1
|
Lee JH, Choi S. Deciphering the molecular mechanisms of stem cell dynamics in hair follicle regeneration. Exp Mol Med 2024; 56:110-117. [PMID: 38182654 PMCID: PMC10834421 DOI: 10.1038/s12276-023-01151-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/24/2023] [Accepted: 11/01/2023] [Indexed: 01/07/2024] Open
Abstract
Hair follicles, which are connected to sebaceous glands in the skin, undergo cyclic periods of regeneration, degeneration, and rest throughout adult life in mammals. The crucial function of hair follicle stem cells is to maintain these hair growth cycles. Another vital aspect is the activity of melanocyte stem cells, which differentiate into melanin-producing melanocytes, contributing to skin and hair pigmentation. Sebaceous gland stem cells also have a pivotal role in maintaining the skin barrier by regenerating mature sebocytes. These stem cells are maintained in a specialized microenvironment or niche and are regulated by internal and external signals, determining their dynamic behaviors in homeostasis and hair follicle regeneration. The activity of these stem cells is tightly controlled by various factors secreted by the niche components around the hair follicles, as well as immune-mediated damage signals, aging, metabolic status, and stress. In this study, we review these diverse stem cell regulatory and related molecular mechanisms of hair regeneration and disease conditions. Molecular insights would provide new perspectives on the disease mechanisms as well as hair and skin disorder treatment.
Collapse
Affiliation(s)
- Jung Hyun Lee
- Department of Dermatology, School of Medicine, University of Washington, Seattle, WA, 98109, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA
| | - Sekyu Choi
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
- Medical Science and Engineering, School of Convergence Science and Technology, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
- Institute for Convergence Research and Education in Advanced Technology (I_CREATE), Yonsei University, Incheon, 21983, Republic of Korea.
| |
Collapse
|
2
|
Kumar A, Stertz L, Teixeira AL. Induce Pluripotent Stem Cells (iPSC) Technology in Depression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1456:85-91. [PMID: 39261425 DOI: 10.1007/978-981-97-4402-2_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Induced pluripotent stem cells (iPSCs) are a promising in vitro model for drug-screening and precision-based psychiatry for the treatment of major depressive disorders (MDD). In this chapter, we explore different uses for iPSC technology, three-dimensional (3D) organoids models, and mesenchymal stem cells therapy in MDD, as well their potential and limitations.
Collapse
Affiliation(s)
- Apurva Kumar
- Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Laura Stertz
- Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Antonio L Teixeira
- Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA.
- Biggs Institute, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| |
Collapse
|
3
|
Progenitor-derived endothelin controls dermal sheath contraction for hair follicle regression. Nat Cell Biol 2023; 25:222-234. [PMID: 36717629 PMCID: PMC9931655 DOI: 10.1038/s41556-022-01065-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/28/2022] [Indexed: 02/01/2023]
Abstract
Substantial follicle remodelling during the regression phase of the hair growth cycle is coordinated by the contraction of the dermal sheath smooth muscle, but how dermal-sheath-generated forces are regulated is unclear. Here, we identify spatiotemporally controlled endothelin signalling-a potent vasoconstriction-regulating pathway-as the key activating mechanism of dermal sheath contraction. Pharmacological blocking or genetic ablation of both endothelin receptors, ETA and ETB, impedes dermal sheath contraction and halts follicle regression. Epithelial progenitors at the club hair-epithelial strand bottleneck produce the endothelin ligand ET-1, which is required for follicle regression. ET signalling in dermal sheath cells and downstream contraction is dynamically regulated by cytoplasmic Ca2+ levels through cell membrane and sarcoplasmic reticulum calcium channels. Together, these findings illuminate an epithelial-mesenchymal interaction paradigm in which progenitors-destined to undergo programmed cell death-control the contraction of the surrounding sheath smooth muscle to orchestrate homeostatic tissue regression and reorganization for the next stem cell activation and regeneration cycle.
Collapse
|
4
|
Wang D, Li Y, Ge H, Ghadban T, Reeh M, Güngör C. The Extracellular Matrix: A Key Accomplice of Cancer Stem Cell Migration, Metastasis Formation, and Drug Resistance in PDAC. Cancers (Basel) 2022; 14:cancers14163998. [PMID: 36010993 PMCID: PMC9406497 DOI: 10.3390/cancers14163998] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 12/23/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is rich in dense fibrotic stroma that are composed of extracellular matrix (ECM) proteins. A disruption of the balance between ECM synthesis and secretion and the altered expression of matrix remodeling enzymes lead to abnormal ECM dynamics in PDAC. This pathological ECM promotes cancer growth, survival, invasion, and alters the behavior of fibroblasts and immune cells leading to metastasis formation and chemotherapy resistance, which contribute to the high lethality of PDAC. Additionally, recent evidence highlights that ECM, as a major structural component of the tumor microenvironment, is a highly dynamic structure in which ECM proteins establish a physical and biochemical niche for cancer stem cells (CSCs). CSCs are characterized by self-renewal, tumor initiation, and resistance to chemotherapeutics. In this review, we will discuss the effects of the ECM on tumor biological behavior and its molecular impact on the fundamental signaling pathways in PDAC. We will also provide an overview of how the different ECM components are able to modulate CSCs properties and finally discuss the current and ongoing therapeutic strategies targeting the ECM. Given the many challenges facing current targeted therapies for PDAC, a better understanding of molecular events involving the interplay of ECM and CSC will be key in identifying more effective therapeutic strategies to eliminate CSCs and ultimately to improve survival in patients that are suffering from this deadly disease.
Collapse
|
5
|
Cellular Heterogeneity Facilitates the Functional Differences Between Hair Follicle Dermal Sheath Cells and Dermal Papilla Cells: A New Classification System for Mesenchymal Cells within the Hair Follicle Niche. Stem Cell Rev Rep 2022; 18:2016-2027. [PMID: 35849252 DOI: 10.1007/s12015-022-10411-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2022] [Indexed: 10/17/2022]
Abstract
Mesenchymal stem cells (MSCs) are known for their self-renewal and multi-lineage differentiation potential, with these cells often being evaluated in the regulation and maintenance of specific cellular niches including those of the hair follicle. Most mesenchymal stem cells in the hair follicles are housed in the dermal papilla (DP) and dermal sheath (DS), with both niches characterized by a broad variety of cellular subsets. However, while most previous studies describing the hair follicle mesenchymal niche treated all DP and DS cells as Hair Follicle Mesenchymal Stem Cells (HF-MSCs), the high number of cellular subsets would suggest that these cells are actually too heterogenous for such a broad definition. Given this we designed this study to evaluate the differentiation processes in these cells and used this data to create a new set of classifications for DP and DS cells, dividing them into "hair follicle mesenchymal stem cells (HF-MSCs)", "hair follicle mesenchymal progenitor cells (HF-MPCs)", and "hair follicle mesenchymal functional cells (HF-MFCs)". In addition, those cells that possess self-renewal and differentiation were re-named hair follicle derived mesenchymal multipotent cells (HF-MMCs). This new classification may help to further our understanding of the heterogeneity of hair follicle dermal cells and provide new insights into their evaluation.
Collapse
|
6
|
Hidalgo-Alvarez V, Dhowre HS, Kingston OA, Sheridan CM, Levis HJ. Biofabrication of Artificial Stem Cell Niches in the Anterior Ocular Segment. Bioengineering (Basel) 2021; 8:135. [PMID: 34677208 PMCID: PMC8533470 DOI: 10.3390/bioengineering8100135] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/27/2021] [Accepted: 09/27/2021] [Indexed: 11/16/2022] Open
Abstract
The anterior segment of the eye is a complex set of structures that collectively act to maintain the integrity of the globe and direct light towards the posteriorly located retina. The eye is exposed to numerous physical and environmental insults such as infection, UV radiation, physical or chemical injuries. Loss of transparency to the cornea or lens (cataract) and dysfunctional regulation of intra ocular pressure (glaucoma) are leading causes of worldwide blindness. Whilst traditional therapeutic approaches can improve vision, their effect often fails to control the multiple pathological events that lead to long-term vision loss. Regenerative medicine approaches in the eye have already had success with ocular stem cell therapy and ex vivo production of cornea and conjunctival tissue for transplant recovering patients' vision. However, advancements are required to increase the efficacy of these as well as develop other ocular cell therapies. One of the most important challenges that determines the success of regenerative approaches is the preservation of the stem cell properties during expansion culture in vitro. To achieve this, the environment must provide the physical, chemical and biological factors that ensure the maintenance of their undifferentiated state, as well as their proliferative capacity. This is likely to be accomplished by replicating the natural stem cell niche in vitro. Due to the complex nature of the cell microenvironment, the creation of such artificial niches requires the use of bioengineering techniques which can replicate the physico-chemical properties and the dynamic cell-extracellular matrix interactions that maintain the stem cell phenotype. This review discusses the progress made in the replication of stem cell niches from the anterior ocular segment by using bioengineering approaches and their therapeutic implications.
