1
|
Bálint D, Póti ÁL, Alexa A, Sok P, Albert K, Torda L, Földesi-Nagy D, Csókás D, Turczel G, Imre T, Szarka E, Fekete F, Bento I, Bojtár M, Palkó R, Szabó P, Monostory K, Pápai I, Soós T, Reményi A. Reversible covalent c-Jun N-terminal kinase inhibitors targeting a specific cysteine by precision-guided Michael-acceptor warheads. Nat Commun 2024; 15:8606. [PMID: 39366946 PMCID: PMC11452492 DOI: 10.1038/s41467-024-52573-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 09/13/2024] [Indexed: 10/06/2024] Open
Abstract
There has been a surge of interest in covalent inhibitors for protein kinases in recent years. Despite success in oncology, the off-target reactivity of these molecules is still hampering the use of covalent warhead-based strategies. Herein, we disclose the development of precision-guided warheads to mitigate the off-target challenge. These reversible warheads have a complex and cyclic structure with optional chirality center and tailored steric and electronic properties. To validate our proof-of-concept, we modified acrylamide-based covalent inhibitors of c-Jun N-terminal kinases (JNKs). We show that the cyclic warheads have high resilience against off-target thiols. Additionally, the binding affinity, residence time, and even JNK isoform specificity can be fine-tuned by adjusting the substitution pattern or using divergent and orthogonal synthetic elaboration of the warhead. Taken together, the cyclic warheads presented in this study will be a useful tool for medicinal chemists for the deliberate design of safer and functionally fine-tuned covalent inhibitors.
Collapse
Affiliation(s)
- Dániel Bálint
- Organocatalysis Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, 1117, Budapest, Hungary
- Hevesy György PhD School of Chemistry, Eötvös Loránd University, 1117, Budapest, Hungary
| | - Ádám Levente Póti
- Biomolecular Interaction Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, 1117, Budapest, Hungary
- Doctoral School of Biology, Eötvös Loránd University, 1117, Budapest, Hungary
| | - Anita Alexa
- Biomolecular Interaction Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, 1117, Budapest, Hungary
| | - Péter Sok
- Biomolecular Interaction Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, 1117, Budapest, Hungary
| | - Krisztián Albert
- Biomolecular Interaction Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, 1117, Budapest, Hungary
| | - Lili Torda
- Organocatalysis Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, 1117, Budapest, Hungary
| | - Dóra Földesi-Nagy
- Biomolecular Interaction Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, 1117, Budapest, Hungary
| | - Dániel Csókás
- Theoretical Chemistry Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, 1117, Budapest, Hungary
| | - Gábor Turczel
- NMR Research Laboratory, Centre for Structural Science, Research Centre for Natural Sciences, 1117, Budapest, Hungary
| | - Tímea Imre
- MS Metabolomic Research Laboratory, Centre for Structural Science, Research Centre for Natural Sciences, 1117, Budapest, Hungary
| | - Eszter Szarka
- Biomolecular Interaction Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, 1117, Budapest, Hungary
| | - Ferenc Fekete
- Metabolic Drug-interactions Research Group, Institute of Molecular Life Sciences, Research Centre for Natural Sciences, 1117, Budapest, Hungary
| | - Isabel Bento
- European Molecular Biology Laboratory, EMBL, Hamburg, Germany
| | - Márton Bojtár
- Chemical Biology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, 1117, Budapest, Hungary
| | - Roberta Palkó
- Organocatalysis Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, 1117, Budapest, Hungary
| | - Pál Szabó
- MS Metabolomic Research Laboratory, Centre for Structural Science, Research Centre for Natural Sciences, 1117, Budapest, Hungary
| | - Katalin Monostory
- Metabolic Drug-interactions Research Group, Institute of Molecular Life Sciences, Research Centre for Natural Sciences, 1117, Budapest, Hungary
| | - Imre Pápai
- Theoretical Chemistry Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, 1117, Budapest, Hungary
| | - Tibor Soós
- Organocatalysis Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, 1117, Budapest, Hungary.
| | - Attila Reményi
- Biomolecular Interaction Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, 1117, Budapest, Hungary.
| |
Collapse
|
2
|
Póti ÁL, Bálint D, Alexa A, Sok P, Ozsváth K, Albert K, Turczel G, Magyari S, Ember O, Papp K, Király SB, Imre T, Németh K, Kurtán T, Gógl G, Varga S, Soós T, Reményi A. Targeting a key protein-protein interaction surface on mitogen-activated protein kinases by a precision-guided warhead scaffold. Nat Commun 2024; 15:8607. [PMID: 39366929 PMCID: PMC11452651 DOI: 10.1038/s41467-024-52574-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 08/22/2024] [Indexed: 10/06/2024] Open
Abstract
For mitogen-activated protein kinases (MAPKs) a shallow surface-distinct from the substrate binding pocket-called the D(ocking)-groove governs partner protein binding. Screening of broad range of Michael acceptor compounds identified a double-activated, sterically crowded cyclohexenone moiety as a promising scaffold. We show that compounds bearing this structurally complex chiral warhead are able to target the conserved MAPK D-groove cysteine via reversible covalent modification and interfere with the protein-protein interactions of MAPKs. The electronic and steric properties of the Michael acceptor can be tailored via different substitution patterns. The inversion of the chiral center of the warhead can reroute chemical bond formation with the targeted cysteine towards the neighboring, but less nucleophilic histidine. Compounds bind to the shallow MAPK D-groove with low micromolar affinity in vitro and perturb MAPK signaling networks in the cell. This class of chiral, cyclic and enhanced 3D shaped Michael acceptor scaffolds offers an alternative to conventional ATP-competitive drugs modulating MAPK signaling pathways.
Collapse
Affiliation(s)
- Ádám Levente Póti
- Biomolecular Interaction Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Budapest, Hungary
- Doctoral School of Biology, Eötvös Loránd University, Budapest, Hungary
| | - Dániel Bálint
- Organocatalysis Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Budapest, Hungary
- Hevesy György PhD School of Chemistry, Eötvös Loránd University, Budapest, Hungary
| | - Anita Alexa
- Biomolecular Interaction Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Budapest, Hungary
| | - Péter Sok
- Biomolecular Interaction Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Budapest, Hungary
| | - Kristóf Ozsváth
- Organocatalysis Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Budapest, Hungary
| | - Krisztián Albert
- Biomolecular Interaction Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Budapest, Hungary
| | - Gábor Turczel
- NMR Research Laboratory, Centre for Structural Science, Research Centre for Natural Sciences, Budapest, Hungary
| | - Sarolt Magyari
- Biomolecular Interaction Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Budapest, Hungary
| | - Orsolya Ember
- Biomolecular Interaction Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Budapest, Hungary
| | - Kinga Papp
- Biomolecular Interaction Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Budapest, Hungary
| | | | - Tímea Imre
- MS Metabolomic Research Laboratory, Centre for Structural Science, Research Centre for Natural Sciences, Budapest, Hungary
| | - Krisztina Németh
- MS Metabolomic Research Laboratory, Centre for Structural Science, Research Centre for Natural Sciences, Budapest, Hungary
| | - Tibor Kurtán
- Department of Organic Chemistry, University of Debrecen, Debrecen, Hungary
| | - Gergő Gógl
- Biomolecular Interaction Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Budapest, Hungary
| | - Szilárd Varga
- Organocatalysis Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Budapest, Hungary
| | - Tibor Soós
- Organocatalysis Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Budapest, Hungary.
