1
|
Song SS, Druschel LN, Conard JH, Wang JJ, Kasthuri NM, Ricky Chan E, Capadona JR. Depletion of complement factor 3 delays the neuroinflammatory response to intracortical microelectrodes. Brain Behav Immun 2024; 118:221-235. [PMID: 38458498 DOI: 10.1016/j.bbi.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/26/2024] [Accepted: 03/02/2024] [Indexed: 03/10/2024] Open
Abstract
The neuroinflammatory response to intracortical microelectrodes (IMEs) used with brain-machine interfacing (BMI) applications is regarded as the primary contributor to poor chronic performance. Recent developments in high-plex gene expression technologies have allowed for an evolution in the investigation of individual proteins or genes to be able to identify specific pathways of upregulated genes that may contribute to the neuroinflammatory response. Several key pathways that are upregulated following IME implantation are involved with the complement system. The complement system is part of the innate immune system involved in recognizing and eliminating pathogens - a significant contributor to the foreign body response against biomaterials. Specifically, we have identified Complement 3 (C3) as a gene of interest because it is the intersection of several key complement pathways. In this study, we investigated the role of C3 in the IME inflammatory response by comparing the neuroinflammatory gene expression at the microelectrode implant site between C3 knockout (C3-/-) and wild-type (WT) mice. We have found that, like in WT mice, implantation of intracortical microelectrodes in C3-/- mice yields a dramatic increase in the neuroinflammatory gene expression at all post-surgery time points investigated. However, compared to WT mice, C3 depletion showed reduced expression of many neuroinflammatory genes pre-surgery and 4 weeks post-surgery. Conversely, depletion of C3 increased the expression of many neuroinflammatory genes at 8 weeks and 16 weeks post-surgery, compared to WT mice. Our results suggest that C3 depletion may be a promising therapeutic target for acute, but not chronic, relief of the neuroinflammatory response to IME implantation. Additional compensatory targets may also be required for comprehensive long-term reduction of the neuroinflammatory response for improved intracortical microelectrode performance.
Collapse
Affiliation(s)
- Sydney S Song
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, United States; Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH 44106, United States.
| | - Lindsey N Druschel
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, United States; Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH 44106, United States.
| | - Jacob H Conard
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, United States.
| | - Jaime J Wang
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, United States; Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH 44106, United States.
| | - Niveda M Kasthuri
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, United States; Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH 44106, United States.
| | - E Ricky Chan
- Cleveland Institute for Computational Biology, Case Western Reserve University, Cleveland, OH 44106, United States.
| | - Jeffrey R Capadona
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, United States; Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH 44106, United States.
| |
Collapse
|
2
|
Erazo-Oliveras A, Muñoz-Vega M, Salinas ML, Wang X, Chapkin RS. Dysregulation of cellular membrane homeostasis as a crucial modulator of cancer risk. FEBS J 2024; 291:1299-1352. [PMID: 36282100 PMCID: PMC10126207 DOI: 10.1111/febs.16665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 09/09/2022] [Accepted: 10/24/2022] [Indexed: 11/07/2022]
Abstract
Cellular membranes serve as an epicentre combining extracellular and cytosolic components with membranous effectors, which together support numerous fundamental cellular signalling pathways that mediate biological responses. To execute their functions, membrane proteins, lipids and carbohydrates arrange, in a highly coordinated manner, into well-defined assemblies displaying diverse biological and biophysical characteristics that modulate several signalling events. The loss of membrane homeostasis can trigger oncogenic signalling. More recently, it has been documented that select membrane active dietaries (MADs) can reshape biological membranes and subsequently decrease cancer risk. In this review, we emphasize the significance of membrane domain structure, organization and their signalling functionalities as well as how loss of membrane homeostasis can steer aberrant signalling. Moreover, we describe in detail the complexities associated with the examination of these membrane domains and their association with cancer. Finally, we summarize the current literature on MADs and their effects on cellular membranes, including various mechanisms of dietary chemoprevention/interception and the functional links between nutritional bioactives, membrane homeostasis and cancer biology.
Collapse
Affiliation(s)
- Alfredo Erazo-Oliveras
- Program in Integrative Nutrition and Complex Diseases; Texas A&M University; College Station, Texas, 77843; USA
- Department of Nutrition; Texas A&M University; College Station, Texas, 77843; USA
| | - Mónica Muñoz-Vega
- Program in Integrative Nutrition and Complex Diseases; Texas A&M University; College Station, Texas, 77843; USA
- Department of Nutrition; Texas A&M University; College Station, Texas, 77843; USA
| | - Michael L. Salinas
- Program in Integrative Nutrition and Complex Diseases; Texas A&M University; College Station, Texas, 77843; USA
- Department of Nutrition; Texas A&M University; College Station, Texas, 77843; USA
| | - Xiaoli Wang
- Program in Integrative Nutrition and Complex Diseases; Texas A&M University; College Station, Texas, 77843; USA
- Department of Nutrition; Texas A&M University; College Station, Texas, 77843; USA
| | - Robert S. Chapkin
- Program in Integrative Nutrition and Complex Diseases; Texas A&M University; College Station, Texas, 77843; USA
- Department of Nutrition; Texas A&M University; College Station, Texas, 77843; USA
- Center for Environmental Health Research; Texas A&M University; College Station, Texas, 77843; USA
| |
Collapse
|
3
|
de Lope-Planelles A, González-Novo R, Madrazo E, Peralta-Carrero G, Cruz Rodríguez MP, Zamora-Carreras H, Torrano V, López-Menéndez H, Roda-Navarro P, Monroy F, Redondo-Muñoz J. Mechanical stress confers nuclear and functional changes in derived leukemia cells from persistent confined migration. Cell Mol Life Sci 2023; 80:316. [PMID: 37801090 PMCID: PMC10558412 DOI: 10.1007/s00018-023-04968-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 08/07/2023] [Accepted: 09/14/2023] [Indexed: 10/07/2023]
Abstract
Nuclear deformability plays a critical role in cell migration. During this process, the remodeling of internal components of the nucleus has a direct impact on DNA damage and cell behavior; however, how persistent migration promotes nuclear changes leading to phenotypical and functional consequences remains poorly understood. Here, we described that the persistent migration through physical barriers was sufficient to promote permanent modifications in migratory-altered cells. We found that derived cells from confined migration showed changes in lamin B1 localization, cell morphology and transcription. Further analysis confirmed that migratory-altered cells showed functional differences in DNA repair, cell response to chemotherapy and cell migration in vivo homing experiments. Experimental modulation of actin polymerization affected the redistribution of lamin B1, and the basal levels of DNA damage in migratory-altered cells. Finally, since major nuclear changes were present in migratory-altered cells, we applied a multidisciplinary biochemical and biophysical approach to identify that confined conditions promoted a different biomechanical response of the nucleus in migratory-altered cells. Our observations suggest that mechanical compression during persistent cell migration has a role in stable nuclear and genomic alterations that might handle the genetic instability and cellular heterogeneity in aging diseases and cancer.
Collapse
Affiliation(s)
- Ana de Lope-Planelles
- Department of Molecular Medicine, Centro de Investigaciones Biológicas Margarita Salas (CIB Margarita Salas-CSIC), Madrid, Spain
| | - Raquel González-Novo
- Department of Molecular Medicine, Centro de Investigaciones Biológicas Margarita Salas (CIB Margarita Salas-CSIC), Madrid, Spain
| | - Elena Madrazo
- Department of Molecular Medicine, Centro de Investigaciones Biológicas Margarita Salas (CIB Margarita Salas-CSIC), Madrid, Spain
| | - Gracia Peralta-Carrero
- Department of Molecular Medicine, Centro de Investigaciones Biológicas Margarita Salas (CIB Margarita Salas-CSIC), Madrid, Spain
| | - María Pilar Cruz Rodríguez
- Department of Molecular Medicine, Centro de Investigaciones Biológicas Margarita Salas (CIB Margarita Salas-CSIC), Madrid, Spain
| | - Héctor Zamora-Carreras
- Department of Molecular Medicine, Centro de Investigaciones Biológicas Margarita Salas (CIB Margarita Salas-CSIC), Madrid, Spain
| | - Verónica Torrano
- Department of Biochemistry and Molecular Biology, University of the Basque Country, Leioa, Spain
| | - Horacio López-Menéndez
- Department of Physical Chemistry, Complutense University, Madrid, Spain
- Translational Biophysics, Hospital Doce de Octubre Health Research Institute (imas12), Madrid, Spain
| | - Pedro Roda-Navarro
- Department of Immunology, School of Medicine, University Complutense de Madrid and 12 de Octubre Health Research Institute (Imas12) Madrid, Madrid, Spain
| | - Francisco Monroy
- Department of Physical Chemistry, Complutense University, Madrid, Spain
- Translational Biophysics, Hospital Doce de Octubre Health Research Institute (imas12), Madrid, Spain
| | - Javier Redondo-Muñoz
- Department of Molecular Medicine, Centro de Investigaciones Biológicas Margarita Salas (CIB Margarita Salas-CSIC), Madrid, Spain.
| |
Collapse
|
4
|
Davidson KA, Nakamura M, Verboon JM, Parkhurst SM. Centralspindlin proteins Pavarotti and Tumbleweed along with WASH regulate nuclear envelope budding. J Cell Biol 2023; 222:e202211074. [PMID: 37163553 PMCID: PMC10174194 DOI: 10.1083/jcb.202211074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 03/14/2023] [Accepted: 04/26/2023] [Indexed: 05/12/2023] Open
Abstract
Nuclear envelope (NE) budding is a nuclear pore-independent nuclear export pathway, analogous to the egress of herpesviruses, and required for protein quality control, synapse development, and mitochondrial integrity. The physical formation of NE buds is dependent on the Wiskott-Aldrich Syndrome protein, Wash, its regulatory complex (SHRC), and Arp2/3, and requires Wash's actin nucleation activity. However, the machinery governing cargo recruitment and organization within the NE bud remains unknown. Here, we identify Pavarotti (Pav) and Tumbleweed (Tum) as new molecular components of NE budding. Pav and Tum interact directly with Wash and define a second nuclear Wash-containing complex required for NE budding. Interestingly, we find that the actin-bundling activity of Pav is required, suggesting a structural role in the physical and/or organizational aspects of NE buds. Thus, Pav and Tum are providing exciting new entry points into the physical machineries of this alternative nuclear export pathway for large cargos during cell differentiation and development.
Collapse
Affiliation(s)
- Kerri A. Davidson
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | | | - Jeffrey M. Verboon
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Susan M. Parkhurst
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| |
Collapse
|
5
|
Mackels L, Liu X, Bonne G, Servais L. TOR1AIP1-Associated Nuclear Envelopathies. Int J Mol Sci 2023; 24:ijms24086911. [PMID: 37108075 PMCID: PMC10138496 DOI: 10.3390/ijms24086911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/23/2023] [Accepted: 03/23/2023] [Indexed: 04/29/2023] Open
Abstract
Human TOR1AIP1 encodes LAP1, a nuclear envelope protein expressed in most human tissues, which has been linked to various biological processes and human diseases. The clinical spectrum of diseases related to mutations in TOR1AIP1 is broad, including muscular dystrophy, congenital myasthenic syndrome, cardiomyopathy, and multisystemic disease with or without progeroid features. Although rare, these recessively inherited disorders often lead to early death or considerable functional impairment. Developing a better understanding of the roles of LAP1 and mutant TOR1AIP1-associated phenotypes is paramount to allow therapeutic development. To facilitate further studies, this review provides an overview of the known interactions of LAP1 and summarizes the evidence for the function of this protein in human health. We then review the mutations in the TOR1AIP1 gene and the clinical and pathological characteristics of subjects with these mutations. Lastly, we discuss challenges to be addressed in the future.
