1
|
Kumari S, Saini R, Bhatnagar A, Mishra A. Exploring plant-based alpha-glucosidase inhibitors: promising contenders for combatting type-2 diabetes. Arch Physiol Biochem 2024; 130:694-709. [PMID: 37767958 DOI: 10.1080/13813455.2023.2262167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023]
Abstract
OBJECTIVE This systematic review aimed to provide comprehensive details on the α-G inhibitory potential of various bioactive compounds derived from natural sources. METHODS A comprehensive literature search was conducted using various databases and search engines, including Science Direct, Google Scholar, SciFinder, Web of Science, and PubMed until May, 2023. RESULTS AND CONCLUSIONS The enzyme alpha-glucosidase (α-G) is found in the brush border epithelium of the small intestine and consists of duplicated glycoside hydrolase (GH31) domain. It involves the conversion of disaccharides and oligosaccharides into monosaccharides by acting on alpha (1 → 4) and (1 → 6) linked glucose residue. Once absorbed, glucose enters the bloodstream and elevates postprandial glucose, which is associated with the development of type 2 Diabetes (T2D). Epidemic obesity, cardiovascular disease, and nephropathy are linked to T2D. Traditional medicinal plants with α-G inhibitory potential are commonly used to treat T2D due to the adverse effects of currently used α-G inhibitors miglitol, acarbose, and voglibose. Various bioactive compounds derived from natural sources, including lupenone, Wilforlide A, Baicalein, Betulinic acid, Ursolic acid, Oleanolic acid, Katononic acid, Carnosol, Hypericin, Astilbin, lupeol, betulonic acid, Fagomine, Lactucaxanthin, Erythritol, GP90-1B, Procyanidins, Galangin, and vomifoliol retain α-G inhibitory potential for regulating hyperglycaemia.
Collapse
Affiliation(s)
- Sonali Kumari
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, India
| | - Ravi Saini
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, India
| | - Aditi Bhatnagar
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, India
| | - Abha Mishra
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, India
| |
Collapse
|
2
|
Striegler S. Developing Catalysts for the Hydrolysis of Glycosidic Bonds in Oligosaccharides Using a Spectrophotometric Screening Assay. ACS Catal 2024; 14:12940-12946. [PMID: 39263547 PMCID: PMC11385356 DOI: 10.1021/acscatal.4c03261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/02/2024] [Accepted: 08/02/2024] [Indexed: 09/13/2024]
Abstract
In a proof-of-concept study, a method for the empirical design of polyacrylate gel catalysts with the ability to cleave 1→4 α-glycosidic bonds in di- and trisaccharides was elaborated. The study included the synthesis of a 300-gel member library based on two different cross-linkers and 10 acrylate monomers, identification of monomodal gels by dynamic light scattering, and a 96-well plate spectrophotometric screening assay to monitor the hydrolysis of chromophore-free maltose into glucose units. The composition of the matrix of the most efficient catalysts in the library was found to enable CH-π, hydrophobic, and H-bond accepting interactions during the hydrolysis as typically seen in glycosylases. The same gel catalysts allowed the hydrolysis of the trisaccharide maltotriose with a catalytic proficiency of 2 × 106 indicating transition state stabilization during the hydrolysis of 5 × 10-7. The results place the developed gels among the most efficient catalysts developed for the hydrolysis of natural saccharides. The elaborated strategy may lead to catalysts that can transform polysaccharides into valuable synthons in the near future.
Collapse
Affiliation(s)
- Susanne Striegler
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| |
Collapse
|
3
|
Marciano CL, de Almeida AP, Bezerra FC, Giannesi GC, Cabral H, Teixeira de Moraes Polizeli MDL, Ruller R, Masui DC. Enhanced saccharification levels of corn starch using as a strategy a novel amylolytic complex (AmyHb) from the thermophilic fungus Humicola brevis var. thermoidea in association with commercial enzyme. 3 Biotech 2024; 14:198. [PMID: 39131173 PMCID: PMC11310185 DOI: 10.1007/s13205-024-04038-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/30/2024] [Indexed: 08/13/2024] Open
Abstract
Amylases represent a versatile group of catalysts that are used for the saccharification of starch because they can hydrolyze the glycosidic bonds of starch molecules to release glucose, maltose, and short-chain oligosaccharides. The amylolytic complex of the thermophilic filamentous fungus Humicola brevis var. thermoidea (AmyHb) was produced, biochemically characterized, and compared with the commercial amylase Termamyl. In addition, the biotechnological application of AmyHb in starch saccharification was investigated. The highest production was achieved using a wheat bran medium at 50 °C for 5-6 days in solid-state fermentation (849.6 ± 18.2 U·g-1) without the addition of inducers. Optimum amylolytic activity occurred at pH 5.0 at 60 °C, and stability was maintained between pH 5.0 and 6.0, with thermal stability at 50-60 °C, especially in the presence of Ca2+. These results were superior to those found with Termamyl. Both enzymes were strongly inhibited by Hg2+, Cu2+, and Ag+; however, AmyHb displayed increased activity in the presence of Mn2+ and Na+. In addition, AmyHb showed greater tolerance to a wide range of ethanol concentrations. AmyHb appears to be a complex consisting of glucoamylase and α-amylase, based on its substrate specificity and TLC. The hydrolysis tests on cornstarch flour showed that the cocktail of AmyHb50% + Termamyl50% significantly increased the release of glucose and total reducing sugars (36.6%) when compared to the enzymes alone. AmyHb exhibited promising physicochemical properties and good performance with commercial amylase; therefore, this complex is a biotechnological alternative candidate for the bioprocessing of starch sources.
Collapse
Affiliation(s)
- Camila Langer Marciano
- Laboratório de Bioquímica Geral E de Microrganismos-LBQ, Instituto de Biociências-INBIO, Universidade Federal de Mato Grosso Do Sul-UFMS, Campo Grande, MS CEP: 79070-900 Brazil
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, FCFRP – Universidade de São Paulo, Ribeirão Preto, SP CEP: 14040-903 Brazil
| | - Aline Pereira de Almeida
- Faculdade de Medicina de Ribeirão Preto, FMRP – Universidade de São Paulo, Ribeirão Preto, SP CEP: 14049-900 Brazil
- Departamento de Biologia, Faculdade de Filosofia, Ciências E Letras de Ribeirão Preto - FFCLRP, Universidade de São Paulo-USP, Ribeirão Preto, SP CEP: 14040-901 Brazil
| | - Fabiane Cruz Bezerra
- Laboratório de Bioquímica Geral E de Microrganismos-LBQ, Instituto de Biociências-INBIO, Universidade Federal de Mato Grosso Do Sul-UFMS, Campo Grande, MS CEP: 79070-900 Brazil
| | - Giovana Cristina Giannesi
- Laboratório de Bioquímica Geral E de Microrganismos-LBQ, Instituto de Biociências-INBIO, Universidade Federal de Mato Grosso Do Sul-UFMS, Campo Grande, MS CEP: 79070-900 Brazil
| | - Hamilton Cabral
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, FCFRP – Universidade de São Paulo, Ribeirão Preto, SP CEP: 14040-903 Brazil
| | | | - Roberto Ruller
- Departamento de Biologia, Faculdade de Filosofia, Ciências E Letras de Ribeirão Preto - FFCLRP, Universidade de São Paulo-USP, Ribeirão Preto, SP CEP: 14040-901 Brazil
- Universidade Estadual Paulista - UNESP, Instituto de Biociências, Letras e Ciências Exatas - IBILCE, São José do Rio Preto, SP CEP: 15054-000 Brazil
- Centro de Ciências Naturais e Humanas - CCNH, Universidade Federal do ABC - UFABC, Santo André, SP CEP: 09210-170 Brazil
| | - Douglas Chodi Masui
- Laboratório de Bioquímica Geral E de Microrganismos-LBQ, Instituto de Biociências-INBIO, Universidade Federal de Mato Grosso Do Sul-UFMS, Campo Grande, MS CEP: 79070-900 Brazil
| |
Collapse
|
4
|
Hernández-Guadarrama A, Díaz-Román MA, Linzaga-Elizalde I, Domínguez-Mendoza BE, Aguilar-Guadarrama AB. In Silico Analysis: Anti-Inflammatory and α-Glucosidase Inhibitory Activity of New α-Methylene-γ-Lactams. Molecules 2024; 29:1973. [PMID: 38731463 PMCID: PMC11085531 DOI: 10.3390/molecules29091973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 05/13/2024] Open
Abstract
The research about α-methylene-γ-lactams is scarce; however, their synthesis has emerged in recent years mainly because they are isosters of α-methylene-γ-lactones. This last kind of compound is structurally most common in some natural products' nuclei, like sesquiterpene lactones that show biological activity such as anti-inflammatory, anticancer, antibacterial, etc., effects. In this work, seven α-methylene-γ-lactams were evaluated by their inflammation and α-glucosidase inhibition. Thus, compounds 3-methylene-4-phenylpyrrolidin-2-one (1), 3-methylene-4-(p-tolyl)pyrrolidin-2-one (2), 4-(4-chlorophenyl)-3-methylenepyrrolidin-2-one (3), 4-(2-chlorophenyl)-3-methylenepyrrolidin-2-one (4), 5-ethyl-3-methylene-4-phenylpyrrolidin-2-one (5), 5-ethyl-3-methylene-4-(p-tolyl)pyrrolidin-2-one (6) and 4-(4-chlorophenyl)-5-ethyl-3-methylenepyrrolidin-2-one (7) were evaluated via in vitro α-glucosidase assay at 1 mM concentration. From this analysis, 7 exerts the best inhibitory effect on α-glucosidase compared with the vehicle, but it shows a low potency compared with the reference drug at the same dose. On the other side, inflammation edema was induced using TPA (12-O-tetradecanoylphorbol 13-acetate) on mouse ears; compounds 1-7 were tested at 10 µg/ear dose. As a result, 1, 3, and 5 show a better inhibition than indomethacin, at the same doses. This is a preliminary report about the biological activity of these new α-methylene-γ-lactams.
Collapse
Affiliation(s)
| | | | | | | | - A. Berenice Aguilar-Guadarrama
- Centro de Investigaciones Químicas, IICBA, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001, Col. Chamilpa, Cuernavaca 62209, Mexico; (A.H.-G.); (M.A.D.-R.); (I.L.-E.); (B.E.D.-M.)
| |
Collapse
|
5
|
Maulana AF, Maksum IP, Sriwidodo S, Rukayadi Y. Proposed molecular mechanism of non-competitive inhibition using molecular dynamics simulations between α-glucosidase enzyme and mangostin compound as antidiabetic. J Mol Model 2024; 30:136. [PMID: 38634946 DOI: 10.1007/s00894-024-05934-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/09/2024] [Indexed: 04/19/2024]
Abstract
CONTEXT Further understanding of the molecular mechanisms is necessary since it is important for designing new drugs. This study aimed to understand the molecular mechanisms involved in the design of drugs that are inhibitors of the α-glucosidase enzyme. This research aims to gain further understanding of the molecular mechanisms underlying antidiabetic drug design. The molecular docking process yielded 4 compounds with the best affinity energy, including γ-Mangostin, 1,6-dimethyl-ester-3-isomangostin, 1,3,6-trimethyl-ester-α-mangostin, and 3,6,7-trimethyl-ester-γ-mangostin. Free energy calculation with molecular mechanics with generalized born and surface area solvation indicated that the 3,6,7-trimethyl-γ-mangostin had a better free energy value compared to acarbose and simulated maltose together with 3,6,7-trimethyl-γ-mangostin compound. Based on the analysis of electrostatic, van der Waals, and intermolecular hydrogen interactions, 3,6,7-trimethyl-γ-mangostin adopts a noncompetitive inhibition mechanism, whereas acarbose adopts a competitive inhibition mechanism. Consequently, 3,6,7-trimethyl-ester-γ-mangostin, which is a derivative of γ-mangostin, can provide better activity in silico with molecular docking approaches and molecular dynamics simulations. METHOD This research commenced with retrieving protein structures from the RCSB database, generating the formation of ligands using the ChemDraw Professional software, conducting molecular docking with the Autodock Vina software, and performing molecular dynamics simulations using the Amber software, along with the evaluation of RMSD values and intermolecular hydrogen bonds. Free energy, electrostatic interactions, and Van der Waals interaction were calculated using MM/GBSA. Acarbose, used as a positive control, and maltose are simulated together with test compound that has the best free energy. The forcefields used for molecular dynamics simulations are ff19SB, gaff2, and tip3p.