| | - Attila Reményi
- Biomolecular Interaction Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Budapest, Hungary.
| |
Collapse
|
3
|
Helmy SWA, Abdel-Aziz AK, Dokla EME, Ahmed TE, Hatem Y, Abdel Rahman EA, Sharaky M, Shahin MI, Elrazaz EZ, Serya RAT, Henary M, Ali SS, Abou El Ella DA. Novel sulfonamide-indolinone hybrids targeting mitochondrial respiration of breast cancer cells. Eur J Med Chem 2024; 268:116255. [PMID: 38401190 DOI: 10.1016/j.ejmech.2024.116255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/07/2024] [Accepted: 02/16/2024] [Indexed: 02/26/2024]
Abstract
Breast cancer (BC) still poses a threat worldwide which demands continuous efforts to present safer and efficacious treatment options via targeted therapy. Beside kinases' aberrations as Aurora B kinase which controls cell division, BC adopts distinct metabolic profiles to meet its high energy demands. Accordingly, targeting both aurora B kinase and/or metabolic vulnerability presents a promising approach to tackle BC. Based on a previously reported indolinone-based Aurora B kinase inhibitor (III), and guided by structural modification and SAR investigation, we initially synthesized 11 sulfonamide-indolinone hybrids (5a-k), which showed differential antiproliferative activities against the NCI-60 cell line panel with BC cells displaying preferential sensitivity. Nonetheless, modest activity against Aurora B kinase (18-49% inhibition) was noted at 100 nM. Screening of a representative derivative (5d) against 17 kinases, which are overexpressed in BC, failed to show significant activity at 1 μM concentration, suggesting that kinase inhibitory activity only played a partial role in targeting BC. Bioinformatic analyses of genome-wide transcriptomics (RNA-sequencing), metabolomics, and CRISPR loss-of-function screens datasets suggested that indolinone-completely responsive BC cell lines (MCF7, MDA-MB-468, and T-47D) were more dependent on mitochondrial oxidative phosphorylation (OXPHOS) compared to partially responsive BC cell lines (MDA-MB-231, BT-549, and HS 578 T). An optimized derivative, TC11, obtained by molecular hybridization of 5d with sunitinib polar tail, manifested superior antiproliferative activity and was used for further investigations. Indeed, TC11 significantly reduced/impaired the mitochondrial respiration, as well as mitochondria-dependent ROS production of MCF7 cells. Furthermore, TC11 induced G0/G1 cell cycle arrest and apoptosis of MCF7 BC cells. Notably, anticancer doses of TC11 did not elicit cytotoxic effects on normal cardiomyoblasts and hepatocytes. Altogether, these findings emphasize the therapeutic potential of targeting the metabolic vulnerability of OXPHOS-dependent BC cells using TC11 and its related sulfonamide-indolinone hybrids. Further investigation is warranted to identify their precise/exact molecular target.
Collapse
Affiliation(s)
- Sama W A Helmy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, 11566, Egypt
| | - Amal Kamal Abdel-Aziz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, 11566, Egypt; Smart Health Initiative, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Eman M E Dokla
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, 11566, Egypt.
| | - Tarek E Ahmed
- Department of Chemistry and Center of Diagnostics and Therapeutics, Georgia State University, 100 Piedmont Avenue SE, Atlanta, GA, 30303, USA
| | - Yasmin Hatem
- Research Department, 57357 Children's Cancer Hospital Egypt, Cairo, 4260102, Egypt
| | - Engy A Abdel Rahman
- Research Department, 57357 Children's Cancer Hospital Egypt, Cairo, 4260102, Egypt; Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt
| | - Marwa Sharaky
- Cancer Biology Department, Pharmacology Unit, National Cancer Institute (NCI), Cairo University, Cairo, 11796, Egypt
| | - Mai I Shahin
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, 11566, Egypt
| | - Eman Z Elrazaz
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, 11566, Egypt
| | - Rabah A T Serya
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, 11566, Egypt
| | - Maged Henary
- Department of Chemistry and Center of Diagnostics and Therapeutics, Georgia State University, 100 Piedmont Avenue SE, Atlanta, GA, 30303, USA
| | - Sameh S Ali
- Research Department, 57357 Children's Cancer Hospital Egypt, Cairo, 4260102, Egypt
| | - Dalal A Abou El Ella
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, 11566, Egypt.
| |
Collapse
|
4
|
Pratap Reddy Gajulapalli V. Development of Kinase-Centric Drugs: A Computational Perspective. ChemMedChem 2023; 18:e202200693. [PMID: 37442809 DOI: 10.1002/cmdc.202200693] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 07/12/2023] [Accepted: 07/12/2023] [Indexed: 07/15/2023]
Abstract
Kinases are prominent drug targets in the pharmaceutical and research community due to their involvement in signal transduction, physiological responses, and upon dysregulation, in diseases such as cancer, neurological and autoimmune disorders. Several FDA-approved small-molecule drugs have been developed to combat human diseases since Gleevec was approved for the treatment of chronic myelogenous leukemia. Kinases were considered "undruggable" in the beginning. Several FDA-approved small-molecule drugs have become available in recent years. Most of these drugs target ATP-binding sites, but a few target allosteric sites. Among kinases that belong to the same family, the catalytic domain shows high structural and sequence conservation. Inhibitors of ATP-binding sites can cause off-target binding. Because members of the same family have similar sequences and structural patterns, often complex relationships between kinases and inhibitors are observed. To design and develop drugs with desired selectivity, it is essential to understand the target selectivity for kinase inhibitors. To create new inhibitors with the desired selectivity, several experimental methods have been designed to profile the kinase selectivity of small molecules. Experimental approaches are often expensive, laborious, time-consuming, and limited by the available kinases. Researchers have used computational methodologies to address these limitations in the design and development of effective therapeutics. Many computational methods have been developed over the last few decades, either to complement experimental findings or to forecast kinase inhibitor activity and selectivity. The purpose of this review is to provide insight into recent advances in theoretical/computational approaches for the design of new kinase inhibitors with the desired selectivity and optimization of existing inhibitors.