Collapse
Affiliation(s)
- Laurane Mackels
- MDUK Oxford Neuromuscular Center, Department of Paediatrics, University of Oxford, Oxford OX3 9DU, UK
- Adult Neurology Department, Citadelle Hospital, 4000 Liège, Belgium
| | - Xincheng Liu
- MDUK Oxford Neuromuscular Center, Department of Paediatrics, University of Oxford, Oxford OX3 9DU, UK
| | - Gisèle Bonne
- Sorbonne University, INSERM, Institut de Myologie, Centre de Recherche en Myologie, 75013 Paris, France
| | - Laurent Servais
- Neuromuscular Center, Division of Paediatrics, University Hospital of Liège, University of Liège, 4000 Liège, Belgium
- MDUK Oxford Neuromuscular Center, Department of Paediatrics, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford OX3 9DU, UK
| |
Collapse
|
6
|
Calvanese E, Gu Y. Towards understanding inner nuclear membrane protein degradation in plants. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2266-2274. [PMID: 35139191 DOI: 10.1093/jxb/erac037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
The inner nuclear membrane (INM) hosts a unique set of membrane proteins that play essential roles in various aspects of the nuclear function. However, overaccumulation or malfunction of INM protein has been associated with a range of rare genetic diseases; therefore, maintaining the homeostasis and integrity of INM proteins by active removal of aberrantly accumulated proteins and replacing defective molecules through proteolysis is of critical importance. Within the last decade, it has been shown that INM proteins are degraded in yeasts by a process very similar to endoplasmic reticulum-associated degradation (ERAD), which is accomplished by retrotranslocation of membrane substrates followed by proteasome-dependent proteolysis, and this process was named inner nuclear membrane-associated degradation (INMAD). INMAD is distinguished from ERAD by specific INM-localized E3 ubiquitin ligases and proteolysis regulators. While much is yet to be determined about the INMAD pathway in yeasts, virtually no knowledge of it exists for higher eukaryotes, and only very recently have several critical regulators that participate in INM protein degradation been discovered in plants. Here, we review key molecular components of the INMAD pathway and draw parallels between the yeast and plant system to discuss promising directions in the future study of the plant INMAD process.
Collapse
Affiliation(s)
- Enrico Calvanese
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
| | - Yangnan Gu
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
7
|
Danielsson BE, Peters HC, Bathula K, Spear LM, Noll NA, Dahl KN, Conway DE. Progerin-expressing endothelial cells are unable to adapt to shear stress. Biophys J 2022; 121:620-628. [PMID: 34999130 PMCID: PMC8873939 DOI: 10.1016/j.bpj.2022.01.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 12/17/2021] [Accepted: 01/05/2022] [Indexed: 11/19/2022] Open
Abstract
Hutchinson-Gilford progeria syndrome (HGPS) is a rare premature aging disease caused by a single-point mutation in the lamin A gene, resulting in a truncated and farnesylated form of lamin A. This mutant lamin A protein, known as progerin, accumulates at the periphery of the nuclear lamina, resulting in both an abnormal nuclear morphology and nuclear stiffening. Patients with HGPS experience rapid onset of atherosclerosis, with death from heart attack or stroke as teenagers. Progerin expression has been shown to cause dysfunction in both vascular smooth muscle cells and endothelial cells (ECs). In this study, we examined how progerin-expressing endothelial cells adapt to fluid shear stress, the principal mechanical force from blood flow. We compared the response to shear stress for progerin-expressing, wild-type lamin A overexpressing, and control endothelial cells to physiological levels of fluid shear stress. Additionally, we also knocked down ZMPSTE24 in endothelial cells, which results in increased farnesylation of lamin A and similar phenotypes to HGPS. Our results showed that endothelial cells either overexpressing progerin or with ZMPSTE24 knockdown were unable to adapt to shear stress, experiencing significant cell loss at a longer duration of exposure to shear stress (3 days). Endothelial cells overexpressing wild-type lamin A also exhibited similar impairments in adaptation to shear stress, including similar levels of cell loss. Quantification of nuclear morphology showed that progerin-expressing endothelial cells had similar nuclear abnormalities in both static and shear conditions. Treatment of progerin-expressing cells and ZMPSTE24 KD cells with lonafarnib and methystat, drugs previously shown to improve HGPS nuclear morphology, resulted in improvements in adaptation to shear stress. Additionally, the prealignment of cells to shear stress before progerin-expression prevented cell loss. Our results demonstrate that changes in nuclear lamins can affect the ability of endothelial cells to properly adapt to shear stress.
Collapse
Affiliation(s)
- Brooke E Danielsson
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia
| | - Hannah C Peters
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia
| | - Kranthi Bathula
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia
| | - Lindsay M Spear
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia
| | - Natalie A Noll
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia
| | - Kris N Dahl
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania; Department, Thornton Tomasetti, New York City, New York
| | - Daniel E Conway
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia.
| |
Collapse
|
8
|
Pawar S, Kutay U. The Diverse Cellular Functions of Inner Nuclear Membrane Proteins. Cold Spring Harb Perspect Biol 2021; 13:a040477. [PMID: 33753404 PMCID: PMC8411953 DOI: 10.1101/cshperspect.a040477] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The nuclear compartment is delimited by a specialized expanded sheet of the endoplasmic reticulum (ER) known as the nuclear envelope (NE). Compared to the outer nuclear membrane and the contiguous peripheral ER, the inner nuclear membrane (INM) houses a unique set of transmembrane proteins that serve a staggering range of functions. Many of these functions reflect the exceptional position of INM proteins at the membrane-chromatin interface. Recent research revealed that numerous INM proteins perform crucial roles in chromatin organization, regulation of gene expression, genome stability, and mediation of signaling pathways into the nucleus. Other INM proteins establish mechanical links between chromatin and the cytoskeleton, help NE remodeling, or contribute to the surveillance of NE integrity and homeostasis. As INM proteins continue to gain prominence, we review these advancements and give an overview on the functional versatility of the INM proteome.
Collapse
Affiliation(s)
- Sumit Pawar
- Institute of Biochemistry, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Ulrike Kutay
- Institute of Biochemistry, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
9
|
Danielsson BE, Tieu KV, Bathula K, Armiger TJ, Vellala PS, Taylor RE, Dahl KN, Conway DE. Lamin microaggregates lead to altered mechanotransmission in progerin-expressing cells. Nucleus 2021; 11:194-204. [PMID: 32816594 PMCID: PMC7529416 DOI: 10.1080/19491034.2020.1802906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The nuclear lamina is a meshwork of intermediate filament proteins, and lamin A is the primary mechanical protein. An altered splicing of lamin A, known as progerin, causes the disease Hutchinson-Gilford progeria syndrome. Progerin-expressing cells have altered nuclear shapes and stiffened nuclear lamina with microaggregates of progerin. Here, progerin microaggregate inclusions in the lamina are shown to lead to cellular and multicellular dysfunction. We show with Comsol simulations that stiffened inclusions causes redistribution of normally homogeneous forces, and this redistribution is dependent on the stiffness difference and relatively independent of inclusion size. We also show mechanotransmission changes associated with progerin expression in cells under confinement and cells under external forces. Endothelial cells expressing progerin do not align properly with patterning. Fibroblasts expressing progerin do not align properly to applied cyclic force. Combined, these studies show that altered nuclear lamina mechanics and microstructure impacts cytoskeletal force transmission through the cell.
Collapse
Affiliation(s)
- Brooke E Danielsson
- Department of Biomedical Engineering, Virginia Commonwealth University , Richmond, VA, USA
| | - Katie V Tieu
- Department of Biomedical Engineering, Virginia Commonwealth University , Richmond, VA, USA
| | - Kranthidhar Bathula
- Department of Biomedical Engineering, Virginia Commonwealth University , Richmond, VA, USA
| | - Travis J Armiger
- Chemical Engineering, Carnegie Mellon University , Pittsburgh, PA, USA
| | - Pragna S Vellala
- Department of Biomedical Engineering, Carnegie Mellon University , Pittsburgh, PA , USA
| | - Rebecca E Taylor
- Department of Biomedical Engineering, Carnegie Mellon University , Pittsburgh, PA , USA.,Department of Mechanical Engineering, Carnegie Mellon University , Pittsburgh, PA, USA
| | - Kris Noel Dahl
- Chemical Engineering, Carnegie Mellon University , Pittsburgh, PA, USA.,Department of Biomedical Engineering, Carnegie Mellon University , Pittsburgh, PA , USA
| | - Daniel E Conway
- Department of Biomedical Engineering, Virginia Commonwealth University , Richmond, VA, USA
| |
Collapse
|
10
|
Kittisopikul M, Shimi T, Tatli M, Tran JR, Zheng Y, Medalia O, Jaqaman K, Adam SA, Goldman RD. Computational analyses reveal spatial relationships between nuclear pore complexes and specific lamins. J Cell Biol 2021; 220:e202007082. [PMID: 33570570 PMCID: PMC7883741 DOI: 10.1083/jcb.202007082] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/15/2020] [Accepted: 01/05/2021] [Indexed: 12/29/2022] Open
Abstract
Nuclear lamin isoforms form fibrous meshworks associated with nuclear pore complexes (NPCs). Using datasets prepared from subpixel and segmentation analyses of 3D-structured illumination microscopy images of WT and lamin isoform knockout mouse embryo fibroblasts, we determined with high precision the spatial association of NPCs with specific lamin isoform fibers. These relationships are retained in the enlarged lamin meshworks of Lmna-/- and Lmnb1-/- fibroblast nuclei. Cryo-ET observations reveal that the lamin filaments composing the fibers contact the nucleoplasmic ring of NPCs. Knockdown of the ring-associated nucleoporin ELYS induces NPC clusters that exclude lamin A/C fibers but include LB1 and LB2 fibers. Knockdown of the nucleoporin TPR or NUP153 alters the arrangement of lamin fibers and NPCs. Evidence that the number of NPCs is regulated by specific lamin isoforms is presented. Overall the results demonstrate that lamin isoforms and nucleoporins act together to maintain the normal organization of lamin meshworks and NPCs within the nuclear envelope.
Collapse
Affiliation(s)
- Mark Kittisopikul
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX
| | - Takeshi Shimi
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL
- Cell Biology Center and World Research Hub Initiative, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Meltem Tatli
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Joseph Riley Tran
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD
| | - Yixian Zheng
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD
| | - Ohad Medalia
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Khuloud Jaqaman
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX
| | - Stephen A. Adam
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Robert D. Goldman
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| |
Collapse
|
11
|
Drosophila female germline stem cells undergo mitosis without nuclear breakdown. Curr Biol 2021; 31:1450-1462.e3. [PMID: 33548191 DOI: 10.1016/j.cub.2021.01.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/18/2020] [Accepted: 01/11/2021] [Indexed: 02/02/2023]
Abstract
Stem cell homeostasis requires nuclear lamina (NL) integrity. In Drosophila germ cells, compromised NL integrity activates the ataxia telangiectasia and Rad3-related (ATR) and checkpoint kinase 2 (Chk2) checkpoint kinases, blocking germ cell differentiation and causing germline stem cell (GSC) loss. Checkpoint activation occurs upon loss of either the NL protein emerin or its partner barrier-to-autointegration factor, two proteins required for nuclear reassembly at the end of mitosis. Here, we examined how mitosis contributes to NL structural defects linked to checkpoint activation. These analyses led to the unexpected discovery that wild-type female GSCs utilize a non-canonical mode of mitosis, one that retains a permeable but intact nuclear envelope and NL. We show that the interphase NL is remodeled during mitosis for insertion of centrosomes that nucleate the mitotic spindle within the confines of the nucleus. We show that depletion or loss of NL components causes mitotic defects, including compromised chromosome segregation associated with altered centrosome positioning and structure. Further, in emerin mutant GSCs, centrosomes remain embedded in the interphase NL. Notably, these embedded centrosomes carry large amounts of pericentriolar material and nucleate astral microtubules, revealing a role for emerin in the regulation of centrosome structure. Epistasis studies demonstrate that defects in centrosome structure are upstream of checkpoint activation, suggesting that these centrosome defects might trigger checkpoint activation and GSC loss. Connections between NL proteins and centrosome function have implications for mechanisms associated with NL dysfunction in other stem cell populations, including NL-associated diseases, such as laminopathies.
Collapse
|
12
|
Spatial modeling of biological patterns shows multiscale organization of Arabidopsis thaliana heterochromatin. Sci Rep 2021; 11:323. [PMID: 33431919 PMCID: PMC7801681 DOI: 10.1038/s41598-020-79158-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/01/2020] [Indexed: 01/29/2023] Open
Abstract
The spatial organization in the cell nucleus is tightly linked to genome functions such as gene regulation. Similarly, specific spatial arrangements of biological components such as macromolecular complexes, organelles and cells are involved in many biological functions. Spatial interactions among elementary components of biological systems define their relative positioning and are key determinants of spatial patterns. However, biological variability and the lack of appropriate spatial statistical methods and models limit our current ability to analyze these interactions. Here, we developed a framework to dissect spatial interactions and organization principles by combining unbiased statistical tests, multiple spatial descriptors and new spatial models. We used plant constitutive heterochromatin as a model system to demonstrate the potential of our framework. Our results challenge the common view of a peripheral organization of chromocenters, showing that chromocenters are arranged along both radial and lateral directions in the nuclear space and obey a multiscale organization with scale-dependent antagonistic effects. The proposed generic framework will be useful to identify determinants of spatial organizations and to question their interplay with biological functions.
