1
|
Franco D, Sánchez-Fernández C, García-Padilla C, Lozano-Velasco E. Exploring the role non-coding RNAs during myocardial cell fate. Biochem Soc Trans 2024; 52:1339-1348. [PMID: 38775188 DOI: 10.1042/bst20231216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/02/2024] [Accepted: 05/07/2024] [Indexed: 06/27/2024]
Abstract
Myocardial cell fate specification takes place during the early stages of heart development as the precardiac mesoderm is configured into two symmetrical sets of bilateral precursor cells. Molecular cues of the surrounding tissues specify and subsequently determine the early cardiomyocytes, that finally matured as the heart is completed at early postnatal stages. Over the last decade, we have greatly enhanced our understanding of the transcriptional regulation of cardiac development and thus of myocardial cell fate. The recent discovery of a novel layer of gene regulation by non-coding RNAs has flourished their implication in epigenetic, transcriptional and post-transcriptional regulation of cardiac development. In this review, we revised the current state-of-the-art knowledge on the functional role of non-coding RNAs during myocardial cell fate.
Collapse
Affiliation(s)
- Diego Franco
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, Jaen 23071, Spain
- Fundación Medina, Granada, Spain
| | - Cristina Sánchez-Fernández
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, Jaen 23071, Spain
- Fundación Medina, Granada, Spain
| | - Carlos García-Padilla
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, Jaen 23071, Spain
- Fundación Medina, Granada, Spain
| | - Estefania Lozano-Velasco
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, Jaen 23071, Spain
- Fundación Medina, Granada, Spain
| |
Collapse
|
2
|
Jang J, Bentsen M, Kim YJ, Kim E, Garg V, Cai CL, Looso M, Li D. Endocardial HDAC3 is required for myocardial trabeculation. Nat Commun 2024; 15:4166. [PMID: 38755146 PMCID: PMC11099086 DOI: 10.1038/s41467-024-48362-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 04/25/2024] [Indexed: 05/18/2024] Open
Abstract
Failure of proper ventricular trabeculation is often associated with congenital heart disease. Support from endocardial cells, including the secretion of extracellular matrix and growth factors is critical for trabeculation. However, it is poorly understood how the secretion of extracellular matrix and growth factors is initiated and regulated by endocardial cells. We find that genetic knockout of histone deacetylase 3 in the endocardium in mice results in early embryo lethality and ventricular hypotrabeculation. Single cell RNA sequencing identifies significant downregulation of extracellular matrix components in histone deacetylase 3 knockout endocardial cells. Secretome from cultured histone deacetylase 3 knockout mouse cardiac endothelial cells lacks transforming growth factor ß3 and shows significantly reduced capacity in stimulating cultured cardiomyocyte proliferation, which is remarkably rescued by transforming growth factor ß3 supplementation. Mechanistically, we identify that histone deacetylase 3 knockout induces transforming growth factor ß3 expression through repressing microRNA-129-5p. Our findings provide insights into the pathogenesis of congenital heart disease and conceptual strategies to promote myocardial regeneration.
Collapse
Affiliation(s)
- Jihyun Jang
- Center for Cardiovascular Research, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, 43215, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, 43215, USA
| | - Mette Bentsen
- Bioinformatics Core Unit (BCU), Max Planck Institute for Heart and Lung Research, 61231, Bad Nauheim, Germany
| | - Ye Jun Kim
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Erick Kim
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Vidu Garg
- Center for Cardiovascular Research, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, 43215, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, 43215, USA
| | - Chen-Leng Cai
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46201, USA
| | - Mario Looso
- Bioinformatics Core Unit (BCU), Max Planck Institute for Heart and Lung Research, 61231, Bad Nauheim, Germany
| | - Deqiang Li
- Center for Cardiovascular Research, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, 43215, USA.
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, 43215, USA.
| |
Collapse
|
3
|
Shafi O, Siddiqui G, Jaffry HA. The benign nature and rare occurrence of cardiac myxoma as a possible consequence of the limited cardiac proliferative/ regenerative potential: a systematic review. BMC Cancer 2023; 23:1245. [PMID: 38110859 PMCID: PMC10726542 DOI: 10.1186/s12885-023-11723-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/05/2023] [Indexed: 12/20/2023] Open
Abstract
BACKGROUND Cardiac Myxoma is a primary tumor of heart. Its origins, rarity of the occurrence of primary cardiac tumors and how it may be related to limited cardiac regenerative potential, are not yet entirely known. This study investigates the key cardiac genes/ transcription factors (TFs) and signaling pathways to understand these important questions. METHODS Databases including PubMed, MEDLINE, and Google Scholar were searched for published articles without any date restrictions, involving cardiac myxoma, cardiac genes/TFs/signaling pathways and their roles in cardiogenesis, proliferation, differentiation, key interactions and tumorigenesis, with focus on cardiomyocytes. RESULTS The cardiac genetic landscape is governed by a very tight control between proliferation and differentiation-related genes/TFs/pathways. Cardiac myxoma originates possibly as a consequence of dysregulations in the gene expression of differentiation regulators including Tbx5, GATA4, HAND1/2, MYOCD, HOPX, BMPs. Such dysregulations switch the expression of cardiomyocytes into progenitor-like state in cardiac myxoma development by dysregulating Isl1, Baf60 complex, Wnt, FGF, Notch, Mef2c and others. The Nkx2-5 and MSX2 contribute predominantly to both proliferation and differentiation of Cardiac Progenitor Cells (CPCs), may possibly serve roles based on the microenvironment and the direction of cell circuitry in cardiac tumorigenesis. The Nkx2-5 in cardiac myxoma may serve to limit progression of tumorigenesis as it has massive control over the proliferation of CPCs. The cardiac cell type-specific genetic programming plays governing role in controlling the tumorigenesis and regenerative potential. CONCLUSION The cardiomyocytes have very limited proliferative and regenerative potential. They survive for long periods of time and tightly maintain the gene expression of differentiation genes such as Tbx5, GATA4 that interact with tumor suppressors (TS) and exert TS like effect. The total effect such gene expression exerts is responsible for the rare occurrence and benign nature of primary cardiac tumors. This prevents the progression of tumorigenesis. But this also limits the regenerative and proliferative potential of cardiomyocytes. Cardiac Myxoma develops as a consequence of dysregulations in these key genes which revert the cells towards progenitor-like state, hallmark of CM. The CM development in carney complex also signifies the role of TS in cardiac cells.
Collapse
Affiliation(s)
- Ovais Shafi
- Sindh Medical College - Jinnah Sindh Medical University / Dow University of Health Sciences, Karachi, Pakistan.
| | - Ghazia Siddiqui
- Sindh Medical College - Jinnah Sindh Medical University / Dow University of Health Sciences, Karachi, Pakistan
| | - Hassam A Jaffry
- Sindh Medical College - Jinnah Sindh Medical University / Dow University of Health Sciences, Karachi, Pakistan
| |
Collapse
|
4
|
Noh JM, Choi SC, Song MH, Kim KS, Jun S, Park JH, Kim JH, Kim K, Ko TH, Choi JI, Gim JA, Kim JH, Jang Y, Park Y, Na JE, Rhyu IJ, Lim DS. The Activation of the LIMK/Cofilin Signaling Pathway via Extracellular Matrix-Integrin Interactions Is Critical for the Generation of Mature and Vascularized Cardiac Organoids. Cells 2023; 12:2029. [PMID: 37626839 PMCID: PMC10453200 DOI: 10.3390/cells12162029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/02/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
The generation of mature and vascularized human pluripotent stem cell-derived cardiac organoids (hPSC-COs) is necessary to ensure the validity of drug screening and disease modeling. This study investigates the effects of cellular aggregate (CA) stemness and self-organization on the generation of mature and vascularized hPSC-COs and elucidates the mechanisms underlying cardiac organoid (CO) maturation and vascularization. COs derived from 2-day-old CAs with high stemness (H-COs) and COs derived from 5-day-old CAs with low stemness (L-COs) were generated in a self-organized microenvironment via Wnt signaling induction. This study finds that H-COs exhibit ventricular, structural, metabolic, and functional cardiomyocyte maturation and vessel networks consisting of endothelial cells, smooth muscle cells, pericytes, and basement membranes compared to L-COs. Transcriptional profiling shows the upregulation of genes associated with cardiac maturation and vessel formation in H-COs compared with the genes in L-COs. Through experiments with LIMK inhibitors, the activation of ROCK-LIMK-pCofilin via ECM-integrin interactions leads to cardiomyocyte maturation and vessel formation in H-COs. Furthermore, the LIMK/Cofilin signaling pathway induces TGFβ/NODAL and PDGF pathway activation for the maturation and vascularization of H-COs. The study demonstrates for the first time that LIMK/Cofilin axis activation plays an important role in the generation of mature and vascularized COs.
Collapse
Affiliation(s)
- Ji-Min Noh
- Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, 73, Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea; (J.-M.N.); (S.-C.C.); (M.-H.S.); (K.S.K.); (S.J.); (J.H.P.); (J.H.K.)
| | - Seung-Cheol Choi
- Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, 73, Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea; (J.-M.N.); (S.-C.C.); (M.-H.S.); (K.S.K.); (S.J.); (J.H.P.); (J.H.K.)