Collapse
|
5
|
Zheng Y, Ongpipattanakul C, Nair SK. Bioconjugate Platform for Iterative Backbone N-Methylation of Peptides. ACS Catal 2022; 12:14006-14014. [PMID: 36793448 PMCID: PMC9928189 DOI: 10.1021/acscatal.2c04681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
N-methylation of peptide backbones has often been utilized as a strategy towards the development of peptidic drugs. However, difficulties in the chemical synthesis, high cost of enantiopure N-methyl building blocks, and subsequent coupling inefficiencies have hampered larger-scale medicinal chemical efforts. Here, we present a chemoenzymatic strategy for backbone N-methylation by bioconjugation of peptides of interest to the catalytic scaffold of a borosin-type methyltransferase. Crystal structures of a substrate tolerant enzyme from Mycena rosella guided the design of a decoupled catalytic scaffold that can be linked via a heterobifunctional crosslinker to any peptide substrate of choice. Peptides linked to the scaffold, including those with non-proteinogenic residues, show robust backbone N-methylation. Various crosslinking strategies were tested to facilitate substrate disassembly, which enabled a reversible bioconjugation approach that efficiently released modified peptide. Our results provide general framework for the backbone N-methylation on any peptide of interest and may facilitate the production of large libraries of N-methylated peptides.
Collapse
Affiliation(s)
- Yiwu Zheng
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Roger Adams Laboratory, 600 S. Mathews Ave., Urbana, IL, 61801, USA
| | - Chayanid Ongpipattanakul
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Roger Adams Laboratory, 600 S. Mathews Ave., Urbana, IL, 61801, USA
| | - Satish K. Nair
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Roger Adams Laboratory, 600 S. Mathews Ave., Urbana, IL, 61801, USA
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Roger Adams Laboratory, 600 S. Mathews Ave., Urbana IL, 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 W. Gregory Drive, Urbana, IL, 61801, USA
| |
Collapse
|
6
|
Hulce KR, Jaishankar P, Lee GM, Bohn MF, Connelly EJ, Wucherer K, Ongpipattanakul C, Volk RF, Chuo SW, Arkin MR, Renslo AR, Craik CS. Inhibiting a dynamic viral protease by targeting a non-catalytic cysteine. Cell Chem Biol 2022; 29:785-798.e19. [PMID: 35364007 PMCID: PMC9133232 DOI: 10.1016/j.chembiol.2022.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 01/07/2022] [Accepted: 03/10/2022] [Indexed: 11/03/2022]
Abstract
Viruses are responsible for some of the most deadly human diseases, yet available vaccines and antivirals address only a fraction of the potential viral human pathogens. Here, we provide a methodology for managing human herpesvirus (HHV) infection by covalently inactivating the HHV maturational protease via a conserved, non-catalytic cysteine (C161). Using human cytomegalovirus protease (HCMV Pr) as a model, we screened a library of disulfides to identify molecules that tether to C161 and inhibit proteolysis, then elaborated hits into irreversible HCMV Pr inhibitors that exhibit broad-spectrum inhibition of other HHV Pr homologs. We further developed an optimized tool compound targeted toward HCMV Pr and used an integrative structural biology and biochemical approach to demonstrate inhibitor stabilization of HCMV Pr homodimerization, exploiting a conformational equilibrium to block proteolysis. Irreversible HCMV Pr inhibition disrupts HCMV infectivity in cells, providing proof of principle for targeting proteolysis via a non-catalytic cysteine to manage viral infection.
Collapse
Affiliation(s)
- Kaitlin R Hulce
- Department of Pharmaceutical Chemistry, University of California, San Francisco, 600 16th Street, Genentech Hall, San Francisco, CA 94143-2280, USA
| | - Priyadarshini Jaishankar
- Department of Pharmaceutical Chemistry, University of California, San Francisco, 600 16th Street, Genentech Hall, San Francisco, CA 94143-2280, USA; Small Molecule Discovery Center, University of California, San Francisco, 600 16th Street, Genentech Hall, San Francisco, CA 94143-2280, USA
| | - Gregory M Lee
- Department of Pharmaceutical Chemistry, University of California, San Francisco, 600 16th Street, Genentech Hall, San Francisco, CA 94143-2280, USA; Small Molecule Discovery Center, University of California, San Francisco, 600 16th Street, Genentech Hall, San Francisco, CA 94143-2280, USA
| | - Markus-Frederik Bohn
- Department of Pharmaceutical Chemistry, University of California, San Francisco, 600 16th Street, Genentech Hall, San Francisco, CA 94143-2280, USA
| | - Emily J Connelly
- Department of Pharmaceutical Chemistry, University of California, San Francisco, 600 16th Street, Genentech Hall, San Francisco, CA 94143-2280, USA
| | - Kristin Wucherer
- Department of Pharmaceutical Chemistry, University of California, San Francisco, 600 16th Street, Genentech Hall, San Francisco, CA 94143-2280, USA
| | - Chayanid Ongpipattanakul
- Department of Pharmaceutical Chemistry, University of California, San Francisco, 600 16th Street, Genentech Hall, San Francisco, CA 94143-2280, USA
| | - Regan F Volk
- Department of Pharmaceutical Chemistry, University of California, San Francisco, 600 16th Street, Genentech Hall, San Francisco, CA 94143-2280, USA
| | - Shih-Wei Chuo
- Department of Pharmaceutical Chemistry, University of California, San Francisco, 600 16th Street, Genentech Hall, San Francisco, CA 94143-2280, USA
| | - Michelle R Arkin
- Department of Pharmaceutical Chemistry, University of California, San Francisco, 600 16th Street, Genentech Hall, San Francisco, CA 94143-2280, USA; Small Molecule Discovery Center, University of California, San Francisco, 600 16th Street, Genentech Hall, San Francisco, CA 94143-2280, USA
| | - Adam R Renslo
- Department of Pharmaceutical Chemistry, University of California, San Francisco, 600 16th Street, Genentech Hall, San Francisco, CA 94143-2280, USA; Small Molecule Discovery Center, University of California, San Francisco, 600 16th Street, Genentech Hall, San Francisco, CA 94143-2280, USA
| | - Charles S Craik
- Department of Pharmaceutical Chemistry, University of California, San Francisco, 600 16th Street, Genentech Hall, San Francisco, CA 94143-2280, USA.
| |
Collapse
|
7
|
Yan G, Zhong X, Pu C, Yue L, Shan H, Lan S, Zhou M, Hou X, Yang J, Li D, Fan S, Li R. Targeting Cysteine Located Outside the Active Site: An Effective Strategy for Covalent ALKi Design. J Med Chem 2021; 64:1558-1569. [PMID: 33471528 DOI: 10.1021/acs.jmedchem.0c01707] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Potent inhibitors of ALK are highly desired because of the occurrence of drug resistance. We herein firstly report the development of a rationally designed inhibitor, Con B-1, which can covalently bind to Cys1259, a cysteine located outside the ALK active site by linking a warhead with Ceritinib through a 2,2'-Oxybis(ethylamine) linker. The in vitro and in vivo assays showed ConB-1 is a potent selective ALKi with low toxicity to normal cells. In addition, the molecule showed significant improvement of anticancer activities and potential antidrug resistant activity compared with Ceritinib, demonstrating the covalent inhibitor of ALK can be a promising drug candidate for the treatment of NSCLC. This work may provide a novel perspective on the design of covalent inhibitors.