Collapse
|
13
|
Cruz VE, Esra Demircioglu F, Schwartz TU. Structural Analysis of Different LINC Complexes Reveals Distinct Binding Modes. J Mol Biol 2020; 432:6028-6041. [PMID: 33058875 PMCID: PMC11552096 DOI: 10.1016/j.jmb.2020.09.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 01/17/2023]
Abstract
Linker of nucleoskeleton and cytoskeleton (LINC) complexes are molecular tethers that span the nuclear envelope (NE) and physically connect the nucleus to the cytoskeleton. They transmit mechanical force across the NE in processes such as nuclear anchorage, nuclear migration, and homologous chromosome pairing during meiosis. LINC complexes are composed of KASH proteins traversing the outer nuclear membrane, and SUN proteins crossing the inner nuclear membrane. Humans have several SUN- and KASH-containing proteins, yet what governs their proper engagement is poorly understood. To investigate this question, we solved high resolution crystal structures of human SUN2 in complex with the KASH-peptides of Nesprin3, Nesprin4, and KASH5. In comparison to the published structures of SUN2-KASH1/2 we observe alternative binding modes for these KASH peptides. While the core interactions between SUN and the C-terminal residues of the KASH peptide are similar in all five complexes, the extended KASH-peptide adopts at least two different conformations. The much-improved resolution allows for a more detailed analysis of other elements critical for KASH interaction, including the KASH-lid and the cation loop, and a possible self-locked state for unbound SUN. In summary, we observe distinct differences between the examined SUN-KASH complexes. These differences may have an important role in regulating the SUN-KASH network.
Collapse
Affiliation(s)
- Victor E Cruz
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - F Esra Demircioglu
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Thomas U Schwartz
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
14
|
Shaikh S, Wang Y, ur Rehman F, Jiang H, Wang X. Phosphorescent Ir (III) complexes as cellular staining agents for biomedical molecular imaging. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213344] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
15
|
Huang A, Tang Y, Shi X, Jia M, Zhu J, Yan X, Chen H, Gu Y. Proximity labeling proteomics reveals critical regulators for inner nuclear membrane protein degradation in plants. Nat Commun 2020; 11:3284. [PMID: 32601292 PMCID: PMC7324386 DOI: 10.1038/s41467-020-16744-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 05/20/2020] [Indexed: 11/08/2022] Open
Abstract
The inner nuclear membrane (INM) selectively accumulates proteins that are essential for nuclear functions; however, overaccumulation of INM proteins results in a range of rare genetic disorders. So far, little is known about how defective, mislocalized, or abnormally accumulated membrane proteins are actively removed from the INM, especially in plants and animals. Here, via analysis of a proximity-labeling proteomic profile of INM-associated proteins in Arabidopsis, we identify critical components for an INM protein degradation pathway. We show that this pathway relies on the CDC48 complex for INM protein extraction and 26S proteasome for subsequent protein degradation. Moreover, we show that CDC48 at the INM may be regulated by a subgroup of PUX proteins, which determine the substrate specificity or affect the ATPase activity of CDC48. These PUX proteins specifically associate with the nucleoskeleton underneath the INM and physically interact with CDC48 proteins to negatively regulate INM protein degradation in plants.
Collapse
Affiliation(s)
- Aobo Huang
- Tsinghua-Peking Joint Center for Life Sciences, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yu Tang
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Xuetao Shi
- Tsinghua-Peking Joint Center for Life Sciences, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Min Jia
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Jinheng Zhu
- Tsinghua-Peking Joint Center for Life Sciences, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xiaohan Yan
- Tsinghua-Peking Joint Center for Life Sciences, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Huiqin Chen
- Tsinghua-Peking Joint Center for Life Sciences, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yangnan Gu
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA.
- Innovative Genomics Institute, University of California, Berkeley, CA, USA.
| |
Collapse
|
16
|
Bahmanyar S, Schlieker C. Lipid and protein dynamics that shape nuclear envelope identity. Mol Biol Cell 2020; 31:1315-1323. [PMID: 32530796 PMCID: PMC7353140 DOI: 10.1091/mbc.e18-10-0636] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/13/2020] [Accepted: 04/17/2020] [Indexed: 12/17/2022] Open
Abstract
The nuclear envelope (NE) is continuous with the endoplasmic reticulum (ER), yet the NE carries out many functions distinct from those of bulk ER. This functional specialization depends on a unique protein composition that defines NE identity and must be both established and actively maintained. The NE undergoes extensive remodeling in interphase and mitosis, so mechanisms that seal NE holes and protect its unique composition are critical for maintaining its functions. New evidence shows that closure of NE holes relies on regulated de novo lipid synthesis, providing a link between lipid metabolism and generating and maintaining NE identity. Here, we review regulation of the lipid bilayers of the NE and suggest ways to generate lipid asymmetry across the NE despite its direct continuity with the ER. We also discuss the elusive mechanism of membrane fusion during nuclear pore complex (NPC) biogenesis. We propose a model in which NPC biogenesis is carefully controlled to ensure that a permeability barrier has been established before membrane fusion, thereby avoiding a major threat to compartmentalization.
Collapse
Affiliation(s)
- Shirin Bahmanyar
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520
| | - Christian Schlieker
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06520
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06520
| |
Collapse
|
17
|
Abstract
The nucleus is enclosed by a double-membrane structure, the nuclear envelope, which separates the nucleoplasm from the cytoplasm. The outer nuclear membrane is continuous with the endoplasmic reticulum (ER), whereas the inner nuclear membrane (INM) is a specialized compartment with a unique proteome. In order to ensure compartmental homeostasis, INM-associated degradation (INMAD) is required for both protein quality control and regulated proteolysis of INM proteins. INMAD shares similarities with ER-associated degradation (ERAD). The mechanism of ERAD is well characterized, whereas the INMAD pathway requires further definition. Here we review the three different branches of INMAD, mediated by their respective E3 ubiquitin ligases: Doa10, Asi1-3, and APC/C. We clarify the distinction between ERAD and INMAD, their substrate recognition signals, and the subsequent processing by their respective degradation machineries. We also discuss the significance of cell-cycle and developmental regulation of protein clearance at the INM, and its relationship to human disease.
Collapse
Affiliation(s)
- Bailey Koch
- a Department of Biological Science, The Florida State University , Tallahassee , FL , USA
| | - Hong-Guo Yu
- a Department of Biological Science, The Florida State University , Tallahassee , FL , USA
| |
Collapse
|
18
|
Duan T, Kitzman SC, Geyer PK. Survival of Drosophila germline stem cells requires the chromatin-binding protein Barrier-to-autointegration factor. Development 2020; 147:dev.186171. [PMID: 32345742 DOI: 10.1242/dev.186171] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 03/31/2020] [Indexed: 11/20/2022]
Abstract
The nuclear lamina (NL) is an extensive protein network that underlies the inner nuclear envelope. This network includes LAP2-emerin-MAN1 domain (LEM-D) proteins that associate with the chromatin and DNA-binding protein Barrier-to-autointegration factor (BAF). Here, we investigate the partnership between three NL Drosophila LEM-D proteins and BAF. In most tissues, only Emerin/Otefin is required for NL enrichment of BAF, revealing an unexpected dependence on a single LEM-D protein. Prompted by these observations, we studied BAF contributions in the ovary, a tissue where Emerin/Otefin function is essential. We show that germ cell-specific BAF knockdown causes phenotypes that mirror emerin/otefin mutants. Loss of BAF disrupts NL structure, blocks differentiation and promotes germ cell loss, phenotypes that are partially rescued by inactivation of the ATR and Chk2 kinases. These data suggest that, similar to emerin/otefin mutants, BAF depletion activates the NL checkpoint that causes germ cell loss. Taken together, our findings provide evidence for a prominent NL partnership between the LEM-D protein Emerin/Otefin and BAF, revealing that BAF functions with this partner in the maintenance of an adult stem cell population.
Collapse
Affiliation(s)
- Tingting Duan
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA
| | - S Cole Kitzman
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA
| | - Pamela K Geyer
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
19
|
Dreger M, Madrazo E, Hurlstone A, Redondo-Muñoz J. Novel contribution of epigenetic changes to nuclear dynamics. Nucleus 2020; 10:42-47. [PMID: 30784352 PMCID: PMC6527383 DOI: 10.1080/19491034.2019.1580100] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Migrating cells have to cross many physical barriers and confined in 3D environments. The surrounding environment promotes mechano- and biological signals that orchestrate cellular changes, such as cytoskeletal and adhesion rearrangements and proteolytic digestion. Recent studies provide new insights into how the nucleus must alter its shape, localization and mechanical properties in order to promote nuclear deformability, chromatin compaction and gene reprogramming. It is known that the chromatin structure contributes directly to genomic and non-genomic functions, such as gene transcription and the physical properties of the nucleus. Here, we appraise paradigms and novel insights regarding the functional role of chromatin during nuclear deformation. In so doing, we review how constraint and mechanical conditions influence the structure, localization and chromatin decompaction. Finally, we highlight the emerging roles of mechanogenomics and the molecular basis of nucleoskeletal components, which open unexplored territory to understand how cells regulate their chromatin and modify the nucleus.
Collapse
Affiliation(s)
- Marcel Dreger
- a Faculty of Biology, Medicine and Health, Division of Cancer Studies , School of Medical Sciences, The University of Manchester , Manchester , UK
| | - Elena Madrazo
- b Department of Immunology Ophthalmology and ENT, Hospital 12 de Octubre Health Research Institute (imas12) , Complutense University, School of Medicine , Madrid , Spain
| | - Adam Hurlstone
- a Faculty of Biology, Medicine and Health, Division of Cancer Studies , School of Medical Sciences, The University of Manchester , Manchester , UK
| | - Javier Redondo-Muñoz
- b Department of Immunology Ophthalmology and ENT, Hospital 12 de Octubre Health Research Institute (imas12) , Complutense University, School of Medicine , Madrid , Spain.,c Lydia Becker Institute for Inflammation and Immunity , The University of Manchester , Manchester , UK
| |
Collapse
|
20
|
Multiple particle tracking analysis in isolated nuclei reveals the mechanical phenotype of leukemia cells. Sci Rep 2020; 10:6707. [PMID: 32317728 PMCID: PMC7174401 DOI: 10.1038/s41598-020-63682-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 04/02/2020] [Indexed: 12/14/2022] Open
Abstract
The nucleus is fundamentally composed by lamina and nuclear membranes that enclose the chromatin, nucleoskeletal components and suspending nucleoplasm. The functional connections of this network integrate external stimuli into cell signals, including physical forces to mechanical responses of the nucleus. Canonically, the morphological characteristics of the nucleus, as shape and size, have served for pathologists to stratify and diagnose cancer patients; however, novel biophysical techniques must exploit physical parameters to improve cancer diagnosis. By using multiple particle tracking (MPT) technique on chromatin granules, we designed a SURF (Speeded Up Robust Features)-based algorithm to study the mechanical properties of isolated nuclei and in living cells. We have determined the apparent shear stiffness, viscosity and optical density of the nucleus, and how the chromatin structure influences on these biophysical values. Moreover, we used our MPT-SURF analysis to study the apparent mechanical properties of isolated nuclei from patients of acute lymphoblastic leukemia. We found that leukemia cells exhibited mechanical differences compared to normal lymphocytes. Interestingly, isolated nuclei from high-risk leukemia cells showed increased viscosity than their counterparts from normal lymphocytes, whilst nuclei from relapsed-patient's cells presented higher density than those from normal lymphocytes or standard- and high-risk leukemia cells. Taken together, here we presented how MPT-SURF analysis of nuclear chromatin granules defines nuclear mechanical phenotypic features, which might be clinically relevant.
Collapse
|
21
|
Zhang L, Zhang Y, Lei Y, Wei Z, Li Y, Wang Y, Bu Y, Zhang C. Proline-rich 11 (PRR11) drives F-actin assembly by recruiting the actin-related protein 2/3 complex in human non-small cell lung carcinoma. J Biol Chem 2020; 295:5335-5349. [PMID: 32169900 PMCID: PMC7170533 DOI: 10.1074/jbc.ra119.012260] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/09/2020] [Indexed: 11/06/2022] Open
Abstract
The actin cytoskeleton is extremely dynamic and supports diverse cellular functions in many physiological and pathological processes, including tumorigenesis. However, the mechanisms that regulate the actin-related protein 2/3 (ARP2/3) complex and thereby promote actin polymerization and organization in cancer cells are not well-understood. We previously implicated the proline-rich 11 (PRR11) protein in lung cancer development. In this study, using immunofluorescence staining, actin polymerization assays, and siRNA-mediated gene silencing, we uncovered that cytoplasmic PRR11 is involved in F-actin polymerization and organization. We found that dysregulation of PRR11 expression results in F-actin rearrangement and nuclear instability in non-small cell lung cancer cells. Results from molecular mechanistic experiments indicated that PRR11 associates with and recruits the ARP2/3 complex, facilitates F-actin polymerization, and thereby disrupts the F-actin cytoskeleton, leading to abnormal nuclear lamina assembly and chromatin reorganization. Inhibition of the ARP2/3 complex activity abolished irregular F-actin polymerization, lamina assembly, and chromatin reorganization due to PRR11 overexpression. Notably, experiments with truncated PRR11 variants revealed that PRR11 regulates F-actin through different regions. We found that deletion of either the N or C terminus of PRR11 abrogates its effects on F-actin polymerization and nuclear instability and that deletion of amino acid residues 100-184 or 100-200 strongly induces an F-actin structure called the actin comet tail, not observed with WT PRR11. Our findings indicate that cytoplasmic PRR11 plays an essential role in regulating F-actin assembly and nuclear stability by recruiting the ARP2/3 complex in human non-small cell lung carcinoma cells.