- R&D Center for Companion Diagnostic, SOL Bio Corporation, Suite 510, 27, Seongsui-ro7-gil, Seongdong-gu, Seoul 04780, Republic of Korea
| | - Myeong-Hwa Song
- Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, 73, Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea; (J.-M.N.); (S.-C.C.); (M.-H.S.); (K.S.K.); (S.J.); (J.H.P.); (J.H.K.)
| | - Kyung Seob Kim
- Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, 73, Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea; (J.-M.N.); (S.-C.C.); (M.-H.S.); (K.S.K.); (S.J.); (J.H.P.); (J.H.K.)
| | - Seongmin Jun
- Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, 73, Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea; (J.-M.N.); (S.-C.C.); (M.-H.S.); (K.S.K.); (S.J.); (J.H.P.); (J.H.K.)
| | - Jae Hyoung Park
- Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, 73, Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea; (J.-M.N.); (S.-C.C.); (M.-H.S.); (K.S.K.); (S.J.); (J.H.P.); (J.H.K.)
| | - Ju Hyeon Kim
- Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, 73, Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea; (J.-M.N.); (S.-C.C.); (M.-H.S.); (K.S.K.); (S.J.); (J.H.P.); (J.H.K.)
| | - Kyoungmi Kim
- Department of Physiology, College of Medicine, Korea University, 73, Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea;
| | - Tae Hee Ko
- Division of Cardiology, Department of Internal Medicine, Anam Hospital, College of Medicine, Korea University, 73, Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea; (T.H.K.); (J.-I.C.)
| | - Jong-Il Choi
- Division of Cardiology, Department of Internal Medicine, Anam Hospital, College of Medicine, Korea University, 73, Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea; (T.H.K.); (J.-I.C.)
| | - Jeong-An Gim
- Medical Science Research Center, Korea University Guro Hospital, 148, Gurodong-ro, Guro-gu, Seoul 08308, Republic of Korea;
| | - Jong-Hoon Kim
- Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea;
| | - Yongjun Jang
- Department of Biomedical Sciences, College of Medicine, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea; (Y.J.); (Y.P.)
| | - Yongdoo Park
- Department of Biomedical Sciences, College of Medicine, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea; (Y.J.); (Y.P.)
| | - Ji Eun Na
- Department of Anatomy College of Medicine, Korea University, 73, Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea; (J.E.N.); (I.J.R.)
| | - Im Joo Rhyu
- Department of Anatomy College of Medicine, Korea University, 73, Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea; (J.E.N.); (I.J.R.)
| | - Do-Sun Lim
- Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, 73, Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea; (J.-M.N.); (S.-C.C.); (M.-H.S.); (K.S.K.); (S.J.); (J.H.P.); (J.H.K.)
| |
Collapse
|
5
|
Di Sante M, Antonucci S, Pontarollo L, Cappellaro I, Segat F, Deshwal S, Greotti E, Grilo LF, Menabò R, Di Lisa F, Kaludercic N. Monoamine oxidase A-dependent ROS formation modulates human cardiomyocyte differentiation through AKT and WNT activation. Basic Res Cardiol 2023; 118:4. [PMID: 36670288 PMCID: PMC9859871 DOI: 10.1007/s00395-023-00977-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 12/21/2022] [Accepted: 01/07/2023] [Indexed: 01/21/2023]
Abstract
During embryonic development, cardiomyocytes undergo differentiation and maturation, processes that are tightly regulated by tissue-specific signaling cascades. Although redox signaling pathways involved in cardiomyogenesis are established, the exact sources responsible for reactive oxygen species (ROS) formation remain elusive. The present study investigates whether ROS produced by the mitochondrial flavoenzyme monoamine oxidase A (MAO-A) play a role in cardiomyocyte differentiation from human induced pluripotent stem cells (hiPSCs). Wild type (WT) and MAO-A knock out (KO) hiPSCs were generated by CRISPR/Cas9 genome editing and subjected to cardiomyocyte differentiation. Mitochondrial ROS levels were lower in MAO-A KO compared to the WT cells throughout the differentiation process. MAO-A KO hiPSC-derived cardiomyocytes (hiPSC-CMs) displayed sarcomere disarray, reduced α- to β-myosin heavy chain ratio, GATA4 upregulation and lower macroautophagy levels. Functionally, genetic ablation of MAO-A negatively affected intracellular Ca2+ homeostasis in hiPSC-CMs. Mechanistically, MAO-A generated ROS contributed to the activation of AKT signaling that was considerably attenuated in KO cells. In addition, MAO-A ablation caused a reduction in WNT pathway gene expression consistent with its reported stimulation by ROS. As a result of WNT downregulation, expression of MESP1 and NKX2.5 was significantly decreased in MAO-A KO cells. Finally, MAO-A re-expression during differentiation rescued expression levels of cardiac transcription factors, contractile structure, and intracellular Ca2+ homeostasis. Taken together, these results suggest that MAO-A mediated ROS generation is necessary for the activation of AKT and WNT signaling pathways during cardiac lineage commitment and for the differentiation of fully functional human cardiomyocytes.
Collapse
Affiliation(s)
- Moises Di Sante
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35131, Padua, Italy
| | - Salvatore Antonucci
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35131, Padua, Italy
| | - Laura Pontarollo
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35131, Padua, Italy
| | - Ilaria Cappellaro
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35131, Padua, Italy
| | - Francesca Segat
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35131, Padua, Italy
| | - Soni Deshwal
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35131, Padua, Italy
- Max Planck Institute for Biology of Ageing, 50931, Cologne, Germany
| | - Elisa Greotti
- Neuroscience Institute, National Research Council of Italy (CNR), Via Ugo Bassi 58/B, 35131, Padua, Italy
| | - Luis F Grilo
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
| | - Roberta Menabò
- Neuroscience Institute, National Research Council of Italy (CNR), Via Ugo Bassi 58/B, 35131, Padua, Italy
| | - Fabio Di Lisa
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35131, Padua, Italy.
- Neuroscience Institute, National Research Council of Italy (CNR), Via Ugo Bassi 58/B, 35131, Padua, Italy.
| | - Nina Kaludercic
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35131, Padua, Italy.
- Neuroscience Institute, National Research Council of Italy (CNR), Via Ugo Bassi 58/B, 35131, Padua, Italy.
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza (IRP), 35127, Padua, Italy.
| |
Collapse
|
6
|
Mechanotransduction of mesenchymal stem cells (MSCs) during cardiomyocytes differentiation. Heliyon 2022; 8:e11624. [DOI: 10.1016/j.heliyon.2022.e11624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 09/15/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
|
7
|
Liu T, Gonzalez De Los Santos F, Hirsch M, Wu Z, Phan SH. Noncanonical Wnt Signaling Promotes Myofibroblast Differentiation in Pulmonary Fibrosis. Am J Respir Cell Mol Biol 2021; 65:489-499. [PMID: 34107237 PMCID: PMC8641847 DOI: 10.1165/rcmb.2020-0499oc] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 06/08/2021] [Indexed: 11/24/2022] Open
Abstract
The Wnt/β-catenin pathway initiates a signaling cascade that is critical in cell differentiation and the normal development of multiple organ systems. The reactivation of this pathway has been documented in experimental and human idiopathic pulmonary fibrosis, wherein Wnt/β-catenin activation has been implicated in epithelial-cell repair. Furthermore, the canonical ligand Wnt3a is known to induce myofibroblast differentiation; however, the role of noncanonical Wnt ligands remains unclear. This study showed significantly higher levels of Wnt11 expression in cells from both patients with idiopathic pulmonary fibrosis and bleomycin-treated mice, as well as in TGFβ-treated mouse lung fibroblasts. Moreover, Wnt11 induced myofibroblast differentiation as manifested by increased α-SMA (ACTA2) expression, which was similar to that induced by canonical Wnt3a/β-catenin signaling. Further investigation revealed that Wnt11 induction of α-SMA was associated with the activation of JNK (c-Jun N-terminal kinase)/c-Jun signaling and was inhibited by a JNK inhibitor. The potential importance of this signaling pathway was supported by in vivo evidence showing significantly increased levels of Wnt11 and activated JNK in the lungs of mice with bleomycin-induced pulmonary fibrosis. Interestingly, fibroblasts did not express canonical Wnt3a, but treatment of these cells with exogenous Wnt3a induced endogenous Wnt11 and Wnt5a, resulting in repression of the Wnt3a/β-catenin target gene Axin2. These findings suggested that the noncanonical Wnt induction of myofibroblast differentiation mediated by the JNK/c-Jun pathway might play a significant role in pulmonary fibrosis, in addition to or in synergy with canonical Wnt3a/β-catenin signaling. Moreover, Wnt3a activation of noncanonical Wnt signaling might trigger a switch from canonical to noncanonical Wnt signaling to induce myofibroblast differentiation.