Collapse
Affiliation(s)
- Guoyi Yan
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, 610041, China.,Department of Hepatobiliary Pancreatic Surgery, Henan Provincial People's Hospital, Zhengzhou, 450000, China
| | - Xinxin Zhong
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Chunlan Pu
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Lin Yue
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Huifang Shan
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Suke Lan
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Meng Zhou
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education & State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550000, China
| | - Xueyan Hou
- College of Pharmacy, Xinxiang Medical University, Xinxiang, 453000, China
| | - Jie Yang
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Deyu Li
- Department of Hepatobiliary Pancreatic Surgery, Henan Provincial People's Hospital, Zhengzhou, 450000, China
| | - Shilong Fan
- The Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Collaborative Innovation Center for Biotherapy, School of Life Sciences, Tsinghua University, Beijing, 100000, China
| | - Rui Li
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, 610041, China
| |
Collapse
|
8
|
Adhikari AA, Seegar TCM, Ficarro SB, McCurry MD, Ramachandran D, Yao L, Chaudhari SN, Ndousse-Fetter S, Banks AS, Marto JA, Blacklow SC, Devlin AS. Development of a covalent inhibitor of gut bacterial bile salt hydrolases. Nat Chem Biol 2020; 16:318-326. [PMID: 32042200 PMCID: PMC7036035 DOI: 10.1038/s41589-020-0467-3] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 01/03/2020] [Indexed: 12/15/2022]
Abstract
Bile salt hydrolase (BSH) enzymes are widely expressed by human gut bacteria and catalyze the gateway reaction leading to secondary bile acid formation. Bile acids regulate key metabolic and immune processes by binding to host receptors. There is an unmet need for a potent tool to inhibit BSHs across all gut bacteria in order to study the effects of bile acids on host physiology. Here, we report the development of a covalent pan-inhibitor of gut bacterial BSH. From a rationally designed candidate library, we identified a lead compound bearing an alpha-fluoromethyl ketone warhead that modifies BSH at the catalytic cysteine residue. Strikingly, this inhibitor abolished BSH activity in conventional mouse feces. Mice gavaged with a single dose of this compound displayed decreased BSH activity and decreased deconjugated bile acid levels in feces. Our studies demonstrate the potential of a covalent BSH inhibitor to modulate bile acid composition in vivo.
Collapse
Affiliation(s)
- Arijit A Adhikari
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Tom C M Seegar
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Scott B Ficarro
- Department of Cancer Biology, Department of Oncologic Pathology, Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Megan D McCurry
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Deepti Ramachandran
- Division of Endocrinology, Metabolism, and Diabetes, Beth Israel Deaconness Medical Center, Boston, MA, USA
| | - Lina Yao
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Snehal N Chaudhari
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Sula Ndousse-Fetter
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Alexander S Banks
- Division of Endocrinology, Metabolism, and Diabetes, Beth Israel Deaconness Medical Center, Boston, MA, USA
| | - Jarrod A Marto
- Department of Cancer Biology, Department of Oncologic Pathology, Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Stephen C Blacklow
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - A Sloan Devlin
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
9
|
Cuesta A, Wan X, Burlingame AL, Taunton J. Ligand Conformational Bias Drives Enantioselective Modification of a Surface-Exposed Lysine on Hsp90. J Am Chem Soc 2020; 142:3392-3400. [DOI: 10.1021/jacs.9b09684] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Adolfo Cuesta
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California 94158, United States
| | - Xiaobo Wan
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California 94158, United States
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158, United States
| | - Alma L. Burlingame
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158, United States
| | - Jack Taunton
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California 94158, United States
| |
Collapse
|
10
|
Backus KM, Cao J, Maddox SM. Opportunities and challenges for the development of covalent chemical immunomodulators. Bioorg Med Chem 2019; 27:3421-3439. [PMID: 31204229 DOI: 10.1016/j.bmc.2019.05.050] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 05/24/2019] [Accepted: 05/31/2019] [Indexed: 02/06/2023]
Abstract
Compounds that react irreversibly with cysteines have reemerged as potent and selective tools for altering protein function, serving as chemical probes and even clinically approved drugs. The exquisite sensitivity of human immune cell signaling pathways to oxidative stress indicates the likely, yet still underexploited, general utility of covalent probes for selective chemical immunomodulation. Here, we provide an overview of immunomodulatory cysteines, including identification of electrophilic compounds available to label these residues. We focus our discussion on three protein classes essential for cell signaling, which span the 'druggability' spectrum from amenable to chemical probes (kinases), somewhat druggable (proteases), to inaccessible (phosphatases). Using existing inhibitors as a guide, we identify general strategies to guide the development of covalent probes for selected undruggable classes of proteins and propose the application of such compounds to alter immune cell functions.
Collapse
Affiliation(s)
- Keriann M Backus
- Departments of Biological Chemistry and Chemistry and Biochemistry, University of California Los Angeles, USA.
| | - Jian Cao
- Departments of Biological Chemistry and Chemistry and Biochemistry, University of California Los Angeles, USA
| | - Sean M Maddox
- Departments of Biological Chemistry and Chemistry and Biochemistry, University of California Los Angeles, USA
| |
Collapse
|
11
|
Rezhdo A, Islam M, Huang M, Van Deventer JA. Future prospects for noncanonical amino acids in biological therapeutics. Curr Opin Biotechnol 2019; 60:168-178. [PMID: 30974337 DOI: 10.1016/j.copbio.2019.02.020] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 02/22/2019] [Indexed: 12/12/2022]
Abstract
There is growing evidence that noncanonical amino acids (ncAAs) can be utilized in the creation of biological therapeutics ranging from protein conjugates to cell-based therapies. However, when does genetically encoding ncAAs yield biologics with unique properties compared to other approaches? In this review, we attempt to answer this question in the broader context of therapeutic development, emphasizing advances within the past two years. In several areas, ncAAs add valuable routes to therapeutically relevant entities, but application-specific needs ultimately determine whether ncAA-mediated or alternative solutions are preferred. Looking forward, using ncAAs to perform 'protein medicinal chemistry,' in which atomic-level changes to proteins dramatically enhance therapeutic properties, is a promising emerging area. Further upgrades to the performance of ncAA incorporation technologies will be essential to realizing the full potential of ncAAs in biological therapeutics.