Collapse
Affiliation(s)
- Lian Zhang
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing 400016, China; Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Ying Zhang
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing 400016, China; Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Yunlong Lei
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing 400016, China; Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Zhili Wei
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing 400016, China; Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Yi Li
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing 400016, China; Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Yingxiong Wang
- Laboratory of Reproductive Biology, Chongqing Medical University, Chongqing 400016, China
| | - Youquan Bu
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing 400016, China; Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China.
| | - Chundong Zhang
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing 400016, China; Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
22
|
Kreienkamp R, Gonzalo S. Metabolic Dysfunction in Hutchinson-Gilford Progeria Syndrome. Cells 2020; 9:cells9020395. [PMID: 32046343 PMCID: PMC7072593 DOI: 10.3390/cells9020395] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 12/22/2022] Open
Abstract
Hutchinson–Gilford Progeria Syndrome (HGPS) is a segmental premature aging disease causing patient death by early teenage years from cardiovascular dysfunction. Although HGPS does not totally recapitulate normal aging, it does harbor many similarities to the normal aging process, with patients also developing cardiovascular disease, alopecia, bone and joint abnormalities, and adipose changes. It is unsurprising, then, that as physicians and scientists have searched for treatments for HGPS, they have targeted many pathways known to be involved in normal aging, including inflammation, DNA damage, epigenetic changes, and stem cell exhaustion. Although less studied at a mechanistic level, severe metabolic problems are observed in HGPS patients. Interestingly, new research in animal models of HGPS has demonstrated impressive lifespan improvements secondary to metabolic interventions. As such, further understanding metabolism, its contribution to HGPS, and its therapeutic potential has far-reaching ramifications for this disease still lacking a robust treatment strategy.
Collapse
Affiliation(s)
- Ray Kreienkamp
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St Louis, MO 63104, USA
- Department of Pediatrics Residency, Washington University Medical School, St. Louis, MO 63105, USA;
| | - Susana Gonzalo
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St Louis, MO 63104, USA
- Correspondence: ; Tel.: +1-314-977-9244
| |
Collapse
|
23
|
Bergqvist C, Niss F, Figueroa RA, Beckman M, Maksel D, Jafferali MH, Kulyté A, Ström AL, Hallberg E. Monitoring of chromatin organization in live cells by FRIC. Effects of the inner nuclear membrane protein Samp1. Nucleic Acids Res 2019; 47:e49. [PMID: 30793190 PMCID: PMC6511872 DOI: 10.1093/nar/gkz123] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 01/17/2019] [Accepted: 02/19/2019] [Indexed: 12/24/2022] Open
Abstract
In most cells, transcriptionally inactive heterochromatin is preferentially localized in the nuclear periphery and transcriptionally active euchromatin is localized in the nuclear interior. Different cell types display characteristic chromatin distribution patterns, which change dramatically during cell differentiation, proliferation, senescence and different pathological conditions. Chromatin organization has been extensively studied on a cell population level, but there is a need to understand dynamic reorganization of chromatin at the single cell level, especially in live cells. We have developed a novel image analysis tool that we term Fluorescence Ratiometric Imaging of Chromatin (FRIC) to quantitatively monitor dynamic spatiotemporal distribution of euchromatin and total chromatin in live cells. A vector (pTandemH) assures stoichiometrically constant expression of the histone variants Histone 3.3 and Histone 2B, fused to EGFP and mCherry, respectively. Quantitative ratiometric (H3.3/H2B) imaging displayed a concentrated distribution of heterochromatin in the periphery of U2OS cell nuclei. As proof of concept, peripheral heterochromatin responded to experimental manipulation of histone acetylation. We also found that peripheral heterochromatin depended on the levels of the inner nuclear membrane protein Samp1, suggesting an important role in promoting peripheral heterochromatin. Taken together, FRIC is a powerful and robust new tool to study dynamic chromatin redistribution in live cells.
Collapse
Affiliation(s)
- Cecilia Bergqvist
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius väg 16B, SE-106 91 Stockholm, Sweden
| | - Frida Niss
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius väg 16B, SE-106 91 Stockholm, Sweden
| | - Ricardo A Figueroa
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius väg 16B, SE-106 91 Stockholm, Sweden
| | - Marie Beckman
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius väg 16B, SE-106 91 Stockholm, Sweden.,Institute of Environmental Medicine, Karolinska Institutet SE-171 77 Sweden
| | - Danuta Maksel
- Monash Molecular Crystallisation Facility (MMCF), Monash University, VIC 3800, Australia
| | - Mohammed H Jafferali
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius väg 16B, SE-106 91 Stockholm, Sweden
| | - Agné Kulyté
- Lipid laboratory, Department of Medicine, Karolinska Institutet, SE-141 57 Huddinge, Sweden
| | - Anna-Lena Ström
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius väg 16B, SE-106 91 Stockholm, Sweden
| | - Einar Hallberg
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius väg 16B, SE-106 91 Stockholm, Sweden
| |
Collapse
|
24
|
Loo TH, Ye X, Chai RJ, Ito M, Bonne G, Ferguson-Smith AC, Stewart CL. The mammalian LINC complex component SUN1 regulates muscle regeneration by modulating drosha activity. eLife 2019; 8:e49485. [PMID: 31686651 PMCID: PMC6853637 DOI: 10.7554/elife.49485] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 10/27/2019] [Indexed: 01/13/2023] Open
Abstract
Here we show that a major muscle specific isoform of the murine LINC complex protein SUN1 is required for efficient muscle regeneration. The nucleoplasmic domain of the isoform specifically binds to and inhibits Drosha, a key component of the microprocessor complex required for miRNA synthesis. Comparison of the miRNA profiles between wildtype and SUN1 null myotubes identified a cluster of miRNAs encoded by a non-translated retrotransposon-like one antisense (Rtl1as) transcript that are decreased in the WT myoblasts due to SUN1 inhibition of Drosha. One of these miRNAs miR-127 inhibits the translation of the Rtl1 sense transcript, that encodes the retrotransposon-like one protein (RTL1), which is also required for muscle regeneration and is expressed in regenerating/dystrophic muscle. The LINC complex may therefore regulate gene expression during muscle regeneration by controlling miRNA processing. This provides new insights into the molecular pathology underlying muscular dystrophies and how the LINC complex may regulate mechanosignaling.
Collapse
Affiliation(s)
- Tsui Han Loo
- Developmental and Regenerative BiologyInstitute of Medical BiologySingaporeSingapore
| | - Xiaoqian Ye
- Developmental and Regenerative BiologyInstitute of Medical BiologySingaporeSingapore
| | - Ruth Jinfen Chai
- Developmental and Regenerative BiologyInstitute of Medical BiologySingaporeSingapore
| | - Mitsuteru Ito
- Department of GeneticsUniversity of CambridgeCambridgeUnited Kingdom
| | - Gisèle Bonne
- Center of Research in Myology, Institut de MyologieSorbonne Universités, UPMC Univ Paris 06, INSERM UMRS 974, CNRS FRE 3617ParisFrance
| | | | - Colin L Stewart
- Developmental and Regenerative BiologyInstitute of Medical BiologySingaporeSingapore
| |
Collapse
|
25
|
Patteson AE, Vahabikashi A, Pogoda K, Adam SA, Mandal K, Kittisopikul M, Sivagurunathan S, Goldman A, Goldman RD, Janmey PA. Vimentin protects cells against nuclear rupture and DNA damage during migration. J Cell Biol 2019; 218:4079-4092. [PMID: 31676718 PMCID: PMC6891099 DOI: 10.1083/jcb.201902046] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 08/12/2019] [Accepted: 09/18/2019] [Indexed: 01/30/2023] Open
Abstract
Mammalian cells frequently migrate through tight spaces during normal embryogenesis, wound healing, diapedesis, or in pathological situations such as metastasis. Nuclear size and shape are important factors in regulating the mechanical properties of cells during their migration through such tight spaces. At the onset of migratory behavior, cells often initiate the expression of vimentin, an intermediate filament protein that polymerizes into networks extending from a juxtanuclear cage to the cell periphery. However, the role of vimentin intermediate filaments (VIFs) in regulating nuclear shape and mechanics remains unknown. Here, we use wild-type and vimentin-null mouse embryonic fibroblasts to show that VIFs regulate nuclear shape and perinuclear stiffness, cell motility in 3D, and the ability of cells to resist large deformations. These changes increase nuclear rupture and activation of DNA damage repair mechanisms, which are rescued by exogenous reexpression of vimentin. Our findings show that VIFs provide mechanical support to protect the nucleus and genome during migration.
Collapse
Affiliation(s)
- Alison E Patteson
- Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA.,Physics Department, Syracuse University, Syracuse, NY
| | - Amir Vahabikashi
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago IL
| | - Katarzyna Pogoda
- Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA.,Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Krakow, Poland
| | - Stephen A Adam
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago IL
| | - Kalpana Mandal
- Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA
| | - Mark Kittisopikul
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago IL
| | - Suganya Sivagurunathan
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago IL
| | - Anne Goldman
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago IL
| | - Robert D Goldman
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago IL
| | - Paul A Janmey
- Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA .,Department of Physiology, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
26
|
Casting a Wider Net: Differentiating between Inner Nuclear Envelope and Outer Nuclear Envelope Transmembrane Proteins. Int J Mol Sci 2019; 20:ijms20215248. [PMID: 31652739 PMCID: PMC6862087 DOI: 10.3390/ijms20215248] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/17/2019] [Accepted: 10/18/2019] [Indexed: 12/11/2022] Open
Abstract
The nuclear envelope (NE) surrounds the nucleus with a double membrane in eukaryotic cells. The double membranes are embedded with proteins that are synthesized on the endoplasmic reticulum and often destined specifically for either the outer nuclear membrane (ONM) or the inner nuclear membrane (INM). These nuclear envelope transmembrane proteins (NETs) play important roles in cellular function and participate in transcription, epigenetics, splicing, DNA replication, genome architecture, nuclear structure, nuclear stability, nuclear organization, and nuclear positioning. These vital functions are dependent upon both the correct localization and relative concentrations of NETs on the appropriate membrane of the NE. It is, therefore, important to understand the distribution and abundance of NETs on the NE. This review will evaluate the current tools and methodologies available to address this important topic.
Collapse
|
27
|
Jevtić P, Schibler AC, Wesley CC, Pegoraro G, Misteli T, Levy DL. The nucleoporin ELYS regulates nuclear size by controlling NPC number and nuclear import capacity. EMBO Rep 2019; 20:embr.201847283. [PMID: 31085625 DOI: 10.15252/embr.201847283] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 04/09/2019] [Accepted: 04/11/2019] [Indexed: 12/13/2022] Open
Abstract
How intracellular organelles acquire their characteristic sizes is a fundamental question in cell biology. Given stereotypical changes in nuclear size in cancer, it is important to understand the mechanisms that control nuclear size in human cells. Using a high-throughput imaging RNAi screen, we identify and mechanistically characterize ELYS, a nucleoporin required for post-mitotic nuclear pore complex (NPC) assembly, as a determinant of nuclear size in mammalian cells. ELYS knockdown results in small nuclei, reduced nuclear lamin B2 localization, lower NPC density, and decreased nuclear import. Increasing nuclear import by importin α overexpression rescues nuclear size and lamin B2 import, while inhibiting importin α/β-mediated nuclear import decreases nuclear size. Conversely, ELYS overexpression increases nuclear size, enriches nuclear lamin B2 at the nuclear periphery, and elevates NPC density and nuclear import. Consistent with these observations, knockdown or inhibition of exportin 1 increases nuclear size. Thus, we identify ELYS as a novel positive effector of mammalian nuclear size and propose that nuclear size is sensitive to NPC density and nuclear import capacity.
Collapse
Affiliation(s)
- Predrag Jevtić
- Department of Molecular Biology, University of Wyoming, Laramie, WY, USA
| | | | - Chase C Wesley
- Department of Molecular Biology, University of Wyoming, Laramie, WY, USA
| | - Gianluca Pegoraro
- High Throughput Imaging Facility (HiTIF), National Cancer Institute, NIH, Bethesda, MD, USA
| | - Tom Misteli
- National Cancer Institute, NIH, Bethesda, MD, USA
| | - Daniel L Levy
- Department of Molecular Biology, University of Wyoming, Laramie, WY, USA
| |
Collapse
|
28
|
Patrolling the nucleus: inner nuclear membrane-associated degradation. Curr Genet 2019; 65:1099-1106. [PMID: 31020383 PMCID: PMC6744382 DOI: 10.1007/s00294-019-00971-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 04/09/2019] [Accepted: 04/10/2019] [Indexed: 12/13/2022]
Abstract
Protein quality control and transport are important for the integrity of organelles such as the endoplasmic reticulum, but it is largely unknown how protein homeostasis is regulated at the nuclear envelope (NE) despite the connection between NE protein function and human disease. Elucidating mechanisms that regulate the NE proteome is key to understanding nuclear processes such as gene expression, DNA replication and repair as NE components, particularly proteins at the inner nuclear membrane (INM), are involved in the maintenance of nuclear structure, nuclear positioning and chromosome organization. Nuclear pore complexes control the entry and exit of proteins in and out of the nucleus, restricting movement across the nuclear membrane based on protein size, or the size of the extraluminal-facing domain of a transmembrane protein, providing one level of INM proteome regulation. Research in budding yeast has identified a protein quality control system that targets mislocalized and misfolded proteins at the INM. Here, we review what is known about INM-associated degradation, including recent evidence suggesting that it not only targets mislocalized or misfolded proteins, but also contributes to homeostasis of resident INM proteins.
Collapse
|
29
|
Moujaber O, Fishbein F, Omran N, Liang Y, Colmegna I, Presley JF, Stochaj U. Cellular senescence is associated with reorganization of the microtubule cytoskeleton. Cell Mol Life Sci 2019; 76:1169-1183. [PMID: 30599068 PMCID: PMC11105446 DOI: 10.1007/s00018-018-2999-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 11/12/2018] [Accepted: 12/12/2018] [Indexed: 12/13/2022]
Abstract
Senescent cells undergo structural and functional changes that affect essentially every aspect of cell physiology. To date, the impact of senescence on the cytoskeleton is poorly understood. This study evaluated the cytoskeleton in two independent cellular models of kidney epithelium senescence. Our work identified multiple senescence-related alterations that impact microtubules and filamentous actin during interphase. Both filamentous systems reorganized profoundly when cells became senescent. As such, microtubule stability increased during senescence, making these filaments more resistant to disassembly in the cold or by nocodazole. Microtubule stabilization was accompanied by enhanced α-tubulin acetylation on lysine 40 and the depletion of HDAC6, the major deacetylase for α-tubulin lysine 40. Rho-associated kinase Rock1 is an upstream regulator that modulates key properties of the cytoplasmic cytoskeleton. Our research shows that Rock1 concentrations were reduced significantly in senescent cells, and we revealed a mechanistic link between microtubule stabilization and Rock1 depletion. Thus, Rock1 overexpression partially restored the cold sensitivity of microtubules in cells undergoing senescence. Additional components relevant to microtubules were affected by senescence. Specifically, we uncovered the senescence-related loss of the microtubule nucleating protein γ-tubulin and aberrant formation of γ-tubulin foci. Concomitant with the alterations of microtubule and actin filaments, senescent cells displayed functional changes. In particular, cell migration was impaired significantly in senescent cells. Taken together, our study identified new senescence-associated deficiencies of the microtubule and actin cytoskeleton, provided insights into the underlying molecular mechanisms and demonstrated functional consequences that are important to the physiology and function of renal epithelial cells.
Collapse
Affiliation(s)
- Ossama Moujaber
- Department of Physiology, McGill University, Montreal, Canada
| | | | - Nawal Omran
- Department of Physiology, McGill University, Montreal, Canada
| | - Yue Liang
- Department of Physiology, McGill University, Montreal, Canada
| | - Inés Colmegna
- Department of Rheumatology, McGill University, Montreal, Canada
| | - John F Presley
- Department of Anatomy and Cell Biology, McGill University, Montreal, Canada
| | - Ursula Stochaj
- Department of Physiology, McGill University, Montreal, Canada.
| |
Collapse
|
30
|
Koch BA, Jin H, Tomko RJ, Yu HG. The anaphase-promoting complex regulates the degradation of the inner nuclear membrane protein Mps3. J Cell Biol 2019; 218:839-854. [PMID: 30737264 PMCID: PMC6400550 DOI: 10.1083/jcb.201808024] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 12/04/2018] [Accepted: 01/09/2019] [Indexed: 01/08/2023] Open
Abstract
How resident inner nuclear membrane (INM) proteins are turned over is unclear. Koch et al. identify an APC/C-dependent mechanism controlling the degradation of Mps3, a conserved integral protein of the INM. The nucleus is enclosed by the inner nuclear membrane (INM) and the outer nuclear membrane (ONM). While the ONM is continuous with the endoplasmic reticulum (ER), the INM is independent and separates the nucleoplasm from the ER lumen. Turnover of ER proteins has been well characterized by the ER-associated protein degradation (ERAD) pathway, but very little is known about turnover of resident INM proteins. Here we show that the anaphase-promoting complex/cyclosome (APC/C), an E3 ubiquitin ligase, regulates the degradation of Mps3, a conserved integral protein of the INM. Turnover of Mps3 requires the ubiquitin-conjugating enzyme Ubc7, but was independent of the known ERAD ubiquitin ligases Doa10 and Hrd1 as well as the recently discovered Asi1–Asi3 complex. Using a genetic approach, we have found that Cdh1, a coactivator of APC/C, modulates Mps3 stability. APC/C controls Mps3 degradation through Mps3’s N terminus, which resides in the nucleoplasm and possesses two putative APC/C-dependent destruction motifs. Accumulation of Mps3 at the INM impairs nuclear morphological changes and cell division. Our findings therefore reveal an unexpected mechanism of APC/C-mediated protein degradation at the INM that coordinates nuclear morphogenesis and cell cycle progression.
Collapse
Affiliation(s)
- Bailey A Koch
- Department of Biological Science, Florida State University, Tallahassee, FL
| | - Hui Jin
- Department of Biological Science, Florida State University, Tallahassee, FL
| | - Robert J Tomko
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL
| | - Hong-Guo Yu
- Department of Biological Science, Florida State University, Tallahassee, FL
| |
Collapse
|
31
|
Bikkul MU, Faragher RGA, Worthington G, Meinke P, Kerr ARW, Sammy A, Riyahi K, Horton D, Schirmer EC, Hubank M, Kill IR, Anderson RM, Slijepcevic P, Makarov E, Bridger JM. Telomere elongation through hTERT immortalization leads to chromosome repositioning in control cells and genomic instability in Hutchinson-Gilford progeria syndrome fibroblasts, expressing a novel SUN1 isoform. Genes Chromosomes Cancer 2019; 58:341-356. [PMID: 30474255 PMCID: PMC6590296 DOI: 10.1002/gcc.22711] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 11/06/2018] [Accepted: 11/22/2018] [Indexed: 02/06/2023] Open
Abstract
Immortalizing primary cells with human telomerase reverse transcriptase (hTERT) has been common practice to enable primary cells to be of extended use in the laboratory because they avoid replicative senescence. Studying exogenously expressed hTERT in cells also affords scientists models of early carcinogenesis and telomere behavior. Control and the premature ageing disease—Hutchinson‐Gilford progeria syndrome (HGPS) primary dermal fibroblasts, with and without the classical G608G mutation have been immortalized with exogenous hTERT. However, hTERT immortalization surprisingly elicits genome reorganization not only in disease cells but also in the normal control cells, such that whole chromosome territories normally located at the nuclear periphery in proliferating fibroblasts become mislocalized in the nuclear interior. This includes chromosome 18 in the control fibroblasts and both chromosomes 18 and X in HGPS cells, which physically express an isoform of the LINC complex protein SUN1 that has previously only been theoretical. Additionally, this HGPS cell line has also become genomically unstable and has a tetraploid karyotype, which could be due to the novel SUN1 isoform. Long‐term treatment with the hTERT inhibitor BIBR1532 enabled the reduction of telomere length in the immortalized cells and resulted that these mislocalized internal chromosomes to be located at the nuclear periphery, as assessed in actively proliferating cells. Taken together, these findings reveal that elongated telomeres lead to dramatic chromosome mislocalization, which can be restored with a drug treatment that results in telomere reshortening and that a novel SUN1 isoform combined with elongated telomeres leads to genomic instability. Thus, care should be taken when interpreting data from genomic studies in hTERT‐immortalized cell lines.
Collapse
Affiliation(s)
- Mehmet U. Bikkul
- Genome Engineering and Maintenance NetworkInstitute for Environment, Health and Societies, Brunel University LondonUxbridgeEngland
| | | | - Gemma Worthington
- Genome Engineering and Maintenance NetworkInstitute for Environment, Health and Societies, Brunel University LondonUxbridgeEngland
| | - Peter Meinke
- Friedrich‐Baur‐InstitutKlinikum der Universität MünchenMünchenGermany
- The Wellcome Trust Centre for Cell BiologyInstitute of Cell Biology, and Centre for Translational and Chemical Biology, University of EdinburghEdinburghEngland
| | - Alastair R. W. Kerr
- The Wellcome Trust Centre for Cell BiologyInstitute of Cell Biology, and Centre for Translational and Chemical Biology, University of EdinburghEdinburghEngland
| | - Aakila Sammy
- Genome Engineering and Maintenance NetworkInstitute for Environment, Health and Societies, Brunel University LondonUxbridgeEngland
| | - Kumars Riyahi
- Genome Engineering and Maintenance NetworkInstitute for Environment, Health and Societies, Brunel University LondonUxbridgeEngland
| | - Daniel Horton
- Genome Engineering and Maintenance NetworkInstitute for Environment, Health and Societies, Brunel University LondonUxbridgeEngland
| | - Eric C. Schirmer
- The Wellcome Trust Centre for Cell BiologyInstitute of Cell Biology, and Centre for Translational and Chemical Biology, University of EdinburghEdinburghEngland
| | - Michael Hubank
- Centre for Molecular PathologyThe Royal Marsden HospitalLondonEngland
| | - Ian R. Kill
- Genome Engineering and Maintenance NetworkInstitute for Environment, Health and Societies, Brunel University LondonUxbridgeEngland
| | - Rhona M. Anderson
- Genome Engineering and Maintenance NetworkInstitute for Environment, Health and Societies, Brunel University LondonUxbridgeEngland
| | - Predrag Slijepcevic
- Genome Engineering and Maintenance NetworkInstitute for Environment, Health and Societies, Brunel University LondonUxbridgeEngland
| | - Evgeny Makarov
- Genome Engineering and Maintenance NetworkInstitute for Environment, Health and Societies, Brunel University LondonUxbridgeEngland
| | - Joanna M. Bridger
- Genome Engineering and Maintenance NetworkInstitute for Environment, Health and Societies, Brunel University LondonUxbridgeEngland
| |
Collapse
|
32
|
Dilsaver MR, Chen P, Thompson TA, Reusser T, Mukherjee RN, Oakey J, Levy DL. Emerin induces nuclear breakage in Xenopus extract and early embryos. Mol Biol Cell 2018; 29:3155-3167. [PMID: 30332321 PMCID: PMC6340207 DOI: 10.1091/mbc.e18-05-0277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Emerin is an inner nuclear membrane protein often mutated in Emery–Dreifuss muscular dystrophy. Because emerin has diverse roles in nuclear mechanics, cytoskeletal organization, and gene expression, it has been difficult to elucidate its contribution to nuclear structure and disease pathology. In this study, we investigated emerin’s impact on nuclei assembled in Xenopus laevis egg extract, a simplified biochemical system that lacks potentially confounding cellular factors and activities. Notably, these extracts are transcriptionally inert and lack endogenous emerin and filamentous actin. Strikingly, emerin caused rupture of egg extract nuclei, dependent on the application of shear force. In egg extract, emerin localized to nonnuclear cytoplasmic membranes, and nuclear rupture was rescued by targeting emerin to the nucleus, disrupting its membrane association, or assembling nuclei with lamin A. Furthermore, emerin induced breakage of nuclei in early-stage X. laevis embryo extracts, and embryos microinjected with emerin were inviable, with ruptured nuclei. We propose that cytoplasmic membrane localization of emerin leads to rupture of nuclei that are more sensitive to mechanical perturbation, findings that may be relevant to early development and certain laminopathies.
Collapse
Affiliation(s)
- Matthew R Dilsaver
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071
| | - Pan Chen
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071
| | - Trey A Thompson
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071
| | - Traci Reusser
- Department of Chemical Engineering, University of Wyoming, Laramie, WY 82071
| | - Richik N Mukherjee
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071
| | - John Oakey
- Department of Chemical Engineering, University of Wyoming, Laramie, WY 82071
| | - Daniel L Levy
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071
| |
Collapse
|
33
|
Smith ER, Capo-Chichi CD, Xu XX. Defective Nuclear Lamina in Aneuploidy and Carcinogenesis. Front Oncol 2018; 8:529. [PMID: 30524960 PMCID: PMC6256246 DOI: 10.3389/fonc.2018.00529] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 10/29/2018] [Indexed: 01/05/2023] Open
Abstract
Aneuploidy, loss or gain of whole chromosomes, is a prominent feature of carcinomas, and is generally considered to play an important role in the initiation and progression of cancer. In high-grade serous ovarian cancer, the only common gene aberration is the p53 point mutation, though extensive genomic perturbation is common due to severe aneuploidy, which presents as a deviant karyotype. Several mechanisms for the development of aneuploidy in cancer cells have been recognized, including chromosomal non-disjunction during mitosis, centrosome amplification, and more recently, nuclear envelope rupture at interphase. Many cancer types including ovarian cancer have lost or reduced expression of Lamin A/C, a structural component of the lamina matrix that underlies the nuclear envelope in differentiated cells. Several recent studies suggest that a nuclear lamina defect caused by the loss or reduction of Lamin A/C leads to failure in cytokinesis and formation of tetraploid cells, transient nuclear envelope rupture, and formation of nuclear protrusions and micronuclei during the cell cycle gap phase. Thus, loss and reduction of Lamin A/C underlies the two common features of cancer—aberrations in nuclear morphology and aneuploidy. We discuss here and emphasize the newly recognized mechanism of chromosomal instability due to the rupture of a defective nuclear lamina, which may account for the rapid genomic changes in carcinogenesis.
Collapse
Affiliation(s)
- Elizabeth R Smith
- Department of Cell Biology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Callinice D Capo-Chichi
- Department of Cell Biology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, United States.,Laboratory of Biochemistry and Molecular Biology, Institute of Biomedical Sciences, University of Abomey-Calavi, Abomey Calavi, Benin
| | - Xiang-Xi Xu
- Department of Cell Biology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
34
|
Wang QL, Zhuang X, Sriwastva MK, Mu J, Teng Y, Deng Z, Zhang L, Sundaram K, Kumar A, Miller D, Yan J, Zhang HG. Blood exosomes regulate the tissue distribution of grapefruit-derived nanovector via CD36 and IGFR1 pathways. Theranostics 2018; 8:4912-4924. [PMID: 30429877 PMCID: PMC6217058 DOI: 10.7150/thno.27608] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/04/2018] [Indexed: 12/27/2022] Open
Abstract
Tumor-specific delivery of therapeutics is challenging. One of the major hurdles for successfully delivering targeted agents by nanovectors is the filtering role of the liver in rapidly sequestering nanovectors from the circulation. Exosomes, a type of endogenous nanoparticle, circulate continuously in the peripheral blood and play a role in intercellular communication. The aim of this study was to determine whether the level of endogenous exosomes has an effect on nanovector delivery efficiency of targeted agents. Methods: Exosomes were isolated from peripheral blood and intravenously (I.V.) injected into tumor-bearing mice. Subsequently, 1,1-dioctadecyl-3,3,3'3'-tetramethylindotricarbocyanine-iodide (DiR) fluorescent dye-labeled nanoparticles, including grapefruit nanovectors (GNV) and standard liposomes, were I.V. injected in the mice. The efficiency of redirecting GNVs from liver to other organs of injected mice was further analyzed with in vivo imaging. The concentration of chemo drugs delivered by GNV was measured by HPLC and the anti-lung metastasis therapeutic effects of chemo drugs delivered by GNVs in mouse breast cancer and melanoma cancer models were evaluated. Results: We show that tail vein-injected exosomes isolated from mouse peripheral blood were predominately taken up by liver Kupffer cells. Injection of peripheral blood-derived exosomes before I.V. injection of grapefruit-derived nanovector (GNV) decreased the deposition of GNV in the liver and redirected the GNV to the lung and to the tumor in breast and melanoma tumor-bearing mouse models. Enhanced therapeutic efficiency of doxorubicin (Dox) or paclitaxel (PTX) carried by GNVs for lung metastases was demonstrated when there was an I.V. injection of exosomes before therapeutic treatment. Furthermore, we found that CD36 and IGFR1 receptor-mediated pathways played a critical role in the exosome-mediated inhibitory effect of GNV entry into liver macrophages. Conclusions: Collectively, our findings provide a foundation for using autologous exosomes to enhance therapeutic vector targeted delivery to the lung.
Collapse
|
35
|
Fantastic nuclear envelope herniations and where to find them. Biochem Soc Trans 2018; 46:877-889. [PMID: 30026368 DOI: 10.1042/bst20170442] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/02/2018] [Accepted: 05/04/2018] [Indexed: 12/19/2022]
Abstract
Morphological abnormalities of the bounding membranes of the nucleus have long been associated with human diseases from cancer to premature aging to neurodegeneration. Studies over the past few decades support that there are both cell intrinsic and extrinsic factors (e.g. mechanical force) that can lead to nuclear envelope 'herniations', a broad catch-all term that reveals little about the underlying molecular mechanisms that contribute to these morphological defects. While there are many genetic perturbations that could ultimately change nuclear shape, here, we focus on a subset of nuclear envelope herniations that likely arise as a consequence of disrupting physiological nuclear membrane remodeling pathways required to maintain nuclear envelope homeostasis. For example, stalling of the interphase nuclear pore complex (NPC) biogenesis pathway and/or triggering of NPC quality control mechanisms can lead to herniations in budding yeast, which are remarkably similar to those observed in human disease models of early-onset dystonia. By also examining the provenance of nuclear envelope herniations associated with emerging nuclear autophagy and nuclear egress pathways, we will provide a framework to help understand the molecular pathways that contribute to nuclear deformation.
Collapse
|
36
|
Miloshev G, Staneva D, Uzunova K, Vasileva B, Draganova-Filipova M, Zagorchev P, Georgieva M. Linker histones and chromatin remodelling complexes maintain genome stability and control cellular ageing. Mech Ageing Dev 2018; 177:55-65. [PMID: 30025887 DOI: 10.1016/j.mad.2018.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 07/06/2018] [Accepted: 07/12/2018] [Indexed: 01/08/2023]
Abstract
Linker histones are major players in chromatin organization and per se are essential players in genome homeostasis. As the fifth class of histone proteins the linker histones not only interact with DNA and core histones but also with other chromatin proteins. These interactions prove to be essential for the higher levels of chromatin organization like chromatin loops, transcription factories and chromosome territories. Our recent results have proved that Saccharomyces cerevisiae linker histone - Hho1p, physically interacts with the actin-related protein 4 (Arp4) and that the abrogation of this interaction through the deletion of the gene for the linker histone in arp4 mutant cells leads to global changes in chromatin compaction. Here, we show that the healthy interaction between the yeast linker histone and Arp4p is critical for maintaining genome stability and for controlling cellular sensitivity to different types of stress. The abolished interaction between the linker histone and Arp4p leads the mutant yeast cells to premature ageing phenotypes. Cells die young and are more sensitive to stress. These results unambiguously prove the role of linker histones and chromatin remodelling in ageing by their cooperation in pertaining higher-order chromatin compaction and thus maintaining genome stability.
Collapse
Affiliation(s)
- George Miloshev
- Laboratory of Yeast Molecular Genetics, Institute of Molecular Biology "Acad. Roumen Tsanev", Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Dessislava Staneva
- Laboratory of Yeast Molecular Genetics, Institute of Molecular Biology "Acad. Roumen Tsanev", Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Katya Uzunova
- Laboratory of Yeast Molecular Genetics, Institute of Molecular Biology "Acad. Roumen Tsanev", Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Bela Vasileva
- Laboratory of Yeast Molecular Genetics, Institute of Molecular Biology "Acad. Roumen Tsanev", Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | | | - Plamen Zagorchev
- Department of Medical Physics and Biophysics, Faculty of Pharmacy, Medical University, Plovdiv, Bulgaria
| | - Milena Georgieva
- Laboratory of Yeast Molecular Genetics, Institute of Molecular Biology "Acad. Roumen Tsanev", Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria.
| |
Collapse
|
37
|
Simon DN, Wriston A, Fan Q, Shabanowitz J, Florwick A, Dharmaraj T, Peterson SB, Gruenbaum Y, Carlson CR, Grønning-Wang LM, Hunt DF, Wilson KL. OGT ( O-GlcNAc Transferase) Selectively Modifies Multiple Residues Unique to Lamin A. Cells 2018; 7:E44. [PMID: 29772801 PMCID: PMC5981268 DOI: 10.3390/cells7050044] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 05/11/2018] [Accepted: 05/14/2018] [Indexed: 12/31/2022] Open
Abstract
The LMNA gene encodes lamins A and C with key roles in nuclear structure, signaling, gene regulation, and genome integrity. Mutations in LMNA cause over 12 diseases ('laminopathies'). Lamins A and C are identical for their first 566 residues. However, they form separate filaments in vivo, with apparently distinct roles. We report that lamin A is β-O-linked N-acetylglucosamine-(O-GlcNAc)-modified in human hepatoma (Huh7) cells and in mouse liver. In vitro assays with purified O-GlcNAc transferase (OGT) enzyme showed robust O-GlcNAcylation of recombinant mature lamin A tails (residues 385⁻646), with no detectable modification of lamin B1, lamin C, or 'progerin' (Δ50) tails. Using mass spectrometry, we identified 11 O-GlcNAc sites in a 'sweet spot' unique to lamin A, with up to seven sugars per peptide. Most sites were unpredicted by current algorithms. Double-mutant (S612A/T643A) lamin A tails were still robustly O-GlcNAc-modified at seven sites. By contrast, O-GlcNAcylation was undetectable on tails bearing deletion Δ50, which causes Hutchinson⁻Gilford progeria syndrome, and greatly reduced by deletion Δ35. We conclude that residues deleted in progeria are required for substrate recognition and/or modification by OGT in vitro. Interestingly, deletion Δ35, which does not remove the majority of identified O-GlcNAc sites, does remove potential OGT-association motifs (lamin A residues 622⁻625 and 639⁻645) homologous to that in mouse Tet1. These biochemical results are significant because they identify a novel molecular pathway that may profoundly influence lamin A function. The hypothesis that lamin A is selectively regulated by OGT warrants future testing in vivo, along with two predictions: genetic variants may contribute to disease by perturbing OGT-dependent regulation, and nutrient or other stresses might cause OGT to misregulate wildtype lamin A.
Collapse
Affiliation(s)
- Dan N Simon
- Department of Cell Biology, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA.
| | - Amanda Wriston
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA.
| | - Qiong Fan
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, 0317 Oslo, Norway.
| | - Jeffrey Shabanowitz
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA.
| | - Alyssa Florwick
- Department of Cell Biology, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA.
| | - Tejas Dharmaraj
- Department of Cell Biology, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA.
| | - Sherket B Peterson
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Yosef Gruenbaum
- Department of Genetics, Institute of Life Sciences, Hebrew University of Jerusalem, Givat Ram Jerusalem 91904, Israel.
| | - Cathrine R Carlson
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, 0450 Oslo, Norway.
| | - Line M Grønning-Wang
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, 0317 Oslo, Norway.
| | - Donald F Hunt
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA.
- Department of Pathology, University of Virginia, Charlottesville, VA 22904, USA.
| | - Katherine L Wilson
- Department of Cell Biology, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA.
| |
Collapse
|
38
|
Abstract
Purpose of Review Functional decline of hematopoiesis that occurs in the elderly, or in patients who receive therapies that trigger cellular senescence effects, results in a progressive reduction in the immune response and an increased incidence of myeloid malignancy. Intracellular signals in hematopoietic stem cells and progenitors (HSC/P) mediate systemic, microenvironment, and cell-intrinsic effector aging signals that induce their decline. This review intends to summarize and critically review our advances in the understanding of the intracellular signaling pathways responsible for HSC decline during aging and opportunities for intervention. Recent Findings For a long time, aging of HSC has been thought to be an irreversible process imprinted in stem cells due to the cell intrinsic nature of aging. However, recent murine models and human correlative studies provide evidence that aging is associated with molecular signaling pathways, including oxidative stress, metabolic dysfunction, loss of polarity and an altered epigenome. These signaling pathways provide potential targets for prevention or reversal of age-related changes. Summary Here we review our current understanding of the signalling pathways that are differentially activated or repressed during HSC/P aging, focusing on the oxidative, metabolic, biochemical and structural consequences downstream, and cell-intrinsic, systemic, and environmental influences.
Collapse
|
39
|
Brady GF, Kwan R, Cunha JB, Elenbaas JS, Omary MB. Lamins and Lamin-Associated Proteins in Gastrointestinal Health and Disease. Gastroenterology 2018; 154:1602-1619.e1. [PMID: 29549040 PMCID: PMC6038707 DOI: 10.1053/j.gastro.2018.03.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 03/04/2018] [Accepted: 03/06/2018] [Indexed: 02/07/2023]
Abstract
The nuclear lamina is a multi-protein lattice composed of A- and B-type lamins and their associated proteins. This protein lattice associates with heterochromatin and integral inner nuclear membrane proteins, providing links among the genome, nucleoskeleton, and cytoskeleton. In the 1990s, mutations in EMD and LMNA were linked to Emery-Dreifuss muscular dystrophy. Since then, the number of diseases attributed to nuclear lamina defects, including laminopathies and other disorders, has increased to include more than 20 distinct genetic syndromes. Studies of patients and mouse genetic models have pointed to important roles for lamins and their associated proteins in the function of gastrointestinal organs, including liver and pancreas. We review the interactions and functions of the lamina in relation to the nuclear envelope and genome, the ways in which its dysfunction is thought to contribute to human disease, and possible avenues for targeted therapies.
Collapse
Affiliation(s)
- Graham F. Brady
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan,Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan,To whom correspondence should be addressed: University of Michigan Medical School, Division of Gastroenterology, Department of Internal Medicine, 1137 Catherine St., Ann Arbor, MI 48109-5622.
| | - Raymond Kwan
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Juliana Bragazzi Cunha
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Jared S. Elenbaas
- Medical Scientist Training Program, Washington University, St Louis, Missouri
| | - M. Bishr Omary
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan,Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan,Ǻbo Akademi University, Turku, Finland
| |
Collapse
|
40
|
Wang S, Stoops E, Cp U, Markus B, Reuveny A, Ordan E, Volk T. Mechanotransduction via the LINC complex regulates DNA replication in myonuclei. J Cell Biol 2018; 217:2005-2018. [PMID: 29650775 PMCID: PMC5987719 DOI: 10.1083/jcb.201708137] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 02/08/2018] [Accepted: 03/27/2018] [Indexed: 12/26/2022] Open
Abstract
Nuclear mechanotransduction has been implicated in the control of chromatin organization and gene expression. Wang et al. show that, in Drosophila myofibers, the LINC complex is required for the regulation of DNA replication and synchronized cell-cycle progression in myonuclei. Nuclear mechanotransduction has been implicated in the control of chromatin organization; however, its impact on functional contractile myofibers is unclear. We found that deleting components of the linker of nucleoskeleton and cytoskeleton (LINC) complex in Drosophila melanogaster larval muscles abolishes the controlled and synchronized DNA endoreplication, typical of nuclei across myofibers, resulting in increased and variable DNA content in myonuclei of individual myofibers. Moreover, perturbation of LINC-independent mechanical input after knockdown of β-Integrin in larval muscles similarly led to increased DNA content in myonuclei. Genome-wide RNA-polymerase II occupancy analysis in myofibers of the LINC mutant klar indicated an altered binding profile, including a significant decrease in the chromatin regulator barrier-to-autointegration factor (BAF) and the contractile regulator Troponin C. Importantly, muscle-specific knockdown of BAF led to increased DNA content in myonuclei, phenocopying the LINC mutant phenotype. We propose that mechanical stimuli transmitted via the LINC complex act via BAF to regulate synchronized cell-cycle progression of myonuclei across single myofibers.
Collapse
Affiliation(s)
- Shuoshuo Wang
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Elizabeth Stoops
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Unnikannan Cp
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Barak Markus
- G-INCPM/Mantoux Institute for Bioinformatics, Weizmann Institute of Science, Rehovot, Israel
| | - Adriana Reuveny
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Elly Ordan
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Talila Volk
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
41
|
Hennen J, Saunders CA, Mueller JD, Luxton GWG. Fluorescence fluctuation spectroscopy reveals differential SUN protein oligomerization in living cells. Mol Biol Cell 2018. [PMID: 29514929 PMCID: PMC5921568 DOI: 10.1091/mbc.e17-04-0233] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Fluorescence fluctuation spectroscopy is established as a powerful tool for quantifying protein oligomerization in the nuclear envelopes of living cells. It reveals that the SUN proteins SUN1 and SUN2 display differential oligomerization in vivo, which has important implications for LINC complex–dependent nuclear mechanotransduction. Linker-of-nucleoskeleton-and-cytoskeleton (LINC) complexes are conserved molecular bridges within the nuclear envelope that mediate mechanical force transmission into the nucleoplasm. The core of a LINC complex is formed by a transluminal interaction between the outer and inner nuclear membrane KASH and SUN proteins, respectively. Mammals encode six KASH proteins and five SUN proteins. Recently, KASH proteins were shown to bind to the domain interfaces of trimeric SUN2 proteins in vitro. However, neither the existence of SUN2 trimers in living cells nor the extent to which other SUN proteins conform to this assembly state have been tested experimentally. Here we extend the application of fluorescence fluctuation spectroscopy to quantify SUN protein oligomerization in the nuclear envelopes of living cells. Using this approach, we demonstrate for the first time that SUN2 trimerizes in vivo and we demonstrate that the in vivo oligomerization of SUN1 is not limited to a trimer. In addition, we provide evidence to support the existence of potential regulators of SUN protein oligomerization in the nuclear envelope. The differential SUN protein oligomerization illustrated here suggests that SUN proteins may have evolved to form different assembly states in order to participate in diverse mechanotransduction events.
Collapse
Affiliation(s)
- Jared Hennen
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455
| | - Cosmo A Saunders
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455
| | - Joachim D Mueller
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455
| | - G W Gant Luxton
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
42
|
Maysinger D, Moquin A, Choi J, Kodiha M, Stochaj U. Gold nanourchins and celastrol reorganize the nucleo- and cytoskeleton of glioblastoma cells. NANOSCALE 2018; 10:1716-1726. [PMID: 29308473 DOI: 10.1039/c7nr07833a] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The physicochemical properties and cytotoxicity of diverse gold nanoparticle (AuNP) morphologies with smooth surfaces have been examined extensively. Much less is known about AuNPs with irregular surfaces. This study focuses on the effects of gold nanourchins in glioblastoma cells. With limited success of monotherapies for glioblastoma, multimodal treatment has become the preferred regimen. One possible example for such future therapeutic applications is the combination of AuNPs with the natural cytotoxic agent celastrol. Here, we used complementary physical, chemical and biological methods to characterize AuNPs and investigate their impact on glioblastoma cells. Our results show that gold nanourchins altered glioblastoma cell morphology and reorganized the nucleo- and cytoskeleton. These changes were dependent on gold nanourchin surface modification. PEGylated nanourchins had no significant effect on glioblastoma cell morphology or viability, unless they were combined with celastrol. By contrast, CTAB-nanourchins adversely affected the nuclear lamina, microtubules and filamentous actin. These alterations correlated with significant glioblastoma cell death. We identified several mechanisms that contributed to the impact of AuNPs on the cytoskeleton and cell survival. Specifically, CTAB-nanourchins caused a significant increase in the abundance of Rock1. This protein kinase is a key regulator of the cytoskeleton. In addition, CTAB-nanourchins led to a marked decline in pro-survival signaling via the PI3 kinase-Akt pathway. Taken together, our study provides new insights into the molecular pathways and structural components altered by gold nanourchins and their implications for multimodal glioblastoma therapy.
Collapse
Affiliation(s)
- Dusica Maysinger
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada.
| | | | | | | | | |
Collapse
|
43
|
Majumder S, Willey PT, DeNies MS, Liu AP, Luxton GWG. A synthetic biology platform for the reconstitution and mechanistic dissection of LINC complex assembly. J Cell Sci 2018; 132:jcs.219451. [DOI: 10.1242/jcs.219451] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 09/19/2018] [Indexed: 11/20/2022] Open
Abstract
The linker of nucleoskeleton and cytoskeleton (LINC) is a conserved nuclear envelope-spanning molecular bridge that is responsible for the mechanical integration of the nucleus with the cytoskeleton. LINC complexes are formed by a transluminal interaction between the outer and inner nuclear membrane KASH and SUN proteins, respectively. Despite recent structural insights, our mechanistic understanding of LINC complex assembly remains limited by the lack of an experimental system for its in vitro reconstitution and manipulation. Here, we describe artificial nuclear membranes (ANMs) as a synthetic biology platform based on mammalian cell-free expression for the rapid reconstitution of SUN proteins in supported lipid bilayers. We demonstrate that SUN1 and SUN2 are oriented in ANMs with solvent-exposed C-terminal KASH-binding SUN domains. We also find that SUN2 possesses a single transmembrane domain, while SUN1 possesses three. Finally, SUN protein-containing ANMs bind synthetic KASH peptides, thereby reconstituting the LINC complex core. This work represents the first in vitro reconstitution of KASH-binding SUN proteins in supported lipid bilayers using cell-free expression, which will be invaluable for testing proposed models of LINC complex assembly and its regulation.
Collapse
Affiliation(s)
- Sagardip Majumder
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48019, USA
| | - Patrick T. Willey
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Maxwell S. DeNies
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, 48019, USA
| | - Allen P. Liu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48019, USA
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, 48019, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48019, USA
- Biophysics Program, University of Michigan, Ann Arbor, MI, 48019, USA
| | - G. W. Gant Luxton
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
44
|
Abstract
The idea that much of our genome is irrelevant to fitness-is not the product of positive natural selection at the organismal level-remains viable. Claims to the contrary, and specifically that the notion of "junk DNA" should be abandoned, are based on conflating meanings of the word "function". Recent estimates suggest that perhaps 90% of our DNA, though biochemically active, does not contribute to fitness in any sequence-dependent way, and possibly in no way at all. Comparisons to vertebrates with much larger and smaller genomes (the lungfish and the pufferfish) strongly align with such a conclusion, as they have done for the last half-century.
Collapse
Affiliation(s)
- W Ford Doolittle
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada.
| | - Tyler D P Brunet
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of History and Philosophy of Science, University of Cambridge, Cambridge, UK
| |
Collapse
|
45
|
Deviri D, Discher DE, Safran SA. Rupture Dynamics and Chromatin Herniation in Deformed Nuclei. Biophys J 2017; 113:1060-1071. [PMID: 28877489 PMCID: PMC5611675 DOI: 10.1016/j.bpj.2017.07.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 07/19/2017] [Accepted: 07/20/2017] [Indexed: 11/29/2022] Open
Abstract
During migration of cells in vivo, in both pathological processes such as cancer metastasis or physiological events such as immune cell migration through tissue, the cells must move through narrow interstitial spaces that can be smaller than the nucleus. This can induce deformation of the nucleus which, according to recent experiments, may result in rupture of the nuclear envelope that can lead to cell death, if not prevented or healed within an appropriate time. The nuclear envelope, which can be modeled as a double lipid bilayer attached to a viscoelastic gel (lamina) whose elasticity and viscosity primarily depend on the lamin composition, may utilize mechanically induced, self-healing mechanisms that allow the hole to be closed after the deformation-induced strains are reduced by leakage of the internal fluid. Here, we present a viscoelastic model of the evolution of a hole nucleated by deformations of the nuclear lamina and estimate the herniation of chromatin through the hole and its relation to the lamin expression levels in the nuclear envelope.
Collapse
Affiliation(s)
- Dan Deviri
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot, Israel.
| | - Dennis E Discher
- Molecular and Cell Biophysics Lab, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Sam A Safran
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
46
|
Ding ZY, Wang YH, Huang YC, Lee MC, Tseng MJ, Chi YH, Huang ML. Outer nuclear membrane protein Kuduk modulates the LINC complex and nuclear envelope architecture. J Cell Biol 2017; 216:2827-2841. [PMID: 28716842 PMCID: PMC5584142 DOI: 10.1083/jcb.201606043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 05/25/2017] [Accepted: 06/15/2017] [Indexed: 11/25/2022] Open
Abstract
LINC complexes connect the inner and outer nuclear membrane (ONM) to transduce nucleocytoskeletal force. Ding et al. identify an ONM protein, Kuduk/TMEM258, which modulates the quality of LINC complexes and regulates the nuclear envelope architecture, nuclear positioning, and the development of ovarian follicles. Linker of nucleoskeleton and cytoskeleton (LINC) complexes spanning the nuclear envelope (NE) contribute to nucleocytoskeletal force transduction. A few NE proteins have been found to regulate the LINC complex. In this study, we identify one, Kuduk (Kud), which can reside at the outer nuclear membrane and is required for the development of Drosophila melanogaster ovarian follicles and NE morphology of myonuclei. Kud associates with LINC complex components in an evolutionarily conserved manner. Loss of Kud increases the level but impairs functioning of the LINC complex. Overexpression of Kud suppresses NE targeting of cytoskeleton-free LINC complexes. Thus, Kud acts as a quality control mechanism for LINC-mediated nucleocytoskeletal connections. Genetic data indicate that Kud also functions independently of the LINC complex. Overexpression of the human orthologue TMEM258 in Drosophila proved functional conservation. These findings expand our understanding of the regulation of LINC complexes and NE architecture.