Collapse
Affiliation(s)
- Veronica Hidalgo-Alvarez
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK
| | - Hala S. Dhowre
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, UK; (H.S.D.); (O.A.K.)
| | - Olivia A. Kingston
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, UK; (H.S.D.); (O.A.K.)
| | - Carl M. Sheridan
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, UK; (H.S.D.); (O.A.K.)
| | - Hannah J. Levis
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, UK; (H.S.D.); (O.A.K.)
| |
Collapse
|
7
|
Alt EU, Schmitz C, Bai X. Perspective: Why and How Ubiquitously Distributed, Vascular-Associated, Pluripotent Stem Cells in the Adult Body (vaPS Cells) Are the Next Generation of Medicine. Cells 2021; 10:2303. [PMID: 34571951 PMCID: PMC8467324 DOI: 10.3390/cells10092303] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 12/21/2022] Open
Abstract
A certain cell type can be isolated from different organs in the adult body that can differentiate into ectoderm, mesoderm, and endoderm, providing significant support for the existence of a certain type of small, vascular-associated, pluripotent stem cell ubiquitously distributed in all organs in the adult body (vaPS cells). These vaPS cells fundamentally differ from embryonic stem cells and induced pluripotent stem cells in that the latter possess the necessary genetic guidance that makes them intrinsically pluripotent. In contrast, vaPS cells do not have this intrinsic genetic guidance, but are able to differentiate into somatic cells of all three lineages under guidance of the microenvironment they are located in, independent from the original tissue or organ where they had resided. These vaPS cells are of high relevance for clinical application because they are contained in unmodified, autologous, adipose-derived regenerative cells (UA-ADRCs). The latter can be obtained from and re-applied to the same patient at the point of care, without the need for further processing, manipulation, and culturing. These findings as well as various clinical examples presented in this paper demonstrate the potential of UA-ADRCs for enabling an entirely new generation of medicine for the benefit of patients and healthcare systems.
Collapse
Affiliation(s)
- Eckhard U. Alt
- Heart and Vascular Institute, Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA;
- Sanford School of Medicine, University of South Dakota, Sioux Falls, SD 57104, USA
- MD Anderson Cancer Center, University of Texas, Houston, TX 77054, USA
- Isar Klinikum Munich, 80331 Munich, Germany
| | - Christoph Schmitz
- Chair of Neuroanatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilians University of Munich, 80336 Munich, Germany;
| | - Xiaowen Bai
- Heart and Vascular Institute, Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA;
- MD Anderson Cancer Center, University of Texas, Houston, TX 77054, USA
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
8
|
Ramos-Rodriguez DH, MacNeil S, Claeyssens F, Ortega Asencio I. Delivery of Bioactive Compounds to Improve Skin Cell Responses on Microfabricated Electrospun Microenvironments. Bioengineering (Basel) 2021; 8:105. [PMID: 34436108 PMCID: PMC8389211 DOI: 10.3390/bioengineering8080105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/15/2021] [Accepted: 07/22/2021] [Indexed: 12/05/2022] Open
Abstract
The introduction of microtopographies within biomaterial devices is a promising approach that allows one to replicate to a degree the complex native environment in which human cells reside. Previously, our group showed that by combining electrospun fibers and additive manufacturing it is possible to replicate to an extent the stem cell microenvironment (rete ridges) located between the epidermal and dermal layers. Our group has also explored the use of novel proangiogenic compounds to improve the vascularization of skin constructs. Here, we combine our previous approaches to fabricate innovative polycaprolactone fibrous microtopographical scaffolds loaded with bioactive compounds (2-deoxy-D-ribose, 17β-estradiol, and aloe vera). Metabolic activity assay showed that microstructured scaffolds can be used to deliver bioactive agents and that the chemical relation between the working compound and the electrospinning solution is critical to replicate as much as possible the targeted morphologies. We also reported that human skin cell lines have a dose-dependent response to the bioactive compounds and that their inclusion has the potential to improve cell activity, induce blood vessel formation and alter the expression of relevant epithelial markers (collagen IV and integrin β1). In summary, we have developed fibrous matrixes containing synthetic rete-ridge-like structures that can deliver key bioactive compounds that can enhance skin regeneration and ultimately aid in the development of a complex wound healing device.
Collapse
Affiliation(s)
- David H. Ramos-Rodriguez
- Bioengineering and Health Technologies Group, The School of Clinical Dentistry, University of Sheffield, Sheffield S10 2TA, UK;
- Biomaterials and Tissue Engineering Group, Department of Materials Science and Engineering, Kroto Research Institute, University of Sheffield, Sheffield S3 7HQ, UK; (S.M.); (F.C.)
| | - Sheila MacNeil
- Biomaterials and Tissue Engineering Group, Department of Materials Science and Engineering, Kroto Research Institute, University of Sheffield, Sheffield S3 7HQ, UK; (S.M.); (F.C.)
| | - Frederik Claeyssens
- Biomaterials and Tissue Engineering Group, Department of Materials Science and Engineering, Kroto Research Institute, University of Sheffield, Sheffield S3 7HQ, UK; (S.M.); (F.C.)
| | - Ilida Ortega Asencio
- Bioengineering and Health Technologies Group, The School of Clinical Dentistry, University of Sheffield, Sheffield S10 2TA, UK;
| |
Collapse
|
9
|
Alt E, Rothoerl R, Hoppert M, Frank HG, Wuerfel T, Alt C, Schmitz C. First immunohistochemical evidence of human tendon repair following stem cell injection: A case report and review of literature. World J Stem Cells 2021; 13:944-970. [PMID: 34367486 PMCID: PMC8316863 DOI: 10.4252/wjsc.v13.i7.944] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/29/2021] [Accepted: 06/25/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Current clinical treatment options for symptomatic, partial-thickness rotator cuff tear (sPTRCT) offer only limited potential for true tissue healing and improvement of clinical results. In animal models, injections of adult stem cells isolated from adipose tissue into tendon injuries evidenced histological regeneration of tendon tissue. However, it is unclear whether such beneficial effects could also be observed in a human tendon treated with fresh, uncultured, autologous, adipose derived regenerative cells (UA-ADRCs). A specific challenge in this regard is that UA-ADRCs cannot be labeled and, thus, not unequivocally identified in the host tissue. Therefore, histological regeneration of injured human tendons after injection of UA-ADRCs must be assessed using comprehensive, immunohistochemical and microscopic analysis of biopsies taken from the treated tendon a few weeks after injection of UA-ADRCs.
CASE SUMMARY A 66-year-old patient suffered from sPTRCT affecting the right supraspinatus and infraspinatus tendon, caused by a bicycle accident. On day 18 post injury [day 16 post magnetic resonance imaging (MRI) examination] approximately 100 g of abdominal adipose tissue was harvested by liposuction, from which approximately 75 × 106 UA-ADRCs were isolated within 2 h. Then, UA-ADRCs were injected (controlled by biplanar X-ray imaging) adjacent to the injured supraspinatus tendon immediately after isolation. Despite fast clinical recovery, a follow-up MRI examination 2.5 mo post treatment indicated the need for open revision of the injured infraspinatus tendon, which had not been treated with UA-ADRCs. During this operation, a biopsy was taken from the supraspinatus tendon at the position of the injury. A comprehensive, immunohistochemical and microscopic analysis of the biopsy (comprising 13 antibodies) was indicative of newly formed tendon tissue.
CONCLUSION Injection of UA-ADRCs can result in regeneration of injured human tendons by formation of new tendon tissue.
Collapse
Affiliation(s)
- Eckhard Alt
- Chairman of the Board, Isarklinikum Munich, Munich 80331, Germany
| | - Ralf Rothoerl
- Department of Spine Surgery, Isarklinikum Munich, Munich 80331, Germany
| | - Matthias Hoppert
- Department for Orthopedics and Trauma Surgery, Isarklinikum Munich, Munich 80331, Germany
| | - Hans-Georg Frank
- Chair of Neuroanatomy, Institute of Anatomy, Faculty of Medicine, LMU Munich, Munich 80336, Germany
| | - Tobias Wuerfel
- Chair of Neuroanatomy, Institute of Anatomy, Faculty of Medicine, LMU Munich, Munich 80336, Germany
| | - Christopher Alt
- Director of Science and Research, InGeneron GmbH, Munich 80331, Germany
| | - Christoph Schmitz
- Chair of Neuroanatomy, Institute of Anatomy, Faculty of Medicine, LMU Munich, Munich 80336, Germany
| |
Collapse
|
10
|
Lumelsky N. Creating a Pro-Regenerative Tissue Microenvironment: Local Control is the Key. Front Bioeng Biotechnol 2021; 9:712685. [PMID: 34368106 PMCID: PMC8334550 DOI: 10.3389/fbioe.2021.712685] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/09/2021] [Indexed: 01/01/2023] Open
Affiliation(s)
- Nadya Lumelsky
- National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), Bethesda, MD, United States
| |
Collapse
|
11
|
Wszoła M, Nitarska D, Cywoniuk P, Gomółka M, Klak M. Stem Cells as a Source of Pancreatic Cells for Production of 3D Bioprinted Bionic Pancreas in the Treatment of Type 1 Diabetes. Cells 2021; 10:1544. [PMID: 34207441 PMCID: PMC8234129 DOI: 10.3390/cells10061544] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/10/2021] [Accepted: 06/15/2021] [Indexed: 12/14/2022] Open
Abstract
Type 1 diabetes (T1D) is the third most common autoimmune disease which develops due to genetic and environmental risk factors. Often, intensive insulin therapy is insufficient, and patients require a pancreas or pancreatic islets transplant. However, both solutions are associated with many possible complications, including graft rejection. The best approach seems to be a donor-independent T1D treatment strategy based on human stem cells cultured in vitro and differentiated into insulin and glucagon-producing cells (β and α cells, respectively). Both types of cells can then be incorporated into the bio-ink used for 3D printing of the bionic pancreas, which can be transplanted into T1D patients to restore glucose homeostasis. The aim of this review is to summarize current knowledge about stem cells sources and their transformation into key pancreatic cells. Last, but not least, we comment on possible solutions of post-transplant immune response triggered stem cell-derived pancreatic cells and their potential control mechanisms.