Collapse
Affiliation(s)
- Arlinda Rezhdo
- Chemical and Biological Engineering Department, Tufts University, Medford, MA 02155, United States
| | - Mariha Islam
- Chemical and Biological Engineering Department, Tufts University, Medford, MA 02155, United States
| | - Manjie Huang
- Chemical and Biological Engineering Department, Tufts University, Medford, MA 02155, United States
| | - James A Van Deventer
- Chemical and Biological Engineering Department, Tufts University, Medford, MA 02155, United States; Biomedical Engineering Department, Tufts University, Medford, MA 02155, United States.
| |
Collapse
|
12
|
Krzyzanowski PM, Sircoulomb F, Yousif F, Normand J, La Rose J, E Francis K, Suarez F, Beck T, McPherson JD, Stein LD, Rottapel RK. Regional perturbation of gene transcription is associated with intrachromosomal rearrangements and gene fusion transcripts in high grade ovarian cancer. Sci Rep 2019; 9:3590. [PMID: 30837567 PMCID: PMC6401071 DOI: 10.1038/s41598-019-39878-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 01/30/2019] [Indexed: 01/10/2023] Open
Abstract
Genomic rearrangements are a hallmark of cancer biology and progression, allowing cells to rapidly transform through alterations in regulatory structures, changes in expression patterns, reprogramming of signaling pathways, and creation of novel transcripts via gene fusion events. Though functional gene fusions encoding oncogenic proteins are the most dramatic outcomes of genomic rearrangements, we investigated the relationship between rearrangements evidenced by fusion transcripts and local expression changes in cancer using transcriptome data alone. 9,953 gene fusion predictions from 418 primary serious ovarian cancer tumors were analyzed, identifying depletions of gene fusion breakpoints within coding regions of fused genes as well as an N-terminal enrichment of breakpoints within fused genes. We identified 48 genes with significant fusion-associated upregulation and furthermore demonstrate that significant regional overexpression of intact genes in patient transcriptomes occurs within 1 megabase of 78 novel gene fusions that function as central markers of these regions. We reveal that cancer transcriptomes select for gene fusions that preserve protein and protein domain coding potential. The association of gene fusion transcripts with neighboring gene overexpression supports rearrangements as mechanism through which cancer cells remodel their transcriptomes and identifies a new way to utilize gene fusions as indicators of regional expression changes in diseased cells with only transcriptomic data.
Collapse
Affiliation(s)
- Paul M Krzyzanowski
- Department of Medicine, University of Toronto, Ontario Institute for Cancer Research, MaRS Centre, Toronto, Ontario, Canada.
| | - Fabrice Sircoulomb
- Department of Immunology, University of Toronto, Princess Margaret Cancer Center, MaRS Centre, Toronto, Ontario, Canada
| | - Fouad Yousif
- Department of Medicine, University of Toronto, Ontario Institute for Cancer Research, MaRS Centre, Toronto, Ontario, Canada
| | - Josee Normand
- Department of Immunology, University of Toronto, Princess Margaret Cancer Center, MaRS Centre, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Jose La Rose
- Department of Immunology, University of Toronto, Princess Margaret Cancer Center, MaRS Centre, Toronto, Ontario, Canada
| | - Kyle E Francis
- Department of Immunology, University of Toronto, Princess Margaret Cancer Center, MaRS Centre, Toronto, Ontario, Canada
| | - Fernando Suarez
- Department of Immunology, University of Toronto, Princess Margaret Cancer Center, MaRS Centre, Toronto, Ontario, Canada
| | - Tim Beck
- Human Longevity Inc., San Diego, California, USA
| | - John D McPherson
- Department of Medicine, University of Toronto, Ontario Institute for Cancer Research, MaRS Centre, Toronto, Ontario, Canada.,University of California, Davis Medical Center, Sacramento, California, USA
| | - Lincoln D Stein
- Department of Medicine, University of Toronto, Ontario Institute for Cancer Research, MaRS Centre, Toronto, Ontario, Canada. .,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.
| | - Robert K Rottapel
- Department of Medicine, University of Toronto, Ontario Institute for Cancer Research, MaRS Centre, Toronto, Ontario, Canada. .,Department of Immunology, University of Toronto, Princess Margaret Cancer Center, MaRS Centre, Toronto, Ontario, Canada.
| |
Collapse
|
13
|
Wolle P, Hardick J, Cronin SJF, Engel J, Baumann M, Lategahn J, Penninger JM, Rauh D. Targeting the MKK7–JNK (Mitogen-Activated Protein Kinase Kinase 7–c-Jun N-Terminal Kinase) Pathway with Covalent Inhibitors. J Med Chem 2019; 62:2843-2848. [DOI: 10.1021/acs.jmedchem.9b00102] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Patrik Wolle
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 4a, 44227 Dortmund, Germany
- Drug Discovery Hub Dortmund (DDHD) am Zentrum für Integrierte Wirkstoffforschung (ZIW), 44227 Dortmund, Germany
| | - Julia Hardick
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 4a, 44227 Dortmund, Germany
- Drug Discovery Hub Dortmund (DDHD) am Zentrum für Integrierte Wirkstoffforschung (ZIW), 44227 Dortmund, Germany
| | - Shane J. F. Cronin
- Institute of Molecular Biotechnology, Austrian Academy of Sciences, Dr. Bohr Gasse 3, AT-1030 Vienna, Austria
| | - Julian Engel
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 4a, 44227 Dortmund, Germany
| | - Matthias Baumann
- Lead Discovery Center GmbH, Otto-Hahn-Strasse 15, 44227 Dortmund, Germany
| | - Jonas Lategahn
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 4a, 44227 Dortmund, Germany
- Drug Discovery Hub Dortmund (DDHD) am Zentrum für Integrierte Wirkstoffforschung (ZIW), 44227 Dortmund, Germany
| | - Josef M. Penninger
- Institute of Molecular Biotechnology, Austrian Academy of Sciences, Dr. Bohr Gasse 3, AT-1030 Vienna, Austria
| | - Daniel Rauh
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 4a, 44227 Dortmund, Germany
- Drug Discovery Hub Dortmund (DDHD) am Zentrum für Integrierte Wirkstoffforschung (ZIW), 44227 Dortmund, Germany
| |
Collapse
|
14
|
Gehringer M, Laufer SA. Emerging and Re-Emerging Warheads for Targeted Covalent Inhibitors: Applications in Medicinal Chemistry and Chemical Biology. J Med Chem 2019; 62:5673-5724. [PMID: 30565923 DOI: 10.1021/acs.jmedchem.8b01153] [Citation(s) in RCA: 406] [Impact Index Per Article: 81.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Targeted covalent inhibitors (TCIs) are designed to bind poorly conserved amino acids by means of reactive groups, the so-called warheads. Currently, targeting noncatalytic cysteine residues with acrylamides and other α,β-unsaturated carbonyl compounds is the predominant strategy in TCI development. The recent ascent of covalent drugs has stimulated considerable efforts to characterize alternative warheads for the covalent-reversible and irreversible engagement of noncatalytic cysteine residues as well as other amino acids. This Perspective article provides an overview of warheads-beyond α,β-unsaturated amides-recently used in the design of targeted covalent ligands. Promising reactive groups that have not yet demonstrated their utility in TCI development are also highlighted. Special emphasis is placed on the discussion of reactivity and of case studies illustrating applications in medicinal chemistry and chemical biology.