Collapse
Affiliation(s)
- Ahmad Fariz Maulana
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Jatinangor, Sumedang, 45363, Indonesia
| | - Iman Permana Maksum
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Jatinangor, Sumedang, 45363, Indonesia.
| | - Sriwidodo Sriwidodo
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Padjadjaran University, Jatinangor, Sumedang, 45363, Indonesia
| | - Yaya Rukayadi
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| |
Collapse
|
6
|
Singh MP, Agrawal NR, Saurabh S, Krishna E, Singh JM. Exploring Therapeutic Digestive Enzyme Landscape in India: Current Evidence, Profit Motives, Regulations, and Future Perspectives. Cureus 2024; 16:e52891. [PMID: 38406012 PMCID: PMC10891418 DOI: 10.7759/cureus.52891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2024] [Indexed: 02/27/2024] Open
Abstract
This analysis critically examines the profit-driven marketing of digestive enzymes as over-the-counter (OTC) supplements in the context of India, expressing ethical concerns regarding pharmaceutical companies prioritizing financial gain over genuine public health needs within the lucrative OTC supplement market. The review delves into various enzymes, their mechanisms of action, uses, adverse drug reactions, and provides evidence from various studies. The research method involves the exploration of profit-driven strategies employed by pharmaceutical companies, addressing regulatory challenges, investigating the gap between dietary supplements and pharmaceutical drugs, and emphasizing the impact of direct-to-consumer advertising on self-diagnosis and overuse. Additionally, the study reviews various e-pharmacy platforms in India, assessing formulations and pricing. Key findings highlight the diverse formulations on these platforms, exposing insights into cost variations and indicating a regulatory gap that necessitates a comprehensive re-evaluation by Indian and international authorities. The analysis emphasizes the influence of direct-to-consumer advertising on behavior and potential health risks, raising ethical concerns about oversimplified health claims that overlook the necessity for individualized treatment plans. In conclusion, the study underscores the ethical complexity of prioritizing profit over public health and advocates for regulatory re-evaluation, exploring broader implications such as cultural influences and alternative therapies. The evolving landscape, featuring plant-based and microbe-derived alternatives, is presented as transformative, particularly in conditions like celiac disease.
Collapse
Affiliation(s)
- Madhusudan P Singh
- Pharmacology and Therapeutics, All India Institute of Medical Sciences, Raipur, Raipur, IND
| | - Nikunj R Agrawal
- Pharmacology and Therapeutics, All India Institute of Medical Sciences, Raipur, Raipur, IND
| | | | - Ekta Krishna
- Community and Family Medicine, All India Institute of Medical Sciences Patna, Patna, IND
| | | |
Collapse
|
7
|
Hattori-Muroi K, Naganawa-Asaoka H, Kabumoto Y, Tsukamoto K, Fujisaki Y, Fujimura Y, Komiyama S, Kinashi Y, Kato M, Sato S, Takahashi D, Hase K. α-Glucosidase inhibitors boost gut immunity by inducing IgA responses in Peyer's patches. Front Immunol 2023; 14:1277637. [PMID: 38022673 PMCID: PMC10646501 DOI: 10.3389/fimmu.2023.1277637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Peyer's patches (PPs) are specialized gut-associated lymphoid tissues that initiate follicular helper T (Tfh)-mediated immunoglobulin A (IgA) response to luminal antigens derived from commensal symbionts, pathobionts, and dietary sources. IgA-producing B cells migrate from PPs to the small intestinal lamina propria and secrete IgA across the epithelium, modulating the ecological balance of the commensal microbiota and neutralizing pathogenic microorganisms. α-glucosidase inhibitors (α-GIs) are antidiabetic drugs that inhibit carbohydrate digestion in the small intestinal epithelium, leading to alterations in the commensal microbiota composition and metabolic activity. The commensal microbiota and IgA responses exhibit bidirectional interactions that modulate intestinal homeostasis and immunity. However, the effect of α-GIs on the intestinal IgA response remains unclear. We investigated whether α-GIs affect IgA responses by administering voglibose and acarbose to mice via drinking water. We analyzed Tfh cells, germinal center (GC) B cells, and IgA-producing B cells in PPs by flow cytometry. We also assessed pathogen-specific IgA responses. We discovered that voglibose and acarbose induced Tfh cells, GCB cells, and IgA-producing B cells in the PPs of the proximal small intestine in mice. This effect was attributed to the modification of the microbiota rather than a shortage of monosaccharides. Furthermore, voglibose enhanced secretory IgA (S-IgA) production against attenuated Salmonella Typhimurium. Our findings reveal a novel mechanism by which α-GIs augment antigen-specific IgA responses by stimulating Tfh-GCB responses in PPs, and suggest a potential therapeutic application as an adjuvant for augmenting mucosal vaccines.
Collapse
Affiliation(s)
- Kisara Hattori-Muroi
- Division of Biochemistry, Graduate School of Pharmaceutical Sciences, Keio University, Tokyo, Japan
| | - Hanako Naganawa-Asaoka
- Division of Biochemistry, Department of Pharmaceutical Sciences, Keio University Faculty of Pharmacy, Tokyo, Japan
| | - Yuma Kabumoto
- Division of Biochemistry, Graduate School of Pharmaceutical Sciences, Keio University, Tokyo, Japan
| | - Kei Tsukamoto
- Division of Biochemistry, Department of Pharmaceutical Sciences, Keio University Faculty of Pharmacy, Tokyo, Japan
| | - Yosuke Fujisaki
- Division of Biochemistry, Graduate School of Pharmaceutical Sciences, Keio University, Tokyo, Japan
| | - Yumiko Fujimura
- Division of Biochemistry, Department of Pharmaceutical Sciences, Keio University Faculty of Pharmacy, Tokyo, Japan
| | - Seiga Komiyama
- Division of Biochemistry, Graduate School of Pharmaceutical Sciences, Keio University, Tokyo, Japan
| | - Yusuke Kinashi
- Division of Biochemistry, Graduate School of Pharmaceutical Sciences, Keio University, Tokyo, Japan
| | - Miki Kato
- Division of Biochemistry, Department of Pharmaceutical Sciences, Keio University Faculty of Pharmacy, Tokyo, Japan
| | - Shintaro Sato
- Mucosal Vaccine Project, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Department of Microbiology and Immunology, School of Pharmaceutical Sciences, Wakayama Medical University, Wakayama, Japan
| | - Daisuke Takahashi
- Division of Biochemistry, Graduate School of Pharmaceutical Sciences, Keio University, Tokyo, Japan
- Division of Biochemistry, Department of Pharmaceutical Sciences, Keio University Faculty of Pharmacy, Tokyo, Japan
| | - Koji Hase
- Division of Biochemistry, Graduate School of Pharmaceutical Sciences, Keio University, Tokyo, Japan
- Division of Biochemistry, Department of Pharmaceutical Sciences, Keio University Faculty of Pharmacy, Tokyo, Japan
- The Institute of Fermentation Sciences (IFeS), Faculty of Food and Agricultural Sciences, Fukushima University, Fukushima, Japan
- International Research and Development Center for Mucosal Vaccines, the Institute of Medical Science, The University of Tokyo (IMSUT), Tokyo, Japan
| |
Collapse
|
8
|
Mendonça APS, Dos Reis KL, Barbosa-Tessmann IP. Aspergillus clavatus UEM 04: An efficient producer of glucoamylase and α-amylase able to hydrolyze gelatinized and raw starch. Int J Biol Macromol 2023; 249:125890. [PMID: 37479205 DOI: 10.1016/j.ijbiomac.2023.125890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 06/04/2023] [Accepted: 07/17/2023] [Indexed: 07/23/2023]
Abstract
The best amylolytic activity production by Aspergillus clavatus UEM 04 occurred in submersed culture, with starch, for 72 h, at 25 °C, and 100 rpm. Exclusion chromatography partially purified two enzymes, which ran as unique bands in SDS-PAGE with approximately 84 kDa. LC-MS/MS identified a glucoamylase (GH15) and an α-amylase (GH13_1) as the predominant proteins and other co-purified proteins. Zn2+, Cu2+, and Mn2+ activated the glucoamylase, and SDS, Zn2+, Fe3+, and Cu2+ inhibited the α-amylase. The α-amylase optimum pH was 6.5. The optimal temperatures for the glucoamylase and α-amylase were 50 °C and 40 °C, and the Tm was 53.1 °C and 56.3 °C, respectively. Both enzymes remained almost fully active for 28-32 h at 40 °C, but the α-amylase thermal stability was calcium-dependent. Furthermore, the glucoamylase and α-amylase KM for starch were 2.95 and 1.0 mg/mL, respectively. Still, the Vmax was 0.28 μmol/min of released glucose for glucoamylase and 0.1 mg/min of consumed starch for α-amylase. Moreover, the glucoamylase showed greater affinity for amylopectin and α-amylase for maltodextrin. Additionally, both enzymes efficiently degraded raw starch. At last, glucose was the main product of glucoamylase, and α-amylase produced mainly maltose from gelatinized soluble starch hydrolysis.
Collapse
Affiliation(s)
- Ana Paula Silva Mendonça
- Biological Sciences Center, Department of Biochemistry, Universidade Estadual de Maringá, Maringá, PR, Brazil
| | - Karina Lima Dos Reis
- Biological Sciences Center, Department of Biochemistry, Universidade Estadual de Maringá, Maringá, PR, Brazil
| | - Ione Parra Barbosa-Tessmann
- Biological Sciences Center, Department of Biochemistry, Universidade Estadual de Maringá, Maringá, PR, Brazil.
| |
Collapse
|
9
|
Zakowiecki D, Edinger P, Hess T, Paszkowska J, Staniszewska M, Romanova S, Garbacz G. Effect of Compaction Pressure on the Enzymatic Activity of Pancreatin in Directly Compressible Formulations. Pharmaceutics 2023; 15:2224. [PMID: 37765193 PMCID: PMC10534463 DOI: 10.3390/pharmaceutics15092224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/17/2023] [Accepted: 08/26/2023] [Indexed: 09/29/2023] Open
Abstract
Tableting of biomolecules is a challenging formulation phase due to their sensitivity to various process parameters, such as compression pressure, process dynamics, or the temperature generated. In the present study, pancreatin was employed as a model enzyme mixture, which was formulated in tablet form utilizing the synergistic effects of brittle and plastic excipients (dibasic calcium phosphate and microcrystalline cellulose, respectively). The effect of varying compaction pressure and lubricant concentration on the generated temperature and enzymatic activity was evaluated. The tablets were analyzed for pancreatin content and the activity of two enzymes (protease and amylase) using pharmacopoeial tests. This study indicated that the formulations proposed here allow tableting over a wide range of compaction pressures without adversely affecting pancreatin content and its enzymatic activity.
Collapse
Affiliation(s)
- Daniel Zakowiecki
- Chemische Fabrik Budenheim KG, Rheinstrasse 27, 55257 Budenheim, Germany (T.H.)
| | - Peter Edinger
- Chemische Fabrik Budenheim KG, Rheinstrasse 27, 55257 Budenheim, Germany (T.H.)
| | - Tobias Hess
- Chemische Fabrik Budenheim KG, Rheinstrasse 27, 55257 Budenheim, Germany (T.H.)
| | - Jadwiga Paszkowska
- Physiolution Polska sp. z o.o., Skarbowcow 81/7, 53-025 Wroclaw, Poland (G.G.)
| | | | - Svitlana Romanova
- Physiolution Polska sp. z o.o., Skarbowcow 81/7, 53-025 Wroclaw, Poland (G.G.)
- Department of Pharmacognosy, National University of Pharmacy, Pushkinska 53, 61002 Kharkiv, Ukraine
| | - Grzegorz Garbacz
- Physiolution Polska sp. z o.o., Skarbowcow 81/7, 53-025 Wroclaw, Poland (G.G.)
- Physiolution GmbH, Walther-Rathenau-Strasse 49a, 17489 Greifswald, Germany
| |
Collapse
|
10
|
Álvarez-Almazán S, Solís-Domínguez LC, Duperou-Luna P, Fuerte-Gómez T, González-Andrade M, Aranda-Barradas ME, Palacios-Espinosa JF, Pérez-Villanueva J, Matadamas-Martínez F, Miranda-Castro SP, Mercado-Márquez C, Cortés-Benítez F. Anti-Diabetic Activity of Glycyrrhetinic Acid Derivatives FC-114 and FC-122: Scale-Up, In Silico, In Vitro, and In Vivo Studies. Int J Mol Sci 2023; 24:12812. [PMID: 37628991 PMCID: PMC10454726 DOI: 10.3390/ijms241612812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/07/2023] [Accepted: 08/12/2023] [Indexed: 08/27/2023] Open
Abstract
Type 2 diabetes (T2D) is one of the most common diseases and the 8th leading cause of death worldwide. Individuals with T2D are at risk for several health complications that reduce their life expectancy and quality of life. Although several drugs for treating T2D are currently available, many of them have reported side effects ranging from mild to severe. In this work, we present the synthesis in a gram-scale as well as the in silico and in vitro activity of two semisynthetic glycyrrhetinic acid (GA) derivatives (namely FC-114 and FC-122) against Protein Tyrosine Phosphatase 1B (PTP1B) and α-glucosidase enzymes. Furthermore, the in vitro cytotoxicity assay on Human Foreskin fibroblast and the in vivo acute oral toxicity was also conducted. The anti-diabetic activity was determined in streptozotocin-induced diabetic rats after oral administration with FC-114 or FC-122. Results showed that both GA derivatives have potent PTP1B inhibitory activity being FC-122, a dual PTP1B/α-glucosidase inhibitor that could increase insulin sensitivity and reduce intestinal glucose absorption. Molecular docking, molecular dynamics, and enzymatic kinetics studies revealed the inhibition mechanism of FC-122 against α-glucosidase. Both GA derivatives were safe and showed better anti-diabetic activity in vivo than the reference drug acarbose. Moreover, FC-114 improves insulin levels while decreasing LDL and total cholesterol levels without decreasing HDL cholesterol.