Collapse
Affiliation(s)
- Michał Wszoła
- Foundation of Research and Science Development, 01-793 Warsaw, Poland; (M.W.); (P.C.); (M.G.)
- Polbionica Ltd., 01-793 Warsaw, Poland;
- Medispace Medical Centre, 01-044 Warsaw, Poland
| | | | - Piotr Cywoniuk
- Foundation of Research and Science Development, 01-793 Warsaw, Poland; (M.W.); (P.C.); (M.G.)
| | - Magdalena Gomółka
- Foundation of Research and Science Development, 01-793 Warsaw, Poland; (M.W.); (P.C.); (M.G.)
| | - Marta Klak
- Foundation of Research and Science Development, 01-793 Warsaw, Poland; (M.W.); (P.C.); (M.G.)
- Polbionica Ltd., 01-793 Warsaw, Poland;
| |
Collapse
|
12
|
Potapov I, García‐Prat L, Ravichandran S, Muñoz‐Cánoves P, Sol A. Computational modelling of stem cell–niche interactions facilitates discovery of strategies to enhance tissue regeneration and counteract ageing. FEBS J 2021; 289:1486-1491. [PMID: 33752266 PMCID: PMC9292515 DOI: 10.1111/febs.15832] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/19/2021] [Accepted: 03/19/2021] [Indexed: 02/06/2023]
Abstract
The stem cell niche is a specialized microenvironment for stem cells in an adult tissue. The niche provides cues for the maintenance and regulation of stem cell activities and thus presents a target for potential rejuvenating strategies. García‐Prat et al. found that in the heterogeneous population of quiescent stem cells of skeletal muscles, a fraction of cells responsible for regeneration and having genuine ‘stemness’ properties deteriorates only in extremely old age. An essential tool used in this analysis of stem cell–niche interactions is the computational tool, NicheHotSpotter, which proved to be instrumental for identifying niche and cell signalling factors that contribute to the maintenance of the pool of genuine quiescent stem cells. NicheHotSpotter predicts candidate factors by analysing signalling interactome and gene regulatory network data in combination with expression profiles. The effect of the niche environment on stem cells is modelled as a mean field of niche cues that induce sustained activation or inhibition of signalling pathways. In this way, NicheHotSpotter has been successful in delineating novel strategies to enhance stemness, which may rejuvenate skeletal muscle cells at the extreme old age.
Collapse
Affiliation(s)
- Ilya Potapov
- Computational Biology Group Luxembourg Centre for Systems Biomedicine University of Luxembourg Luxembourg
| | - Laura García‐Prat
- Department of Experimental and Health Sciences CIBER on Neurodegenerative Diseases (CIBERNED) Pompeu Fabra University (UPF) Barcelona Spain
- Spanish National Center on Cardiovascular Research (CNIC) Madrid Spain
- Princess Margaret Cancer Centre University Health Network Toronto ONM5G2M9Canada
| | - Srikanth Ravichandran
- Computational Biology Group Luxembourg Centre for Systems Biomedicine University of Luxembourg Luxembourg
| | - Pura Muñoz‐Cánoves
- Department of Experimental and Health Sciences CIBER on Neurodegenerative Diseases (CIBERNED) Pompeu Fabra University (UPF) Barcelona Spain
- Spanish National Center on Cardiovascular Research (CNIC) Madrid Spain
- ICREA Barcelona Spain
| | - Antonio Sol
- Computational Biology Group Luxembourg Centre for Systems Biomedicine University of Luxembourg Luxembourg
- Bizkaia Technology Park CIC bioGUNE Derio Spain
- Basque Foundation for Science IKERBASQUE Bilbao Spain
| |
Collapse
|
13
|
Tiwari SK, Mandal S. Mitochondrial Control of Stem Cell State and Fate: Lessons From Drosophila. Front Cell Dev Biol 2021; 9:606639. [PMID: 34012959 PMCID: PMC8128071 DOI: 10.3389/fcell.2021.606639] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 04/06/2021] [Indexed: 01/09/2023] Open
Abstract
Over the years, Drosophila has served as a wonderful genetically tractable model system to unravel various facets of tissue-resident stem cells in their microenvironment. Studies in different stem and progenitor cell types of Drosophila have led to the discovery of cell-intrinsic and extrinsic factors crucial for stem cell state and fate. Though initially touted as the ATP generating machines for carrying various cellular processes, it is now increasingly becoming clear that mitochondrial processes alone can override the cellular program of stem cells. The last few years have witnessed a surge in our understanding of mitochondria's contribution to governing different stem cell properties in their subtissular niches in Drosophila. Through this review, we intend to sum up and highlight the outcome of these in vivo studies that implicate mitochondria as a central regulator of stem cell fate decisions; to find the commonalities and uniqueness associated with these regulatory mechanisms.
Collapse
Affiliation(s)
- Satish Kumar Tiwari
- Developmental Genetics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Mohali, India
| | - Sudip Mandal
- Molecular Cell and Developmental Biology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Mohali, India
| |
Collapse
|
14
|
Ramos-Rodriguez DH, MacNeil S, Claeyssens F, Asencio IO. The Use of Microfabrication Techniques for the Design and Manufacture of Artificial Stem Cell Microenvironments for Tissue Regeneration. Bioengineering (Basel) 2021; 8:50. [PMID: 33922428 PMCID: PMC8146165 DOI: 10.3390/bioengineering8050050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 12/13/2022] Open
Abstract
The recapitulation of the stem cell microenvironment is an emerging area of research that has grown significantly in the last 10 to 15 years. Being able to understand the underlying mechanisms that relate stem cell behavior to the physical environment in which stem cells reside is currently a challenge that many groups are trying to unravel. Several approaches have attempted to mimic the biological components that constitute the native stem cell niche, however, this is a very intricate environment and, although promising advances have been made recently, it becomes clear that new strategies need to be explored to ensure a better understanding of the stem cell niche behavior. The second strand in stem cell niche research focuses on the use of manufacturing techniques to build simple but functional models; these models aim to mimic the physical features of the niche environment which have also been demonstrated to play a big role in directing cell responses. This second strand has involved a more engineering approach in which a wide set of microfabrication techniques have been explored in detail. This review aims to summarize the use of these microfabrication techniques and how they have approached the challenge of mimicking the native stem cell niche.
Collapse
Affiliation(s)
- David H. Ramos-Rodriguez
- Bioengineering and Health Technologies Group, The School of Clinical Dentistry, University of Sheffield, Sheffield S10 2TA, UK;
- Biomaterials and Tissue Engineering Group, Department of Materials Science and Engineering, Kroto Research Institute, University of Sheffield, Sheffield S3 7HQ, UK; (S.M.); (F.C.)
| | - Sheila MacNeil
- Biomaterials and Tissue Engineering Group, Department of Materials Science and Engineering, Kroto Research Institute, University of Sheffield, Sheffield S3 7HQ, UK; (S.M.); (F.C.)
| | - Frederik Claeyssens
- Biomaterials and Tissue Engineering Group, Department of Materials Science and Engineering, Kroto Research Institute, University of Sheffield, Sheffield S3 7HQ, UK; (S.M.); (F.C.)
| | - Ilida Ortega Asencio
- Bioengineering and Health Technologies Group, The School of Clinical Dentistry, University of Sheffield, Sheffield S10 2TA, UK;
| |
Collapse
|
15
|
Martino PA, Heitman N, Rendl M. The dermal sheath: An emerging component of the hair follicle stem cell niche. Exp Dermatol 2021; 30:512-521. [PMID: 33006790 PMCID: PMC8016715 DOI: 10.1111/exd.14204] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/15/2020] [Accepted: 09/20/2020] [Indexed: 12/17/2022]
Abstract
Hair follicles cyclically regenerate throughout adult mammalian life, owing to a resident population of epithelial hair follicle stem cells. Stem cell (SC) activity drives bouts of follicle growth, which are periodically interrupted by follicle regression and rest. These phases and the transitions between them are tightly spatiotemporally coordinated by signalling crosstalk between stem/progenitor cells and the various cell types of the microenvironment, or niche. The dermal papilla (DP) is a cluster of specialized mesenchymal cells that have long been recognized for important niche roles in regulating hair follicle SC activation, as well as progenitor proliferation and differentiation during follicle growth. In addition to the DP, the mesenchyme of the murine pelage follicle is also comprised of a follicle-lining smooth muscle known as the dermal sheath (DS), which has been far less studied than the DP yet may be equally specialized and important for hair cycling. In this review, we define the murine pelage DS in comparison with human DS and discuss recent work that highlights the emergent importance of the DS in the hair follicle SC niche. Last, we examine potential therapeutic applications for the DS in hair regeneration and wound healing.