Collapse
Affiliation(s)
- Matthias Gehringer
- Department of Pharmaceutical/Medicinal Chemistry , Eberhard Karls University Tübingen , Auf der Morgenstelle 8 , 72076 Tübingen , Germany
| | - Stefan A Laufer
- Department of Pharmaceutical/Medicinal Chemistry , Eberhard Karls University Tübingen , Auf der Morgenstelle 8 , 72076 Tübingen , Germany
| |
Collapse
|
15
|
Redenti S, Marcovich I, De Vita T, Pérez C, De Zorzi R, Demitri N, Perez DI, Bottegoni G, Bisignano P, Bissaro M, Moro S, Martinez A, Storici P, Spalluto G, Cavalli A, Federico S. A Triazolotriazine‐Based Dual GSK‐3β/CK‐1δ Ligand as a Potential Neuroprotective Agent Presenting Two Different Mechanisms of Enzymatic Inhibition. ChemMedChem 2019; 14:310-314. [DOI: 10.1002/cmdc.201800778] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Indexed: 01/07/2023]
Affiliation(s)
- Sara Redenti
- Department of Chemical and Pharmaceutical SciencesUniversity of Trieste Via Licio Giorgeri 1 34127 Trieste Italy
| | - Irene Marcovich
- Department of Chemical and Pharmaceutical SciencesUniversity of Trieste Via Licio Giorgeri 1 34127 Trieste Italy
| | - Teresa De Vita
- Drug Discovery & Development (D3)Istituto Italiano di Tecnologia Via Morego 30 16163 Genova Italy
| | - Concepción Pérez
- Centro de Investigaciones BiologicasCSIC Avenida Ramiro de Maeztu 9 28040 Madrid Spain
| | - Rita De Zorzi
- Department of Chemical and Pharmaceutical SciencesUniversity of Trieste Via Licio Giorgeri 1 34127 Trieste Italy
| | - Nicola Demitri
- Elettra Sincrotrone Trieste S.C.p.A. SS 14, km 163.5, AREA Science Park 34149 Trieste Italy
| | - Daniel I. Perez
- Centro de Investigaciones BiologicasCSIC Avenida Ramiro de Maeztu 9 28040 Madrid Spain
| | - Giovanni Bottegoni
- School of Pharmacy–Institute of Clinical SciencesCollege of Medical and Dental SciencesSir Robert Aitken Institute for Medical ResearchUniversity of Birmingham Edgbaston B15 2TT UK
| | - Paola Bisignano
- Cardiovascular Research InstituteUniversity of California San Francisco 555 Mission Bay Boulevard South San Francisco CA 94158 USA
| | - Maicol Bissaro
- Molecular Modeling SectionDepartment of Pharmaceutical and Pharmacological SciencesUniversity of Padova Via Marzolo 5 35131 Padova Italy
| | - Stefano Moro
- Molecular Modeling SectionDepartment of Pharmaceutical and Pharmacological SciencesUniversity of Padova Via Marzolo 5 35131 Padova Italy
| | - Ana Martinez
- Centro de Investigaciones BiologicasCSIC Avenida Ramiro de Maeztu 9 28040 Madrid Spain
| | - Paola Storici
- Elettra Sincrotrone Trieste S.C.p.A. SS 14, km 163.5, AREA Science Park 34149 Trieste Italy
| | - Giampiero Spalluto
- Department of Chemical and Pharmaceutical SciencesUniversity of Trieste Via Licio Giorgeri 1 34127 Trieste Italy
| | - Andrea Cavalli
- Drug Discovery & Development (D3)Istituto Italiano di Tecnologia Via Morego 30 16163 Genova Italy
| | - Stephanie Federico
- Department of Chemical and Pharmaceutical SciencesUniversity of Trieste Via Licio Giorgeri 1 34127 Trieste Italy
| |
Collapse
|
16
|
Abstract
Covalent inhibitors are widely used in drug discovery and chemical biology. Although covalent inhibitors are frequently designed to react with noncatalytic cysteines, many ligand binding sites lack an accessible cysteine. Here, we review recent advances in the chemical biology of lysine-targeted covalent inhibitors and chemoproteomic probes. By analyzing crystal structures of proteins bound to common metabolites and enzyme cofactors, we identify a large set of mostly unexplored lysines that are potentially targetable with covalent inhibitors. In addition, we describe mass spectrometry-based approaches for determining proteome-wide lysine ligandability and lysine-reactive chemoproteomic probes for assessing drug-target engagement. Finally, we discuss the design of amine-reactive inhibitors that form reversible covalent bonds with their protein targets.
Collapse
Affiliation(s)
- Adolfo Cuesta
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California 94158, USA; ,
| | - Jack Taunton
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California 94158, USA; ,
| |
Collapse
|
17
|
Marsh-Armstrong B, Fajnzylber JM, Korntner S, Plaman BA, Bishop AC. The Allosteric Site on SHP2's Protein Tyrosine Phosphatase Domain is Targetable with Druglike Small Molecules. ACS OMEGA 2018; 3:15763-15770. [PMID: 30533581 PMCID: PMC6275946 DOI: 10.1021/acsomega.8b02200] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 10/23/2018] [Indexed: 06/09/2023]
Abstract
Difficulties in developing active-site-directed protein tyrosine phosphatase (PTP) inhibitors have led to the perception that PTPs are "undruggable", highlighting the need for new means to target pharmaceutically important PTPs allosterically. Recently, we characterized an allosteric-inhibition site on the PTP domain of Src-homology-2-domain-containing PTP 2 (SHP2), a key anticancer drug target. The central feature of SHP2's allosteric site is a nonconserved cysteine residue (C333) that can potentially be labeled with electrophilic compounds for selective SHP2 inhibition. Here, we describe the first directed discovery effort for C333-targeted allosteric SHP2 inhibitors. By screening a previously reported library of reversible, covalent inhibitors, we identified a lead compound, which was modified to yield an irreversible inhibitor (12), that inhibits SHP2 allosterically and selectively through interaction with C333. These findings provide a novel paradigm for allosteric-inhibitor discovery on SHP2, one that may help to circumvent the challenges inherent in targeting SHP2's active site.
Collapse
|
18
|
Fritz RA, Alzate-Morales JH, Spencer J, Mulholland AJ, van der Kamp MW. Multiscale Simulations of Clavulanate Inhibition Identify the Reactive Complex in Class A β-Lactamases and Predict the Efficiency of Inhibition. Biochemistry 2018; 57:3560-3563. [PMID: 29812917 DOI: 10.1021/acs.biochem.8b00480] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Clavulanate is used as an effective drug in combination with β-lactam antibiotics to treat infections of some antibiotic resistant bacteria. Here, we perform combined quantum mechanics/molecular mechanics simulations of several covalent complexes of clavulanate with class A β-lactamases KPC-2 and TEM-1. Simulations of the deacylation reactions identify the decarboxylated trans-enamine complex as being responsible for inhibition. Further, the obtained free energy barriers discriminate clinically relevant inhibition (TEM-1) from less effective inhibition (KPC-2).
Collapse
Affiliation(s)
- Rubén A Fritz
- Center for Bioinformatics and Molecular Simulations, Faculty of Engineering , University of Talca , Talca , Chile
| | - Jans H Alzate-Morales
- Center for Bioinformatics and Molecular Simulations, Faculty of Engineering , University of Talca , Talca , Chile
| | - James Spencer
- School of Cellular and Molecular Medicine , University of Bristol , University Walk , Bristol BS8 1TD , U.K
| | - Adrian J Mulholland
- Centre for Computational Chemistry, School of Chemistry , University of Bristol , Cantock's Close , Bristol BS8 1TS , U.K
| | - Marc W van der Kamp
- Centre for Computational Chemistry, School of Chemistry , University of Bristol , Cantock's Close , Bristol BS8 1TS , U.K
- School of Biochemistry , University of Bristol , University Walk , Bristol BS8 1TD , U.K
| |
Collapse
|
19
|
Lu G, Tandang-Silvas MR, Dawson AC, Dawson TJ, Groppe JC. Hypoxia-selective allosteric destabilization of activin receptor-like kinases: A potential therapeutic avenue for prophylaxis of heterotopic ossification. Bone 2018; 112:71-89. [PMID: 29626545 PMCID: PMC9851731 DOI: 10.1016/j.bone.2018.03.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/29/2018] [Accepted: 03/30/2018] [Indexed: 01/21/2023]
Abstract
Heterotopic ossification (HO), the pathological extraskeletal formation of bone, can arise from blast injuries, severe burns, orthopedic procedures and gain-of-function mutations in a component of the bone morphogenetic protein (BMP) signaling pathway, the ACVR1/ALK2 receptor serine-threonine (protein) kinase, causative of Fibrodysplasia Ossificans Progressiva (FOP). All three ALKs (-2, -3, -6) that play roles in bone morphogenesis contribute to trauma-induced HO, hence are well-validated pharmacological targets. That said, development of inhibitors, typically competitors of ATP binding, is inherently difficult due to the conserved nature of the active site of the 500+ human protein kinases. Since these enzymes are regulated via inherent plasticity, pharmacological chaperone-like drugs binding to another (allosteric) site could hypothetically modulate kinase conformation and activity. To test for such a mechanism, a surface pocket of ALK2 kinase formed largely by a key allosteric substructure was targeted by supercomputer docking of drug-like compounds from a virtual library. Subsequently, the effects of docked hits were further screened in vitro with purified recombinant kinase protein. A family of compounds with terminal hydrogen-bonding acceptor groups was identified that significantly destabilized the protein, inhibiting activity. Destabilization was pH-dependent, putatively mediated by ionization of a histidine within the allosteric substructure with decreasing pH. In vivo, nonnative proteins are degraded by proteolysis in the proteasome complex, or cellular trashcan, allowing for the emergence of therapeutics that inhibit through degradation of over-active proteins implicated in the pathology of diseases and disorders. Because HO is triggered by soft-tissue trauma and ensuing hypoxia, dependency of ALK destabilization on hypoxic pH imparts selective efficacy on the allosteric inhibitors, providing potential for safe prophylactic use.
Collapse
Affiliation(s)
- Guorong Lu
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX 75246, United States
| | - Mary R Tandang-Silvas
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX 75246, United States
| | - Alyssa C Dawson
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX 75246, United States
| | - Trenton J Dawson
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX 75246, United States
| | - Jay C Groppe
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX 75246, United States.
| |
Collapse
|
20
|
Comess KM, McLoughlin SM, Oyer JA, Richardson PL, Stöckmann H, Vasudevan A, Warder SE. Emerging Approaches for the Identification of Protein Targets of Small Molecules - A Practitioners’ Perspective. J Med Chem 2018; 61:8504-8535. [DOI: 10.1021/acs.jmedchem.7b01921] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Kenneth M. Comess
- AbbVie Inc., 1 Waukegan Road, North Chicago, Illinois 60064-1802, United States
| | - Shaun M. McLoughlin
- AbbVie Inc., 1 Waukegan Road, North Chicago, Illinois 60064-1802, United States
| | - Jon A. Oyer
- AbbVie Inc., 1 Waukegan Road, North Chicago, Illinois 60064-1802, United States
| | - Paul L. Richardson
- AbbVie Inc., 1 Waukegan Road, North Chicago, Illinois 60064-1802, United States
| | - Henning Stöckmann
- AbbVie Inc., 1 Waukegan Road, North Chicago, Illinois 60064-1802, United States
| | - Anil Vasudevan
- AbbVie Inc., 1 Waukegan Road, North Chicago, Illinois 60064-1802, United States
| | - Scott E. Warder
- AbbVie Inc., 1 Waukegan Road, North Chicago, Illinois 60064-1802, United States
| |
Collapse
|
21
|
Abstract
The development of therapies for the treatment of neurological cancer faces a number of major challenges including the synthesis of small molecule agents that can penetrate the blood-brain barrier (BBB). Given the likelihood that in many cases drug exposure will be lower in the CNS than in systemic circulation, it follows that strategies should be employed that can sustain target engagement at low drug concentration. Time dependent target occupancy is a function of both the drug and target concentration as well as the thermodynamic and kinetic parameters that describe the binding reaction coordinate, and sustained target occupancy can be achieved through structural modifications that increase target (re)binding and/or that decrease the rate of drug dissociation. The discovery and deployment of compounds with optimized kinetic effects requires information on the structure-kinetic relationships that modulate the kinetics of binding, and the molecular factors that control the translation of drug-target kinetics to time-dependent drug activity in the disease state. This Review first introduces the potential benefits of drug-target kinetics, such as the ability to delineate both thermodynamic and kinetic selectivity, and then describes factors, such as target vulnerability, that impact the utility of kinetic selectivity. The Review concludes with a description of a mechanistic PK/PD model that integrates drug-target kinetics into predictions of drug activity.