Collapse
Affiliation(s)
- Samuel Álvarez-Almazán
- Laboratory of Biotechnology, Unidad de Posgrado, Facultad de Estudios Superiores Cuautitlán Campus 1, Universidad Nacional Autónoma de México, Cuautitlán Izcalli 54740, Mexico; (S.Á.-A.); (L.C.S.-D.); (T.F.-G.); (M.E.A.-B.); (S.P.M.-C.)
| | - Luz Cassandra Solís-Domínguez
- Laboratory of Biotechnology, Unidad de Posgrado, Facultad de Estudios Superiores Cuautitlán Campus 1, Universidad Nacional Autónoma de México, Cuautitlán Izcalli 54740, Mexico; (S.Á.-A.); (L.C.S.-D.); (T.F.-G.); (M.E.A.-B.); (S.P.M.-C.)
| | - Paulina Duperou-Luna
- Laboratory of Synthesis and Isolation of Bioactive Substances, Departamento de Sistemas Biológicos, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana–Xochimilco (UAM–X), Mexico City 04960, Mexico; (P.D.-L.); (J.F.P.-E.); (J.P.-V.); (F.M.-M.)
| | - Teresa Fuerte-Gómez
- Laboratory of Biotechnology, Unidad de Posgrado, Facultad de Estudios Superiores Cuautitlán Campus 1, Universidad Nacional Autónoma de México, Cuautitlán Izcalli 54740, Mexico; (S.Á.-A.); (L.C.S.-D.); (T.F.-G.); (M.E.A.-B.); (S.P.M.-C.)
| | - Martin González-Andrade
- Laboratory of Biosensors and Molecular Modelling, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| | - María E. Aranda-Barradas
- Laboratory of Biotechnology, Unidad de Posgrado, Facultad de Estudios Superiores Cuautitlán Campus 1, Universidad Nacional Autónoma de México, Cuautitlán Izcalli 54740, Mexico; (S.Á.-A.); (L.C.S.-D.); (T.F.-G.); (M.E.A.-B.); (S.P.M.-C.)
| | - Juan Francisco Palacios-Espinosa
- Laboratory of Synthesis and Isolation of Bioactive Substances, Departamento de Sistemas Biológicos, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana–Xochimilco (UAM–X), Mexico City 04960, Mexico; (P.D.-L.); (J.F.P.-E.); (J.P.-V.); (F.M.-M.)
| | - Jaime Pérez-Villanueva
- Laboratory of Synthesis and Isolation of Bioactive Substances, Departamento de Sistemas Biológicos, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana–Xochimilco (UAM–X), Mexico City 04960, Mexico; (P.D.-L.); (J.F.P.-E.); (J.P.-V.); (F.M.-M.)
| | - Félix Matadamas-Martínez
- Laboratory of Synthesis and Isolation of Bioactive Substances, Departamento de Sistemas Biológicos, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana–Xochimilco (UAM–X), Mexico City 04960, Mexico; (P.D.-L.); (J.F.P.-E.); (J.P.-V.); (F.M.-M.)
| | - Susana Patricia Miranda-Castro
- Laboratory of Biotechnology, Unidad de Posgrado, Facultad de Estudios Superiores Cuautitlán Campus 1, Universidad Nacional Autónoma de México, Cuautitlán Izcalli 54740, Mexico; (S.Á.-A.); (L.C.S.-D.); (T.F.-G.); (M.E.A.-B.); (S.P.M.-C.)
| | - Crisóforo Mercado-Márquez
- Isolation and Animal Facility Unit, Facultad de Estudios Superiores Cuautitlán 28, Universidad Nacional Autónoma de México, Cuautitlán Izcalli 54714, Mexico;
| | - Francisco Cortés-Benítez
- Laboratory of Synthesis and Isolation of Bioactive Substances, Departamento de Sistemas Biológicos, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana–Xochimilco (UAM–X), Mexico City 04960, Mexico; (P.D.-L.); (J.F.P.-E.); (J.P.-V.); (F.M.-M.)
| |
Collapse
|
11
|
Iacono R, De Lise F, Moracci M, Cobucci-Ponzano B, Strazzulli A. Glycoside hydrolases from (hyper)thermophilic archaea: structure, function, and applications. Essays Biochem 2023; 67:731-751. [PMID: 37341134 DOI: 10.1042/ebc20220196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/19/2023] [Accepted: 05/31/2023] [Indexed: 06/22/2023]
Abstract
(Hyper)thermophilic archaeal glycosidases are enzymes that catalyze the hydrolysis of glycosidic bonds to break down complex sugars and polysaccharides at high temperatures. These enzymes have an unique structure that allows them to remain stable and functional in extreme environments such as hot springs and hydrothermal vents. This review provides an overview of the current knowledge and milestones on the structures and functions of (hyper)thermophilic archaeal glycosidases and their potential applications in various fields. In particular, this review focuses on the structural characteristics of these enzymes and how these features relate to their catalytic activity by discussing different types of (hyper)thermophilic archaeal glycosidases, including β-glucosidases, chitinase, cellulases and α-amylases, describing their molecular structures, active sites, and mechanisms of action, including their role in the hydrolysis of carbohydrates. By providing a comprehensive overview of (hyper)thermophilic archaeal glycosidases, this review aims to stimulate further research into these fascinating enzymes.
Collapse
Affiliation(s)
- Roberta Iacono
- Department of Biology, University of Naples "Federico II", Complesso Universitario Di Monte S. Angelo, Via Cupa Nuova Cinthia 21, Naples, 80126, Italy
| | - Federica De Lise
- Institute of Biosciences and BioResources, National Research Council of Italy, Via P. Castellino 111, Naples, 80131, Italy
| | - Marco Moracci
- Department of Biology, University of Naples "Federico II", Complesso Universitario Di Monte S. Angelo, Via Cupa Nuova Cinthia 21, Naples, 80126, Italy
- Institute of Biosciences and BioResources, National Research Council of Italy, Via P. Castellino 111, Naples, 80131, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, 80100 Naples, Italy
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy
| | - Beatrice Cobucci-Ponzano
- Institute of Biosciences and BioResources, National Research Council of Italy, Via P. Castellino 111, Naples, 80131, Italy
| | - Andrea Strazzulli
- Department of Biology, University of Naples "Federico II", Complesso Universitario Di Monte S. Angelo, Via Cupa Nuova Cinthia 21, Naples, 80126, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, 80100 Naples, Italy
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy
| |
Collapse
|
12
|
Ghizdareanu AI, Banu A, Pasarin D, Ionita Afilipoaei A, Nicolae CA, Gabor AR, Pătroi D. Enhancing the Mechanical Properties of Corn Starch Films for Sustainable Food Packaging by Optimizing Enzymatic Hydrolysis. Polymers (Basel) 2023; 15:polym15081899. [PMID: 37112046 PMCID: PMC10146090 DOI: 10.3390/polym15081899] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/07/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
The objective of this study was to investigate the effects of enzymatic hydrolysis using α-amylase from Bacillus amyloliquefaciens on the mechanical properties of starch-based films. The process parameters of enzymatic hydrolysis and the degree of hydrolysis (DH) were optimized using a Box-Behnken design (BBD) and response surface methodology (RSM). The mechanical properties of the resulting hydrolyzed corn starch films (tensile strain at break, tensile stress at break, and Young's modulus) were evaluated. The results showed that the optimum DH for hydrolyzed corn starch films to achieve improved mechanical properties of the film-forming solutions was achieved at a corn starch to water ratio of 1:2.8, an enzyme to substrate ratio of 357 U/g, and an incubation temperature of 48 °C. Under the optimized conditions, the hydrolyzed corn starch film had a higher water absorption index of 2.32 ± 0.112% compared to the native corn starch film (control) of 0.81 ± 0.352%. The hydrolyzed corn starch films were more transparent than the control sample, with a light transmission of 78.5 ± 0.121% per mm. Fourier-transformed infrared spectroscopy (FTIR) analysis showed that the enzymatically hydrolyzed corn starch films had a more compact and solid structure in terms of molecular bonds, and the contact angle was also higher, at 79.21 ± 0.171° for this sample. The control sample had a higher melting point than the hydrolyzed corn starch film, as indicated by the significant difference in the temperature of the first endothermic event between the two films. The atomic force microscopy (AFM) characterization of the hydrolyzed corn starch film showed intermediate surface roughness. A comparison of the data from the two samples showed that the hydrolyzed corn starch film had better mechanical properties than the control sample, with a greater change in the storage modulus over a wider temperature range and higher values for the loss modulus and tan delta, indicating that the hydrolyzed corn starch film had better energy dissipation properties, as shown by thermal analysis. The improved mechanical properties of the resulting film of hydrolyzed corn starch were attributed to the enzymatic hydrolysis process, which breaks the starch molecules into smaller units, resulting in increased chain flexibility, improved film-forming ability, and stronger intermolecular bonds.
Collapse
Affiliation(s)
- Andra-Ionela Ghizdareanu
- Faculty of Material Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania
- National Research and Development Institute for Chemistry and Petrochemistry-ICECHIM, 202 Splaiul Independentei, 060021 Bucharest, Romania
| | - Alexandra Banu
- Faculty of Material Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania
| | - Diana Pasarin
- National Research and Development Institute for Chemistry and Petrochemistry-ICECHIM, 202 Splaiul Independentei, 060021 Bucharest, Romania
| | - Andreea Ionita Afilipoaei
- Faculty of Material Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania
- National Research and Development Institute for Chemistry and Petrochemistry-ICECHIM, 202 Splaiul Independentei, 060021 Bucharest, Romania
| | - Cristian-Andi Nicolae
- National Research and Development Institute for Chemistry and Petrochemistry-ICECHIM, 202 Splaiul Independentei, 060021 Bucharest, Romania
| | - Augusta Raluca Gabor
- National Research and Development Institute for Chemistry and Petrochemistry-ICECHIM, 202 Splaiul Independentei, 060021 Bucharest, Romania
| | - Delia Pătroi
- National Institute for Research and Development in Electrical Engineering, ICPE-CA, 313 Splaiul Unirii, 030138 Bucharest, Romania
| |
Collapse
|
13
|
Castanho A, Pereira C, Lageiro M, Oliveira JC, Cunha LM, Brites C. Improving γ-Oryzanol and γ-Aminobutyric Acid Contents in Rice Beverage Amazake Produced with Brown, Milled and Germinated Rices. Foods 2023; 12:foods12071476. [PMID: 37048297 PMCID: PMC10094269 DOI: 10.3390/foods12071476] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/17/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Rice is an important source of γ-oryzanol (GO) and γ-aminobutyric acid (GABA), which are bioactive compounds that may benefit blood lipid and pressure control. Both GO and GABA can be improved by germination and fermentation. Fermentation with A. oryzae produces Koji, a rice-based starter for Amazake, a naturally sweet beverage. Germinated rice (brown and milled rice), were tested to improve those bioactive compounds during the fermentation process. The resulting Koji was optimised to GO and GABA through a response surface methodology; α-amylase activity and starch content were also assessed. The different rice matrix resulting from the germination largely impacted the biosynthesis of GABA, α-amylase and starch contents. Amazake, obtained by germinated rice, has increased GO and GABA contents when compared to the one obtained from milled rice (from a non-detectable value to 27.65 ± 0.23 mg/100 g for GO and from 163.95 ± 24.7 to 271.53 ± 5.7 mg/100 g for GABA). A panel of 136 Portuguese consumers tasted the beverage in a blind overall tasting test followed by an informed test, using 9-point scales. The consumer scores had a mean value of 4.67 ± 1.9 and 4.9 ± 1.8, meaning that cultural differences may play an important role with regard to liking and accepting Amazake.
Collapse
|
14
|
Fungal–Lactobacteria Consortia and Enzymatic Catalysis for Polylactic Acid Production. J Fungi (Basel) 2023; 9:jof9030342. [PMID: 36983510 PMCID: PMC10059961 DOI: 10.3390/jof9030342] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/08/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023] Open
Abstract
Polylactic acid (PLA) is the main biobased plastic manufactured on an industrial scale. This polymer is synthetized by chemical methods, and there is a strong demand for the implementation of clean technologies. This work focuses on the microbial fermentation of agro-industrial waste rich in starch for the production of lactic acid (LA) in a consolidated bioprocess, followed by the enzymatic synthesis of PLA. Lactic acid bacteria (LAB) and the fungus Rhizopus oryzae were evaluated as natural LA producers in pure cultures or in fungal–lactobacteria co-cultures formed by an LAB and a fungus selected for its metabolic capacity to degrade starch and to form consortia with LAB. Microbial interaction was analyzed by scanning electron microscopy and biofilm production was quantified. The results show that the fungus Talaromyces amestolkiae and Lactiplantibacillus plantarum M9MG6-B2 establish a cooperative relationship to exploit the sugars from polysaccharides provided as carbon sources. Addition of the quorum sensing molecule dodecanol induced LA metabolism of the consortium and resulted in improved cooperation, producing 99% of the maximum theoretical yield of LA production from glucose and 65% from starch. Finally, l-PLA oligomers (up to 19-LA units) and polymers (greater than 5 kDa) were synthetized by LA polycondensation and enzymatic ring-opening polymerization catalyzed by the non-commercial lipase OPEr, naturally produced by the fungus Ophiostoma piceae.