Collapse
Affiliation(s)
- Pieter A. Martino
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, Atran Building AB7-10C, Box 1020; 1428 Madison Ave, New York, NY 10029, USA
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, Atran Building AB7-10C, Box 1020; 1428 Madison Ave, New York, NY 10029, USA
| | - Nicholas Heitman
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, Atran Building AB7-10C, Box 1020; 1428 Madison Ave, New York, NY 10029, USA
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, Atran Building AB7-10C, Box 1020; 1428 Madison Ave, New York, NY 10029, USA
| | - Michael Rendl
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, Atran Building AB7-10C, Box 1020; 1428 Madison Ave, New York, NY 10029, USA
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, Atran Building AB7-10C, Box 1020; 1428 Madison Ave, New York, NY 10029, USA
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, Atran Building AB7-10C, Box 1020; 1428 Madison Ave, New York, NY 10029, USA
| |
Collapse
|
16
|
Hsu YC, Rendl M. Skin stem cells in health and in disease. Exp Dermatol 2021; 30:424-429. [PMID: 33792993 DOI: 10.1111/exd.14318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/05/2021] [Accepted: 03/05/2021] [Indexed: 12/17/2022]
Affiliation(s)
- Ya-Chieh Hsu
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA.,Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Michael Rendl
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
17
|
Pastrana-Otero I, Majumdar S, Gilchrist AE, Gorman BL, Harley BAC, Kraft ML. Development of an inexpensive Raman-compatible substrate for the construction of a microarray screening platform. Analyst 2020; 145:7030-7039. [PMID: 33103665 PMCID: PMC7594104 DOI: 10.1039/d0an01153c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Biomaterial microarrays are being developed to facilitate identifying the extrinsic cues that elicit stem cell fate decisions to self-renew, differentiate and remain quiescent. Raman microspectroscopy, often combined with multivariate analysis techniques such as partial least square-discriminant analysis (PLS-DA), could enable the non-invasive identification of stem cell fate decisions made in response to extrinsic cues presented at specific locations on these microarrays. Because existing biomaterial microarrays are not compatible with Raman microspectroscopy, here, we develop an inexpensive substrate that is compatible with both single-cell Raman spectroscopy and the chemistries that are often used for biomaterial microarray fabrication. Standard deposition techniques were used to fabricate a custom Raman-compatible substrate that supports microarray construction. We validated that spectra from living cells on functionalized polyacrylamide (PA) gels attached to the custom Raman-compatible substrate are comparable to spectra acquired from a more expensive commercially available substrate. We also showed that the spectra acquired from individual living cells on functionalized PA gels attached to our custom substrates were of sufficient quality to enable accurate identification of cell phenotypes using PLS-DA models of the cell spectra. We demonstrated this by using cells from laboratory lines (CHO and transfected CHO cells) as well as adult stem cells that were freshly isolated from mice (long-term and short-term hematopoietic stem cells). The custom Raman-compatible substrate reported herein may be used as an inexpensive substrate for constructing biomaterial microarrays that enable the use of Raman microspectroscopy to non-invasively identify the fate decisions of stem cells in response to extrinsic cues.
Collapse
Affiliation(s)
- Isamar Pastrana-Otero
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
| | | | | | | | | | | |
Collapse
|
18
|
Bianchini M, Giambelluca MA, Scavuzzo MC, Di Franco G, Guadagni S, Palmeri M, Furbetta N, Gianardi D, Funel N, Pollina LE, Di Candio G, Fornai F, Morelli L. The occurrence of prion protein in surgically resected pancreatic adenocarcinoma. Pancreatology 2020; 20:1218-1225. [PMID: 32828686 DOI: 10.1016/j.pan.2020.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 07/24/2020] [Accepted: 08/10/2020] [Indexed: 02/05/2023]
Abstract
BACKGROUND Among the several new targets for the comprehension of the biology of pancreatic ductal adenocarcinoma (PDAC), Prion proteins (PrPc) deserve particular mention, since they share a marked neurotropism. Actually, PrPc could have also a role in tumorigenesis, as recently demonstrated. However, only few in vitro studies in cell cultures showed the occurrence of PrPc in PDAC cells. We aim to evaluate the presence of PrPc in vivo in PDAC tissues as a potential new biomarker. METHODS Samples from tumors of 23 patients undergone pancreatic resections from July 2018 to May 2020 at our institution were collected and analyzed. Immunohistochemistry and western blotting of PDAC tissues were compared with control tissues. Immunohistochemistry was used also to evaluate the localization of PrPc and of CD155, a tumoral stem-cell marker. RESULTS All cases were moderately differentiated PDAC, with perineural invasion (PNI) in 19/23 cases (83%). According to western-blot analysis, PrPc was markedly expressed in PDAC tissues (273.5 ± 44.63 OD) respect to controls (100 ± 28.35 OD, p = 0.0018). Immunohistochemistry confirmed these findings, with higher linear staining of PrPc in PDAC ducts (127.145 ± 7.56 μm vs 75.21 ± 5.01 μm, p < 0.0001). PrPc and CD155 exactly overlapped in ductal tumoral cells, highlighting the possible relationship of PrPc with cancer stemness. Finally, PrPc expression related with cancer stage and there was a potential correspondence with PNI. CONCLUSIONS Our work provides evidence for increased levels of PrPc in PDAC. This might contribute to cancer aggressiveness and provides a potentially new biomarker. Work is in progress to decipher clinical implications.
Collapse
Affiliation(s)
- Matteo Bianchini
- General Surgery Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56124, Pisa, Italy
| | - Maria Anita Giambelluca
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56124, Pisa, Italy
| | - Maria Concetta Scavuzzo
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56124, Pisa, Italy
| | - Gregorio Di Franco
- General Surgery Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56124, Pisa, Italy
| | - Simone Guadagni
- General Surgery Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56124, Pisa, Italy
| | - Matteo Palmeri
- General Surgery Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56124, Pisa, Italy
| | - Niccolò Furbetta
- General Surgery Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56124, Pisa, Italy
| | - Desirée Gianardi
- General Surgery Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56124, Pisa, Italy
| | - Niccola Funel
- Division of Surgical Pathology, Department of Surgical, Medical Molecular Pathology and Critical Area, University of Pisa, 56124, Pisa, Italy
| | - Luca Emanuele Pollina
- Division of Surgical Pathology, Department of Surgical, Medical Molecular Pathology and Critical Area, University of Pisa, 56124, Pisa, Italy
| | - Giulio Di Candio
- General Surgery Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56124, Pisa, Italy
| | - Francesco Fornai
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56124, Pisa, Italy; IRCCS Neuromed - Istituto Neurologico Mediterraneo, 86077, Pozzilli, Italy
| | - Luca Morelli
- General Surgery Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56124, Pisa, Italy; EndoCAS (Center for Computer Assisted Surgery), University of Pisa, 56124, Pisa, Italy.
| |
Collapse
|
19
|
Scheideler OJ, Yang C, Kozminsky M, Mosher KI, Falcón-Banchs R, Ciminelli EC, Bremer AW, Chern SA, Schaffer DV, Sohn LL. Recapitulating complex biological signaling environments using a multiplexed, DNA-patterning approach. SCIENCE ADVANCES 2020; 6:eaay5696. [PMID: 32206713 PMCID: PMC7080440 DOI: 10.1126/sciadv.aay5696] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 12/17/2019] [Indexed: 05/22/2023]
Abstract
Elucidating how the spatial organization of extrinsic signals modulates cell behavior and drives biological processes remains largely unexplored because of challenges in controlling spatial patterning of multiple microenvironmental cues in vitro. Here, we describe a high-throughput method that directs simultaneous assembly of multiple cell types and solid-phase ligands across length scales within minutes. Our method involves lithographically defining hierarchical patterns of unique DNA oligonucleotides to which complementary strands, attached to cells and ligands-of-interest, hybridize. Highlighting our method's power, we investigated how the spatial presentation of self-renewal ligand fibroblast growth factor-2 (FGF-2) and differentiation signal ephrin-B2 instruct single adult neural stem cell (NSC) fate. We found that NSCs have a strong spatial bias toward FGF-2 and identified an unexpected subpopulation exhibiting high neuronal differentiation despite spatially occupying patterned FGF-2 regions. Overall, our broadly applicable, DNA-directed approach enables mechanistic insight into how tissues encode regulatory information through the spatial presentation of heterogeneous signals.
