generated and secreted in response to antigens were measured using enzyme-linked immunosorbent assay or immunoblotting. Results Skin exposure to kiwifruit extract induced an increase in the levels of kiwifruit-specific IgE and IgG1, which are helper T cell 2-related allergenic antibodies in mice. These antibodies reacted with 18, 23, and 24 kDa proteins found in both green and gold kiwifruits. Thus, three percutaneously sensitizing allergens were identified and purified. Their amino acid sequences partially matched with that of kiwellin (Act d 5). Discussion and conclusion Kiwellin has been identified as a plant defense-related protein. Interestingly, many plant allergens are biodefense-related proteins belonging to the pathogenesis-related protein family. Kiwellin, which was discovered to be a transdermal sensitizing antigen, might also be categorized as a biodefense-related protein. This study is the first to identify kiwellin (Act d 5) as a percutaneously sensitizing kiwifruit allergen in a mouse model.
Collapse
Affiliation(s)
- Serina Kinugasa
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Kindai University, Nara, Japan
| | - Shota Hidaka
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Kindai University, Nara, Japan
| | - Serina Tanaka
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Kindai University, Nara, Japan
| | - Eri Izumi
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Kindai University, Nara, Japan
| | - Nobuhiro Zaima
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Kindai University, Nara, Japan.,Agricultural Technology and Innovation Research Institute, Kindai University, Nara, Japan
| | - Tatsuya Moriyama
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Kindai University, Nara, Japan.,Agricultural Technology and Innovation Research Institute, Kindai University, Nara, Japan
| |
Collapse
|
15
|
Ali A, Mehta S, Starck C, Wong M, O'Brien WJ, Haswell C, McNabb W, Rutherfurd-Markwick K, Ahmed Nasef N. Effect of SunGold Kiwifruit and Vitamin C Consumption on Ameliorating Exercise-Induced Stress Response in Women. Mol Nutr Food Res 2021; 65:e2001219. [PMID: 33793050 DOI: 10.1002/mnfr.202001219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 03/14/2021] [Indexed: 11/11/2022]
Abstract
INTRODUCTION Markers of oxidative and psychological stress are elevated during high-intensity exercise. Additionally, when energy intake does not match expenditure, women who actively participate in sports and exercise are at risk of developing menstrual dysfunction, infertility, and osteoporosis. Vitamin C is known to reduce exercise-induced stress. Here, this study investigates the efficacy of consuming vitamin C from SunGold kiwifruit compared to in isolation, in ameliorating exercise-induced stress in recreationally active women. METHODS AND RESULTS Ten eumenorrheic women are recruited in this crossover study and attended three exercise and one rest trial. In the exercise trials, participants consumed 300 mg vitamin C from kiwifruit or drink, or have a placebo drink, followed by 30-min exercise on a cycle ergometer at 60% power. During rest visit, participants sat quietly and consumed a placebo drink. Salivary uric acid (oxidative stress) and cortisol (psychological stress) are measured before and immediately after exercise for 2 h. Both vitamin C and kiwifruit reduced exercise-induced uric acid, immediately after exercise. Vitamin C drink continued to decrease uric acid for a further 30 min and slightly attenuated exercise-induced cortisol. CONCLUSIONS Consuming liquid vitamin C prior to high-intensity cycling appears more effective than eating kiwifruit, in ameliorating exercise-induced stress in recreationally active women of reproductive age.
Collapse
Affiliation(s)
- Ajmol Ali
- School of Sport, Exercise and Nutrition, Massey University, Auckland, 0745, New Zealand
| | - Sunali Mehta
- Pathology Department, University of Otago, Dunedin, 9054, New Zealand.,Maurice Wilkins Centre for Biodiscovery, University of Otago, Dunedin, 9054, New Zealand
| | - Carlene Starck
- Riddet Institute, Massey University, Private Bag 11222, Palmerston North, 4442, New Zealand
| | - Marie Wong
- School of Food and Advanced Technology, Massey University, Auckland, 0745, New Zealand
| | - Wendy J O'Brien
- School of Sport, Exercise and Nutrition, Massey University, Auckland, 0745, New Zealand
| | - Cameron Haswell
- School of Health Sciences, Massey University, Auckland, 0745, New Zealand
| | - Warren McNabb
- Riddet Institute, Massey University, Private Bag 11222, Palmerston North, 4442, New Zealand
| | | | - Noha Ahmed Nasef
- Riddet Institute, Massey University, Private Bag 11222, Palmerston North, 4442, New Zealand
| |
Collapse
|
16
|
Tylewicz U, Nowacka M, Rybak K, Drozdzal K, Dalla Rosa M, Mozzon M. Design of Healthy Snack Based on Kiwifruit. Molecules 2020; 25:E3309. [PMID: 32708245 PMCID: PMC7397248 DOI: 10.3390/molecules25143309] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 07/17/2020] [Accepted: 07/17/2020] [Indexed: 12/31/2022] Open
Abstract
Kiwifruit is an excellent source of vitamin C and other bioactive compounds, which contribute to its high antioxidant activity. However, the fruits with small size and low weight are considered waste and are unprofitable; therefore, the production of healthy kiwifruit-based dried snacks, which contain a lot of health-beneficial ingredients, could be a viable alternative for their use. The aim of this study was to develop formulations and methods to produce attractive and nutritionally valuable dried snacks based on yellow kiwifruit. Three different puree formulations (kiwifruit; fennel; and strawberry, lemon, or spinach) with or without addition of sugar were subjected to two drying methods: freeze-drying (fruit bars) and conventional hot air drying (fruit leathers). The obtained products were analysed for their content of total polyphenols (TPs), flavonoids, and vitamin C, as well as their antioxidant activity. The results showed that snacks prepared by freeze-drying (fruit bars) presented higher TP, vitamin C, and flavonoids content than those prepared by convective drying; however, the antioxidant activity did not always follow this trend. The amount of bioactive compounds depended on the formulation used for the preparation of snacks. The effect of the sugar addition seems to be strictly related to the mix used and specific bioactive compound investigated.
Collapse
Affiliation(s)
- Urszula Tylewicz
- Department of Agricultural and Food Sciences, University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy; (U.T.); (M.D.R.)
- Interdepartmental Centre for Agri-Food Industrial Research, University of Bologna, Via Quinto Bucci 336, 47521 Cesena, Italy
| | - Malgorzata Nowacka
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences–SGGW, 02-787 Warsaw, Poland; (K.R.); (K.D.)
| | - Katarzyna Rybak
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences–SGGW, 02-787 Warsaw, Poland; (K.R.); (K.D.)
| | - Kinga Drozdzal
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences–SGGW, 02-787 Warsaw, Poland; (K.R.); (K.D.)
| | - Marco Dalla Rosa
- Department of Agricultural and Food Sciences, University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy; (U.T.); (M.D.R.)
- Interdepartmental Centre for Agri-Food Industrial Research, University of Bologna, Via Quinto Bucci 336, 47521 Cesena, Italy
| | - Massimo Mozzon
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche 10, 60131 Ancona, Italy;
| |
Collapse
|
17
|
Affiliation(s)
- Giuseppe Lippi
- Section of Clinical Biochemistry, University of Verona, Verona, Italy
| | - Camilla Mattiuzzi
- Section of Clinical Governance, Provincial Agency for Social and Sanitary Services, Trento, Italy
| |
Collapse
|
18
|
Wang J, Vanga SK, McCusker C, Raghavan V. A Comprehensive Review on Kiwifruit Allergy: Pathogenesis, Diagnosis, Management, and Potential Modification of Allergens Through Processing. Compr Rev Food Sci Food Saf 2019; 18:500-513. [PMID: 33336949 DOI: 10.1111/1541-4337.12426] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 12/27/2018] [Accepted: 01/05/2019] [Indexed: 12/22/2022]
Abstract
Kiwifruit is rich in bioactive components including dietary fibers, carbohydrates, natural sugars, vitamins, minerals, omega-3 fatty acids, and antioxidants. These components are beneficial to boost the human immune system and prevent cancer and heart diseases. However, kiwifruit is emerging as one of the most common elicitors of food allergies worldwide. Kiwifruit allergy results from an abnormal immune response to kiwifruit proteins and occur after consuming this fruit. Symptoms range from the oral allergy syndrome (OAS) to the life-threatening anaphylaxis. Thirteen different allergens have been identified in green kiwifruit and, among these allergens, Act d 1, Act d 2, Act d 8, Act d 11, and Act d 12 are defined as the "major allergens." Act d 1 and Act d 2 are ripening-related allergens and are found in abundance in fully ripe kiwifruit. Structures of several kiwifruit allergens may be altered under high temperatures or strong acidic conditions. This review discusses the pathogenesis, clinical features, and diagnosis of kiwifruit allergy and evaluates food processing methods including thermal, ultrasound, and chemical processing which may be used to reduce the allergenicity of kiwifruit. Management and medical treatments for kiwifruit allergy are also summarized.
Collapse
Affiliation(s)
- Jin Wang
- Dept. of Bioresource Engineering, Faculty of Agricultural and Environmental Sciences, McGill Univ., Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Sai Kranthi Vanga
- Dept. of Bioresource Engineering, Faculty of Agricultural and Environmental Sciences, McGill Univ., Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Christine McCusker
- Meakins-Christie Laboratories, Research Inst. of the McGill Univ. Health Centre, Montreal, Quebec, Canada
| | - Vijaya Raghavan
- Dept. of Bioresource Engineering, Faculty of Agricultural and Environmental Sciences, McGill Univ., Sainte-Anne-de-Bellevue, Quebec, Canada
| |
Collapse
|
19
|
Pham ND, Martens W, Karim MA, Joardder MUH. Nutritional quality of heat-sensitive food materials in intermittent microwave convective drying. Food Nutr Res 2018; 62:1292. [PMID: 30349446 PMCID: PMC6190733 DOI: 10.29219/fnr.v62.1292] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 08/20/2018] [Accepted: 09/04/2018] [Indexed: 11/20/2022] Open
Abstract
Background The retention of health promoting components in nutrient-rich dried food is significantly affected by the dehydration method. Theoretical and experimental investigations reported in the literature have demonstrated that intermittent microwave convective drying (IMCD) can effectively improve the drying performance. However, the impact of this advanced drying method on the quality food has not been adequately investigated. Design A programmable NN-SD691S Panasonic inverter microwave oven (1100 W, 2450 MHz) was employed for the experiments. The microwave power level was set at 100 W and ran for 20 seconds at different power ratios and the constant hot air conditions was set to a temperature of 60°C and 0.86 m/s air velocity. Objective In this study, natural bioactive compounds (ascorbic acid and total polyphenol), water activity, colour and microstructure modifications which can occur in IMCD were investigated, taking kiwifruit as a sample. Results and Discussion The microwave (MW) power ratio (PR) had significant impact on different quality attributes of dried samples. The results demonstrate that applying optimum level MW power and intermittency could be an appropriate strategy to significantly improve the preservation of nutrient contents, microstructure and colour of the dried sample. The IMCD at PR 1:4 was found to be the ideal drying condition with the highest ascorbic acid retention (3.944 mg/g DM), lowest colour change (ΔERGB = 43.86) and a porous microstructure. However, the total polyphenol content was better maintained (3.701 mg GAE/g DM) at higher microwave density (PR 1:3). All samples attained a desirable level of water activity which is unsusceptible for microorganism growth and reproduction. Conclusion Overall, IMCD significantly improved the drying performance and product quality compared to traditional convective drying.
Collapse
Affiliation(s)
- Nghia Duc Pham
- Science and Engineering Faculty, Queensland University of Technology 2 George street, Brisbane, QLD 4001, Australia.,Engineering Faculty, Vietnam National University of Agriculture, Vietnam
| | - W Martens
- Science and Engineering Faculty, Queensland University of Technology 2 George street, Brisbane, QLD 4001, Australia
| | - M A Karim
- Science and Engineering Faculty, Queensland University of Technology 2 George street, Brisbane, QLD 4001, Australia
| | - M U H Joardder
- Science and Engineering Faculty, Queensland University of Technology 2 George street, Brisbane, QLD 4001, Australia
| |
Collapse
|
20
|
Equicarbohydrate partial exchange of kiwifruit for wheaten cereal reduces postprandial glycaemia without decreasing satiety. J Nutr Sci 2016; 5:e37. [PMID: 27752304 PMCID: PMC5048185 DOI: 10.1017/jns.2016.30] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 07/11/2016] [Accepted: 07/19/2016] [Indexed: 12/31/2022] Open
Abstract
Kiwifruit is a carbohydrate food of low glycaemic potency which could potentially be exchanged for starch-based foods in management of postprandial glycaemia. The effect of equicarbohydrate partial exchange of kiwifruit varieties ‘Hayward’ green (GR) and ‘Zesy002’ (SunGold; SG) for a starchy wheat-based breakfast cereal (WB) on the characteristics of the postprandial glycaemic response and satiety was therefore determined. A total of twenty non-diabetic subjects (mean age 36 years; mean BMI 24·5 kg/m2) consumed four meals, each containing 40 g available carbohydrate, in random order, after an overnight fast. The meals were: (1) glucose; (2) 70·29 g breakfast cereal; (3) 200 g of GR plus breakfast cereal (30·93 g); and (4) 200 g of SG plus breakfast cereal (27·06 g). Throughout the 180 min postprandial period, capillary blood glucose concentrations were monitored, and satiety rated by a visual analogue scale. Partial kiwifruit substitution of WB significantly reduced postprandial glycaemic response amplitude (glucose, 3·91; WB, 3·66; WB + GR, 2·36; WB + SG, 2·31 mmol/l; least significant difference (LSD) 0·64; P < 0·001) and incremental area under the blood glucose response curve (0–120 min) (glucose, 228; WB, 180; WB + GR, 133; WB + SG, 134 mmol/l × min; LSD 22·7; P < 0·001). The area between baseline and response remained positive in kiwifruit-substituted meals but became negative after 120 min with glucose and WB, indicating that kiwifruit improved homeostatic control. Kiwifruit substitution of cereal did not significantly reduce satiety. We conclude that either ‘Hayward’ or ‘Zesy002’ kiwifruit may be used in equicarbohydrate partial substitution of starchy staple foods to reduce glycaemic response and improve glucose homeostasis without decreasing satiety.
Collapse
|
21
|
Campbell EJ, Vissers MC, Dachs GU. Ascorbate availability affects tumor implantation-take rate and increases tumor rejection in Gulo -/- mice. HYPOXIA 2016; 4:41-52. [PMID: 27800507 PMCID: PMC5085285 DOI: 10.2147/hp.s103088] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In solid tumors, HIF1 upregulates the expression of hundreds of genes involved in cell survival, tumor growth, and adaptation to the hypoxic microenvironment. HIF1 stabilization and activity are suppressed by prolyl and asparagine hydroxylases, which require oxygen as a substrate and ascorbate as a cofactor. This has led us to hypothesize that intracellular ascorbate availability could modify the hypoxic HIF1 response and influence tumor growth. In this study, we investigated the effect of variable intracellular ascorbate levels on HIF1 induction in cancer cells in vitro, and on tumor-take rate and growth in the Gulo-/- mouse. These mice depend on dietary ascorbate, and were supplemented with 3,300 mg/L, 330 mg/L, or 33 mg/L ascorbate in their drinking water, resulting in saturating, medium, or low plasma and tissue ascorbate levels, respectively. In Lewis lung carcinoma cells (LL/2) in culture, optimal ascorbate supplementation reduced HIF1 accumulation under physiological but not pathological hypoxia. LL/2, B16-F10 melanoma, or CMT-93 colorectal cancer cells were implanted subcutaneously into Gulo-/- mice at a range of cell inocula. Establishment of B16-F10 tumors in mice supplemented with 3,300 mg/L ascorbate required an increased number of cancer cells to initiate tumor growth compared with the number of cells required in mice on suboptimal ascorbate intake. Elevated ascorbate intake was also associated with decreased tumor ascorbate levels and a reduction in HIF1α expression and transcriptional activity. Following initial growth, all CMT-93 tumors regressed spontaneously, but mice supplemented with 33 mg/L ascorbate had lower plasma ascorbate levels and grew larger tumors than optimally supplemented mice. The data from this study indicate that improved ascorbate intake is consistent with increased intracellular ascorbate levels, reduced HIF1 activity and reduced tumor initiation and growth, and this may be advantageous in the management of cancer.
Collapse
Affiliation(s)
| | - Margreet Cm Vissers
- Centre for Free Radical Research, Department of Pathology, University of Otago, Christchurch, New Zealand
| | | |
Collapse
|
22
|
|
23
|
Schjoldager JG, Paidi MD, Lindblad MM, Birck MM, Kjærgaard AB, Dantzer V, Lykkesfeldt J, Tveden-Nyborg P. Maternal vitamin C deficiency during pregnancy results in transient fetal and placental growth retardation in guinea pigs. Eur J Nutr 2014; 54:667-76. [PMID: 25472559 DOI: 10.1007/s00394-014-0809-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 11/25/2014] [Indexed: 12/16/2022]
Abstract
PURPOSE Recently, we reported that preferential maternal-fetal vitamin C (vitC) transport across the placenta is likely to be impaired by prolonged maternal vitC deficiency. Maintenance of a basal maternal vitC supply at the expense of the fetus may impair fetal development; however, the knowledge of vitC's impact on intrauterine development is sparse. The aim of this study was to explore the effect of maternal vitC status on fetal and placental development in guinea pigs. METHODS Twenty pregnant Dunkin Hartley guinea pigs were randomized into four groups to receive diets either sufficient (918 mg/kg CTRL) or deficient (100 mg/kg DEF) in vitC. Cesarean sections at gestational day (GD) 45 or 56 allowed for fetal and placental measurements. RESULTS At GD45, body, brain and placental weights were significantly reduced in DEF pups compared with CTRL (p < 0.05, p < 0.001 and p < 0.05, respectively). DEF plasma vitC levels were ~6% of those of CTRL (p < 0.0001), and the fetal/maternal plasma vitC ratio was significantly reduced at GD56 in the DEF animals compared with controls (p = 0.035). Placental vitC levels were reduced in DEF animals (p < 0.0001) and the ascorbate oxidation ratio and glutathione elevated compared with controls (p < 0.0001). CONCLUSIONS Although no clinical differences between CTRL and DEF pups were observed at GD56, the present data suggest that vitC plays a role in early fetal development. Although no clinical differences between CTRL and DEF pups were observed at GD56, the present data suggest that vitC plays a role in early fetal development. Low maternal vitC intake during pregnancy may compromise maternal weight gain, placental function and intrauterine development.
Collapse
Affiliation(s)
- Janne Gram Schjoldager
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, 9 Ridebanevej, 1870, Frederiksberg C, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Campbell EJ, Vissers MCM, Bozonet S, Dyer A, Robinson BA, Dachs GU. Restoring physiological levels of ascorbate slows tumor growth and moderates HIF-1 pathway activity in Gulo(-/-) mice. Cancer Med 2014; 4:303-14. [PMID: 25354695 PMCID: PMC4329013 DOI: 10.1002/cam4.349] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 08/21/2014] [Indexed: 12/18/2022] Open
Abstract
Hypoxia-inducible factor-1 (HIF-1) governs cellular adaption to the hypoxic microenvironment and is associated with a proliferative, metastatic, and treatment-resistant tumor phenotype. HIF-1 levels and transcriptional activity are regulated by proline and asparagine hydroxylases, which require ascorbate as cofactor. Ascorbate supplementation reduced HIF-1 activation in vitro, but only limited data are available in relevant animal models. There is no information of the effect of physiological levels of ascorbate on HIF activity and tumor growth, which was measured in this study. C57BL/6 Gulo−/− mice (a model of the human ascorbate dependency condition) were supplemented with 3300 mg/L, 330 mg/L, or 33 mg/L of ascorbate in their drinking water before and during subcutaneous tumor growth of B16-F10 melanoma or Lewis lung carcinoma (LL/2). Ascorbate levels in tumors increased significantly with elevated ascorbate intake and restoration of wild-type ascorbate levels led to a reduction in growth of B16-F10 (log phase P < 0.001) and LL/2 tumors (lag growth P < 0.001, log phase P < 0.05). Levels of HIF-1α protein in tumors decreased as dietary ascorbate supplementation increased for both tumor models (P < 0.001). Similarly, tumor ascorbate was inversely correlated with levels of the HIF-1 target proteins CA-IX, GLUT-1, and VEGF in both B16-F10 and LL/2 tumors (P < 0.05). The extent of necrosis was similar between ascorbate groups but varied between models (30% for B16-F10 and 21% for LL/2), indicating that ascorbate did not affect tumor hypoxia. Our data support the hypothesis that restoration of optimal intracellular ascorbate levels reduces tumor growth via moderation of HIF-1 pathway activity.
Collapse
Affiliation(s)
- Elizabeth J Campbell
- Mackenzie Cancer Research Group, Department of Pathology, University of Otago, Christchurch, New Zealand
| | | | | | | | | | | |
Collapse
|
25
|
Wright C, Milne S, Leeson H. Sperm DNA damage caused by oxidative stress: modifiable clinical, lifestyle and nutritional factors in male infertility. Reprod Biomed Online 2014; 28:684-703. [DOI: 10.1016/j.rbmo.2014.02.004] [Citation(s) in RCA: 247] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 02/01/2014] [Accepted: 02/04/2014] [Indexed: 12/23/2022]
|
26
|
Thuan NH, Sohng JK. Recent biotechnological progress in enzymatic synthesis of glycosides. J Ind Microbiol Biotechnol 2013; 40:1329-56. [PMID: 24005992 DOI: 10.1007/s10295-013-1332-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 08/07/2013] [Indexed: 12/13/2022]
Abstract
Glycosylation is one of the most important post-modification processes of small molecules and enables the parent molecule to have increased solubility, stability, and bioactivity. Enzyme-based glycosylation has achieved significant progress due to advances in protein engineering, DNA recombinant techniques, exploitation of biosynthetic gene clusters of natural products, and computer-based modeling programs. Our report summarizes glycosylation data that have been published within the past five years to provide an overall review of current progress. We also present the future trends and perspectives for glycosylation.
Collapse
Affiliation(s)
- Nguyen Huy Thuan
- Department of Pharmaceutical Engineering, Institute of Biomolecule Reconstruction, Sun Moon University, #100, Kalsan-ri, Tangjeong-myeon, Asan-si, Chungnam, 336-708, Republic of Korea
| | | |
Collapse
|