Collapse
Affiliation(s)
- Zhao-Ying Ding
- Department of Life Science, National Chung-Cheng University, Chiayi, Taiwan
| | - Ying-Hsuan Wang
- Department of Life Science, National Chung-Cheng University, Chiayi, Taiwan
| | - Yu-Cheng Huang
- Department of Life Science, National Chung-Cheng University, Chiayi, Taiwan
| | - Myong-Chol Lee
- Department of Life Science, National Chung-Cheng University, Chiayi, Taiwan
| | - Min-Jen Tseng
- Department of Life Science, National Chung-Cheng University, Chiayi, Taiwan
| | - Ya-Hui Chi
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli, Taiwan
| | - Min-Lang Huang
- Department of Life Science, National Chung-Cheng University, Chiayi, Taiwan
| |
Collapse
|
47
|
Buchwalter A, Hetzer MW. Nucleolar expansion and elevated protein translation in premature aging. Nat Commun 2017; 8:328. [PMID: 28855503 PMCID: PMC5577202 DOI: 10.1038/s41467-017-00322-z] [Citation(s) in RCA: 174] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 06/22/2017] [Indexed: 01/08/2023] Open
Abstract
Premature aging disorders provide an opportunity to study the mechanisms that drive aging. In Hutchinson-Gilford progeria syndrome (HGPS), a mutant form of the nuclear scaffold protein lamin A distorts nuclei and sequesters nuclear proteins. We sought to investigate protein homeostasis in this disease. Here, we report a widespread increase in protein turnover in HGPS-derived cells compared to normal cells. We determine that global protein synthesis is elevated as a consequence of activated nucleoli and enhanced ribosome biogenesis in HGPS-derived fibroblasts. Depleting normal lamin A or inducing mutant lamin A expression are each sufficient to drive nucleolar expansion. We further show that nucleolar size correlates with donor age in primary fibroblasts derived from healthy individuals and that ribosomal RNA production increases with age, indicating that nucleolar size and activity can serve as aging biomarkers. While limiting ribosome biogenesis extends lifespan in several systems, we show that increased ribosome biogenesis and activity are a hallmark of premature aging. HGPS is a premature aging disease caused by mutations in the nuclear protein lamin A. Here, the authors show that cells from patients with HGPS have expanded nucleoli and increased protein synthesis, and report that nucleoli also expand as aging progresses in cells derived from healthy individuals.
Collapse
Affiliation(s)
- Abigail Buchwalter
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Martin W Hetzer
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA.
| |
Collapse
|
48
|
Kwan R, Brady GF, Brzozowski M, Weerasinghe SV, Martin H, Park MJ, Brunt MJ, Menon RK, Tong X, Yin L, Stewart CL, Omary MB. Hepatocyte-Specific Deletion of Mouse Lamin A/C Leads to Male-Selective Steatohepatitis. Cell Mol Gastroenterol Hepatol 2017; 4:365-383. [PMID: 28913408 PMCID: PMC5582719 DOI: 10.1016/j.jcmgh.2017.06.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 06/30/2017] [Indexed: 01/01/2023]
Abstract
BACKGROUND & AIMS Lamins are nuclear intermediate filament proteins that comprise the major components of the nuclear lamina. Mutations in LMNA, which encodes lamins A/C, cause laminopathies, including lipodystrophy, cardiomyopathy, and premature aging syndromes. However, the role of lamins in the liver is unknown, and it is unclear whether laminopathy-associated liver disease is caused by primary hepatocyte defects or systemic alterations. METHODS To address these questions, we generated mice carrying a hepatocyte-specific deletion of Lmna (knockout [KO] mice) and characterized the KO liver and primary hepatocyte phenotypes by immunoblotting, immunohistochemistry, microarray analysis, quantitative real-time polymerase chain reaction, and Oil Red O and Picrosirius red staining. RESULTS KO hepatocytes manifested abnormal nuclear morphology, and KO mice showed reduced body mass. KO mice developed spontaneous male-selective hepatosteatosis with increased susceptibility to high-fat diet-induced steatohepatitis and fibrosis. The hepatosteatosis was associated with up-regulated transcription of genes encoding lipid transporters, lipid biosynthetic enzymes, lipid droplet-associated proteins, and interferon-regulated genes. Hepatic Lmna deficiency led to enhanced signal transducer and activator of transcription 1 (Stat1) expression and blocked growth hormone-mediated Janus kinase 2 (Jak2), signal transducer and activator of transcription 5 (Stat5), and extracellular signal-regulated kinase (Erk) signaling. CONCLUSIONS Lamin A/C acts cell-autonomously to maintain hepatocyte homeostasis and nuclear shape and buffers against male-selective steatohepatitis by positively regulating growth hormone signaling and negatively regulating Stat1 expression. Lamins are potential genetic modifiers for predisposition to steatohepatitis and liver fibrosis. The microarray data can be found in the Gene Expression Omnibus repository (accession number: GSE93643).
Collapse
Key Words
- % liver weight, liver percentage of body mass
- Erk, extracellular signal–regulated kinase
- FPLD2, Dunnigan familial partial lipodystrophy
- Fibrosis
- GH, growth hormone
- Growth Hormone Signaling
- HFD, high-fat diet
- Het, heterozygous
- Igf1, insulin-like growth factor 1
- Jak2, Janus kinase 2
- KO, knockout
- Laminopathy
- Lipodystrophy
- NAFLD, nonalcoholic fatty liver disease
- ND, normal diet
- Nonalcoholic Fatty Liver Disease
- PBS, phosphate-buffered saline
- Stat, signal transducer and activator of transcription
- WT, wild type
- qPCR, quantitative polymerase chain reaction
Collapse
Affiliation(s)
- Raymond Kwan
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan,Correspondence Address correspondence to: Raymond Kwan, Department of Molecular and Integrative Physiology, University of Michigan, 7720 Med Sci II, Ann Arbor, Michigan 48109.Department of Molecular and Integrative PhysiologyUniversity of Michigan7720 Med Sci IIAnn ArborMichigan 48109
| | - Graham F. Brady
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan,Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Maria Brzozowski
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Sujith V. Weerasinghe
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Hope Martin
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Min-Jung Park
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Makayla J. Brunt
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Ram K. Menon
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Xin Tong
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Lei Yin
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan,Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Colin L. Stewart
- Development and Regenerative Biology Group, Institute of Medical Biology, Immunos, Singapore
| | - M. Bishr Omary
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan,Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
49
|
Birendra Kc, May DG, Benson BV, Kim DI, Shivega WG, Ali MH, Faustino RS, Campos AR, Roux KJ. VRK2A is an A-type lamin-dependent nuclear envelope kinase that phosphorylates BAF. Mol Biol Cell 2017. [PMID: 28637768 PMCID: PMC5555652 DOI: 10.1091/mbc.e17-03-0138] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
By the use of comparative BioID of nuclear envelope (NE) proteins lamin A and Sun2, as well as a minimal inner nuclear membrane targeting motif, VRK2 is identified as a novel constituent of the NE. A-type lamins retain the transmembrane kinase VRK2 at the NE, where it phosphorylates and regulates the nuclear mobility of BAF. The nuclear envelope (NE) is critical for numerous fundamental cellular functions, and mutations in several NE constituents can lead to a heterogeneous spectrum of diseases. We used proximity biotinylation to uncover new constituents of the inner nuclear membrane (INM) by comparative BioID analysis of lamin A, Sun2 and a minimal INM-targeting motif. These studies identify vaccinia-related kinase-2 (VRK2) as a candidate constituent of the INM. The transmembrane VRK2A isoform is retained at the NE by association with A-type lamins. Furthermore, VRK2A physically interacts with A-type, but not B-type, lamins. Finally, we show that VRK2 phosphorylates barrier to autointegration factor (BAF), a small and highly dynamic chromatin-binding protein, which has roles including NE reassembly, cell cycle, and chromatin organization in cells, and subtly alters its nuclear mobility. Together these findings support the value of using BioID to identify unrecognized constituents of distinct subcellular compartments refractory to biochemical isolation and reveal VRK2A as a transmembrane kinase in the NE that regulates BAF.
Collapse
Affiliation(s)
- Birendra Kc
- Sanford Children's Health Research Center, Sanford Research, Sioux Falls, SD 57104
| | - Danielle G May
- Sanford Children's Health Research Center, Sanford Research, Sioux Falls, SD 57104
| | - Benjamin V Benson
- Sanford Children's Health Research Center, Sanford Research, Sioux Falls, SD 57104
| | - Dae In Kim
- Sanford Children's Health Research Center, Sanford Research, Sioux Falls, SD 57104
| | - Winnie G Shivega
- Sanford Children's Health Research Center, Sanford Research, Sioux Falls, SD 57104
| | - Manaal H Ali
- Sanford Children's Health Research Center, Sanford Research, Sioux Falls, SD 57104
| | - Randolph S Faustino
- Sanford Children's Health Research Center, Sanford Research, Sioux Falls, SD 57104.,Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD 57105
| | - Alexandre R Campos
- Proteomics Facility, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037
| | - Kyle J Roux
- Sanford Children's Health Research Center, Sanford Research, Sioux Falls, SD 57104 .,Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD 57105
| |
Collapse
|
50
|
Florwick A, Dharmaraj T, Jurgens J, Valle D, Wilson KL. LMNA Sequences of 60,706 Unrelated Individuals Reveal 132 Novel Missense Variants in A-Type Lamins and Suggest a Link between Variant p.G602S and Type 2 Diabetes. Front Genet 2017; 8:79. [PMID: 28663758 PMCID: PMC5471320 DOI: 10.3389/fgene.2017.00079] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 05/29/2017] [Indexed: 12/18/2022] Open
Abstract
Mutations in LMNA, encoding nuclear intermediate filament proteins lamins A and C, cause multiple diseases ('laminopathies') including muscular dystrophy, dilated cardiomyopathy, familial partial lipodystrophy (FPLD2), insulin resistance syndrome and progeria. To assess the prevalence of LMNA missense mutations ('variants') in a broad, ethnically diverse population, we compared missense alleles found among 60,706 unrelated individuals in the ExAC cohort to those identified in 1,404 individuals in the laminopathy database (UMD-LMNA). We identified 169 variants in the ExAC cohort, of which 37 (∼22%) are disease-associated including p.I299V (allele frequency 0.0402%), p.G602S (allele frequency 0.0262%) and p.R644C (allele frequency 0.124%), suggesting certain LMNA mutations are more common than previously recognized. Independent analysis of LMNA variants via the type 2 diabetes (T2D) Knowledge Portal showed that variant p.G602S associated significantly with type 2 diabetes (p = 0.02; odds ratio = 4.58), and was more frequent in African Americans (allele frequency 0.297%). The FPLD2-associated variant I299V was most prevalent in Latinos (allele frequency 0.347%). The ExAC cohort also revealed 132 novel LMNA missense variants including p.K108E (limited to individuals with psychiatric disease; predicted to perturb coil-1B), p.R397C and p.R427C (predicted to perturb filament biogenesis), p.G638R and p.N660D (predicted to perturb prelamin A processing), and numerous Ig-fold variants predicted to perturb phenotypically characteristic protein-protein interactions. Overall, this two-pronged strategy- mining a large database for missense variants in a single gene (LMNA), coupled to knowledge about the structure, biogenesis and functions of A-type lamins- revealed an unexpected number of LMNA variants, including novel variants predicted to perturb lamin assembly or function. Interestingly, this study also correlated novel variant p.K108E with psychiatric disease, identified known variant p.I299V as a potential risk factor for metabolic disease in Latinos, linked variant p.G602 with type 2 diabetes, and identified p.G602S as a predictor of diabetes risk in African Americans.
Collapse
Affiliation(s)
- Alyssa Florwick
- Department of Cell Biology, Johns Hopkins University School of Medicine, BaltimoreMD, United States
| | - Tejas Dharmaraj
- Department of Cell Biology, Johns Hopkins University School of Medicine, BaltimoreMD, United States
| | - Julie Jurgens
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, BaltimoreMD, United States
| | - David Valle
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, BaltimoreMD, United States
| | - Katherine L. Wilson
- Department of Cell Biology, Johns Hopkins University School of Medicine, BaltimoreMD, United States
| |
Collapse
|