Collapse
Affiliation(s)
- Peter J. Tonge
- Institute for Chemical Biology & Drug Discovery, Departments of Chemistry and Radiology, Stony Brook University, Stony Brook, New York 11794-3400, United States
| |
Collapse
|
22
|
Dalton SE, Dittus L, Thomas DA, Convery MA, Nunes J, Bush JT, Evans JP, Werner T, Bantscheff M, Murphy JA, Campos S. Selectively Targeting the Kinome-Conserved Lysine of PI3Kδ as a General Approach to Covalent Kinase Inhibition. J Am Chem Soc 2018; 140:932-939. [DOI: 10.1021/jacs.7b08979] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Samuel E. Dalton
- Department
of Pure and Applied Chemistry, WestCHEM, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, U.K
- Medicines
Research Centre, GlaxoSmithKline, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Lars Dittus
- Cellzome GmbH, a GSK company, Meyerhofstraße 1, Heidelberg 69117, Germany
| | - Daniel A. Thomas
- Medicines
Research Centre, GlaxoSmithKline, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Máire A. Convery
- Medicines
Research Centre, GlaxoSmithKline, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Joao Nunes
- Medicines
Research Centre, GlaxoSmithKline, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Jacob T. Bush
- Medicines
Research Centre, GlaxoSmithKline, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | - John P. Evans
- Medicines
Research Centre, GlaxoSmithKline, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Thilo Werner
- Cellzome GmbH, a GSK company, Meyerhofstraße 1, Heidelberg 69117, Germany
| | - Marcus Bantscheff
- Cellzome GmbH, a GSK company, Meyerhofstraße 1, Heidelberg 69117, Germany
| | - John A. Murphy
- Department
of Pure and Applied Chemistry, WestCHEM, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, U.K
| | - Sebastien Campos
- Medicines
Research Centre, GlaxoSmithKline, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| |
Collapse
|
23
|
Smith TP, Windsor IW, Forest KT, Raines RT. Stilbene Boronic Acids Form a Covalent Bond with Human Transthyretin and Inhibit Its Aggregation. J Med Chem 2017; 60:7820-7834. [PMID: 28920684 DOI: 10.1021/acs.jmedchem.7b00952] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Transthyretin (TTR) is a homotetrameric protein. Its dissociation into monomers leads to the formation of fibrils that underlie human amyloidogenic diseases. The binding of small molecules to the thyroxin-binding sites in TTR stabilizes the homotetramer and attenuates TTR amyloidosis. Herein, we report on boronic acid-substituted stilbenes that limit TTR amyloidosis in vitro. Assays of affinity for TTR and inhibition of its tendency to form fibrils were coupled with X-ray crystallographic analysis of nine TTR·ligand complexes. The ensuing structure-function data led to a symmetrical diboronic acid that forms a boronic ester reversibly with serine 117. This diboronic acid inhibits fibril formation by both wild-type TTR and a common disease-related variant, V30M TTR, as effectively as does tafamidis, a small-molecule drug used to treat TTR-related amyloidosis in the clinic. These findings establish a new modality for covalent inhibition of fibril formation and illuminate a path for future optimization.
Collapse
Affiliation(s)
- Thomas P Smith
- Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Ian W Windsor
- Department of Biochemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Katrina T Forest
- Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States.,Department of Bacteriology, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Ronald T Raines
- Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States.,Department of Biochemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| |
Collapse
|
24
|
Prediction of intracellular exposure bridges the gap between target- and cell-based drug discovery. Proc Natl Acad Sci U S A 2017; 114:E6231-E6239. [PMID: 28701380 DOI: 10.1073/pnas.1701848114] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Inadequate target exposure is a major cause of high attrition in drug discovery. Here, we show that a label-free method for quantifying the intracellular bioavailability (Fic) of drug molecules predicts drug access to intracellular targets and hence, pharmacological effect. We determined Fic in multiple cellular assays and cell types representing different targets from a number of therapeutic areas, including cancer, inflammation, and dementia. Both cytosolic targets and targets localized in subcellular compartments were investigated. Fic gives insights on membrane-permeable compounds in terms of cellular potency and intracellular target engagement, compared with biochemical potency measurements alone. Knowledge of the amount of drug that is locally available to bind intracellular targets provides a powerful tool for compound selection in early drug discovery.
Collapse
|
25
|
The Search for Covalently Ligandable Proteins in Biological Systems. Molecules 2016; 21:molecules21091170. [PMID: 27598117 PMCID: PMC6274003 DOI: 10.3390/molecules21091170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 08/19/2016] [Accepted: 08/31/2016] [Indexed: 11/17/2022] Open
Abstract
This commentary highlights the recent article published in Nature, June 2016, titled: "Proteome-wide covalent ligand discovery in native biological systems". They screened the whole proteome of different human cell lines and cell lysates. Around 700 druggable cysteines in the whole proteome were found to bind the electrophilic fragments in both active and inactive states of the proteins. Their experiment and computational docking results agreed with one another. The usefulness of this study in terms of bringing a change in medicinal chemistry is highlighted here.
Collapse
|
26
|
Baillie TA. Targeted Covalent Inhibitors for Drug Design. Angew Chem Int Ed Engl 2016; 55:13408-13421. [DOI: 10.1002/anie.201601091] [Citation(s) in RCA: 292] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Indexed: 12/14/2022]
Affiliation(s)
- Thomas A. Baillie
- Department of Medicinal Chemistry, School of Pharmacy; University of Washington; Box 357610 Seattle WA 98195-7610 USA
| |
Collapse
|
27
|
Affiliation(s)
- Thomas A. Baillie
- Department of Medicinal Chemistry, School of Pharmacy; University of Washington; Box 357610 Seattle WA 98195-7610 USA
| |
Collapse
|
28
|
Javed S, Bodugam M, Torres J, Ganguly A, Hanson PR. Modular Synthesis of Novel Macrocycles Bearing α,β-Unsaturated Chemotypes through a Series of One-Pot, Sequential Protocols. Chemistry 2016; 22:6755-6758. [PMID: 27059428 PMCID: PMC5094705 DOI: 10.1002/chem.201601004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Indexed: 11/08/2022]
Abstract
A series of one-pot, sequential protocols was developed for the synthesis of novel macrocycles bearing α,β-unsaturated chemotypes. The method highlights a phosphate tether-mediated approach to establish asymmetry, and consecutive one-pot, sequential processes to access the macrocycles with minimal purification procedures. This library amenable strategy provided diverse macrocycles containing α,β-unsaturated carbon-, sulfur-, or phosphorus-based warheads.
Collapse
Affiliation(s)
- Salim Javed
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045 (USA)
| | - Mahipal Bodugam
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045 (USA)
| | - Jessica Torres
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045 (USA)
| | - Arghya Ganguly
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045 (USA)
| | - Paul R. Hanson
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045 (USA)
| |
Collapse
|
29
|
Smith JM, Rowley CN. Automated computational screening of the thiol reactivity of substituted alkenes. J Comput Aided Mol Des 2015; 29:725-35. [PMID: 26159564 DOI: 10.1007/s10822-015-9857-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 07/02/2015] [Indexed: 11/26/2022]
Abstract
Electrophilic olefins can react with the S-H moiety of cysteine side chains. The formation of a covalent adduct through this mechanism can result in the inhibition of an enzyme. The reactivity of an olefin towards cysteine depends on its functional groups. In this study, 325 reactions of thiol-Michael-type additions to olefins were modeled using density functional theory. All combinations of ethenes with hydrogen, methyl ester, amide, and cyano substituents were included. An automated workflow was developed to perform the construction, conformation search, minimization, and calculation of molecular properties for the reactant, carbanion intermediate, and thioether products for a model reaction of the addition of methanethiol to the electrophile. Known cysteine-reactive electrophiles present in the database were predicted to react exergonically with methanethiol through a carbanion with a stability in the 30-40 kcal mol(-1) range. 13 other compounds in our database that are also present in the PubChem database have similar properties. Natural bond orbital parameters were computed and regression analysis was used to determine the relationship between properties of the olefin electronic structure and the product and intermediate stability. The stability of the intermediates is very sensitive to electronic effects on the carbon where the anionic charge is centered. The stability of the products is more sensitive to steric factors.
Collapse
Affiliation(s)
- Jennifer M Smith
- Department of Chemistry, Memorial University of Newfoundland, St. John's, NL, A1B 3X7, Canada
| | | |
Collapse
|