Collapse
Affiliation(s)
| | | | - Mitchell Hirsch
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Zhe Wu
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | | |
Collapse
|
8
|
Progranulin deficiency leads to enhanced age-related cardiac hypertrophy through complement C1q-induced β-catenin activation. J Mol Cell Cardiol 2019; 138:197-211. [PMID: 31866375 DOI: 10.1016/j.yjmcc.2019.12.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 11/15/2019] [Accepted: 12/17/2019] [Indexed: 01/10/2023]
Abstract
AIMS Age-related cardiac hypertrophy and subsequent heart failure are predicted to become increasingly serious problems in aging populations. Progranulin (PGRN) deficiency is known to be associated with accelerated aging in the brain. We aimed to evaluate the effects of PGRN deficiency on cardiac aging, including left ventricular hypertrophy. METHODS AND RESULTS Echocardiography was performed on wild-type (WT) and PGRN-knockout (KO) mice every 3 months from 3 to 18 months of age. Compared to that of WT mice, PGRN KO mice exhibited age-dependent cardiac hypertrophy and cardiac dysfunction at 18 months. Morphological analyses showed that the heart weight to tibia length ratio and cross-sectional area of cardiomyocytes at 18 months were significantly increased in PGRN KO mice relative to those in WT mice. Furthermore, accumulation of lipofuscin and increases in senescence markers were observed in the hearts of PGRN KO mice, suggesting that PGRN deficiency led to enhanced aging of the heart. Enhanced complement C1q (C1q) and activated β-catenin protein expression levels were also observed in the hearts of aged PGRN KO mice. Treatment of PGRN-deficient cardiomyocytes with C1q caused β-catenin activation and cardiac hypertrophy. Blocking C1q-induced β-catenin activation in PGRN-depleted cardiomyocytes attenuated hypertrophic changes. Finally, we showed that C1 inhibitor treatment reduced cardiac hypertrophy and dysfunction in old KO mice, possibly by reducing β-catenin activation. These results suggest that C1q is a crucial regulator of cardiac hypertrophy induced by PGRN ablation. CONCLUSION The present study demonstrates that PGRN deficiency enhances age-related cardiac hypertrophy via C1q-induced β-catenin activation. PGRN is a potential therapeutic target to prevent cardiac hypertrophy and dysfunction.
Collapse
|
9
|
Li HX, Lin J, Jiang B, Yang XJ. Wnt11 preserves mitochondrial membrane potential and protects cardiomyocytes against hypoxia through paracrine signaling. J Cell Biochem 2019; 121:1144-1155. [PMID: 31463993 DOI: 10.1002/jcb.29349] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 08/13/2019] [Indexed: 12/15/2022]
Abstract
We investigated the effect of Wnt11 on mitochondrial membrane integrity in cardiomyocytes (CMs) and the underlying mechanism of Wnt11-mediated CM protection against hypoxic injury. A rat mesenchymal stem cell (MSC) line that overexpresses Wnt11 (MSCWnt11 ) and a control cell line transduced with empty vector (MSCNull ) were established to determine the cardioprotective role of Wnt11 in response to hypoxia. Mitochondrial membrane integrity in MSCWnt11 cells was assessed using fluorescence assays. The role of paracrine signaling mediated by vascular endothelial growth factor (VEGF), basic fibroblast growth factor (b-FGF), and insulin-like growth factor 1 (IGF-1) in protecting CMs against hypoxia were investigated using cocultures of primary CMs from neonatal rats with conditioned medium (CdM) from MSCWnt11 . MSCWnt11 cells exposed to hypoxia reduced lactate dehydrogenase release from CMs and increased CM survival under hypoxia. In addition, CMs cocultured with CdM that were exposed to hypoxia showed reduced CM apoptosis and necrosis. There was significantly higher VEGF and IGF-1 release in the MSCWnt11 group compared with the MSCNull group, and the addition of anti-VEGF and anti-IGF-1 antibodies inhibited secretion. Moreover, mitochondrial membrane integrity was maintained in the MSCWnt11 cell line. In conclusion, overexpression of Wnt11 in MSCs promotes IGF-1 and VEGF release, thereby protecting CMs against hypoxia.
Collapse
Affiliation(s)
- Hong-Xia Li
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jia Lin
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Bin Jiang
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xiang-Jun Yang
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
10
|
Mansour TA, Lucot K, Konopelski SE, Dickinson PJ, Sturges BK, Vernau KL, Choi S, Stern JA, Thomasy SM, Döring S, Verstraete FJM, Johnson EG, York D, Rebhun RB, Ho HYH, Brown CT, Bannasch DL. Whole genome variant association across 100 dogs identifies a frame shift mutation in DISHEVELLED 2 which contributes to Robinow-like syndrome in Bulldogs and related screw tail dog breeds. PLoS Genet 2018; 14:e1007850. [PMID: 30521570 PMCID: PMC6303079 DOI: 10.1371/journal.pgen.1007850] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 12/21/2018] [Accepted: 11/24/2018] [Indexed: 12/30/2022] Open
Abstract
Domestic dog breeds exhibit remarkable morphological variations that result from centuries of artificial selection and breeding. Identifying the genetic changes that contribute to these variations could provide critical insights into the molecular basis of tissue and organismal morphogenesis. Bulldogs, French Bulldogs and Boston Terriers share many morphological and disease-predisposition traits, including brachycephalic skull morphology, widely set eyes and short stature. Unlike other brachycephalic dogs, these breeds also exhibit vertebral malformations that result in a truncated, kinked tail (screw tail). Whole genome sequencing of 100 dogs from 21 breeds identified 12.4 million bi-allelic variants that met inclusion criteria. Whole Genome Association of these variants with the breed defining phenotype of screw tail was performed using 10 cases and 84 controls and identified a frameshift mutation in the WNT pathway gene DISHEVELLED 2 (DVL2) (Chr5: 32195043_32195044del, p = 4.37 X 10-37) as the most strongly associated variant in the canine genome. This DVL2 variant was fixed in Bulldogs and French Bulldogs and had a high allele frequency (0.94) in Boston Terriers. The DVL2 variant segregated with thoracic and caudal vertebral column malformations in a recessive manner with incomplete and variable penetrance for thoracic vertebral malformations between different breeds. Importantly, analogous frameshift mutations in the human DVL1 and DVL3 genes cause Robinow syndrome, a congenital disorder characterized by similar craniofacial, limb and vertebral malformations. Analysis of the canine DVL2 variant protein showed that its ability to undergo WNT-induced phosphorylation is reduced, suggesting that altered WNT signaling may contribute to the Robinow-like syndrome in the screwtail breeds.
Collapse
Affiliation(s)
- Tamer A. Mansour
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California Davis, Davis, CA, United States of America
- Department of Clinical Pathology, School of Medicine, University of Mansoura, Mansoura Egypt
| | - Katherine Lucot
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California Davis, Davis, CA, United States of America
- Integrative Genetics and Genomics Graduate Group, University of California Davis, Davis, CA, United States of America
| | - Sara E. Konopelski
- Department of Cell Biology and Human Anatomy, School of Medicine, University of California Davis, Davis, CA, United States of America
| | - Peter J. Dickinson
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, Davis, CA, United States of America
| | - Beverly K. Sturges
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, Davis, CA, United States of America
| | - Karen L. Vernau
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, Davis, CA, United States of America
| | - Shannon Choi
- Department of Cell Biology and Human Anatomy, School of Medicine, University of California Davis, Davis, CA, United States of America
| | - Joshua A. Stern
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California Davis, Davis, CA, United States of America
| | - Sara M. Thomasy
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, Davis, CA, United States of America
| | - Sophie Döring
- William R. Pritchard Veterinary Medical Teaching Hospital, School of Veterinary Medicine, University of California Davis, Davis, CA, United States of America
| | - Frank J. M. Verstraete
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, Davis, CA, United States of America
| | - Eric G. Johnson
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, Davis, CA, United States of America
| | - Daniel York
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, Davis, CA, United States of America
| | - Robert B. Rebhun
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, Davis, CA, United States of America
| | - Hsin-Yi Henry Ho
- Department of Cell Biology and Human Anatomy, School of Medicine, University of California Davis, Davis, CA, United States of America
| | - C. Titus Brown
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California Davis, Davis, CA, United States of America
- Genome Center, University of California Davis, Davis, CA, United States of America
| | - Danika L. Bannasch
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California Davis, Davis, CA, United States of America
- Genome Center, University of California Davis, Davis, CA, United States of America
| |
Collapse
|
11
|
Giancotti V, Bergamin N, Cataldi P, Rizzi C. Epigenetic Contribution of High-Mobility Group A Proteins to Stem Cell Properties. Int J Cell Biol 2018; 2018:3698078. [PMID: 29853899 PMCID: PMC5941823 DOI: 10.1155/2018/3698078] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 03/01/2018] [Accepted: 03/18/2018] [Indexed: 02/07/2023] Open
Abstract
High-mobility group A (HMGA) proteins have been examined to understand their participation as structural epigenetic chromatin factors that confer stem-like properties to embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), and cancer stem cells (CSCs). The function of HMGA was evaluated in conjunction with that of other epigenetic factors such as histones and microRNAs (miRs), taking into consideration the posttranscriptional modifications (PTMs) of histones (acetylation and methylation) and DNA methylation. HMGA proteins were coordinated or associated with histone and DNA modification and the expression of the factors related to pluripotency. CSCs showed remarkable differences compared with ESCs and iPSCs.