Collapse
Affiliation(s)
- Olivia J. Scheideler
- UC Berkeley–UC San Francisco Graduate Program in Bioengineering, University of California, Berkeley, 306 Stanley Hall, Berkeley, CA 94720, USA
| | - Chun Yang
- Department of Bioengineering, University of California, Berkeley, 306 Stanley Hall, Berkeley, CA 94720, USA
| | - Molly Kozminsky
- California Institute for Quantitative Biosciences, University of California, Berkeley, 174 Stanley Hall, Berkeley, CA 94720, USA
| | - Kira I. Mosher
- California Institute for Quantitative Biosciences, University of California, Berkeley, 174 Stanley Hall, Berkeley, CA 94720, USA
| | - Roberto Falcón-Banchs
- UC Berkeley–UC San Francisco Graduate Program in Bioengineering, University of California, Berkeley, 306 Stanley Hall, Berkeley, CA 94720, USA
| | - Emma C. Ciminelli
- Department of Bioengineering, University of California, Berkeley, 306 Stanley Hall, Berkeley, CA 94720, USA
| | - Andrew W. Bremer
- UC Berkeley–UC San Francisco Graduate Program in Bioengineering, University of California, Berkeley, 306 Stanley Hall, Berkeley, CA 94720, USA
| | - Sabrina A. Chern
- Department of Physics, Harvard University, 17 Oxford Street, Cambridge, MA 02138, USA
| | - David V. Schaffer
- UC Berkeley–UC San Francisco Graduate Program in Bioengineering, University of California, Berkeley, 306 Stanley Hall, Berkeley, CA 94720, USA
- Department of Chemical & Biomolecular Engineering, University of California, Berkeley, 201 Gilman Hall, Berkeley, CA 94720, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, 132 Barker Hall #3190, Berkeley, CA 94720, USA
- Corresponding author. (D.V.S.); (L.L.S.)
| | - Lydia L. Sohn
- UC Berkeley–UC San Francisco Graduate Program in Bioengineering, University of California, Berkeley, 306 Stanley Hall, Berkeley, CA 94720, USA
- Department of Mechanical Engineering, University of California, Berkeley, 5118 Etcheverry Hall, Berkeley, CA 94720, USA
- Corresponding author. (D.V.S.); (L.L.S.)
| |
Collapse
|
20
|
Liu G, David BT, Trawczynski M, Fessler RG. Advances in Pluripotent Stem Cells: History, Mechanisms, Technologies, and Applications. Stem Cell Rev Rep 2020; 16:3-32. [PMID: 31760627 PMCID: PMC6987053 DOI: 10.1007/s12015-019-09935-x] [Citation(s) in RCA: 277] [Impact Index Per Article: 55.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Over the past 20 years, and particularly in the last decade, significant developmental milestones have driven basic, translational, and clinical advances in the field of stem cell and regenerative medicine. In this article, we provide a systemic overview of the major recent discoveries in this exciting and rapidly developing field. We begin by discussing experimental advances in the generation and differentiation of pluripotent stem cells (PSCs), next moving to the maintenance of stem cells in different culture types, and finishing with a discussion of three-dimensional (3D) cell technology and future stem cell applications. Specifically, we highlight the following crucial domains: 1) sources of pluripotent cells; 2) next-generation in vivo direct reprogramming technology; 3) cell types derived from PSCs and the influence of genetic memory; 4) induction of pluripotency with genomic modifications; 5) construction of vectors with reprogramming factor combinations; 6) enhancing pluripotency with small molecules and genetic signaling pathways; 7) induction of cell reprogramming by RNA signaling; 8) induction and enhancement of pluripotency with chemicals; 9) maintenance of pluripotency and genomic stability in induced pluripotent stem cells (iPSCs); 10) feeder-free and xenon-free culture environments; 11) biomaterial applications in stem cell biology; 12) three-dimensional (3D) cell technology; 13) 3D bioprinting; 14) downstream stem cell applications; and 15) current ethical issues in stem cell and regenerative medicine. This review, encompassing the fundamental concepts of regenerative medicine, is intended to provide a comprehensive portrait of important progress in stem cell research and development. Innovative technologies and real-world applications are emphasized for readers interested in the exciting, promising, and challenging field of stem cells and those seeking guidance in planning future research direction.
Collapse
Affiliation(s)
- Gele Liu
- Department of Neurosurgery, Rush University Medical College, 1725 W. Harrison St., Suite 855, Chicago, IL, 60612, USA.
| | - Brian T David
- Department of Neurosurgery, Rush University Medical College, 1725 W. Harrison St., Suite 855, Chicago, IL, 60612, USA
| | - Matthew Trawczynski
- Department of Neurosurgery, Rush University Medical College, 1725 W. Harrison St., Suite 855, Chicago, IL, 60612, USA
| | - Richard G Fessler
- Department of Neurosurgery, Rush University Medical College, 1725 W. Harrison St., Suite 855, Chicago, IL, 60612, USA
| |
Collapse
|
21
|
Maharajan N, Vijayakumar K, Jang CH, Cho GW. Caloric restriction maintains stem cells through niche and regulates stem cell aging. J Mol Med (Berl) 2019; 98:25-37. [DOI: 10.1007/s00109-019-01846-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/17/2019] [Accepted: 10/22/2019] [Indexed: 12/12/2022]
|
22
|
Oh IR, Raymundo B, Kim M, Kim CW. Mesenchymal stem cells co-cultured with colorectal cancer cells showed increased invasive and proliferative abilities due to its altered p53/TGF-β1 levels. Biosci Biotechnol Biochem 2019; 84:256-267. [PMID: 31601153 DOI: 10.1080/09168451.2019.1676692] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Signaling between cancer cells, their neighboring cells, and mesenchymal stem cells (MSCs) forms the tumor microenvironment. The complex heterogeneity of this microenvironment varies depending on the tumor type and its origins. However, most of the existing cancer-based studies have focused on cancer cells. In this study, we used a direct co-culture system (cross-talk signaling) to induce cross-interaction between cancer cells and mesenchymal stem cells. This induced deformation of MSCs. MSCs showed a diminished ability to maintain homeostasis. In particular, increase in the invasion ability of MSCs by TGF-β1 and decrease in p53, which plays a key role in cancer development, is an important discovery. It can thus be deduced that blocking these changes can effectively inhibit metastatic colorectal cancer. In conclusion, understanding the interactions and changes in MSCs associated with cancer will help develop novel therapeutic strategies for cancer.
Collapse
Affiliation(s)
- In-Rok Oh
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | - Bernardo Raymundo
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | - MiJung Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Korea.,Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | - Chan-Wha Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Korea.,Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| |
Collapse
|
23
|
Hyaluronan-CD44 axis orchestrates cancer stem cell functions. Cell Signal 2019; 63:109377. [PMID: 31362044 DOI: 10.1016/j.cellsig.2019.109377] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 07/26/2019] [Accepted: 07/26/2019] [Indexed: 02/06/2023]
Abstract
The prominent role of CD44 in tumor cell signaling together with its establishment as a cancer stem cell (CSC) marker for various tumor entities imply a key role for CD44 in CSC functional properties. Hyaluronan, the main ligand of CD44, is a major constituent of CSC niche and, therefore, the hyaluronan-CD44 signaling axis is of functional importance in this special microenvironment. This review aims to provide recent advances in the importance of hyaluronan-CD44 interactions in the acquisition and maintenance of a CSC phenotype. Hyaluronan-CD44 axis has a substantial impact on stemness properties of CSCs and drug resistance through induction of EMT program, oxidative stress resistance, secretion of extracellular vesicles/exosomes and epigenetic control. Potential therapeutic approaches targeting CSCs based on the hyaluronan-CD44 axis are also presented.
Collapse
|
24
|
Brás R, Sunkel CE, Resende LP. Tissue stem cells: the new actors in the aneuploidy field. Cell Cycle 2019; 18:1813-1823. [PMID: 31242809 DOI: 10.1080/15384101.2019.1635867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
The development of multicellular organisms and the maintenance of its tissues relies on mitosis. However, this process represents a major challenge for genomic stability as each time a cell division occurs there are multiple steps where errors can lead to an abnormal chromosomal content in daughter cells - aneuploidy. Aneuploidy was first postulated to act as a tumour promoting agent over one century ago. Since then, we have learned to appreciate the complexity involving the cellular responses to aneuploidy and to value the importance of models where aneuploidy is induced in vivo and in a cell-type specific manner. Recent data suggests that stem cells evolved a distinct response to aneuploidy, being able to survive and proliferate as aneuploid. Since stem cells are the main cells responsible for tissue renewal, it is of the utmost importance to place the spotlight on stem cells within the aneuploidy field. Here, we briefly review some of the biological mechanisms implicated in aneuploidy, the relationship between aneuploidy and tissue pathologies, and summarize the most recent findings in Drosophila on how tissue stem cells respond to aneuploidy. Once we understand how stem cell behavior is impacted by aneuploidy, we might be able to better describe the complicated link between aneuploidy and tumourigenesis.
Collapse
Affiliation(s)
- Rita Brás
- a Instituto de Investigação e Inovação em Saúde, Universidade do Porto , Porto , Portugal.,b IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto , Porto , Portugal
| | - Claudio E Sunkel
- a Instituto de Investigação e Inovação em Saúde, Universidade do Porto , Porto , Portugal.,c ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto , Porto , Portugal
| | - Luís Pedro Resende
- a Instituto de Investigação e Inovação em Saúde, Universidade do Porto , Porto , Portugal.,b IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto , Porto , Portugal
| |
Collapse
|
25
|
Fabian A, Stegner S, Miarka L, Zimmermann J, Lenk L, Rahn S, Buttlar J, Viol F, Knaack H, Esser D, Schäuble S, Großmann P, Marinos G, Häsler R, Mikulits W, Saur D, Kaleta C, Schäfer H, Sebens S. Metastasis of pancreatic cancer: An uninflamed liver micromilieu controls cell growth and cancer stem cell properties by oxidative phosphorylation in pancreatic ductal epithelial cells. Cancer Lett 2019; 453:95-106. [PMID: 30930235 DOI: 10.1016/j.canlet.2019.03.039] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 03/08/2019] [Accepted: 03/21/2019] [Indexed: 12/11/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is commonly diagnosed when liver metastases already emerged. We recently demonstrated that hepatic stromal cells determine the dormancy status along with cancer stem cell (CSC) properties of pancreatic ductal epithelial cells (PDECs) during metastasis. This study investigated the influence of the hepatic microenvironment - and its inflammatory status - on metabolic alterations and how these impact cell growth and CSC-characteristics of PDECs. Coculture with hepatic stellate cells (HSCs), simulating a physiological liver stroma, but not with hepatic myofibroblasts (HMFs) representing liver inflammation promoted expression of Succinate Dehydrogenase subunit B (SDHB) and an oxidative metabolism along with a quiescent phenotype in PDECs. SiRNA-mediated SDHB knockdown increased cell growth and CSC-properties. Moreover, liver micrometastases of tumor bearing KPC mice strongly expressed SDHB while expression of the CSC-marker Nestin was exclusively found in macrometastases. Consistently, RNA-sequencing and in silico modeling revealed significantly altered metabolic fluxes and enhanced SDH activity predominantly in premalignant PDECs in the presence of HSC compared to HMF. Overall, these data emphasize that the hepatic microenvironment determines the metabolism of disseminated PDECs thereby controlling cell growth and CSC-properties during liver metastasis.
Collapse
Affiliation(s)
- Alexander Fabian
- Group Inflammatory Carcinogenesis, Institute for Experimental Cancer Research, Christian-Albrechts-University Kiel and University Hospital Schleswig-Holstein (UKSH) Campus Kiel, Arnold-Heller-Str. 3, Building 17, 24105, Kiel, Germany
| | - Simon Stegner
- Group Inflammatory Carcinogenesis, Institute for Experimental Cancer Research, Christian-Albrechts-University Kiel and University Hospital Schleswig-Holstein (UKSH) Campus Kiel, Arnold-Heller-Str. 3, Building 17, 24105, Kiel, Germany
| | - Lauritz Miarka
- Group Inflammatory Carcinogenesis, Institute for Experimental Cancer Research, Christian-Albrechts-University Kiel and University Hospital Schleswig-Holstein (UKSH) Campus Kiel, Arnold-Heller-Str. 3, Building 17, 24105, Kiel, Germany
| | - Johannes Zimmermann
- Group Medical Systems Biology, Institute for Experimental Medicine, Michaelisstr. 5, Building 17, 24105, Kiel, Germany
| | - Lennart Lenk
- Department of Pediatrics, Christian-Albrechts-University Kiel and University Medical Center Schleswig-Holstein, Schwanenweg 20, 24105, Kiel, Germany
| | - Sascha Rahn
- Group Inflammatory Carcinogenesis, Institute for Experimental Cancer Research, Christian-Albrechts-University Kiel and University Hospital Schleswig-Holstein (UKSH) Campus Kiel, Arnold-Heller-Str. 3, Building 17, 24105, Kiel, Germany
| | - Jann Buttlar
- Group Inflammatory Carcinogenesis, Institute for Experimental Cancer Research, Christian-Albrechts-University Kiel and University Hospital Schleswig-Holstein (UKSH) Campus Kiel, Arnold-Heller-Str. 3, Building 17, 24105, Kiel, Germany
| | - Fabrice Viol
- Department of Medicine I, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hendrike Knaack
- Group Inflammatory Carcinogenesis, Institute for Experimental Cancer Research, Christian-Albrechts-University Kiel and University Hospital Schleswig-Holstein (UKSH) Campus Kiel, Arnold-Heller-Str. 3, Building 17, 24105, Kiel, Germany
| | - Daniela Esser
- Group Medical Systems Biology, Institute for Experimental Medicine, Michaelisstr. 5, Building 17, 24105, Kiel, Germany
| | - Sascha Schäuble
- Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Beutenbergstraße 11A, 07745, Jena, Germany
| | - Peter Großmann
- Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Beutenbergstraße 11A, 07745, Jena, Germany
| | - Georgios Marinos
- Group Medical Systems Biology, Institute for Experimental Medicine, Michaelisstr. 5, Building 17, 24105, Kiel, Germany
| | - Robert Häsler
- Group Molecular Cell Biology, Institute of Clinical Molecular Biology, Christian-Albrechts-University Kiel, Rosalind-Franklin-Straße 12, 24105, Kiel, Germany
| | - Wolfgang Mikulits
- Department of Medicine I, Division: Institute of Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Dieter Saur
- II. Medizinische Klinik und Poliklinik, Klinikum Rechts der Isar, Technical University Munich, Munich, Germany
| | - Christoph Kaleta
- Group Medical Systems Biology, Institute for Experimental Medicine, Michaelisstr. 5, Building 17, 24105, Kiel, Germany
| | - Heiner Schäfer
- Group Inflammatory Carcinogenesis, Institute for Experimental Cancer Research, Christian-Albrechts-University Kiel and University Hospital Schleswig-Holstein (UKSH) Campus Kiel, Arnold-Heller-Str. 3, Building 17, 24105, Kiel, Germany
| | - Susanne Sebens
- Group Inflammatory Carcinogenesis, Institute for Experimental Cancer Research, Christian-Albrechts-University Kiel and University Hospital Schleswig-Holstein (UKSH) Campus Kiel, Arnold-Heller-Str. 3, Building 17, 24105, Kiel, Germany.
| |
Collapse
|
26
|
Kalamakis G, Brüne D, Ravichandran S, Bolz J, Fan W, Ziebell F, Stiehl T, Catalá-Martinez F, Kupke J, Zhao S, Llorens-Bobadilla E, Bauer K, Limpert S, Berger B, Christen U, Schmezer P, Mallm JP, Berninger B, Anders S, Del Sol A, Marciniak-Czochra A, Martin-Villalba A. Quiescence Modulates Stem Cell Maintenance and Regenerative Capacity in the Aging Brain. Cell 2019; 176:1407-1419.e14. [PMID: 30827680 DOI: 10.1016/j.cell.2019.01.040] [Citation(s) in RCA: 228] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 11/12/2018] [Accepted: 01/24/2019] [Indexed: 01/08/2023]
Abstract
The function of somatic stem cells declines with age. Understanding the molecular underpinnings of this decline is key to counteract age-related disease. Here, we report a dramatic drop in the neural stem cells (NSCs) number in the aging murine brain. We find that this smaller stem cell reservoir is protected from full depletion by an increase in quiescence that makes old NSCs more resistant to regenerate the injured brain. Once activated, however, young and old NSCs show similar proliferation and differentiation capacity. Single-cell transcriptomics of NSCs indicate that aging changes NSCs minimally. In the aging brain, niche-derived inflammatory signals and the Wnt antagonist sFRP5 induce quiescence. Indeed, intervention to neutralize them increases activation of old NSCs during homeostasis and following injury. Our study identifies quiescence as a key feature of old NSCs imposed by the niche and uncovers ways to activate NSCs to repair the aging brain.
Collapse
Affiliation(s)
- Georgios Kalamakis
- Molecular Neurobiology, German Cancer Research Center, 69120 Heidelberg, Germany; University of Heidelberg, 69120 Heidelberg, Germany
| | - Daniel Brüne
- Molecular Neurobiology, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Srikanth Ravichandran
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4362, Luxembourg
| | - Jan Bolz
- Molecular Neurobiology, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Wenqiang Fan
- Institute of Physiological Chemistry, University Medical Center Johannes Gutenberg University Mainz, 55128 Mainz, Germany; Focus Program Translational Neuroscience, Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Frederik Ziebell
- Molecular Neurobiology, German Cancer Research Center, 69120 Heidelberg, Germany; Institute of Applied Mathematics, Interdisciplinary Center for Scientific Computing and Bioquant, Heidelberg University, 69120 Heidelberg, Germany
| | - Thomas Stiehl
- Institute of Applied Mathematics, Interdisciplinary Center for Scientific Computing and Bioquant, Heidelberg University, 69120 Heidelberg, Germany
| | | | - Janina Kupke
- Molecular Neurobiology, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Sheng Zhao
- Molecular Neurobiology, German Cancer Research Center, 69120 Heidelberg, Germany
| | | | - Katharina Bauer
- Heidelberg Center for Personalized Oncology (DKFZ-HIPO), German Cancer Research Center, 69120 Heidelberg, Germany
| | - Stefanie Limpert
- Molecular Neurobiology, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Birgit Berger
- Molecular Neurobiology, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Urs Christen
- Goethe University Hospital Frankfurt/ZAFES, 60596 Frankfurt, Germany
| | - Peter Schmezer
- German Cancer Research Center, Division of Epigenomics and Cancer Risk Factors, 69120 Heidelberg, Germany
| | - Jan Philipp Mallm
- Division Chromatin Networks, German Cancer Research Center, 69120 Heidelberg, Germany; Single-cell Open Lab, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Benedikt Berninger
- Institute of Physiological Chemistry, University Medical Center Johannes Gutenberg University Mainz, 55128 Mainz, Germany; Focus Program Translational Neuroscience, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; Institute of Psychiatry, Psychology & Neuroscience, Centre for Developmental Neurobiology, King's College London, London SE1 1UL, UK; Institute of Psychiatry, Psychology & Neuroscience, MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, UK
| | - Simon Anders
- Center for Molecular Biology, Heidelberg University, 69120 Heidelberg, Germany
| | - Antonio Del Sol
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4362, Luxembourg; CIC bioGUNE, 48160 Derio, Spain; IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain; Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
| | - Anna Marciniak-Czochra
- Institute of Applied Mathematics, Interdisciplinary Center for Scientific Computing and Bioquant, Heidelberg University, 69120 Heidelberg, Germany
| | - Ana Martin-Villalba
- Molecular Neurobiology, German Cancer Research Center, 69120 Heidelberg, Germany.
| |
Collapse
|
27
|
Solakoglu Ö, Götz W, Kiessling MC, Alt C, Schmitz C, Alt EU. Improved guided bone regeneration by combined application of unmodified, fresh autologous adipose derived regenerative cells and plasma rich in growth factors: A first-in-human case report and literature review. World J Stem Cells 2019; 11:124-146. [PMID: 30842809 PMCID: PMC6397807 DOI: 10.4252/wjsc.v11.i2.124] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 12/07/2018] [Accepted: 01/10/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Novel strategies are needed for improving guided bone regeneration (GBR) in oral surgery prior to implant placement, particularly in maxillary sinus augmentation (GBR-MSA) and in lateral alveolar ridge augmentation (LRA). This study tested the hypothesis that the combination of freshly isolated, unmodified autologous adipose-derived regenerative cells (UA-ADRCs), fraction 2 of plasma rich in growth factors (PRGF-2) and an osteoinductive scaffold (OIS) (UA-ADRC/PRGF-2/OIS) is superior to the combination of PRGF-2 and the same OIS alone (PRGF-2/OIS) in GBR-MSA/LRA. CASE SUMMARY A 79-year-old patient was treated with a bilateral external sinus lift procedure as well as a bilateral lateral alveolar ridge augmentation. GBR-MSA/LRA was performed with UA-ADRC/PRGF-2/OIS on the right side, and with PRGF-2/OIS on the left side. Biopsies were collected at 6 wk and 34 wk after GBR-MSA/LRA. At the latter time point implants were placed. Radiographs (32 mo follow-up time) demonstrated excellent bone healing. No radiological or histological signs of inflammation were observed. Detailed histologic, histomorphometric, and immunohistochemical analysis of the biopsies evidenced that UA-ADRC/PRGF-2/OIS resulted in better and faster bone regeneration than PRGF-2/OIS. CONCLUSION GBR-MSA with UA-ADRCs, PRGF-2, and an OIS shows effectiveness without adverse effects.
Collapse
Affiliation(s)
- Önder Solakoglu
- External Visiting Lecturer, Dental Department of the University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
- Clinic for Periodontology and Implantology, Hamburg 22453, Germany.
| | - Werner Götz
- Department of Orthodontics, Center of Dento-Maxillo-Facial Medicine, University of Bonn, Bonn 53111, Germany
| | - Maren C Kiessling
- Institute of Anatomy, Faculty of Medicine, LMU Munich, Munich 80336, Germany
| | | | - Christoph Schmitz
- Institute of Anatomy, Faculty of Medicine, LMU Munich, Munich 80336, Germany
| | - Eckhard U Alt
- InGeneron GmbH, Munich 80331, Germany
- InGeneron, Inc., Houston, TX 77054, United States
- Isar Klinikum Munich, 80331 Munich, Germany
| |
Collapse
|
28
|
Del Sol A, Okawa S, Ravichandran S. Computational Strategies for Niche-Dependent Cell Conversion to Assist Stem Cell Therapy. Trends Biotechnol 2019; 37:687-696. [PMID: 30782480 DOI: 10.1016/j.tibtech.2019.01.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 01/14/2019] [Accepted: 01/15/2019] [Indexed: 12/28/2022]
Abstract
The field of regenerative medicine has blossomed in recent decades. However, the ultimate goal of tissue regeneration - replacing damaged or aged cells with healthy functioning cells - still faces a number of challenges. In particular, better understanding of the role of the cellular niche in shaping stem cell phenotype and conversion would aid in improving current protocols for stem cell therapies. In this regard, the implementation of novel computational approaches that consider the niche effect on stem cells would be valuable. Here we discuss current problems in stem cell transplantation and rejuvenation, and we propose computational strategies to control niche-dependent cell conversion to overcome them.
Collapse
Affiliation(s)
- Antonio Del Sol
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg,7 Avenue des Hauts-Fourneaux, Esch-sur-Alzette, L-4362 Luxembourg City, Luxembourg; CIC bioGUNE,Bizkaia Technology Park, 801 Building, 48160 Derio, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao 48013, Spain; Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia.
| | - Satoshi Okawa
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg,7 Avenue des Hauts-Fourneaux, Esch-sur-Alzette, L-4362 Luxembourg City, Luxembourg
| | - Srikanth Ravichandran
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg,7 Avenue des Hauts-Fourneaux, Esch-sur-Alzette, L-4362 Luxembourg City, Luxembourg
| |
Collapse
|
29
|
Mok KW, Saxena N, Heitman N, Grisanti L, Srivastava D, Muraro MJ, Jacob T, Sennett R, Wang Z, Su Y, Yang LM, Ma'ayan A, Ornitz DM, Kasper M, Rendl M. Dermal Condensate Niche Fate Specification Occurs Prior to Formation and Is Placode Progenitor Dependent. Dev Cell 2019; 48:32-48.e5. [PMID: 30595537 PMCID: PMC6370312 DOI: 10.1016/j.devcel.2018.11.034] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 10/31/2018] [Accepted: 11/27/2018] [Indexed: 12/29/2022]
Abstract
Cell fate transitions are essential for specification of stem cells and their niches, but the precise timing and sequence of molecular events during embryonic development are largely unknown. Here, we identify, with 3D and 4D microscopy, unclustered precursors of dermal condensates (DC), signaling niches for epithelial progenitors in hair placodes. With population-based and single-cell transcriptomics, we define a molecular time-lapse from pre-DC fate specification through DC niche formation and establish the developmental trajectory as the DC lineage emerges from fibroblasts. Co-expression of downregulated fibroblast and upregulated DC genes in niche precursors reveals a transitory molecular state following a proliferation shutdown. Waves of transcription factor and signaling molecule expression then coincide with DC formation. Finally, ablation of epidermal Wnt signaling and placode-derived FGF20 demonstrates their requirement for pre-DC specification. These findings uncover a progenitor-dependent niche precursor fate and the transitory molecular events controlling niche formation and function.
Collapse
Affiliation(s)
- Ka-Wai Mok
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, Atran Building AB7-10C, Box 1020, New York, NY 10029, USA; Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, Atran Building AB7-10C, Box 1020, New York, NY 10029, USA
| | - Nivedita Saxena
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, Atran Building AB7-10C, Box 1020, New York, NY 10029, USA; Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, Atran Building AB7-10C, Box 1020, New York, NY 10029, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, Atran Building AB7-10C, Box 1020, New York, NY 10029, USA
| | - Nicholas Heitman
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, Atran Building AB7-10C, Box 1020, New York, NY 10029, USA; Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, Atran Building AB7-10C, Box 1020, New York, NY 10029, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, Atran Building AB7-10C, Box 1020, New York, NY 10029, USA
| | - Laura Grisanti
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, Atran Building AB7-10C, Box 1020, New York, NY 10029, USA; Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, Atran Building AB7-10C, Box 1020, New York, NY 10029, USA
| | - Devika Srivastava
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, Atran Building AB7-10C, Box 1020, New York, NY 10029, USA; Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, Atran Building AB7-10C, Box 1020, New York, NY 10029, USA
| | - Mauro J Muraro
- Oncode Institute, Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences), and University Medical Center Utrecht, Utrecht 3584 CT, the Netherlands
| | - Tina Jacob
- Department of Biosciences and Nutrition and Center for Innovative Medicine, Karolinska Institutet, Huddinge 141 83, Sweden
| | - Rachel Sennett
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, Atran Building AB7-10C, Box 1020, New York, NY 10029, USA; Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, Atran Building AB7-10C, Box 1020, New York, NY 10029, USA
| | - Zichen Wang
- Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, BD2K-LINCS Data Coordination and Integration Center, Knowledge Management Center for Illuminating the Druggable Genome (KMC-IDG), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yutao Su
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Lu M Yang
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Avi Ma'ayan
- Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, BD2K-LINCS Data Coordination and Integration Center, Knowledge Management Center for Illuminating the Druggable Genome (KMC-IDG), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - David M Ornitz
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Maria Kasper
- Department of Biosciences and Nutrition and Center for Innovative Medicine, Karolinska Institutet, Huddinge 141 83, Sweden
| | - Michael Rendl
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, Atran Building AB7-10C, Box 1020, New York, NY 10029, USA; Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, Atran Building AB7-10C, Box 1020, New York, NY 10029, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, Atran Building AB7-10C, Box 1020, New York, NY 10029, USA; Department of Dermatology, Icahn School of Medicine at Mount Sinai, Atran Building AB7-10C, Box 1020, New York, NY 10029, USA.
| |
Collapse
|
30
|
Heitman N, Saxena N, Rendl M. Advancing insights into stem cell niche complexities with next-generation technologies. Curr Opin Cell Biol 2018; 55:87-95. [PMID: 30031324 DOI: 10.1016/j.ceb.2018.06.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 06/18/2018] [Indexed: 12/17/2022]
Abstract
Adult tissue-specific stem cells are essential for homeostatic tissue maintenance and key to regeneration during injury repair or disease. Many critical stem cell functions rely on the presence of well-timed cues from the microenvironment or niche, which includes a diverse range of components, including neuronal, circulating and extracellular matrix inputs as well as an array of neighboring niche cells directly interacting with the stem cells. However, studies of stem cells and their niche have been challenging due to the complexity of adult stem cell functions, their intrinsic controls and the multiple regulatory niche components. Here, we review recent major advances in our understanding of the complex interplay between stem cells and their niche that were enabled by the tremendous technological leaps in single-cell transcriptome analyses, 3D in vitro cultures and 4D in vivo microscopy of stem cell niches.
Collapse
Affiliation(s)
- Nicholas Heitman
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, Atran Building AB7-10C, Box 1020, 1428 Madison Ave, New York, NY 10029, USA; Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, Atran Building AB7-10C, Box 1020, 1428 Madison Ave, New York, NY 10029, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, Box 1022, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Nivedita Saxena
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, Atran Building AB7-10C, Box 1020, 1428 Madison Ave, New York, NY 10029, USA; Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, Atran Building AB7-10C, Box 1020, 1428 Madison Ave, New York, NY 10029, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, Box 1022, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Michael Rendl
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, Atran Building AB7-10C, Box 1020, 1428 Madison Ave, New York, NY 10029, USA; Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, Atran Building AB7-10C, Box 1020, 1428 Madison Ave, New York, NY 10029, USA; Department of Dermatology, Icahn School of Medicine at Mount Sinai, Box 1047, One Gustave L. Levy Place, New York, NY 10029, USA,; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, Box 1022, One Gustave L. Levy Place, New York, NY 10029, USA.
| |
Collapse
|
31
|
|
32
|
Wang X, Page-McCaw A. Wnt6 maintains anterior escort cells as an integral component of the germline stem cell niche. Development 2018; 145:dev.158527. [PMID: 29361569 PMCID: PMC5818006 DOI: 10.1242/dev.158527] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 12/22/2017] [Indexed: 12/27/2022]
Abstract
Stem cells reside in a niche, a local environment whose cellular and molecular complexity is still being elucidated. In Drosophila ovaries, germline stem cells depend on cap cells for self-renewing signals and physical attachment. Germline stem cells also contact the anterior escort cells, and here we report that anterior escort cells are absolutely required for germline stem cell maintenance. When escort cells die from impaired Wnt signaling or hid expression, the loss of anterior escort cells causes loss of germline stem cells. Anterior escort cells function as an integral niche component by promoting DE-cadherin anchorage and by transiently expressing the Dpp ligand to promote full-strength BMP signaling in germline stem cells. Anterior escort cells are maintained by Wnt6 ligands produced by cap cells; without Wnt6 signaling, anterior escort cells die leaving vacancies in the niche, leading to loss of germline stem cells. Our data identify anterior escort cells as constituents of the germline stem cell niche, maintained by a cap cell-produced Wnt6 survival signal.
Collapse
Affiliation(s)
- Xiaoxi Wang
- Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240, USA
| | - Andrea Page-McCaw
- Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240, USA
| |
Collapse
|
33
|
Enhancing proliferation and optimizing the culture condition for human bone marrow stromal cells using hypoxia and fibroblast growth factor-2. Stem Cell Res 2018; 28:87-95. [PMID: 29448134 DOI: 10.1016/j.scr.2018.01.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 12/28/2017] [Accepted: 01/06/2018] [Indexed: 12/15/2022] Open
Abstract
This study aimed to determine the cellular characteristics and behaviors of human bone marrow stromal cells (hBMSCs) expanded in media in a hypoxic or normoxic condition and with or without fibroblast growth factor-2 (FGF-2) treatment. hBMSCs isolated from the vertebral body and expanded in these four groups were evaluated for cellular proliferation/migration, colony-forming units, cell-surface characterization, in vitro differentiation, in vivo transplantation, and gene expression. Culturing hBMSCs using a particular environmental factor (hypoxia) and with the addition of FGF-2 increased the cellular proliferation rate while enhancing the regenerative potential, modulated the multipotency-related processes (enhanced chondrogenesis-related processes/osteogenesis, but reduced adipogenesis), and increased cellular migration and collagen formation. The gene expression levels in the experimental samples showed activation of the hypoxia-inducible factor-1 pathway and glycolysis in the hypoxic condition, with this not being affected by the addition of FGF-2. The concurrent application of hypoxia and FGF-2 could provide a favorable condition for culturing hBMSCs to be used in clinical applications associated with bone tissue engineering, due to the enhancement of cellular proliferation and regenerative potential.
Collapse
|
34
|
Kucharska-Mazur J, Jabłoński M, Misiak B, Frydecka D, Rybakowski J, Ratajczak MZ, Samochowiec J. Adult stem cells in psychiatric disorders - New discoveries in peripheral blood. Prog Neuropsychopharmacol Biol Psychiatry 2018; 80:23-27. [PMID: 28392482 DOI: 10.1016/j.pnpbp.2017.04.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 03/28/2017] [Accepted: 04/05/2017] [Indexed: 12/15/2022]
Abstract
The new area of research in psychiatric disorders is concerned with abnormal regeneration processes. The role of brain neurogenesis has been studied for decades. New discoveries, concerned with the pluripotency of VSEL cells and the role of factors involved in stem cell trafficking in peripheral blood create hope that it will be possible to develop a better understanding of the processes of neuroregeneration/neurodegeneration. There is an ongoing research investigating concentrations of: sphingosine -1-phosphate, SDF-1, elements of complement cascade, and stem cells in peripheral blood, including their possible connection to psychiatric disorders. Collected data, suggesting an abnormal course of regeneration processes in psychiatric disorders, raises hope of finding new potential markers of psychosis and anxiety disorders.
Collapse
Affiliation(s)
- Jolanta Kucharska-Mazur
- Department of Psychiatry, Pomeranian University of Medicine, Broniewskiego 26, 71-460 Szczecin, Poland
| | - Marcin Jabłoński
- Department of Psychiatry, Pomeranian University of Medicine, Broniewskiego 26, 71-460 Szczecin, Poland
| | - Błażej Misiak
- Department of Genetics, Wroclaw Medical University, Marcinkowskiego 1, 50-368 Wrocław, Poland
| | - Dorota Frydecka
- Department of Psychiatry, Wroclaw Medical University, Pasteur 10, 50-367 Wroclaw, Poland
| | - Janusz Rybakowski
- Department of Adult Psychiatry, Poznan University of Medical Sciences, Szpitalna 27/33, 60-572 Poznan, Poland
| | | | - Jerzy Samochowiec
- Department of Psychiatry, Pomeranian University of Medicine, Broniewskiego 26, 71-460 Szczecin, Poland.
| |
Collapse
|
35
|
Fernández-Flores F, García-Verdugo JM, Martín-Ibáñez R, Herranz C, Fondevila D, Canals JM, Arús C, Pumarola M. Characterization of the canine rostral ventricular-subventricular zone: Morphological, immunohistochemical, ultrastructural, and neurosphere assay studies. J Comp Neurol 2017; 526:721-741. [DOI: 10.1002/cne.24365] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 10/09/2017] [Accepted: 11/16/2017] [Indexed: 02/01/2023]
Affiliation(s)
- Francisco Fernández-Flores
- Veterinary Faculty, Department of Animal Medicine and Surgery; Universitat Autònoma de Barcelona; Bellaterra (Cerdanyola del Vallès) Barcelona Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN); Universitat Autònoma de Barcelona; Bellaterra (Cerdanyola del Vallès) Barcelona Spain
| | - José Manuel García-Verdugo
- Laboratorio de Neurobiologia comparada, Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, CIBERNED; Valencia Spain
| | - Raquel Martín-Ibáñez
- Stem Cells and Regenerative Medicine Laboratory; