1
|
Yacoubi I, Gadaleta A, Mathlouthi N, Hamdi K, Giancaspro A. Abscisic Acid-Stress-Ripening Genes Involved in Plant Response to High Salinity and Water Deficit in Durum and Common Wheat. FRONTIERS IN PLANT SCIENCE 2022; 13:789701. [PMID: 35283900 PMCID: PMC8905601 DOI: 10.3389/fpls.2022.789701] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/17/2022] [Indexed: 05/17/2023]
Abstract
In the dry and hot Mediterranean regions wheat is greatly susceptible to several abiotic stresses such as extreme temperatures, drought, and salinity, causing plant growth to decrease together with severe yield and quality losses. Thus, the identification of gene sequences involved in plant adaptation to such stresses is crucial for the optimization of molecular tools aimed at genetic selection and development of stress-tolerant varieties. Abscisic acid, stress, ripening-induced (ASR) genes act in the protection mechanism against high salinity and water deficit in several plant species. In a previous study, we isolated for the first time the TtASR1 gene from the 4A chromosome of durum wheat in a salt-tolerant Tunisian landrace and assessed its involvement in plant response to some developmental and environmental signals in several organs. In this work, we focused attention on ASR genes located on the homoeologous chromosome group 4 and used for the first time a Real-Time approach to "in planta" to evaluate the role of such genes in modulating wheat adaptation to salinity and drought. Gene expression modulation was evaluated under the influence of different variables - kind of stress, ploidy level, susceptibility, plant tissue, time post-stress application, gene chromosome location. ASR response to abiotic stresses was found only slightly affected by ploidy level or chromosomal location, as durum and common wheat exhibited a similar gene expression profile in response to salt increase and water deficiency. On the contrary, gene activity was more influenced by other variables such as plant tissue (expression levels were higher in roots than in leaves), kind of stress [NaCl was more affecting than polyethylene glycol (PEG)], and genotype (transcripts accumulated differentially in susceptible or tolerant genotypes). Based on such experimental evidence, we confirmed Abscisic acid, stress, ripening-induced genes involvement in plant response to high salinity and drought and suggested the quantification of gene expression variation after long salt exposure (72 h) as a reliable parameter to discriminate between salt-tolerant and salt-susceptible genotypes in both Triticum aestivum and Triticum durum.
Collapse
Affiliation(s)
- Ines Yacoubi
- Laboratoire de Biotechnologie et Amélioration des Plantes, Centre de Biotechnologie de Sfax, Sfax, Tunisia
| | - Agata Gadaleta
- Department of Agricultural and Environmental Sciences (DiSAAT), University of Bari Aldo Moro, Bari, Italy
| | - Nourhen Mathlouthi
- Laboratoire de Biotechnologie et Amélioration des Plantes, Centre de Biotechnologie de Sfax, Sfax, Tunisia
| | - Karama Hamdi
- Laboratoire de Biotechnologie et Amélioration des Plantes, Centre de Biotechnologie de Sfax, Sfax, Tunisia
| | - Angelica Giancaspro
- Department of Agricultural and Environmental Sciences (DiSAAT), University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
2
|
Chen J, Su P, Chen P, Li Q, Yuan X, Liu Z. Insights into the cotton anther development through association analysis of transcriptomic and small RNA sequencing. BMC PLANT BIOLOGY 2018; 18:154. [PMID: 30075747 PMCID: PMC6091077 DOI: 10.1186/s12870-018-1376-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 07/30/2018] [Indexed: 05/10/2023]
Abstract
BACKGROUND Plant anther development is a systematic and complex process precisely controlled by genes. Regulation genes and their regulatory mechanisms for this process remain elusive. In contrast to numerous researches on anther development with respect to mRNAs or miRNAs in many crops, the association analysis combining both omics has not been reported on cotton anther. RESULTS In this study, the molecular mechanism of cotton anther development was investigated with the employment of association analysis of transcriptome and small RNA sequencing during the predefined four stages of cotton anther development, sporogenuous cell proliferation (SCP), meiotic phase (MP), microspore release period (MRP) and pollen maturity (PM). Analysis revealed that the differentially expressed genes are increasingly recruited along with the developmental progress. Expression of functional genes differed significantly among developmental stages. The genes related with cell cycle, progesterone-mediated oocyte maturation, and meiosis are predominantly expressed at the early stage of anther development (SCP and MP), and the expression of genes involved in energy metabolism, flavonoid biosynthesis, axon guidance and phospholipase D signaling pathways is mainly enriched at the late stage of anther development (MRP and PM). Analysis of expression patterns revealed that there was the largest number of differentially expressed genes in the MP and the expression profiles of differentially expressed genes were significantly increased, which implied the importance of MP in the entire anther development cycle. In addition, prediction and analysis of miRNA targeted genes suggested that miRNAs play important roles in anther development. The miRNAs ghr-miR393, Dt_chr12_6065 and At_chr9_3080 participated in cell cycle, carbohydrate metabolism and auxin anabolism through the target genes, respectively, to achieve the regulation of anther development. CONCLUSIONS Through the association analysis of mRNA and miRNA, our work gives a better understanding of the preferentially expressed genes and regulation in different developmental stages of cotton anther and the importance of meiotic phase, and also the involvement of miRNAs in precise regulation for this process, which would be valuable for clarifying the mechanism of plant anther development in response to internal and external environments.
Collapse
Affiliation(s)
- Jin Chen
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128 China
| | - Pin Su
- Hunan Academy of Agricultural Sciences, Institute of Plant Protection, Changsha, 410125 China
| | - Pengyun Chen
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000 China
| | - Qiong Li
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128 China
| | - Xiaoling Yuan
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128 China
| | - Zhi Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128 China
| |
Collapse
|
3
|
Gao Y, Zhang L, Zhao S, Yan Y. Comparative analysis of the male inflorescence transcriptome profiles of an ms22 mutant of maize. PLoS One 2018; 13:e0199437. [PMID: 30005064 PMCID: PMC6044530 DOI: 10.1371/journal.pone.0199437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 06/07/2018] [Indexed: 11/18/2022] Open
Abstract
In modern agricultural production, maize is the most successful crop utilizing heterosis. 712C-ms22 is an important male sterile material in maize. In this study, we performed transcriptome sequencing analysis of the V10 stage of male inflorescence. Through this analysis, 27.63 million raw reads were obtained, and trimming of the raw data revealed 26.63 million clean reads, with an average match rate of 94.64%. Using Tophat software, we matched these clean reads to the maize reference genome. The abundance of 39,622 genes was measured, and 35,399 genes remained after filtering out the non-expressed genes across all the samples. These genes were classified into 19 categories by clusters of orthologous groups of protein annotation. Transcriptome sequencing analysis of the male sterile and fertile 712C-ms22 maize revealed some key DEGs that may be related to metabolic pathways. qRT-PCR analysis validated the gene expression patterns identified by RNA-seq. This analysis revealed some of the essential genes responsible for pollen development and for pollen tube elongation. Our findings provide useful markers of male sterility and new insights into the global mechanisms mediating male sterility in maize.
Collapse
Affiliation(s)
- Yonggang Gao
- Nanjing Agricultural University, Nanjing, Jiangsu, China
- * E-mail: (YG); (YY)
| | - LiJuan Zhang
- Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - ShengChao Zhao
- Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yuanxin Yan
- Nanjing Agricultural University, Nanjing, Jiangsu, China
- * E-mail: (YG); (YY)
| |
Collapse
|
4
|
Li N, Wei S, Chen J, Yang F, Kong L, Chen C, Ding X, Chu Z. OsASR2 regulates the expression of a defence-related gene, Os2H16, by targeting the GT-1 cis-element. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:771-783. [PMID: 28869785 PMCID: PMC5814579 DOI: 10.1111/pbi.12827] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 08/23/2017] [Indexed: 05/11/2023]
Abstract
The GT-1 cis-element widely exists in many plant gene promoters. However, the molecular mechanism that underlies the response of the GT-1 cis-element to abiotic and biotic stresses remains elusive in rice. We previously isolated a rice short-chain peptide-encoding gene, Os2H16, and demonstrated that it plays important roles in both disease resistance and drought tolerance. Here, we conducted a promoter assay of Os2H16 and identified GT-1 as an important cis-element that mediates Os2H16 expression in response to pathogen attack and osmotic stress. Using the repeated GT-1 as bait, we characterized an abscisic acid, stress and ripening 2 (ASR2) protein from yeast-one hybridization screening. Sequence alignments showed that the carboxy-terminal domain of OsASR2 containing residues 80-138 was the DNA-binding domain. Furthermore, we identified that OsASR2 was specifically bound to GT-1 and activated the expression of the target gene Os2H16, as well as GFP driven by the chimeric promoter of 2 × GT-1-35S mini construct. Additionally, the expression of OsASR2 was elevated by pathogens and osmotic stress challenges. Overexpression of OsASR2 enhanced the resistance against Xanthomonas oryzae pv. oryzae and Rhizoctonia solani, and tolerance to drought in rice. These results suggest that the interaction between OsASR2 and GT-1 plays an important role in the crosstalk of the response of rice to biotic and abiotic stresses.
Collapse
Affiliation(s)
- Ning Li
- State Key Laboratory of Crop BiologyCollege of AgronomyShandong Agricultural UniversityTaianShandongChina
| | - Shutong Wei
- Shandong Provincial Key Laboratory for Biology of Vegetable Disease and Insect PestsCollege of Plant ProtectionShandong Agricultural UniversityTaianShandongChina
| | - Jing Chen
- Shandong Provincial Key Laboratory for Biology of Vegetable Disease and Insect PestsCollege of Plant ProtectionShandong Agricultural UniversityTaianShandongChina
| | - Fangfang Yang
- State Key Laboratory of Crop BiologyCollege of AgronomyShandong Agricultural UniversityTaianShandongChina
| | - Lingguang Kong
- Shandong Provincial Key Laboratory for Biology of Vegetable Disease and Insect PestsCollege of Plant ProtectionShandong Agricultural UniversityTaianShandongChina
| | - Cuixia Chen
- State Key Laboratory of Crop BiologyCollege of AgronomyShandong Agricultural UniversityTaianShandongChina
| | - Xinhua Ding
- State Key Laboratory of Crop BiologyCollege of AgronomyShandong Agricultural UniversityTaianShandongChina
- Shandong Provincial Key Laboratory for Biology of Vegetable Disease and Insect PestsCollege of Plant ProtectionShandong Agricultural UniversityTaianShandongChina
| | - Zhaohui Chu
- State Key Laboratory of Crop BiologyCollege of AgronomyShandong Agricultural UniversityTaianShandongChina
| |
Collapse
|
5
|
Zaidi MA, O'Leary SJB, Wu S, Chabot D, Gleddie S, Laroche A, Eudes F, Robert LS. Investigating Triticeae anther gene promoter activity in transgenic Brachypodium distachyon. PLANTA 2017; 245:385-396. [PMID: 27787603 DOI: 10.1007/s00425-016-2612-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 10/18/2016] [Indexed: 06/06/2023]
Abstract
In this report, we demonstrate that Brachypodium distachyon could serve as a relatively high throughput in planta functional assay system for Triticeae anther-specific gene promoters. There remains a vast gap in our knowledge of the promoter cis-acting elements responsible for the transcriptional regulation of Triticeae anther-specific genes. In an attempt to identify conserved cis-elements, 14 pollen-specific and 8 tapetum-specific Triticeae putative promoter sequences were analyzed using different promoter sequence analysis tools. Several cis-elements were found to be enriched in these sequences and their possible role in gene expression regulation in the anther is discussed. Despite the fact that potential cis-acting elements can be identified within putative promoter sequence datasets, determining whether particular promoter sequences can in fact direct proper tissue-specific and developmental gene expression still needs to be confirmed via functional assays preferably performed in closely related plants. Transgenic functional assays with Triticeae species remain challenging and Brachypodium distachyon may represent a suitable alternative. The promoters of the triticale pollen-specific genes group 3 pollen allergen (PAL3) and group 4 pollen allergen (PAL4), as well as the tapetum-specific genes chalcone synthase-like 1 (CHSL1), from wheat and cysteine-rich protein 1 (CRP1) from triticale were fused to the green fluorescent protein gene (GFP) and analyzed in transgenic Brachypodium. This report demonstrates that this model species could serve to accelerate the functional analysis of Triticeae anther-specific gene promoters.
Collapse
Affiliation(s)
- Mohsin A Zaidi
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, 960 Carling Avenue, Ottawa, ON, K1A 0C6, Canada
| | - Stephen J B O'Leary
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, 960 Carling Avenue, Ottawa, ON, K1A 0C6, Canada
- National Research Council of Canada, Aquatic and Crop Resource Development, 1411 Oxford Street, Halifax, NS, B3H 3Z1, Canada
| | - Shaobo Wu
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, 960 Carling Avenue, Ottawa, ON, K1A 0C6, Canada
- Beijing YouAn Hospital, Capital Medical University, Beijing Institute of Hepatology, No. 8 Xi Tou Tiao, You An Men Wai, Fengtai District, Beijing, 100069, People's Republic of China
| | - Denise Chabot
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, 960 Carling Avenue, Ottawa, ON, K1A 0C6, Canada
| | - Steve Gleddie
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, 960 Carling Avenue, Ottawa, ON, K1A 0C6, Canada
| | - André Laroche
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, AB, T1J 4B1, Canada
| | - François Eudes
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, AB, T1J 4B1, Canada
| | - Laurian S Robert
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, 960 Carling Avenue, Ottawa, ON, K1A 0C6, Canada.
| |
Collapse
|
6
|
Functional characterization of germin and germin-like protein genes in various plant species using transgenic approaches. Biotechnol Lett 2016; 38:1405-21. [DOI: 10.1007/s10529-016-2129-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 05/18/2016] [Indexed: 12/24/2022]
|
7
|
Transcriptome profiling of differentially expressed genes in floral buds and flowers of male sterile and fertile lines in watermelon. BMC Genomics 2015; 16:914. [PMID: 26552448 PMCID: PMC4640349 DOI: 10.1186/s12864-015-2186-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 11/02/2015] [Indexed: 12/03/2022] Open
Abstract
Background Male sterility is an important mechanism for the production of hybrid seeds in watermelon. Although fruit development has been studied extensively in watermelon, there are no reports on gene expression in floral organs. In this study, RNA-sequencing (RNA-seq) was performed in two near-isogenic watermelon lines (genic male sterile [GMS] line, DAH3615-MS and male fertile line, DAH3615) to identify the differentially expressed genes (DEGs) related to male sterility. Results DEG analysis showed that 1259 genes were significantly associated with male sterility at a FDR P-value of < 0.01. Most of these genes were only expressed in the male fertile line. In addition, 11 functional clusters were identified using DAVID functional classification analysis. Of detected genes in RNA-seq analysis, 19 were successfully validated by qRT-PCR. Conclusions In this study, we carried out a comprehensive floral transcriptome sequence comparison of a male fertile line and its near-isogenic male sterile line in watermelon. This analysis revealed essential genes responsible for stamen development, including pollen development and pollen tube elongation, and allowed their functional classification. These results provided new information on global mechanisms related to male sterility in watermelon. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2186-9) contains supplementary material, which is available to authorized users.
Collapse
|
8
|
Miao H, Wang Y, Liu J, Jia C, Hu W, Sun P, Jin Z, Xu B. Molecular cloning and expression analysis of the MaASR1 gene in banana and functional characterization under salt stress. ELECTRON J BIOTECHN 2014. [DOI: 10.1016/j.ejbt.2014.09.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
9
|
González RM, Iusem ND. Twenty years of research on Asr (ABA-stress-ripening) genes and proteins. PLANTA 2014; 239:941-949. [PMID: 24531839 DOI: 10.1007/s00425-014-2039-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 01/29/2014] [Indexed: 05/29/2023]
Abstract
Investigating how plants cope with different abiotic stresses-mainly drought and extreme temperatures-is pivotal for both understanding the underlying signaling pathways and improving genetically engineered crops. Plant cells are known to react defensively to mild and severe dehydration by initiating several signal transduction pathways that result in the accumulation of different proteins, sugar molecules and lipophilic anti-oxidants. Among the proteins that build up under these adverse conditions are members of the ancestral ASR (ABA-stress-ripening) family, which is conserved in the plant kingdom but lacks orthologs in Arabidopsis. This review provides a comprehensive summary of the state of the art regarding ASRs, going back to the original description and cloning of the tomato ASR cDNA. That seminal discovery sparked worldwide interest amongst research groups spanning multiple fields: biochemistry, cell biology, evolution, physiology and epigenetics. As these proteins function as both chaperones and transcription factors; this review also covers the progress made on relevant molecular features that account for these dual roles-including the recent identification of their target genes-which may inspire future basic research. In addition, we address reports of drought-tolerant ASR-transgenic plants of different species, highlighting the influential work of authors taking more biotechnological approaches.
Collapse
Affiliation(s)
- Rodrigo M González
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIByNE)-CONICET, Buenos Aires, Argentina
| | | |
Collapse
|