Collapse
Affiliation(s)
- Vincenzo Giancotti
- Department of Life Science, University of Trieste, Trieste, Italy
- Trieste Proteine Ricerche, Palmanova, Udine, Italy
| | - Natascha Bergamin
- Division of Pathology, Azienda Ospedaliero-Universitaria, Udine, Italy
| | - Palmina Cataldi
- Division of Pathology, Azienda Ospedaliero-Universitaria, Udine, Italy
| | - Claudio Rizzi
- Division of Pathology, Azienda Ospedaliero-Universitaria, Udine, Italy
| |
Collapse
|
12
|
Eldabah N, Nembo EN, Penner M, Semmler J, Swelem R, Hassab A, Molcanyi M, Hescheler J, Nguemo F. Altered Functional Expression of β-Adrenergic Receptors in Rhesus Monkey Embryonic Stem Cell-Derived Cardiomyocytes. Stem Cells Dev 2018; 27:336-346. [PMID: 29233068 DOI: 10.1089/scd.2017.0053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Pluripotent stem cells have demonstrated the potential to generate large numbers of functional cardiomyocytes (CMs) from different cell sources. Besides Wnt signaling, additional pathways are involved in early cardiac development and function. To date however, no study exists showing the effects of perturbing the canonical Wnt pathway using nonhuman primate embryonic stem (ES) cells. In this study, we investigated the effect of canonical Wnt inhibition during differentiation of nonhuman primate ES cell-derived CMs under defined, growth factor conditions. Rhesus monkey ES (rES) cells were differentiated into spontaneously beating CMs in the absence (control) or presence (treated) of Wnt inhibitor Dickkopf1 (DKK1), vascular endothelial growth factor, and basic fibroblast growth factor combined or added in a sequential manner during differentiation. Quantification and functional characterization of CMs were assessed by molecular and electrophysiological techniques. Analysis revealed no difference in average ratio of spontaneously beating clusters in both control and treated groups. However, the percentage of CMs was significantly reduced and the expressions of specific cardiac markers tested were also decreased in the treated group. Interestingly, we found that in CMs obtained from treated group, β-adrenergic receptors (β-ARs) were less expressed, their function was altered and electrophysiological studies revealed differences in action potential responsiveness to β-AR stimulation. We demonstrated that the Wnt/β-catenin pathway inhibitor, DKK1 associated with other growth factors repressed functional expression of β-ARs in rES cell-derived CMs. Thus, control of this pathway in each cell line and source is important for proper basic research and further cell therapy applications.
Collapse
Affiliation(s)
- Nermeen Eldabah
- 1 Institute of Neurophysiology, University of Cologne , Cologne, Germany .,2 Department of Clinical and Chemical Pathology, Medical Faculty, University of Alexandria , Alexandria, Egypt
| | | | - Marina Penner
- 3 Clinic of Neurosurgery, Medical Faculty, University of Cologne , Cologne, Germany
| | - Judith Semmler
- 1 Institute of Neurophysiology, University of Cologne , Cologne, Germany
| | - Rania Swelem
- 2 Department of Clinical and Chemical Pathology, Medical Faculty, University of Alexandria , Alexandria, Egypt
| | - Amina Hassab
- 2 Department of Clinical and Chemical Pathology, Medical Faculty, University of Alexandria , Alexandria, Egypt
| | - Marek Molcanyi
- 1 Institute of Neurophysiology, University of Cologne , Cologne, Germany
| | - Jürgen Hescheler
- 1 Institute of Neurophysiology, University of Cologne , Cologne, Germany
| | - Filomain Nguemo
- 1 Institute of Neurophysiology, University of Cologne , Cologne, Germany
| |
Collapse
|
13
|
Vaqueiro AC, de Oliveira CP, Cordoba MS, Versiani BR, de Carvalho CX, Alves Rodrigues PG, de Oliveira SF, Mazzeu JF, Pic-Taylor A. Expanding the spectrum of TBL1XR1 deletion: Report of a patient with brain and cardiac malformations. Eur J Med Genet 2018; 61:29-33. [DOI: 10.1016/j.ejmg.2017.10.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 05/29/2017] [Accepted: 10/11/2017] [Indexed: 10/18/2022]
|
14
|
Siddique A, Yu B, Khan K, Buyting R, Al-Kindi H, Alaws H, Rhéaume E, Tardif JC, Cecere R, Schwertani A. Expression of the Frizzled receptors and their co-receptors in calcified human aortic valves. Can J Physiol Pharmacol 2017; 96:208-214. [PMID: 29244962 DOI: 10.1139/cjpp-2017-0577] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The cellular mechanisms that induce calcific aortic stenosis are yet to be unraveled. Wnt signaling is increasingly being considered as a major player in the disease process. However, the presence of Wnt Frizzled (Fzd) receptors and co-receptors LRP5 and 6 in normal and diseased human aortic valves remains to be elucidated. Immunohistochemistry and quantitative polymerase chain reaction were used to determine Fzd receptor expression in normal and calcified human aortic valve tissue, as well as human aortic valve interstitial cells (HAVICs) isolated from calcified and normal human aortic valves. There was significantly higher mRNA expression of 4 out of the 10 Fzd receptors in calcified aortic valve tissues and 8 out of the 10 in HAVICs, and both LRP5/6 co-receptors in calcified aortic valves (P < 0.05). These results were confirmed by immunohistochemistry, which revealed abundant increase in immunoreactivity for Fzd3, 7, and 8, mainly in areas of lipid core and calcified nodules of diseased aortic valves. The findings of abundant expression of Fzd and LRP5/6 receptors in diseased aortic valves suggests a potential role for both canonical and noncanonical Wnt signaling in the pathogenesis of human aortic valve calcification. Future investigations aimed at targeting these molecules may provide potential therapies for aortic valve stenosis.
Collapse
Affiliation(s)
- Ateeque Siddique
- a Cardiology, Cardiac Surgery and Pathology, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Bin Yu
- a Cardiology, Cardiac Surgery and Pathology, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Kashif Khan
- a Cardiology, Cardiac Surgery and Pathology, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Ryan Buyting
- a Cardiology, Cardiac Surgery and Pathology, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Hamood Al-Kindi
- a Cardiology, Cardiac Surgery and Pathology, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Hossny Alaws
- a Cardiology, Cardiac Surgery and Pathology, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Eric Rhéaume
- b Montreal Heart Institute, Montreal, QC H1T 1C8, Canada
| | | | - Renzo Cecere
- a Cardiology, Cardiac Surgery and Pathology, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Adel Schwertani
- a Cardiology, Cardiac Surgery and Pathology, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| |
Collapse
|
15
|
Fan J, Qiu L, Shu H, Ma B, Hagenmueller M, Riffel JH, Meryer S, Zhang M, Hardt SE, Wang L, Wang DW, Qiu H, Zhou N. Recombinant frizzled1 protein attenuated cardiac hypertrophy after myocardial infarction via the canonical Wnt signaling pathway. Oncotarget 2017; 9:3069-3080. [PMID: 29423029 PMCID: PMC5790446 DOI: 10.18632/oncotarget.23149] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 11/15/2017] [Indexed: 01/20/2023] Open
Abstract
Postinfarct cardiac hypertrophy is an independent risk factor for heart failure and sudden death. Regression of cardiac hypertrophy has emerged as a promising strategy in the treatment of myocardial infarction (MI). Here we hypothesized that frizzled1 (FZD1), a receptor of the canonical Wnt signaling pathway, is a novel mediator of ischemia-associated cardiac hypertrophy. MI was induced in mice by left anterior descending (LAD) coronary occlusion. One week after MI, the expression of FZD1 was found to be notably increased in the left ventricles (LVs) of the MI-mice compared to shams. Mouse recombinant FZD1 protein (RFP) was subcutaneously injected in the mice to provoke autoimmunization response. Anti-FZD1 antibody titer was significantly increased in the plasma of RFP-treated mice. RFP significantly mitigated the MI-induced cardiac hypertrophy and improved cardiac function in the MI mouse hearts. Moreover, increased heart and LV weights, myocardial size and the expression of β-myosin heavy chain in the MI-mice were also found to be attenuated by RFP. FZD1 was found to be significantly up-regulated in hypoxia-treated neonatal rat cardiomyocytes (NRCMs). Silencing FZD1 by siRNA transfection notably repressed the hypoxia-induced myocardial hypertrophy in NRCMs. Mechanistically, activation of canonical Wnt signaling induced by MI, e.g., β-catenin and glycogen synthase kinase-3β, was restrained in the LVs of the MI-mice treated by RFP, these inhibition on canonical Wnt signaling was further confirmed in hypoxic NRCMs transfected with FZD1 siRNA. In conclusion, immunization of RFP attenuated cardiac hypertrophy and improved cardiac function in the MI mice via blocking the canonical Wnt signaling pathway.
Collapse
Affiliation(s)
- Jingjing Fan
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China.,Department of Cardiology, University of Heidelberg, Heidelberg, Germany
| | - Lin Qiu
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Hongyang Shu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Ben Ma
- Division of Physiology, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | | | - Johannes H Riffel
- Department of Cardiology, University of Heidelberg, Heidelberg, Germany
| | - Soeren Meryer
- Department of Cardiology, University of Heidelberg, Heidelberg, Germany
| | - Min Zhang
- Department of Cardiology, University of Heidelberg, Heidelberg, Germany
| | - Stefan E Hardt
- Department of Cardiology, University of Heidelberg, Heidelberg, Germany
| | - Lin Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Dao Wen Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Hongyu Qiu
- Division of Physiology, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Ning Zhou
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| |
Collapse
|
16
|
Xiao Q, Chen Z, Jin X, Mao R, Chen Z. The many postures of noncanonical Wnt signaling in development and diseases. Biomed Pharmacother 2017. [PMID: 28651237 DOI: 10.1016/j.biopha.2017.06.061] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Wnt signaling regulates many aspects of vertebrate development. Its dysregulation causes developmental defects and diseases including cancer. The signaling can be categorized in two pathways: canonical and noncanonical. Canonical pathway plays a key role in regulating proliferation and differentiation of cells whilst noncanonical Wnt signaling mainly controls cellular polarity and motility. During development, noncanonical Wnt signaling is required for tissue formation. Recent studies have shown that noncanonical Wnt signaling is involved in adult tissue development and cancer progression. In this review, we try to describe and discuss the mechanisms behind the biological effects of noncanonical Wnt signaling, diseases caused by its dysregulation, and implications in adult tissue development biology.
Collapse
Affiliation(s)
- Qian Xiao
- Senior Research Scientist, Department of Pharmacology, School of Medicine, Yale University, New Haven, USA
| | - Zhengxi Chen
- PhD, Department of Orthodontics, Ninth People's Hospital, School of Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaozhuang Jin
- PhD, Faculty of Dentistry, The University of Hong Kong, Hong Kong
| | - Runyi Mao
- MDS student, Department of Oral and Maxillofacial Surgery, Ninth People's Hospital, School of Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhenqi Chen
- Professor, Department of Orthodontics, Ninth People's Hospital, School of Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
17
|
Albanese I, Yu B, Al-Kindi H, Barratt B, Ott L, Al-Refai M, de Varennes B, Shum-Tim D, Cerruti M, Gourgas O, Rhéaume E, Tardif JC, Schwertani A. Role of Noncanonical Wnt Signaling Pathway in Human Aortic Valve Calcification. Arterioscler Thromb Vasc Biol 2016; 37:543-552. [PMID: 27932350 DOI: 10.1161/atvbaha.116.308394] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 11/28/2016] [Indexed: 11/16/2022]
Abstract
OBJECTIVE The mechanisms underlying the pathogenesis of aortic valve calcification remain unclear. With accumulating evidence demonstrating that valve calcification recapitulates bone development, the crucial roles of noncanonical Wnt ligands WNT5a, WNT5b, and WNT11 in osteogenesis make them critical targets in the study of aortic valve calcification. APPROACH AND RESULTS Using immunohistochemistry, real-time qPCR, Western blotting, and tissue culture, we examined the tissue distribution of WNT5a, WNT5b, and WNT11 in noncalcified and calcified aortic valves and their effects on human aortic valve interstitial cells (HAVICs). Only focal strong immunostaining for WNT5a was seen in and around areas of calcification. Abundant immunostaining for WNT5b and WNT11 was seen in inflammatory cells, fibrosis, and activated myofibroblasts in areas of calcified foci. There was significant correlation between WNT5b and WNT11 overall staining and presence of calcification, lipid score, fibrosis, and microvessels (P<0.05). Real-time qPCR and Western blotting revealed abundant expression of both Wnts in stenotic aortic valves, particularly in bicuspid valves. Incubation of HAVICs from noncalcified valves with the 3 noncanonical Wnts significantly increased cell apoptosis and calcification (P<0.05). Treatment of HAVICs with the mitogen-activated protein kinase-38β and GSK3β inhibitors significantly reduced their mineralization (P<0.01). Raman spectroscopy identified the inorganic phosphate deposits as hydroxyapatite and showed a significant increase in hydroxyapatite deposition in HAVICs in response to WNT5a and WNT11 (P<0.05). Similar crystallinity was seen in the deposits found in HAVICs treated with Wnts and in calcified human aortic valves. CONCLUSIONS These findings suggest a potential role for noncanonical Wnt signaling in the pathogenesis of aortic valve calcification.
Collapse
Affiliation(s)
- Isabella Albanese
- From the Division of Cardiology and Division of Cardiac Surgery, McGill University Health Centre, Montreal, Quebec, Canada (I.A., B.Y., H.A.-K., B.B., L.O., M.A.-R., B.d.V., D.S.-T., A.S.); Department of Material Engineering, McGill University, Montreal, Quebec, Canada (M.C., O.G.); and Montreal Heart Institute, Université de Montréal, Montreal, Quebec, Canada (E.R., J.C.T.)
| | - Bin Yu
- From the Division of Cardiology and Division of Cardiac Surgery, McGill University Health Centre, Montreal, Quebec, Canada (I.A., B.Y., H.A.-K., B.B., L.O., M.A.-R., B.d.V., D.S.-T., A.S.); Department of Material Engineering, McGill University, Montreal, Quebec, Canada (M.C., O.G.); and Montreal Heart Institute, Université de Montréal, Montreal, Quebec, Canada (E.R., J.C.T.)
| | - Hamood Al-Kindi
- From the Division of Cardiology and Division of Cardiac Surgery, McGill University Health Centre, Montreal, Quebec, Canada (I.A., B.Y., H.A.-K., B.B., L.O., M.A.-R., B.d.V., D.S.-T., A.S.); Department of Material Engineering, McGill University, Montreal, Quebec, Canada (M.C., O.G.); and Montreal Heart Institute, Université de Montréal, Montreal, Quebec, Canada (E.R., J.C.T.)
| | - Bianca Barratt
- From the Division of Cardiology and Division of Cardiac Surgery, McGill University Health Centre, Montreal, Quebec, Canada (I.A., B.Y., H.A.-K., B.B., L.O., M.A.-R., B.d.V., D.S.-T., A.S.); Department of Material Engineering, McGill University, Montreal, Quebec, Canada (M.C., O.G.); and Montreal Heart Institute, Université de Montréal, Montreal, Quebec, Canada (E.R., J.C.T.)
| | - Leah Ott
- From the Division of Cardiology and Division of Cardiac Surgery, McGill University Health Centre, Montreal, Quebec, Canada (I.A., B.Y., H.A.-K., B.B., L.O., M.A.-R., B.d.V., D.S.-T., A.S.); Department of Material Engineering, McGill University, Montreal, Quebec, Canada (M.C., O.G.); and Montreal Heart Institute, Université de Montréal, Montreal, Quebec, Canada (E.R., J.C.T.)
| | - Mohammad Al-Refai
- From the Division of Cardiology and Division of Cardiac Surgery, McGill University Health Centre, Montreal, Quebec, Canada (I.A., B.Y., H.A.-K., B.B., L.O., M.A.-R., B.d.V., D.S.-T., A.S.); Department of Material Engineering, McGill University, Montreal, Quebec, Canada (M.C., O.G.); and Montreal Heart Institute, Université de Montréal, Montreal, Quebec, Canada (E.R., J.C.T.)
| | - Benoit de Varennes
- From the Division of Cardiology and Division of Cardiac Surgery, McGill University Health Centre, Montreal, Quebec, Canada (I.A., B.Y., H.A.-K., B.B., L.O., M.A.-R., B.d.V., D.S.-T., A.S.); Department of Material Engineering, McGill University, Montreal, Quebec, Canada (M.C., O.G.); and Montreal Heart Institute, Université de Montréal, Montreal, Quebec, Canada (E.R., J.C.T.)
| | - Dominique Shum-Tim
- From the Division of Cardiology and Division of Cardiac Surgery, McGill University Health Centre, Montreal, Quebec, Canada (I.A., B.Y., H.A.-K., B.B., L.O., M.A.-R., B.d.V., D.S.-T., A.S.); Department of Material Engineering, McGill University, Montreal, Quebec, Canada (M.C., O.G.); and Montreal Heart Institute, Université de Montréal, Montreal, Quebec, Canada (E.R., J.C.T.)
| | - Marta Cerruti
- From the Division of Cardiology and Division of Cardiac Surgery, McGill University Health Centre, Montreal, Quebec, Canada (I.A., B.Y., H.A.-K., B.B., L.O., M.A.-R., B.d.V., D.S.-T., A.S.); Department of Material Engineering, McGill University, Montreal, Quebec, Canada (M.C., O.G.); and Montreal Heart Institute, Université de Montréal, Montreal, Quebec, Canada (E.R., J.C.T.)
| | - Ophélie Gourgas
- From the Division of Cardiology and Division of Cardiac Surgery, McGill University Health Centre, Montreal, Quebec, Canada (I.A., B.Y., H.A.-K., B.B., L.O., M.A.-R., B.d.V., D.S.-T., A.S.); Department of Material Engineering, McGill University, Montreal, Quebec, Canada (M.C., O.G.); and Montreal Heart Institute, Université de Montréal, Montreal, Quebec, Canada (E.R., J.C.T.)
| | - Eric Rhéaume
- From the Division of Cardiology and Division of Cardiac Surgery, McGill University Health Centre, Montreal, Quebec, Canada (I.A., B.Y., H.A.-K., B.B., L.O., M.A.-R., B.d.V., D.S.-T., A.S.); Department of Material Engineering, McGill University, Montreal, Quebec, Canada (M.C., O.G.); and Montreal Heart Institute, Université de Montréal, Montreal, Quebec, Canada (E.R., J.C.T.)
| | - Jean-Claude Tardif
- From the Division of Cardiology and Division of Cardiac Surgery, McGill University Health Centre, Montreal, Quebec, Canada (I.A., B.Y., H.A.-K., B.B., L.O., M.A.-R., B.d.V., D.S.-T., A.S.); Department of Material Engineering, McGill University, Montreal, Quebec, Canada (M.C., O.G.); and Montreal Heart Institute, Université de Montréal, Montreal, Quebec, Canada (E.R., J.C.T.)
| | - Adel Schwertani
- From the Division of Cardiology and Division of Cardiac Surgery, McGill University Health Centre, Montreal, Quebec, Canada (I.A., B.Y., H.A.-K., B.B., L.O., M.A.-R., B.d.V., D.S.-T., A.S.); Department of Material Engineering, McGill University, Montreal, Quebec, Canada (M.C., O.G.); and Montreal Heart Institute, Université de Montréal, Montreal, Quebec, Canada (E.R., J.C.T.).
| |
Collapse
|
18
|
Tao H, Yang JJ, Shi KH, Li J. Wnt signaling pathway in cardiac fibrosis: New insights and directions. Metabolism 2016; 65:30-40. [PMID: 26773927 DOI: 10.1016/j.metabol.2015.10.013] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 09/19/2015] [Accepted: 10/01/2015] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Wnt signaling pathway significantly participates in cardiac fibrosis and CFs activation. Therefore, we reviewed current evidence on the new perspectives and biological association between Wnt signaling pathway and cardiac fibrosis. DESIGN AND METHODS A PubMed database search was performed for studies of Wnt signaling pathway in cardiac fibrosis and CFs activation. RESULTS Numerous studies have shown that the Wnt signaling pathway significantly participates in cardiac fibrosis pathogenesis. The aim of this review is to describe the present knowledge about the Wnt signaling pathway significantly participating in cardiac fibrosis and CFs activation, and look ahead on new perspectives of Wnt signaling pathway research. Moreover, we will discuss the different insights that interact with the Wnt signaling pathway-regulated cardiac fibrosis. The Wnt proteins are glycoproteins that bind to the Fz receptors on the cell surface, which lead to several important biological functions, such as cell differentiation and proliferation. There are several signals among the characterized pathways of cardiac fibrosis, including Wnt/β-catenin signaling. In this review, new insight into the Wnt signaling pathway in cardiac fibrosis pathogenesis is discussed, with special emphasis on Wnt/β-catenin. CONCLUSION It seems reasonable to suggest the potential targets of Wnt signaling pathway and it can be developed as a therapeutic target for cardiac fibrosis.
Collapse
Affiliation(s)
- Hui Tao
- Department of Cardiothoracic Surgery, The Second Hospital of Anhui Medical University, Hefei, China 230601; Cardiovascular Research Center, Anhui Medical University, Hefei, China 230601
| | - Jing-Jing Yang
- Department of Pharmacology, The Second Hospital of Anhui Medical University, Hefei, China 230601.
| | - Kai-Hu Shi
- Department of Cardiothoracic Surgery, The Second Hospital of Anhui Medical University, Hefei, China 230601; Cardiovascular Research Center, Anhui Medical University, Hefei, China 230601.
| | - Jun Li
- School of pharmacy, Anhui Medical University, Hefei, China 230032
| |
Collapse
|
19
|
Kokkinopoulos I, Ishida H, Saba R, Coppen S, Suzuki K, Yashiro K. Cardiomyocyte differentiation from mouse embryonic stem cells using a simple and defined protocol. Dev Dyn 2015; 245:157-65. [DOI: 10.1002/dvdy.24366] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 10/27/2015] [Accepted: 10/27/2015] [Indexed: 12/12/2022] Open
Affiliation(s)
- Ioannis Kokkinopoulos
- Translational Medicine and Therapeutics, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square; London United Kingdom
| | - Hidekazu Ishida
- Translational Medicine and Therapeutics, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square; London United Kingdom
| | - Rie Saba
- Translational Medicine and Therapeutics, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square; London United Kingdom
| | - Steven Coppen
- Translational Medicine and Therapeutics, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square; London United Kingdom
| | - Ken Suzuki
- Translational Medicine and Therapeutics, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square; London United Kingdom
| | - Kenta Yashiro
- Translational Medicine and Therapeutics, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square; London United Kingdom
| |
Collapse
|
20
|
Kim IM, Norris KC, Artaza JN. Vitamin D and Cardiac Differentiation. VITAMINS AND HORMONES 2015; 100:299-320. [PMID: 26827957 DOI: 10.1016/bs.vh.2015.10.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Calcitriol (1,25-dihydroxycholecalciferol or 1,25-D3) is the hormonally active metabolite of vitamin D. Experimental studies of vitamin D receptors and 1,25-D3 establish calcitriol to be a critical regulator of the structure and function of the heart. Clinical studies link vitamin D deficiency with cardiovascular disease (CVD). Emerging evidence demonstrates that calcitriol is highly involved in CVD-related signaling pathways, particularly the Wnt signaling pathway. Addition of 1,25-D3 to cardiomyocyte cells and examination of its effects on cardiomyocytes and mainly Wnt11 signaling allowed the specific characterization of the role of calcitriol in cardiac differentiation. 1,25-D3 is demonstrated to: (i) inhibit cell proliferation without promoting apoptosis; (ii) decrease expression of genes related to the regulation of the cell cycle; (iii) promote formation of cardiomyotubes; (iv) induce expression of casein kinase-1-α1, a negative regulator of the canonical Wnt signaling pathway; and (v) increase expression of noncanonical Wnt11, which has been recognized to induce cardiac differentiation during embryonic development and in adult cells. Thus, it appears that vitamin D promotes cardiac differentiation through negative modulation of the canonical Wnt signaling pathway and upregulation of noncanonical Wnt11 expression. Future work to elucidate the role(s) of vitamin D in cardiovascular disorders will hopefully lead to improvement and potentially prevention of CVD, including abnormal cardiac differentiation in settings such as postinfarction cardiac remodeling.
Collapse
Affiliation(s)
- Irene M Kim
- Department of Health & Life Sciences, Charles R. Drew University of Medicine and Science, Los Angeles, California, USA
| | - Keith C Norris
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Jorge N Artaza
- Department of Health & Life Sciences, Charles R. Drew University of Medicine and Science, Los Angeles, California, USA; Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA.
| |
Collapse
|
21
|
Pahnke A, Conant G, Huyer LD, Zhao Y, Feric N, Radisic M. The role of Wnt regulation in heart development, cardiac repair and disease: A tissue engineering perspective. Biochem Biophys Res Commun 2015; 473:698-703. [PMID: 26626076 DOI: 10.1016/j.bbrc.2015.11.060] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 11/14/2015] [Indexed: 01/08/2023]
Abstract
Wingless-related integration site (Wnt) signaling has proven to be a fundamental mechanism in cardiovascular development as well as disease. Understanding its particular role in heart formation has helped to develop pluripotent stem cell differentiation protocols that produce relatively pure cardiomyocyte populations. The resultant cardiomyocytes have been used to generate heart tissue for pharmaceutical testing, and to study physiological and disease states. Such protocols in combination with induced pluripotent stem cell technology have yielded patient-derived cardiomyocytes that exhibit some of the hallmarks of cardiovascular disease and are therefore being used to model disease states. While FDA approval of new treatments typically requires animal experiments, the burgeoning field of tissue engineering could act as a replacement. This would necessitate the generation of reproducible three-dimensional cardiac tissues in a well-controlled environment, which exhibit native heart properties, such as cellular density, composition, extracellular matrix composition, and structure-function. Such tissues could also enable the further study of Wnt signaling. Furthermore, as Wnt signaling has been found to have a mechanistic role in cardiac pathophysiology, e.g. heart attack, hypertrophy, atherosclerosis, and aortic stenosis, its strategic manipulation could provide a means of generating reproducible and specific, physiological and pathological cardiac models.
Collapse
Affiliation(s)
- Aric Pahnke
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Genna Conant
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Locke Davenport Huyer
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Yimu Zhao
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
| | - Nicole Feric
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Milica Radisic
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
22
|
Gude N, Joyo E, Toko H, Quijada P, Villanueva M, Hariharan N, Sacchi V, Truffa S, Joyo A, Voelkers M, Alvarez R, Sussman MA. Notch activation enhances lineage commitment and protective signaling in cardiac progenitor cells. Basic Res Cardiol 2015; 110:29. [PMID: 25893875 DOI: 10.1007/s00395-015-0488-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 03/04/2015] [Accepted: 04/14/2015] [Indexed: 12/12/2022]
Abstract
Phase I clinical trials applying autologous progenitor cells to treat heart failure have yielded promising results; however, improvement in function is modest, indicating a need to enhance cardiac stem cell reparative capacity. Notch signaling plays a crucial role in cardiac development, guiding cell fate decisions that underlie myocyte and vessel differentiation. The Notch pathway is retained in the adult cardiac stem cell niche, where level and duration of Notch signal influence proliferation and differentiation of cardiac progenitors. In this study, Notch signaling promotes growth, survival and differentiation of cardiac progenitor cells into smooth muscle lineages in vitro. Cardiac progenitor cells expressing tamoxifen-regulated intracellular Notch1 (CPCeK) are significantly larger and proliferate more slowly than control cells, exhibit elevated mTORC1 and Akt signaling, and are resistant to oxidative stress. Vascular smooth muscle and cardiomyocyte markers increase in CPCeK and are augmented further upon ligand-mediated induction of Notch signal. Paracrine signals indicative of growth, survival and differentiation increase with Notch activity, while markers of senescence are decreased. Adoptive transfer of CPCeK into infarcted mouse myocardium enhances preservation of cardiac function and reduces infarct size relative to hearts receiving control cells. Greater capillary density and proportion of vascular smooth muscle tissue in CPCeK-treated hearts indicate improved vascularization. Finally, we report a previously undescribed signaling mechanism whereby Notch activation stimulates CPC growth, survival and differentiation via mTORC1 and paracrine factor expression. Taken together, these findings suggest that regulated Notch activation potentiates the reparative capacity of CPCs in the treatment of cardiac disease.
Collapse
Affiliation(s)
- Natalie Gude
- Heart Institute, and Biology Department, SDSU Integrated Regenerative Research Institute, Life Sciences North, Room 426, 5500 Campanile Drive, San Diego, CA, 92182, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Hlaing SM, Garcia LA, Contreras JR, Norris KC, Ferrini MG, Artaza JN. 1,25-Vitamin D3 promotes cardiac differentiation through modulation of the WNT signaling pathway. J Mol Endocrinol 2014; 53:303-17. [PMID: 25139490 PMCID: PMC4198487 DOI: 10.1530/jme-14-0168] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cardiovascular disease (CVD) remains the leading cause of death worldwide. Low levels of vitamin D are associated with high risk of myocardial infarction, even after controlling for factors associated with coronary artery disease. A growing body of evidence indicates that vitamin D plays an important role in CVD-related signaling pathways. However, little is known about the molecular mechanism by which vitamin D modulates heart development. The WNT signaling pathway plays a pivotal role in tissue development by controlling stem cell renewal, lineage selection and, even more importantly, heart development. In this study, we examined the role of 1,25-D3 (the active form of vitamin D) on cardiomyocyte proliferation, apoptosis, cell phenotype, cell cycle progression and differentiation into cardiomyotubes. We determined that the addition of 1,25-D3 to cardiomyocytes cells: i) inhibits cell proliferation without promoting apoptosis; ii) decreases expression of genes related to the regulation of the cell cycle; iii) promotes formation of cardiomyotubes; iv) induces the expression of casein kinase-1-α1, a negative regulator of the canonical WNT signaling pathway; and v) increases the expression of the noncanonical WNT11, which it has been demonstrated to induce cardiac differentiation during embryonic development and in adult cells. In conclusion, we postulate that vitamin D promotes cardiac differentiation through a negative modulation of the canonical WNT signaling pathway and by upregulating the expression of WNT11. These results indicate that vitamin D repletion to prevent and/or improve cardiovascular disorders that are linked with abnormal cardiac differentiation, such as post infarction cardiac remodeling, deserve further study.
Collapse
Affiliation(s)
- Su M Hlaing
- Departments of Internal MedicineHealth and Life SciencesDivision of EndocrinologyMetabolism and Molecular Medicine, Charles R. Drew University of Medicine and Science, 1731 East 120th Street, Los Angeles, California 90059, USADepartment of MedicineDavid Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA
| | - Leah A Garcia
- Departments of Internal MedicineHealth and Life SciencesDivision of EndocrinologyMetabolism and Molecular Medicine, Charles R. Drew University of Medicine and Science, 1731 East 120th Street, Los Angeles, California 90059, USADepartment of MedicineDavid Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA
| | - Jaime R Contreras
- Departments of Internal MedicineHealth and Life SciencesDivision of EndocrinologyMetabolism and Molecular Medicine, Charles R. Drew University of Medicine and Science, 1731 East 120th Street, Los Angeles, California 90059, USADepartment of MedicineDavid Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA
| | - Keith C Norris
- Departments of Internal MedicineHealth and Life SciencesDivision of EndocrinologyMetabolism and Molecular Medicine, Charles R. Drew University of Medicine and Science, 1731 East 120th Street, Los Angeles, California 90059, USADepartment of MedicineDavid Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA
| | - Monica G Ferrini
- Departments of Internal MedicineHealth and Life SciencesDivision of EndocrinologyMetabolism and Molecular Medicine, Charles R. Drew University of Medicine and Science, 1731 East 120th Street, Los Angeles, California 90059, USADepartment of MedicineDavid Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA Departments of Internal MedicineHealth and Life SciencesDivision of EndocrinologyMetabolism and Molecular Medicine, Charles R. Drew University of Medicine and Science, 1731 East 120th Street, Los Angeles, California 90059, USADepartment of MedicineDavid Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA Departments of Internal MedicineHealth and Life SciencesDivision of EndocrinologyMetabolism and Molecular Medicine, Charles R. Drew University of Medicine and Science, 1731 East 120th Street, Los Angeles, California 90059, USADepartment of MedicineDavid Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA
| | - Jorge N Artaza
- Departments of Internal MedicineHealth and Life SciencesDivision of EndocrinologyMetabolism and Molecular Medicine, Charles R. Drew University of Medicine and Science, 1731 East 120th Street, Los Angeles, California 90059, USADepartment of MedicineDavid Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA Departments of Internal MedicineHealth and Life SciencesDivision of EndocrinologyMetabolism and Molecular Medicine, Charles R. Drew University of Medicine and Science, 1731 East 120th Street, Los Angeles, California 90059, USADepartment of MedicineDavid Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA Departments of Internal MedicineHealth and Life SciencesDivision of EndocrinologyMetabolism and Molecular Medicine, Charles R. Drew University of Medicine and Science, 1731 East 120th Street, Los Angeles, California 90059, USADepartment of MedicineDavid Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA Departments of Internal MedicineHealth and Life SciencesDivision of EndocrinologyMetabolism and Molecular Medicine, Charles R. Drew University of Medicine and Science, 1731 East 120th Street, Los Angeles, California 90059, USADepartment of MedicineDavid Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA
| |
Collapse
|
24
|
Pagliari S, Jelinek J, Grassi G, Forte G. Targeting pleiotropic signaling pathways to control adult cardiac stem cell fate and function. Front Physiol 2014; 5:219. [PMID: 25071583 PMCID: PMC4076671 DOI: 10.3389/fphys.2014.00219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 05/26/2014] [Indexed: 11/13/2022] Open
Abstract
The identification of different pools of cardiac progenitor cells resident in the adult mammalian heart opened a new era in heart regeneration as a means to restore the loss of functional cardiac tissue and overcome the limited availability of donor organs. Indeed, resident stem cells are believed to participate to tissue homeostasis and renewal in healthy and damaged myocardium although their actual contribution to these processes remain unclear. The poor outcome in terms of cardiac regeneration following tissue damage point out at the need for a deeper understanding of the molecular mechanisms controlling CPC behavior and fate determination before new therapeutic strategies can be developed. The regulation of cardiac resident stem cell fate and function is likely to result from the interplay between pleiotropic signaling pathways as well as tissue- and cell-specific regulators. Such a modular interaction—which has already been described in the nucleus of a number of different cells where transcriptional complexes form to activate specific gene programs—would account for the unique responses of cardiac progenitors to general and tissue-specific stimuli. The study of the molecular determinants involved in cardiac stem/progenitor cell regulatory mechanisms may shed light on the processes of cardiac homeostasis in health and disease and thus provide clues on the actual feasibility of cardiac cell therapy through tissue-specific progenitors.
Collapse
Affiliation(s)
- Stefania Pagliari
- Integrated Center for Cell Therapy and Regenerative Medicine (ICCT), International Clinical Research Center, St. Anne's University Hospital Brno, Czech Republic
| | - Jakub Jelinek
- Integrated Center for Cell Therapy and Regenerative Medicine (ICCT), International Clinical Research Center, St. Anne's University Hospital Brno, Czech Republic
| | - Gabriele Grassi
- Department of Life Sciences, University of Trieste Trieste, Italy
| | - Giancarlo Forte
- Integrated Center for Cell Therapy and Regenerative Medicine (ICCT), International Clinical Research Center, St. Anne's University Hospital Brno, Czech Republic
| |
Collapse
|
25
|
Lee SY, Lim TG, Chen H, Jung SK, Lee HJ, Lee MH, Kim DJ, Shin A, Lee KW, Bode AM, Surh YJ, Dong Z. Esculetin suppresses proliferation of human colon cancer cells by directly targeting β-catenin. Cancer Prev Res (Phila) 2013; 6:1356-64. [PMID: 24104353 DOI: 10.1158/1940-6207.capr-13-0241] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The Wnt pathway is a promising therapeutic and preventive target in various human cancers. The transcriptional complex of β-catenin-T-cell factor (Tcf), a key mediator of canonical Wnt signaling, has been implicated in human colon cancer development. Current treatment of colon cancer depends on traditional cytotoxic agents with limited effects. Therefore, the identification of natural compounds that can disrupt the β-catenin-TcF complex to suppress cancer cell growth with fewer adverse side effects is needed. To identify compounds that inhibit the association between β-catenin and Tcf, we used computer docking to screen a natural compound library. Esculetin, also known as 6,7-dihydroxycoumarin, is a derivative of coumarin and was identified as a potential small-molecule inhibitor of the Wnt-β-catenin pathway. We then evaluated the effect of esculetin on the growth of various human colon cancer cell lines and its effect on Wnt-β-catenin signaling in cells and in an embryonic model. Esculetin disrupted the formation of the β-catenin-Tcf complex through direct binding with the Lys312, Gly307, Lys345, and Asn387 residues of β-catenin in colon cancer cells. In addition, esculetin effectively decreased viability and inhibited anchorage-independent growth of colon cancer cells. Esculetin potently antagonized the cellular effects of β-catenin-dependent activity, and in vivo treatment with esculetin suppressed tumor growth in a colon cancer xenograft mouse model. Our data indicate that the interaction between esculetin and β-catenin inhibits the formation of the β-catenin-Tcf complex, which could contribute to esculetin's positive therapeutic and preventive effects against colon carcinogenesis.
Collapse
Affiliation(s)
- Sung-Young Lee
- The Hormel Institute, University of Minnesota, 801 16th Ave NE, Austin, MN 55912.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
JEONG JAEKYO, PARK SANGYOUEL. HIF-1α-induced β-catenin activation prevents prion-mediated neurotoxicity. Int J Mol Med 2013; 32:931-7. [DOI: 10.3892/ijmm.2013.1457] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 07/24/2013] [Indexed: 11/06/2022] Open
|
27
|
Zhao L, Shim JW, Dodge TR, Robling AG, Yokota H. Inactivation of Lrp5 in osteocytes reduces young's modulus and responsiveness to the mechanical loading. Bone 2013; 54:35-43. [PMID: 23356985 PMCID: PMC3602226 DOI: 10.1016/j.bone.2013.01.033] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 01/15/2013] [Accepted: 01/18/2013] [Indexed: 01/08/2023]
Abstract
Low-density-lipoprotein receptor-related protein 5 (Lrp5) is a co-receptor in Wnt signaling, which plays a critical role in development and maintenance of bone. Osteoporosis-pseudoglioma syndrome, for instance, arises from loss-of-function mutations in Lrp5, and global deletion of Lrp5 in mice results in significantly lower bone mineral density. Since osteocytes are proposed to act as a mechanosensor in the bone, we addressed a question whether a conditional loss-of-function mutation of Lrp5 selective to osteocytes (Dmp1-Cre;Lrp5(f/f)) would alter responses to ulna loading. Loading was applied to the right ulna for 3 min (360 cycles at 2Hz) at a peak force of 2.65 N for 3 consecutive days, and the contralateral ulna was used as a non-loaded control. Young's modulus was determined using a midshaft section of the femur. The results showed that compared to age-matched littermate controls, mice lacking Lrp5 in osteocytes exhibited smaller skeletal size with reduced bone mineral density and content. Compared to controls, Lrp5 deletion in osteocytes also led to a 4.6-fold reduction in Young's modulus. In response to ulna loading, mineralizing surface, mineral apposition rate, and bone formation rate were diminished in mice lacking Lrp5 in osteocytes by 52%, 85%, and 69%, respectively. Collectively, the results support the notion that the loss-of-function mutation of Lrp5 in osteocytes causes suppression of mechanoresponsiveness and reduces bone mass and Young's modulus. In summary, Lrp5-mediated Wnt signaling significantly contributes to maintenance of mechanical properties and bone mass.
Collapse
Affiliation(s)
- Liming Zhao
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, IN 46202, USA
| | - Joon W. Shim
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, IN 46202, USA
| | - Todd R. Dodge
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, IN 46202, USA
| | - Alexander G. Robling
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, IN 46202, USA
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Hiroki Yokota
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, IN 46202, USA
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
28
|
Miao CG, Yang YY, He X, Li XF, Huang C, Huang Y, Zhang L, Lv XW, Jin Y, Li J. Wnt signaling pathway in rheumatoid arthritis, with special emphasis on the different roles in synovial inflammation and bone remodeling. Cell Signal 2013; 25:2069-78. [PMID: 23602936 DOI: 10.1016/j.cellsig.2013.04.002] [Citation(s) in RCA: 145] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 03/30/2013] [Accepted: 04/02/2013] [Indexed: 12/17/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic symmetrical autoimmune disease of unknown etiology that affects primarily the diarthrodial joints. Characteristic features of RA pathogenesis are synovial inflammation and proliferation accompanied by cartilage erosion and bone loss. Fibroblast-like synoviocytes (FLS) display an important role in the pathogenesis of RA. Several lines of evidence show that the Wnt signaling pathway significantly participates in the RA pathogenesis. The Wnt proteins are glycoproteins that bind to the Fz receptors on the cell surface, which leads to several important biological functions, such as cell differentiation, embryonic development, limb development and joint formation. Accumulated evidence has suggested that this signaling pathway plays a key role in the FLS activation, bone resorption and joint destruction during RA development. Greater knowledge of the role of the Wnt signaling pathway in RA could improve understanding of the RA pathogenesis and the differences in RA clinical presentation and prognosis. In this review, new advances of the Wnt signaling pathway in RA pathogenesis are discussed, with special emphasis on its different roles in synovial inflammation and bone remodeling. Further studies are needed to reveal the important role of the members of the Wnt signaling pathway in the RA pathogenesis and treatment.
Collapse
Affiliation(s)
- Cheng-gui Miao
- School of Pharmacy, Institute for Liver Diseases of Anhui Medical University, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei 230032, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Jin G, Mizutani A, Fukuda T, Otani T, Yan T, Prieto Vila M, Murakami H, Kudoh T, Hirohata S, Kasai T, Salomon DS, Seno M. Eosinophil cationic protein enhances stabilization of β-catenin during cardiomyocyte differentiation in P19CL6 embryonal carcinoma cells. Mol Biol Rep 2012; 40:3165-71. [PMID: 23271121 DOI: 10.1007/s11033-012-2390-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Accepted: 12/17/2012] [Indexed: 01/26/2023]
Abstract
Prior to gastrulation, the Wnt signaling pathway through stabilized β-catenin enhances the differentiation of mouse ES cell into cardiomyocytes. We have recently shown that cardiomyocyte differentiation is enhanced by eosinophil cationic protein (ECP) through accelerated expression of marker genes of early cardiac differentiation. Furthermore, ECP enhanced the expression of Wnt3a in P19CL6 cells which were stimulated to differentiate into cardiomyocytes by DMSO. Following these findings, we evaluated in this study the potential of ECP to activate the Wnt/β-catenin signaling pathway during cardiomyocyte differentiation. Analysis by real time qPCR revealed that ECP increased the expression of Frizzled genes such as Frizzled-1, -2, -4 and -10 in P19CL6 cells in the presence of DMSO. The increased expression of those Wnt receptors was found to inhibit the phosphorylation of β-catenin resulting in the stabilization and translocation of β-catenin into the nucleus of P19CL6 cells during the early stages of cardiomyocyte differentiation. When assessed for β-catenin/TCF transcriptional activity with a TCF-luciferase (TOP/FOP) assay, ECP enhanced luciferase activity in P19CL6 cells during 48 h after transfection with TOP/FOP flash reporter in a stoichiometric manner. Collectively, this suggests that ECP can activate a canonical Wnt/β-catenin signaling pathway by enhancing the stabilization of β-catenin during cardiomyocyte differentiation.
Collapse
Affiliation(s)
- Guoliang Jin
- Laboratory of Nano-Biotechnology, Department of Chemistry and Biotechnology, Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|