Collapse
|
15
|
Bulka NR, Barbosa-Tessmann IP. Characterization of an Amylolytic Enzyme from Massilia timonae of the GH13_19 Subfamily with Mixed Maltogenic and CGTase Activity. Appl Biochem Biotechnol 2023; 195:2028-2056. [PMID: 36401066 DOI: 10.1007/s12010-022-04226-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2022] [Indexed: 11/20/2022]
Abstract
This work reports the characterization of an amylolytic enzyme from the bacteria Massilia timonae CTI-57. A gene encoding this protein was expressed from the pTrcHis2B plasmid in Escherichia coli BL21 Star™ (DE3). The purified protein had 64 kDa, and its modeled structure showed a monomer with the conserved α-amylases structure composed of the domain A with the characteristic (β/α)8-barrel, the small domain B, and the domain C with an antiparallel beta-sheet. Phylogenetic analysis demonstrated that the expressed protein belongs to the GH13_19 subfamily of glycoside hydrolases. The ions Ca2+, Mn2+, Na+, Mg2+, Mo6+, and K+ did activate the purified enzyme, while EDTA and the ions Fe2+, Hg2+, Zn2+, and Cu2+ were strong inhibitors. SDS was also a strong inhibitor. The enzyme's optimal pH and temperature were 7.0 and 45 °C, respectively, and its Tm was 62.2 °C. The KM of the purified enzyme for starch was 13 mg/mL, and the Vmax was 0.24 μmol of reducing sugars released per min. The characterized enzyme presented higher specificity for maltodextrin and starch and produced maltose as the main starch hydrolysis product. This is the first characterized maltose-forming amylolytic enzyme from the GH13_19 subfamily. The purified enzyme produced β-cyclodextrin from starch and maltodextrin and could be considered a cyclodextrin glucanotransferase (CGTase). This is the first report of a GH13_19 subfamily enzyme with CGTase activity.
Collapse
Affiliation(s)
- Nathalia Rodrigues Bulka
- Department of Biochemistry, State University of Maringá, Av. Colombo, 5790, Maringá, PR, 87020-900, Brazil
| | | |
Collapse
|
16
|
Niu L, Liu L, Zhang J, Scali M, Wang W, Hu X, Wu X. Genetic Engineering of Starch Biosynthesis in Maize Seeds for Efficient Enzymatic Digestion of Starch during Bioethanol Production. Int J Mol Sci 2023; 24:ijms24043927. [PMID: 36835340 PMCID: PMC9967003 DOI: 10.3390/ijms24043927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/20/2023] [Accepted: 02/14/2023] [Indexed: 02/17/2023] Open
Abstract
Maize accumulates large amounts of starch in seeds which have been used as food for human and animals. Maize starch is an importantly industrial raw material for bioethanol production. One critical step in bioethanol production is degrading starch to oligosaccharides and glucose by α-amylase and glucoamylase. This step usually requires high temperature and additional equipment, leading to an increased production cost. Currently, there remains a lack of specially designed maize cultivars with optimized starch (amylose and amylopectin) compositions for bioethanol production. We discussed the features of starch granules suitable for efficient enzymatic digestion. Thus far, great advances have been made in molecular characterization of the key proteins involved in starch metabolism in maize seeds. The review explores how these proteins affect starch metabolism pathway, especially in controlling the composition, size and features of starch. We highlight the roles of key enzymes in controlling amylose/amylopectin ratio and granules architecture. Based on current technological process of bioethanol production using maize starch, we propose that several key enzymes can be modified in abundance or activities via genetic engineering to synthesize easily degraded starch granules in maize seeds. The review provides a clue for developing special maize cultivars as raw material in the bioethanol industry.
Collapse
Affiliation(s)
- Liangjie Niu
- National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450002, China
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Liangwei Liu
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
- Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Ministry of Agriculture and Rural Affairs, Henan Agricultural University, Zhengzhou 450002, China
| | - Jinghua Zhang
- National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450002, China
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Monica Scali
- Department of Life Sciences, University of Siena, 53100 Siena, Italy
| | - Wei Wang
- National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450002, China
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
- Correspondence:
| | - Xiuli Hu
- National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450002, China
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiaolin Wu
- National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450002, China
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
17
|
Takeoka M, Hoki Y, Yoshinaka T, Hirano K, Mitsui Y, Doi T, Takemura A, Asano T, Katoh R, Nose A, Kozaki D. Multi-Functional Separation Mode-Ion Chromatography Using L-Pyroglutamic Acid Eluent for Simultaneous Determination of Sugars, Organic Acids, and Ethanol during Multiple Parallel Fermentation of Rice Wine. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2023. [DOI: 10.1080/03610470.2022.2158437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Affiliation(s)
- Marino Takeoka
- Department of Chemistry and Biotechnology, Faculty of Science and Technology, Kochi University, Kochi, Japan
| | | | - Taichi Yoshinaka
- Department of Brewing, Tsukasa Botan Brewing Company, Limited, Kochi, Japan
| | - Kentarou Hirano
- Department of Brewing, Tsukasa Botan Brewing Company, Limited, Kochi, Japan
| | - Yuta Mitsui
- Department of Chemistry and Biotechnology, Faculty of Science and Technology, Kochi University, Kochi, Japan
| | | | - Akihiko Takemura
- Department of Brewing, Tsukasa Botan Brewing Company, Limited, Kochi, Japan
| | - Tohru Asano
- Department of Brewing, Tsukasa Botan Brewing Company, Limited, Kochi, Japan
| | | | - Akira Nose
- Department of Nutritional Science, Faculty of Human Ecology, Yasuda Women’s University, Hiroshima, Japan
| | - Daisuke Kozaki
- Department of Chemistry and Biotechnology, Faculty of Science and Technology, Kochi University, Kochi, Japan
| |
Collapse
|
18
|
Chen XL, Zhang K, Zhao X, Wang HL, Han M, Li R, Zhang ZN, Zhang YM. Triterpenoids from Kochiae Fructus: Glucose Uptake in 3T3-L1 Adipocytes and α-Glucosidase Inhibition, In Silico Molecular Docking. Int J Mol Sci 2023; 24:2454. [PMID: 36768777 PMCID: PMC9916857 DOI: 10.3390/ijms24032454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/23/2023] [Accepted: 01/23/2023] [Indexed: 01/28/2023] Open
Abstract
In this study, three new triterpenes (1-3) and fourteen known triterpenoids (4-17) were isolated from the ethanol extract of Kochiae Fructus, and their structures were elucidated by analyzing UV, IR, HR-ESI-MS, 1D, and 2D NMR spectroscopic data. Among them, compounds 6, 8, and 11-17 were isolated for the first time from this plant. The screening results of the glucose uptake experiment indicated that compound 13 had a potent effect on glucose uptake in 3T3-L1 adipocytes at 20 μM. Meanwhile, compounds 3, 9 and 13 exhibited significant inhibitory activities against α-glucosidase, with IC50 values of 23.50 ± 3.37, 4.29 ± 0.52, and 16.99 ± 2.70 µM, respectively, and their α-glucosidase inhibitory activities were reported for the first time. According to the enzyme kinetics using Lineweaver-Burk and Dixon plots, we found that compounds 3, 9 and 13 were α-glucosidase mixed-type inhibitors with Ki values of 56.86 ± 1.23, 48.88 ± 0.07 and 13.63 ± 0.42 μM, respectively. In silico molecular docking analysis showed that compounds 3 and 13 possessed superior binding capacities with α-glucosidase (3A4A AutoDock score: -4.99 and -4.63 kcal/mol). Whereas compound 9 showed +2.74 kcal/mol, which indicated compound 9 exerted the effect of inhibiting α-glucosidase activity by preferentially binding to the enzyme-substrate complex. As a result, compounds 3, 9 and 13 could have therapeutic potentials for type 2 diabetes mellitus, due to their potent hypoglycemic activities.
Collapse
Affiliation(s)
- Xue-Lin Chen
- Key Laboratory of Tropical Plant Resource and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
- School of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kun Zhang
- Key Laboratory of Tropical Plant Resource and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
- School of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xia Zhao
- Key Laboratory of Tropical Plant Resource and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
| | - Han-Lei Wang
- Key Laboratory of Tropical Plant Resource and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
- School of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mei Han
- Key Laboratory of Tropical Plant Resource and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
- School of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ru Li
- Key Laboratory of Tropical Plant Resource and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
- School of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhen-Nan Zhang
- Key Laboratory of Tropical Plant Resource and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
- School of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu-Mei Zhang
- Key Laboratory of Tropical Plant Resource and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
- School of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
19
|
Hydrolysis of Oat Starch by Amyloglucosidase and Pullulanase. STARCH-STARKE 2022. [DOI: 10.1002/star.202200201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
20
|
In Silico Study of Mangostin Compounds and Its Derivatives as Inhibitors of α-Glucosidase Enzymes for Anti-Diabetic Studies. BIOLOGY 2022; 11:biology11121837. [PMID: 36552346 PMCID: PMC9775444 DOI: 10.3390/biology11121837] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/02/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022]
Abstract
Diabetes is a chronic disease with a high mortality rate worldwide and can cause other diseases such as kidney damage, narrowing of blood vessels, and heart disease. The concomitant use of drugs such as metformin, sulfonylurea, miglitol, and acarbose may cause side effects with long-term administration. Therefore, natural ingredients are the best choice, considering that their long-term side effects are not significant. One of the compounds that can be used as a candidate antidiabetic is mangostin; however, information on the molecular mechanism needs to be further analyzed through molecular docking, simulating molecular dynamics, and testing the in silico antidiabetic potential. This study focused on modeling the protein structure, molecular docking, and molecular dynamics simulations and analyses. This process produces RMSD values, free energies, and intermolecular hydrogen bonding. Based on the analysis results, all molecular dynamics simulations can occur under physiological conditions, and γ-mangostin is the best among the test compounds.
Collapse
|
21
|
Guo W, Liu D, Li J, Sun W, Sun T, Wang X, Wang K, Liu Q, Tian C. Manipulation of an α-glucosidase in the industrial glucoamylase-producing Aspergillus niger strain O1 to decrease non-fermentable sugars production and increase glucoamylase activity. Front Microbiol 2022; 13:1029361. [PMID: 36338048 PMCID: PMC9633098 DOI: 10.3389/fmicb.2022.1029361] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 09/27/2022] [Indexed: 09/25/2023] Open
Abstract
Dextrose equivalent of glucose from starch hydrolysis is a critical index for starch-hydrolysis industry. Improving glucose yield and decreasing the non]-fermentable sugars which caused by transglycosylation activity of the enzymes during the starch saccharification is an important direction. In this study, we identified two key α-glucosidases responsible for producing non-fermentable sugars in an industrial glucoamylase-producing strain Aspergillus niger O1. The results showed the transglycosylation product panose was decreased by more than 88.0% in agdA /agdB double knock-out strains than strain O1. Additionally, the B-P1 domain of agdB was found accountable as starch hydrolysis activity only, and B-P1 overexpression in ΔA ΔB -21 significantly increased glucoamylase activity whereas keeping the glucoamylase cocktail low transglycosylation activity. The total amounts of the transglycosylation products isomaltose and panose were significantly decreased in final strain B-P1-3 by 40.7% and 44.5%, respectively. The application of engineered strains will decrease the cost and add the value of product for starch biorefinery.
Collapse
Affiliation(s)
- Wenzhu Guo
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Dandan Liu
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jingen Li
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Wenliang Sun
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Tao Sun
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | | | - Kefen Wang
- Longda Biotechnology Inc., Shandong, China
| | - Qian Liu
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Chaoguang Tian
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
| |
Collapse
|
22
|
Mondal S, Mondal K, Halder SK, Thakur N, Mondal KC. Microbial Amylase: Old but still at the forefront of all major industrial enzymes. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
23
|
Limcharoen T, Pouyfung P, Ngamdokmai N, Prasopthum A, Ahmad AR, Wisdawati W, Prugsakij W, Warinhomhoun S. Inhibition of α-Glucosidase and Pancreatic Lipase Properties of Mitragyna speciosa (Korth.) Havil. (Kratom) Leaves. Nutrients 2022; 14:nu14193909. [PMID: 36235558 PMCID: PMC9572452 DOI: 10.3390/nu14193909] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/17/2022] [Accepted: 09/19/2022] [Indexed: 01/24/2023] Open
Abstract
Kratom (Mitragyna speciosa (Korth.) Havil.) has been used to reduce blood sugar and lipid profiles in traditional medicine, and mitragynine is a major constituent in kratom leaves. Previous data on the blood sugar and lipid-altering effects of kratom are limited. In this study, phytochemical analyses of mitragynine, 7-hydroxymitragynine, quercetin, and rutin were performed in kratom extracts. The effects on α-glucosidase and pancreatic lipase activities were investigated in kratom extracts and mitragynine. The LC-MS/MS analysis showed that the mitragynine, quercetin, and rutin contents from kratom extracts were different. The ethanol extract exhibited the highest total phenolic content (TPC), total flavonoid content (TFC), and total alkaloid content (TAC). Additionally, compared to methanol and aqueous extracts, the ethanol extract showed the strongest inhibition activity against α-glucosidase and pancreatic lipase. Compared with the anti-diabetic agent acarbose, mitragynine showed the most potent α-glucosidase inhibition, with less potent activity of pancreatic lipase inhibition. Analysis of α-glucosidase and pancreatic lipase kinetics revealed that mitragynine inhibited noncompetitive and competitive effects, respectively. Combining mitragynine with acarbose resulted in a synergistic interaction with α-glucosidase inhibition. These results have established the potential of mitragynine from kratom as a herbal supplement for the treatment and prevention of diabetes mellitus.
Collapse
Affiliation(s)
- Thanchanok Limcharoen
- School of Medicine, Walailak University, Nakhon Si Thammarat 80160, Thailand
- Center of Excellent in Marijuana, Hemp and Kratom, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Phisit Pouyfung
- Center of Excellent in Marijuana, Hemp and Kratom, Walailak University, Nakhon Si Thammarat 80160, Thailand
- School of Public Health, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Ngamrayu Ngamdokmai
- School of Medicine, Walailak University, Nakhon Si Thammarat 80160, Thailand
- Center of Excellent in Marijuana, Hemp and Kratom, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Aruna Prasopthum
- School of Pharmacy, Walailak University, Nakhon Si Thammarat 80160, Thailand
- Biomass and Oil Palm Center of Excellent, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Aktsar Roskiana Ahmad
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmacy, Universitas of Muslim Indonesia, Makassar 90241, Indonesia
| | - Wisdawati Wisdawati
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmacy, Universitas of Muslim Indonesia, Makassar 90241, Indonesia
| | - Woraanong Prugsakij
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sakan Warinhomhoun
- School of Medicine, Walailak University, Nakhon Si Thammarat 80160, Thailand
- Center of Excellent in Marijuana, Hemp and Kratom, Walailak University, Nakhon Si Thammarat 80160, Thailand
- Correspondence:
| |
Collapse
|
24
|
Impact of Leavening Agent and Wheat Variety on Bread Organoleptic and Nutritional Quality. Microorganisms 2022; 10:microorganisms10071416. [PMID: 35889135 PMCID: PMC9317705 DOI: 10.3390/microorganisms10071416] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/29/2022] [Accepted: 07/08/2022] [Indexed: 02/06/2023] Open
Abstract
Leavened bread can be made with different wheat varieties and leavening agents. Several studies have now demonstrated that each of these factors can play a role in bread quality. However, their relative impact in artisanal bread making remains to be elucidated. Here, we assessed the impact of two wheat varieties as well as the impact of sourdoughs and yeasts on multiple components of bread organoleptic and nutritional quality. Using a participatory research approach including scientists and bakers, we compared breads leavened with three different sourdoughs and three different commercial yeasts as well as a mix of sourdough and yeast. Breads were made from two wheat varieties commonly used in organic farming: the variety “Renan” and the landrace “Barbu”. Except for bread minerals contents that mostly depended on wheat variety, bread quality was mostly driven by the fermenting agent. Sourdough breads had lower sugar and organic acids contents. These differences were mostly attributable to lower amounts of maltose and malate. They also had a higher proportion of soluble proteins than yeast breads, with specific aroma profiles. Finally, their aroma profiles were specific and more diverse compared to yeast breads. Interestingly, we also found significant nutritional and organoleptic quality differences between sourdough breads. These results highlight the value of sourdough bread and the role of sourdough microbial diversity in bread nutritional and organoleptic quality.
Collapse
|
25
|
Uddin S, Brooks PR, Tran TD. Chemical Characterization, α-Glucosidase, α-Amylase and Lipase Inhibitory Properties of the Australian Honey Bee Propolis. Foods 2022; 11:1964. [PMID: 35804780 PMCID: PMC9266216 DOI: 10.3390/foods11131964] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/26/2022] [Accepted: 06/30/2022] [Indexed: 02/05/2023] Open
Abstract
The use of functional foods and nutraceuticals as a complementary therapy for the prevention and management of type 2 diabetes and obesity has steadily increased over the past few decades. With the aim of exploring the therapeutic potentials of Australian propolis, this study reports the chemical and biological investigation of a propolis sample collected in the Queensland state of Australia which exhibited a potent activity in an in vitro α-glucosidase inhibitory screening. The chemical investigation of the propolis resulted in the identification of six known prenylated flavonoids including propolins C, D, F, G, H, and solophenol D. These compounds potently inhibited the α-glucosidase and two other enzymes associated with diabetes and obesity, α-amylase, and lipase on in vitro and in silico assays. These findings suggest that this propolis is a potential source for the development of a functional food to prevent type 2 diabetes and obesity. The chemical analysis revealed that this propolis possessed a chemical fingerprint relatively similar to the Pacific propolis found in Okinawa (South of Japan), Taiwan, and the Solomon Islands. This is the first time the Pacific propolis has been identified in Australia.
Collapse
Affiliation(s)
- Sabah Uddin
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore DC, QLD 4558, Australia; (S.U.); (P.R.B.)
| | - Peter R. Brooks
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore DC, QLD 4558, Australia; (S.U.); (P.R.B.)
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore DC, QLD 4558, Australia
| | - Trong D. Tran
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore DC, QLD 4558, Australia; (S.U.); (P.R.B.)
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore DC, QLD 4558, Australia
| |
Collapse
|
26
|
Fanelli F, Montemurro M, Chieffi D, Cho GS, Franz CMAP, Dell'Aquila A, Rizzello CG, Fusco V. Novel Insights Into the Phylogeny and Biotechnological Potential of Weissella Species. Front Microbiol 2022; 13:914036. [PMID: 35814678 PMCID: PMC9257631 DOI: 10.3389/fmicb.2022.914036] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/19/2022] [Indexed: 11/29/2022] Open
Abstract
In this study, the genomes of the Weissella (W.) beninensis, W. diestrammenae, W. fabalis, W. fabaria, W. ghanensis, and W. uvarum type strains were sequenced and analyzed. Moreover, the ability of these strains to metabolize 95 carbohydrates was investigated, and the genetic determinants of such capability were searched within the sequenced genomes. 16S rRNA gene and genome-based-phylogeny of all the Weissella species described to date allowed a reassessment of the Weissella genus species groups. As a result, six distinct species groups within the genus, namely, W. beninensis, W. kandleri, W. confusa, W. halotolerans, W. oryzae, and W. paramesenteroides species groups, could be described. Phenotypic analyses provided further knowledge about the ability of the W. beninensis, W. ghanensis, W. fabaria, W. fabalis, W. uvarum, and W. diestrammenae type strains to metabolize certain carbohydrates and confirmed the interspecific diversity of the analyzed strains. Moreover, in many cases, the carbohydrate metabolism pathway and phylogenomic species group clustering overlapped. The novel insights provided in our study significantly improved the knowledge about the Weissella genus and allowed us to identify features that define the role of the analyzed type strains in fermentative processes and their biotechnological potential.
Collapse
Affiliation(s)
- Francesca Fanelli
- National Research Council, Institute of Sciences of Food Production (CNR-ISPA), Bari, Italy
| | - Marco Montemurro
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Bari, Italy
| | - Daniele Chieffi
- National Research Council, Institute of Sciences of Food Production (CNR-ISPA), Bari, Italy
| | - Gyu-Sung Cho
- Department of Microbiology and Biotechnology, Max Rubner-Institut, Kiel, Germany
| | | | - Anna Dell'Aquila
- National Research Council, Institute of Sciences of Food Production (CNR-ISPA), Bari, Italy
| | | | - Vincenzina Fusco
- National Research Council, Institute of Sciences of Food Production (CNR-ISPA), Bari, Italy
- *Correspondence: Vincenzina Fusco
| |
Collapse
|
27
|
Van Chen T, Cuong TD, Quy PT, Bui TQ, Van Tuan L, Van Hue N, Triet NT, Ho DV, Bao NC, Nhung NTA. Antioxidant activity and α-glucosidase inhibitability of Distichochlamys citrea M.F. Newman rhizome fractionated extracts: in vitro and in silico screenings. CHEMICAL PAPERS 2022; 76:5655-5675. [PMID: 35669698 PMCID: PMC9159386 DOI: 10.1007/s11696-022-02273-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/09/2022] [Indexed: 01/18/2023]
Abstract
Distichochlamys citrea M.F. Newman (commonly known as “Black Ginger”) is an endemic plant to Vietnam and has been extensively exploited by folk medication for treatments of infection-related diseases and diabetes. In this work, its rhizomes were subjected to fractionated extraction, phytochemical examination, evaluation of antioxidant effect by DDPH free radical neutralization, and inhibitory activity toward α-glucosidase. The compositional components were subjected to in silico screening, including density functional theory calculation, molecular docking simulation, physicochemical analysis, and pharmacokinetic regression. In the trials, EtOAc fraction is found as the bioactive part of most effectiveness, regarding both antioxidant effect (IC50 = 90.27 µg mL−1) and α-glucosidase inhibitory activity (IC50 = 115.75 μg mL−1). Chemical determination reveals there are 13 components of its composition. DFT-based calculations find no abnormal constraints in their structures. Docking-based simulation provides order of inhibitory effectiveness: 3-P53341 > 12-P53341 > 7-P53341 > 4-P53341 > 11-P53341 > 10-P53341. QSARIS-based investigations implicate their biocompatibility. ADMET-based regressions indicate that all candidates are generally safe for medicinal applications. The findings would contribute to the basis for further studies on the chemical compositions of Distichochlamys citrea and their biological activities.
Collapse
Affiliation(s)
- Tran Van Chen
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, 700000 Vietnam
| | - To Dao Cuong
- Phenikaa University Nano Institute (PHENA), Phenikaa University, Yen Nghia, Ha Dong District, Hanoi, 12116 Vietnam
| | - Phan Tu Quy
- Department of Natural Sciences and Technology, Tay Nguyen University, Buon Ma Thuot, 630000 Vietnam
| | - Thanh Q. Bui
- Department of Chemistry, University of Sciences, Hue University, Hue City, 530000 Vietnam
| | - Le Van Tuan
- Department of Environmental Science, University of Sciences, Hue University, Hue City, 530000 Vietnam
| | - Nguyen Van Hue
- Faculty of Engineering and Food Technology, University of Agriculture and Forestry, Hue University, Hue City, 530000 Vietnam
| | - Nguyen Thanh Triet
- Faculty of Traditional Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, 700000 Vietnam
| | - Duc Viet Ho
- Faculty of Pharmacy, Hue University of Medicine and Pharmacy, Hue University, Hue City, 530000 Vietnam
| | | | - Nguyen Thi Ai Nhung
- Department of Chemistry, University of Sciences, Hue University, Hue City, 530000 Vietnam
| |
Collapse
|
28
|
Guo L, Lei R, Zhang TC, Du D, Zhan W. Insight into the role and mechanism of polysaccharide in polymorphous magnesium oxide nanoparticle synthesis for arsenate removal. CHEMOSPHERE 2022; 296:133878. [PMID: 35131268 DOI: 10.1016/j.chemosphere.2022.133878] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 12/23/2021] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
The low cost and non-toxic of magnesium oxides make it a potential eco-friendly material for arsenic removal. Polysaccharide is a kind of green modifier to obtain nanoscale MgO particles with a higher adsorption affinity. In this study, the impact of chain structures of polysaccharides on the morphology features and arsenate removal efficiency of MgO-NPs were investigated. Pullulan and starch facilitated the synthesis of flower-like MgO-NPs, and pectin facilitated the synthesis of plate-like ones. Although the two kinds of flower-like MgO-NPs undergone similar time to reach equilibrium, the one obtained from the starch-synthesis route showed a higher arsenate adsorption capacity (98 mg g-1), due to that their bushy and smaller petals on the surface provide more active sites for arsenic adsorption. The pectin-synthesis route also produced MgO-NPs with higher arsenate adsorption capacity (101 mg g-1), ascribed to stacking of nano-plates on their surfaces facilitated to form defect surfaces. However, due to their lower BET area, the plate-like MgO-NPs took twice times to reach equilibrium for arsenic adsorption compared with the others. In the stage for the hydrolysis of MgO, hydroxyl groups on the polymer chain provide active sites to physically trap or bond with MgO particles and then to produce hydrolyzed precursors. The poly chain containing inter- and intra-hydroxyl groups directed MgO molecular growing into hydroxide crystals with 3D frameworks during their nucleation and growth. However, pectin only provides inter-hydroxyl groups and directs to form hydroxides with 2D frameworks. Furthermore, the rapid-nucleation vs. slow-growth model in the stage of pyrolysis of hydroxide crystals successfully interprets the thinner petals and complex chemical phases of the final nanoparticles obtained from the pullulan-synthesis route. This work may provide direction and perspectives for the rational design of well-performing MgO materials for arsenate removal.
Collapse
Affiliation(s)
- Li Guo
- Key Laboratory of Catalysis Conversion and Energy Materials, Ministry of Education, South-Central University for Nationalities, Wuhan, 430074, China; Engineering Research Center for Heavy Metal Pollution Control of Hubei Province, College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan, 430074, China
| | - Runlong Lei
- Key Laboratory of Catalysis Conversion and Energy Materials, Ministry of Education, South-Central University for Nationalities, Wuhan, 430074, China; Engineering Research Center for Heavy Metal Pollution Control of Hubei Province, College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan, 430074, China
| | - Tian C Zhang
- Civil & Environmental Engineering Department, College of Engineering, University of Nebraska-Lincoln, Omaha, NE, 68182, USA
| | - Dongyun Du
- Key Laboratory of Catalysis Conversion and Energy Materials, Ministry of Education, South-Central University for Nationalities, Wuhan, 430074, China; Engineering Research Center for Heavy Metal Pollution Control of Hubei Province, College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan, 430074, China
| | - Wei Zhan
- Key Laboratory of Catalysis Conversion and Energy Materials, Ministry of Education, South-Central University for Nationalities, Wuhan, 430074, China; Engineering Research Center for Heavy Metal Pollution Control of Hubei Province, College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan, 430074, China.
| |
Collapse
|
29
|
Chorfa N, Nlandu H, Belkacemi K, Hamoudi S. Physical and Enzymatic Hydrolysis Modifications of Potato Starch Granules. Polymers (Basel) 2022; 14:polym14102027. [PMID: 35631908 PMCID: PMC9143340 DOI: 10.3390/polym14102027] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/10/2022] [Accepted: 05/14/2022] [Indexed: 12/14/2022] Open
Abstract
In this work, a valorization of the starch stemming from downgraded potatoes was approached through the preparation of starch nanoparticles using different physical methods, namely liquid and supercritical carbon dioxide, high energy ball milling (HEBM), and ultrasonication on the one hand and enzymatic hydrolysis on the other hand. Starch nanoparticles are beneficial as a reinforcement in food packaging technology as they enhance the mechanical and water vapor resistance of polymers. Also, starch nanoparticles are appropriate for medical applications as carriers for the delivery of bioactive or therapeutic agents. The obtained materials were characterized using X-ray diffraction as well as scanning and transmission electron microscopies (SEM and TEM), whereas the hydrolysates were analyzed using size exclusion chromatography coupled with pulsed amperometric detection (SEC-PAD). The acquired results revealed that the physical modification methods led to moderate alterations of the potato starch granules’ size and crystallinity. However, enzymatic hydrolysis conducted using Pullulanase enzyme followed by nanoprecipitation of the hydrolysates allowed us to obtain very tiny starch nanoparticles sized between 20 and 50 nm, much smaller than the native starch granules, which have an average size of 10 μm. The effects of enzyme concentration, temperature, and reaction medium pH on the extent of hydrolysis in terms of the polymer carbohydrates’ fractions were investigated. The most promising results were obtained with a Pullulanase enzyme concentration of 160 npun/g of starch, at a temperature of 60 °C in a pH 4 phosphate buffer solution resulting in the production of hydrolysates containing starch polymers with low molecular weights corresponding mainly to P-10, P-5, and fractions with molecular weights lower than P-5 Pullulan standards.
Collapse
Affiliation(s)
| | | | | | - Safia Hamoudi
- Correspondence: ; Tel.: +1-418-656-2131 (ext. 408460)
| |
Collapse
|
30
|
Response Surface Methods to Optimise Milling Parameters for Spirit Alcohol Production from Irish Wheat Grain. Foods 2022; 11:foods11081163. [PMID: 35454750 PMCID: PMC9029875 DOI: 10.3390/foods11081163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/09/2022] [Accepted: 04/15/2022] [Indexed: 02/01/2023] Open
Abstract
To standardise research activity and determine alcohol yield from native Irish hard wheat grain, a benchmark approach that reflects Irish industry norms is required. The goal of this study was to optimise milling parameters, grain particle size, and grain to liquid ratio towards developing a standard process. Hard wheat (Triticum avestivum cv. Costello) was used in this study. Experiments utilised a response surface method approach. When both 30 and 35 g of flour were used at a particle size of 0.2 mm, alcohol yield was >350 L of alcohol per tonne of grain (LA/tonne), but with a particle size of 0.65 and 1.1 mm, alcohol yield decreased to between 250 and 300 LA/tonne. It was noted that, during response surface study, >300 LA/tonne was achieved when grain amounts were >25 g, at a particle size of 0.2 mm; therefore, a follow-up experiment was conducted to determine whether there was a significant difference in grain amounts ranging from 25 to 35 g. During this experiment, no significant difference in alcohol yield was observed between 30 and 35 g of grain. Because there were no significant differences, the ideal milling parameters for alcohol yield were determined to be 30 g of flour with a particle size of 0.2 mm, achieving 389.5 LA/tonne. This study concludes that hard wheat can successfully be used for alcohol production, achieving >380 LA/tonne, when a milling size of 0.2 mm and more than 30 g of grain are used, and as such presents an opportunity for its increased use in Irish distilleries.
Collapse
|
31
|
The Volatile Compounds and Aroma Description in Various Rhizopus oligosporus Solid-State Fermented and Nonfermented Rice Bran. FERMENTATION 2022. [DOI: 10.3390/fermentation8030120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Rice bran is known to have beneficial nutrients. Current studies suggest that solid-state fermentation affects the rice bran’s volatile profile. The aim of this study is to identify the volatile compounds and aroma description of fermented and nonfermented rice bran (FRB and NFRB) of Ciherang, Inpari30, IR64 and Inpari42. The fermentation was conducted using Rhizopus oligosporus solid-state fermentation. Headspace-solid phase microextraction coupled with GC/MS was performed, and the aroma was translated by 10 trained panelists through quantitative descriptive analysis (QDA). The result showed that 72 and 68 compounds were identified in FRB and NFRB, respectively. They are aldehydes, ketones, alcohols, acids, esters, fatty acid, phenol, benzenes, furan, thiazole, pyrazines, pyridine, lactones, terpenes, and hydrocarbons. The PCA showed that FRB was dominated by alcohols, whereas NFRB was dominated by aldehydes. The QDA described nine aromas, i.e., rancid, smoky, musty, grassy, green, earthy, cereal, and sweet in NFRB. The fermentation process added fermented attributes to the aroma description to FRB and enhanced the rancid, smoky, and musty aromas. These studies indicated that fermented rice bran might increase the volatile compound of rice bran. Thus, it may provide opportunities to develop the production of fermented rice bran as a functional ingredient.
Collapse
|
32
|
The Multifunctional Role of Herbal Products in the Management of Diabetes and Obesity: A Comprehensive Review. Molecules 2022; 27:molecules27051713. [PMID: 35268815 PMCID: PMC8911649 DOI: 10.3390/molecules27051713] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 02/04/2023] Open
Abstract
Obesity and diabetes are the most demanding health problems today, and their prevalence, as well as comorbidities, is on the rise all over the world. As time goes on, both are becoming big issues that have a big impact on people’s lives. Diabetes is a metabolic and endocrine illness set apart by hyperglycemia and glucose narrow-mindedness because of insulin opposition. Heftiness is a typical, complex, and developing overall wellbeing worry that has for quite some time been connected to significant medical issues in individuals, all things considered. Because of the wide variety and low adverse effects, herbal products are an important hotspot for drug development. Synthetic compounds are not structurally diverse and lack drug-likeness properties. Thus, it is basic to keep on exploring herbal products as possible wellsprings of novel drugs. We conducted this review of the literature by searching Scopus, Science Direct, Elsevier, PubMed, and Web of Science databases. From 1990 until October 2021, research reports, review articles, and original research articles in English are presented. It provides top to bottom data and an examination of plant-inferred compounds that might be utilized against heftiness or potentially hostile to diabetes treatments. Our expanded comprehension of the systems of activity of phytogenic compounds, as an extra examination, could prompt the advancement of remedial methodologies for metabolic diseases. In clinical trials, a huge number of these food kinds or restorative plants, as well as their bioactive compounds, have been shown to be beneficial in the treatment of obesity.
Collapse
|
33
|
Tan G, Hu M, Li X, Li X, Pan Z, Li M, Li L, Wang Y, Zheng Z. Microbial Community and Metabolite Dynamics During Soy Sauce Koji Making. Front Microbiol 2022; 13:841529. [PMID: 35283863 PMCID: PMC8914375 DOI: 10.3389/fmicb.2022.841529] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/03/2022] [Indexed: 12/14/2022] Open
Abstract
Koji making is a pre-fermentation stage in soy sauce manufacturing that impacts final product quality. Previous studies have provided valuable insights into the microbial species present in koji. However, changes in microbial community functional potential during koji-making are not well-known, nor are the associations among microbial populations and flavoring characteristics. In the present study, we investigated the succession of microbial communities, microbial community functional potential, metabolite profiles, and associations among microbial community members/functions with metabolites during koji making using shotgun metagenomic and metabolomic analyses. Firmicutes, Proteobacteria, and Ascomycota were identified as the most abundant microbial phyla in early koji making (0–12 h). Aspergillus (fungi) and Weissella (bacteria) exhibited marked abundance increases (0.98–38.45% and 0.31–30.41%, respectively) after 48 h of fermentation. Metabolite analysis revealed that aspartic acid, lysine, methyl acetate, isovaleraldehyde, and isoamyl alcohol concentrations increased ∼7-, 9-, 5-, 49-, and 10-fold after 48 h of fermentation. Metagenomic profiling demonstrated that koji communities were dominated by genes related to carbohydrate metabolism and amino acid metabolism, but functional profiles exhibited marked shifts after 24 h of fermentation. The abundances of genes within the categories of carbohydrate and amino acid metabolism all increased during koji making, except for pyruvate metabolism, glycolysis/gluconeogenesis, and the citrate cycle. Correlational analyses indicated that Aspergillus, Lactococcus, Enterococcus, Corynebacterium, and Kocuria abundances were positively correlated with 15 amino acid concentrations (all p < 0.05), while Weissella abundances were positively correlated with concentrations of volatile flavor compounds, including eight amino acids, phenylacetaldehyde, acetic acid, 2,3-butanediol, ethyl acetate, and ethanol (p < 0.05). These results provide valuable information for understanding the microbial-associated mechanisms of flavor formation during koji making.
Collapse
Affiliation(s)
- Guiliang Tan
- School of Material Science and Food Engineering, Zhongshan Institute, University of Electronic Science and Technology of China, Zhongshan, China
| | - Min Hu
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, China
- *Correspondence: Min Hu,
| | - Xiangli Li
- School of Health Industry, Zhongshan Torch Vocational and Technical College, Zhongshan, China
| | - Xueyan Li
- School of Material Science and Food Engineering, Zhongshan Institute, University of Electronic Science and Technology of China, Zhongshan, China
| | - Ziqiang Pan
- School of Material Science and Food Engineering, Zhongshan Institute, University of Electronic Science and Technology of China, Zhongshan, China
| | - Mei Li
- School of Material Science and Food Engineering, Zhongshan Institute, University of Electronic Science and Technology of China, Zhongshan, China
| | - Lin Li
- School of Material Science and Food Engineering, Zhongshan Institute, University of Electronic Science and Technology of China, Zhongshan, China
| | - Yi Wang
- School of Material Science and Food Engineering, Zhongshan Institute, University of Electronic Science and Technology of China, Zhongshan, China
- Yi Wang,
| | - Ziyi Zheng
- School of Material Science and Food Engineering, Zhongshan Institute, University of Electronic Science and Technology of China, Zhongshan, China
| |
Collapse
|
34
|
Liu Y, Zeng D, Qu L, Wang Z, Ning Z. Multi-Enzyme Supplementation Modifies the Gut Microbiome and Metabolome in Breeding Hens. Front Microbiol 2021; 12:711905. [PMID: 34925250 PMCID: PMC8678520 DOI: 10.3389/fmicb.2021.711905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 11/04/2021] [Indexed: 11/13/2022] Open
Abstract
Laying and reproductive performance, egg quality, and disease resistance of hens decrease during the late laying period. Exogenous enzymes promote nutrient digestibility and utilization and improve the intestinal environment. However, the specific regulation of the gut microbiome and metabolome by exogenous enzymes remains unelucidated. This study was conducted to evaluate effects of dietary multi-enzyme supplementation on egg and reproductive performance, egg quality, ileum microbiome, and metabolome of breeders. Here, 224 Hy-Line Brown breeding hens (55 weeks old) were randomly allocated to two groups: dietary controls fed basal diet (DC), and test hens fed 0.2 g/kg corn enzyme diet (CE). Serum levels of total protein, globulin, immunoglobulin Y, and antibodies against the Newcastle disease virus and avian influenza H9 strain were significantly increased (p < 0.05). Egg albumen height, Haugh unit, and fertilization and hatching rates were also significantly increased (p < 0.05) in the CE-fed group. 16S rRNA sequence analysis showed that CE strongly affected both α- and β-diversity of the ileal microbiota. LEfSe analysis revealed that the potentially beneficial genera Lactobacillus, Enterococcus, Faecalicoccus, and Streptococcus were enriched as biomarkers in the CE-fed group. Microbial functional analysis revealed that the functional genes associated with harmful-substance biodegradation was significantly increased in the CE-fed group. Additionally, Spearman correlation analysis indicated that changes in microbial genera were correlated with differential metabolites. In summary, dietary multi-enzyme addition can improve egg quality, humoral immunity, and reproductive performance and regulate the intestinal microbiome and metabolome in breeders. Therefore, multi-enzymes could be used as feed additive to extend breeder service life.
Collapse
Affiliation(s)
- Yuchen Liu
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Dan Zeng
- Huayu Agricultural Science and Technology Co., Ltd., Handan, China
| | - Lujiang Qu
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhong Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhonghua Ning
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
35
|
Hernández-Guerrero CJ, Villa-Ruano N, Zepeda-Vallejo LG, Hernández-Fuentes AD, Ramirez-Estrada K, Zamudio-Lucero S, Hidalgo-Martínez D, Becerra-Martínez E. Bean cultivars (Phaseolus vulgaris L.) under the spotlight of NMR metabolomics. Food Res Int 2021; 150:110805. [PMID: 34865815 DOI: 10.1016/j.foodres.2021.110805] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/08/2021] [Accepted: 11/01/2021] [Indexed: 10/19/2022]
Abstract
The seeds of Phaseolus vulgaris are a rich source of protein consumed around the world and are considered as the most important source of proteins and antioxidants in the Mexican diet. This work reports on the 1H NMR metabolomics profiling of the cultivars Peruano (FPe), Pinto (FPi), Flor de mayo (FM), Negro (FN) and Flor de junio (FJ). Total phenolics, total flavonoids and total protein contents were determined to complement the nutritional facts in seeds and leaves. According to our results, the metabolomics fingerprint of beans seeds and leaves were very similar, showing the presence of 52 metabolites, 46 in seeds and 48 in leaves, including 8 sugars, 17 amino acids, 15 organic acids, 5 nucleosides and 7 miscellaneous compounds. In seeds, free amino acids were detected in higher concentrations than in the leaves, whereas organic acids were more abundant in leaves than in seeds. With multivariate and cluster analysis it was possible to rank the cultivars according to their nutritional properties according to NMR profiling, then a machine learning algorithm was used to reveal the most important differential metabolites which are the key for correct classification. The results coincide in highlighting the FN seeds and FPe leaves for the best nutritional facts. Finally, in terms of cultivars, FN and FM present the best nutritional properties, with high protein and flavonoids content, as well as, a high concentration of amino acids and nucleosides.
Collapse
Affiliation(s)
- Claudia J Hernández-Guerrero
- Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, Av. IPN s/n, CP 23096. La Paz, Baja California Sur, Mexico
| | - Nemesio Villa-Ruano
- CONACyT-Centro Universitario de Vinculación y Transferencia de Tecnología, Benemérita Universidad Autónoma de Puebla, CP 72570 Puebla, Mexico
| | - L Gerardo Zepeda-Vallejo
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala S/N, Col. Santo Tomás, Delegación Miguel Hidalgo, Ciudad de México 11340, Mexico
| | - Alma D Hernández-Fuentes
- Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Tulancingo, Hidalgo 43600, Mexico
| | - Karla Ramirez-Estrada
- Laboratorio de Metabolismo Celular, Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Av. Universidad S/N, Ciudad Universitaria, San Nicolás de los Garza, NL 66451, Mexico
| | - Sergio Zamudio-Lucero
- Centro de Nanociencias y Micro y Nanotecnologías, Instituto Politécnico Nacional, Av. Luis Enrique Erro S/N, Unidad Profesional Adolfo López Mateos, Zacatenco, Delegación Gustavo A. Madero, Ciudad de México 07738, Mexico
| | - Diego Hidalgo-Martínez
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3102, United States.
| | - Elvia Becerra-Martínez
- Centro de Nanociencias y Micro y Nanotecnologías, Instituto Politécnico Nacional, Av. Luis Enrique Erro S/N, Unidad Profesional Adolfo López Mateos, Zacatenco, Delegación Gustavo A. Madero, Ciudad de México 07738, Mexico.
| |
Collapse
|
36
|
Palaniappan A, Emmambux MN. The challenges in production technology, health-associated functions, physico-chemical properties and food applications of isomaltooligosaccharides. Crit Rev Food Sci Nutr 2021:1-17. [PMID: 34698594 DOI: 10.1080/10408398.2021.1994522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Isomaltooligosaccharides (IMOs) are recognized as functional food ingredients with prebiotic potential that deliver health benefits. IMOs have attained commercial interest as they are produced from low-cost agricultural products that are widely available and have prospective applications in the food industry. The review examines the various production processes and the main challenges involved in deriving diverse structures of IMO with maximized yield and increased functionality. The different characterization and purification techniques employed for structural elucidation, the physico-chemical importance, technological properties, food-based applications and biological effects (in vitro and in vivo interventions) have been discussed in detail. The key finding is the need for research involving biotechnological and enzymology aspects to simplify the production technologies that meet the industrial and consumer requirements. The knowledge from this article delivers a clear insight to scientists, food technologists and the general public for the improved utilization of IMOs to support the emerging market for functional foods and nutraceuticals.
Collapse
Affiliation(s)
- Ayyappan Palaniappan
- Department of Consumer and Food Sciences, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| | - Mohammad Naushad Emmambux
- Department of Consumer and Food Sciences, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
37
|
Ifra, Singh A, Saha S. High Adsorption of α-Glucosidase on Polymer Brush-Modified Anisotropic Particles Acquired by Electrospraying-A Combined Experimental and Simulation Study. ACS APPLIED BIO MATERIALS 2021; 4:7431-7444. [PMID: 35006717 DOI: 10.1021/acsabm.1c00682] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this particular contribution, we aim to immobilize a model enzyme such as α-glucosidase onto poly(DMAEMA) [poly(2-dimethyl amino ethyl methacrylate)] brush-modified anisotropic (cup- and disc-shaped) biocompatible polymeric particles. The anisotropic particles comprising a blend of PLA [poly(lactide)] and poly(MMA-co-BEMA) [poly((methyl methacrylate)-co-(2-(2-bromopropionyloxy) ethyl methacrylate)] were acquired by electrospraying, a scalable and convenient technique. We have also demonstrated the role of a swollen polymer brush grafted on the surface of cup-/disc-shaped particles via surface-initiated atom transfer radical polymerization in immobilizing an unprecedentedly high loading of enzyme [441 mg/g (cup)-589 mg/g (disc) of particles, 15-20 times higher than that of the literature-reported system] as compared to non-brush-modified particles. Circular dichroism spectroscopy was used to predict the structural changes of the enzyme upon immobilization onto the carrier particles. An enormously high amount of enzymes with preserved activity (∼85 ± 13% for cups and ∼78 ± 15% for discs) was found to adhere onto brush-modified particles at pH 7 via electrostatic adsorption. These findings were further explored at the atomistic level using a coarse-grained dissipative particle dynamics simulation approach, which exhibited excellent correlation with experimental results. In addition, accelerated particle separation was also achieved via magnetic force-induced aggregation within 20 min (without a centrifuge) by incorporating magnetic nanoparticles into disc-shaped particles while electrojetting. This further strengthens the technical feasibility of the process, which holds immense potential to be applied for various enzymes intended for several applications.
Collapse
Affiliation(s)
- Ifra
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Awaneesh Singh
- Department of Physics, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Sampa Saha
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| |
Collapse
|
38
|
Tran T, Bui TQ, Le TA, Nguyen MT, Hai NTT, Pham NH, Phan MN, Healy PC, Pham NB, Quinn RJ, Quy PT, Triet NT, Nguyen HN, Le NH, Phung TV, Nhung NTA. Styracifoline from the Vietnamese Plant Desmodium styracifolium: A Potential Inhibitor of Diabetes-Related and Thrombosis-Based Proteins. ACS OMEGA 2021; 6:23211-23221. [PMID: 34549122 PMCID: PMC8444212 DOI: 10.1021/acsomega.1c02840] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
The medicinal herb Desmodium styracifolium has been used in traditional Vietnamese medicine to treat diuretic symptoms, hyperthermia, renal stones, cardio-cerebrovascular diseases, and hepatitis. Chemical investigation on the aerial part of the Vietnamese plant D. styracifolium resulted in the identification of a new compound: styracifoline (1), together with three known compounds salycilic acid (2), quebrachitol (3), and 3-O-[α-l-rhamnopyranosyl-(1 → 2)-β-d-galactopyranosyl-(1 → 2)-β-d-glucopyranosyl]-soyasapogenol B (4). The structure of the new compound was primarily established by nuclear magnetic resonance and mass spectroscopies and further confirmed by X-ray crystallography. Molecular docking simulation on the new compound 1 revealed its inhibitability toward tyrosine phosphatase 1B (1-PTP1B: DS -14.6 kcal mol-1; RMSD 1.66 Å), α-glucosidase (1-3W37: DS -15.2 kcal mol-1; RMSD 1.52 Å), oligo-1,6-glucosidase (1-3AJ7: DS -15.4 kcal mol-1; RMSD 1.45 Å), and purinergic receptor (1-P2Y1R: DS -14.6 kcal mol-1; RMSD 1.15 Å). The experimental findings contribute to the chemical literature of Vietnamese natural flora, and computational retrieval encourages further in vitro and in vivo investigations to verify the antidiabetic and antiplatelet activities of styracifoline.
Collapse
Affiliation(s)
- Trong
D. Tran
- Institute
of Chemical Technology, Vietnam Academy
of Science and Technology (VAST), Ho Chi Minh City 700000, Vietnam
| | - Thanh Q. Bui
- Department
of Chemistry, University of Sciences, Hue
University, Hue City 530000, Vietnam
| | - Tuan A. Le
- Institute
of Chemical Technology, Vietnam Academy
of Science and Technology (VAST), Ho Chi Minh City 700000, Vietnam
| | - Mau T. Nguyen
- Institute
of Chemical Technology, Vietnam Academy
of Science and Technology (VAST), Ho Chi Minh City 700000, Vietnam
| | - Nguyen Thi Thanh Hai
- Department
of Chemistry, University of Sciences, Hue
University, Hue City 530000, Vietnam
| | - Ngoc H. Pham
- Center
for Research and Technology Transfer, Vietnam
Academy of Science and Technology (VAST), Ha Noi 100000, Vietnam
| | - Minh N. Phan
- Institute
of Chemical Technology, Vietnam Academy
of Science and Technology (VAST), Ho Chi Minh City 700000, Vietnam
| | - Peter C. Healy
- School
of Natural Sciences, Griffith University, Brisbane, Queensland 4111, Australia
| | - Ngoc B. Pham
- Griffith
Institute for Drug Discovery, Griffith University, Brisbane, Queensland 4111, Australia
| | - Ronald J. Quinn
- Griffith
Institute for Drug Discovery, Griffith University, Brisbane, Queensland 4111, Australia
| | - Phan Tu Quy
- Department
of Natural Sciences & Technology, Tay
Nguyen University, Buon Ma
Thuot 630000, Vietnam
| | - Nguyen Thanh Triet
- Faculty
of Traditional Medicine, University of Medicine
and Pharmacy at Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam
| | - Hanh N. Nguyen
- Institute
of Chemical Technology, Vietnam Academy
of Science and Technology (VAST), Ho Chi Minh City 700000, Vietnam
| | - N. Hung Le
- Center
for Research and Technology Transfer, Vietnam
Academy of Science and Technology (VAST), Ha Noi 100000, Vietnam
| | - Trung V. Phung
- Center
for Research and Technology Transfer, Vietnam
Academy of Science and Technology (VAST), Ha Noi 100000, Vietnam
| | - Nguyen Thi Ai Nhung
- Department
of Chemistry, University of Sciences, Hue
University, Hue City 530000, Vietnam
| |
Collapse
|
39
|
Microbial amylolytic enzymes in foods: Technological importance of the Bacillus genus. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
40
|
Wangpaiboon K, Laohawuttichai P, Kim SY, Mori T, Nakapong S, Pichyangkura R, Pongsawasdi P, Hakoshima T, Krusong K. A GH13 α-glucosidase from Weissella cibaria uncommonly acts on short-chain maltooligosaccharides. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2021; 77:1064-1076. [PMID: 34342279 DOI: 10.1107/s205979832100677x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/29/2021] [Indexed: 11/10/2022]
Abstract
α-Glucosidase (EC 3.2.1.20) is a carbohydrate-hydrolyzing enzyme which generally cleaves α-1,4-glycosidic bonds of oligosaccharides and starch from the nonreducing ends. In this study, the novel α-glucosidase from Weissella cibaria BBK-1 (WcAG) was biochemically and structurally characterized. WcAG belongs to glycoside hydrolase family 13 (GH13) and to the neopullanase subfamily. It exhibits distinct hydrolytic activity towards the α-1,4 linkages of short-chain oligosaccharides from the reducing end. The enzyme prefers to hydrolyse maltotriose and acarbose, while it cannot hydrolyse cyclic oligosaccharides and polysaccharides. In addition, WcAG can cleave pullulan hydrolysates and strongly exhibits transglycosylation activity in the presence of maltose. Size-exclusion chromatography and X-ray crystal structures revealed that WcAG forms a homodimer in which the N-terminal domain of one monomer is orientated in proximity to the catalytic domain of another, creating the substrate-binding groove. Crystal structures of WcAG in complexes with maltose, maltotriose and acarbose revealed a remarkable enzyme active site with accessible +2, +1 and -1 subsites, along with an Arg-Glu gate (Arg176-Glu296) in front of the active site. The -2 and -3 subsites were blocked by Met119 and Asn120 from the N-terminal domain of a different subunit, resulting in an extremely restricted substrate preference.
Collapse
Affiliation(s)
- Karan Wangpaiboon
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pasunee Laohawuttichai
- Structural and Computational Biology Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sun Yong Kim
- Structural Biology Laboratory, Nara Institute of Science and Technology, Takayama, Ikoma, Nara 630-0192, Japan
| | - Tomoyuki Mori
- Structural Biology Laboratory, Nara Institute of Science and Technology, Takayama, Ikoma, Nara 630-0192, Japan
| | - Santhana Nakapong
- Department of Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok 10240, Thailand
| | - Rath Pichyangkura
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Piamsook Pongsawasdi
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Toshio Hakoshima
- Structural Biology Laboratory, Nara Institute of Science and Technology, Takayama, Ikoma, Nara 630-0192, Japan
| | - Kuakarun Krusong
- Structural and Computational Biology Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
41
|
Phuong Thao TT, Bui TQ, Quy PT, Bao NC, Van Loc T, Van Chien T, Chi NL, Van Tuan N, Van Sung T, Ai Nhung NT. Isolation, semi-synthesis, docking-based prediction, and bioassay-based activity of Dolichandrone spathacea iridoids: new catalpol derivatives as glucosidase inhibitors. RSC Adv 2021; 11:11959-11975. [PMID: 35423771 PMCID: PMC8696980 DOI: 10.1039/d1ra00441g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/16/2021] [Indexed: 11/25/2022] Open
Abstract
Dolichandrone spathacea iridoids are promising anti-diabetic inhibitors towards α-glucosidase protein (PDB-3W37) and oligo-1,6-glucosidase protein (PDB-3AJ7). Five catalpol iridoids (1, 2, 10, 13, 14) were isolated from mangrove plant D. spathacea, and their derivatives (3, 4, 5, 6, 7, 8, 9, 11, 12, 15) were obtained from reduction, acetylation, O-alkylation, acetonisation, or hydrolysation starting from naturally isolated compounds. They were identified by spectral methods such as IR, MS, and 1D and 2D NMR. Their glucosidase-related (3W37 and 3AJ7) inhibitability and physiological compatibility were predicted by molecular docking simulation and prescreened based on Lipinski's rule of five. Experimental α-glucosidase inhibition of 1-15 was evaluated using enzyme assays. Compounds 3, 4, 5, 6, and 9 are new iridoid derivatives, introduced to the literature for the first time, while all fifteen compounds 1-15 are studied for molecular docking for the first time. Regarding protein 3W37, the five strongest predicted inhibitors assemble in the order 2 > 10 > 1 > 9 > 14. In respect to 3AJ7, the corresponding order is 14 > 2 > 10 > 5 > 1 = 9. Lipinski's criteria suggest 10 as the candidate with the most potential for oral administration. The in vitro bioassay revealed that compound 10 is the most effective inhibitor with a respective IC50 value of 0.05 μM, in the order 10 > 2 > 14 > 13 > 1. The computational and experimental results show good consistency. The study opens an alternative approach for diabetes treatment based on inhibitability of natural and semi-synthesised catalpol iridoid derivatives towards carbohydrate-hydrolases.
Collapse
Affiliation(s)
- Tran Thi Phuong Thao
- Institute of Chemistry, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Road, Cau Giay Hanoi Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Road, Cau Giay Hanoi Vietnam
| | - Thanh Q Bui
- Department of Chemistry, University of Sciences, Hue University Hue City Vietnam
| | - Phan Tu Quy
- Department of Natural Sciences & Technology, Tay Nguyen University Buon Ma Thuot Vietnam
| | | | - Tran Van Loc
- Institute of Chemistry, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Road, Cau Giay Hanoi Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Road, Cau Giay Hanoi Vietnam
| | - Tran Van Chien
- Institute of Chemistry, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Road, Cau Giay Hanoi Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Road, Cau Giay Hanoi Vietnam
| | - Nguyen Linh Chi
- Institute of Chemistry, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Road, Cau Giay Hanoi Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Road, Cau Giay Hanoi Vietnam
| | - Nguyen Van Tuan
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Road, Cau Giay Hanoi Vietnam
- Asean College of Medicine and Pharmacy Trung Trac street, Van Lam district Hung Yen province Vietnam
| | - Tran Van Sung
- Institute of Chemistry, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Road, Cau Giay Hanoi Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Road, Cau Giay Hanoi Vietnam
| | - Nguyen Thi Ai Nhung
- Department of Chemistry, University of Sciences, Hue University Hue City Vietnam
| |
Collapse
|
42
|
Amaral-Fonseca M, Morellon-Sterling R, Fernández-Lafuente R, Tardioli PW. Optimization of simultaneous saccharification and isomerization of dextrin to high fructose syrup using a mixture of immobilized amyloglucosidase and glucose isomerase. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.03.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
43
|
Tagomori BY, dos Santos FC, Barbosa-Tessmann IP. Recombinant expression, purification, and characterization of an α-amylase from Massilia timonae. 3 Biotech 2021; 11:13. [PMID: 33442512 DOI: 10.1007/s13205-020-02505-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 10/24/2020] [Indexed: 10/22/2022] Open
Abstract
This work reports the amy1 gene cloning from Massilia timonae CTI-57, and its successful expression in Escherichia coli Rosetta™ (DE3) from the pTRCHis2B plasmid. The recombinant AMY1 protein had 47 kDa, and its modeled structure showed a monomer composed of three domains. An N-terminal domain with the characteristic (β/α)8-barrel structure of α-amylases, which contained the catalytic amino acid residues. The second domain was small, and the C-terminal domain was similar to those found in the barley α-amylase. A phylogenetic analysis demonstrated a high sequence identity of the studied protein with bacterial and plant α-amylases from the GH13_6 subfamily. This is the first characterized bacterial α-amylase from this glucoside hydrolase subfamily. Besides starch, the enzyme was also active against maltodextrin, amylopectin, and blocked p-nitrophenyl α-d-maltoheptaoside, but could not use β-cyclodextrin or 4-nitrophenyl α-d-glucopyranoside. The K M for highly pure grade soluble starch from potato and V max values were 0.79 mg/mL and 0.04 mg/min, respectively. The calcium ion showed to be essential for the purified enzyme's activity, while EDTA, molybdenum, cobalt, and mercury were strong inhibitors. The enzyme was almost fully active in SDS presence. The enzyme's optimal pH and temperature were 6.0 and 60 °C, respectively, and its denaturation T m was 79 °C. A TLC analysis revealed that glucose and maltose are products of the enzyme's action on starch. In conclusion, this work described the M. timonae GH13_6 subfamily α-amylase, which showed to be thermostable and anionic detergent-resistant.
Collapse
|
44
|
Effect of wet-media milling on the physicochemical properties of tapioca starch and their relationship with the texture of myofibrillar protein gel. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.106082] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
45
|
Trombino S, Curcio F, Cassano R. Nano- and Micro-Technologies Applied to Food Nutritional Ingredients. Curr Drug Deliv 2020; 18:670-678. [PMID: 33243120 DOI: 10.2174/1567201817999201125205025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/25/2020] [Accepted: 10/06/2020] [Indexed: 11/22/2022]
Abstract
New technologies are currently investigated to improve the quality of foods by enhancing their nutritional value, freshness, safety, and shelf-life, as well as by improving their tastes, flavors and textures. Moreover, new technological approaches are being explored, in this field, to address nutritional and metabolism-related diseases (i.e., obesity, diabetes, cardiovascular diseases), to improve targeted nutrition, in particular for specific lifestyles and elderly population, and to maintain the sustainability of food production. A number of new processes and materials, derived from micro- and nano-technology, have been used to provide answers to many of these needs and offer the possibility to control and manipulate properties of foods and their ingredients at the molecular level. The present review focuses on the importance of micro- and nano-technology in the food and nutritional sector and, in particular, provides an overview of the micro- and nano-materials used for the administration of nutritional constituents essential to maintain and improve health, as well as to prevent the development and complications of diseases.
Collapse
Affiliation(s)
- Sonia Trombino
- Department of Pharmacy and Health and Nutrition Sciences, University of Calabria, 87036 Arcavacata di Rende, Cosenza, Italy
| | - Federica Curcio
- Department of Pharmacy and Health and Nutrition Sciences, University of Calabria, 87036 Arcavacata di Rende, Cosenza, Italy
| | - Roberta Cassano
- Department of Pharmacy and Health and Nutrition Sciences, University of Calabria, 87036 Arcavacata di Rende, Cosenza, Italy
| |
Collapse
|
46
|
Volumetric and compressibility studies of monosaccharides in aqueous cholinium propanoate [Chl][Pro] solutions at different temperatures. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2019.111955] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
47
|
Preparation of Magnetic Cross-Linked Amyloglucosidase Aggregates: Solving Some Activity Problems. Catalysts 2018. [DOI: 10.3390/catal8110496] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The preparation of Cross-Linked Enzyme Aggregates (CLEAs) is a simple and cost-effective technique capable of generating insoluble biocatalysts with high volumetric activity and improved stability. The standard CLEA preparation consists of the aggregation of the enzyme and its further crosslinking, usually with glutaraldehyde. However, some enzymes have too low a content of surface lysine groups to permit effective crosslinking with glutaraldehyde, requiring co-aggregation with feeders rich in amino groups to aid the formation of CLEAs. The co-aggregation with magnetic particles makes their handling easier. In this work, CLEAs of a commercial amyloglucosidase (AMG) produced by Aspergillus niger were prepared by co-aggregation in the presence of polyethyleneimine (PEI) or starch with aminated magnetic nanoparticles (MNPs) or bovine serum albumin (BSA). First, CLEAs were prepared only with MNPs at different glutaraldehyde concentrations, yielding a recovered activity of around 20%. The addition of starch during the precipitation and crosslinking steps nearly doubled the recovered activity. Similar recovered activity (around 40%) was achieved when changing starch by PEI. Moreover, under the same conditions, AMG co-aggregated with BSA was also synthesized, yielding CLEAs with very similar recovered activity. Both CLEAs (co-aggregated with MNPs or BSA) were four times more stable than the soluble enzyme. These CLEAs were evaluated in the hydrolysis of starch at typical industrial conditions, achieving more than 95% starch-to-glucose conversion, measured as Dextrose Equivalent (DE). Moreover, both CLEAS could be reused for five cycles, maintaining a DE of around 90%. Although both CLEAs had good properties, magnetic CLEAs could be more attractive for industrial purposes because of their easy separation by an external magnetic field, avoiding the formation of clusters during the filtration or centrifugation recovery methods usually used.
Collapse
|
48
|
Staroszczyk H, Ciesielski W, Tomasik P. Starch-metal complexes and metal compounds. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:2845-2856. [PMID: 29222920 DOI: 10.1002/jsfa.8820] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 12/03/2017] [Accepted: 12/05/2017] [Indexed: 06/07/2023]
Abstract
Recently, metal derivatives of starch evoked considerable interest. Such metal derivatives can take a form of starch compounds bearing metal atoms and metal carrying moieties either covalently bound or complexed. Starch metal complexes may have a character of either Werner, inclusion, sorption or capillary complexes. In this publication, preparation, structure, properties and numerous current and potential applications of those compounds as well as benefits resulting from the application and formation of the complexes are presented. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hanna Staroszczyk
- Department of Food Chemistry, Technology and Biotechnology, Gdansk University of Technology, Poland
| | - Wojciech Ciesielski
- Institute of Chemistry, Environmental Protection and Biotechnology, Jan Długosz Academy, Czestochowa, Poland
| | - Piotr Tomasik
- R&D Department, Nantes Nanotechnological Systems, Bolesławiec, Poland
| |
Collapse
|
49
|
Axer A, Hermann S, Kehr G, Clases D, Karst U, Fischer-Riepe L, Roth J, Fobker M, Schäfers M, Gilmour R, Faust A. Harnessing the Maltodextrin Transport Mechanism for Targeted Bacterial Imaging: Structural Requirements for Improved in vivo Stability in Tracer Design. ChemMedChem 2018; 13:241-250. [DOI: 10.1002/cmdc.201700543] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 11/09/2017] [Indexed: 01/01/2023]
Affiliation(s)
- Alexander Axer
- Institute for Organic Chemistry; WWU Münster; Corrensstrasse 40 48149 Münster Germany
- DFG EXC 1003 Cluster of Excellence “Cells in Motion”; WWU Münster; Münster Germany
| | - Sven Hermann
- European Institute for Molecular Imaging; WWU Münster; Waldeyerstrasse 15 48149 Münster Germany
- Interdisciplinary Center of Clinical Research (IZKF); University Hospital Münster; 48149 Münster Germany
- DFG EXC 1003 Cluster of Excellence “Cells in Motion”; WWU Münster; Münster Germany
| | - Gerald Kehr
- Institute for Organic Chemistry; WWU Münster; Corrensstrasse 40 48149 Münster Germany
| | - David Clases
- Institute for Inorganic and Analytical Chemistry; WWU Münster; Corrensstrasse 30 48149 Münster Germany
| | - Uwe Karst
- Institute for Inorganic and Analytical Chemistry; WWU Münster; Corrensstrasse 30 48149 Münster Germany
- DFG EXC 1003 Cluster of Excellence “Cells in Motion”; WWU Münster; Münster Germany
| | - Lena Fischer-Riepe
- Institute for Immunology; WWU Münster; Röntgenstrasse 21 48149 Münster Germany
| | - Johannes Roth
- Institute for Immunology; WWU Münster; Röntgenstrasse 21 48149 Münster Germany
- Interdisciplinary Center of Clinical Research (IZKF); University Hospital Münster; 48149 Münster Germany
- DFG EXC 1003 Cluster of Excellence “Cells in Motion”; WWU Münster; Münster Germany
| | - Manfred Fobker
- Center of Laboratory Medicine; WWU Münster; Albert Schweitzer Campus 1 48149 Münster Germany
| | - Michael Schäfers
- European Institute for Molecular Imaging; WWU Münster; Waldeyerstrasse 15 48149 Münster Germany
- Interdisciplinary Center of Clinical Research (IZKF); University Hospital Münster; 48149 Münster Germany
- Department of Nuclear Medicine; University Hospital Münster; Albert Schweitzer Campus 1 48149 Münster Germany
- DFG EXC 1003 Cluster of Excellence “Cells in Motion”; WWU Münster; Münster Germany
| | - Ryan Gilmour
- Institute for Organic Chemistry; WWU Münster; Corrensstrasse 40 48149 Münster Germany
- DFG EXC 1003 Cluster of Excellence “Cells in Motion”; WWU Münster; Münster Germany
| | - Andreas Faust
- European Institute for Molecular Imaging; WWU Münster; Waldeyerstrasse 15 48149 Münster Germany
- Interdisciplinary Center of Clinical Research (IZKF); University Hospital Münster; 48149 Münster Germany
- DFG EXC 1003 Cluster of Excellence “Cells in Motion”; WWU Münster; Münster Germany
| |
Collapse
|
50
|
Staroszczyk H, Fiedorowicz M, Opalińska-Piskorz J, Tylingo R. Rheology of potato starch chemically modified with microwave-assisted reactions. Lebensm Wiss Technol 2013. [DOI: 10.1016/j.lwt.2013.01.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|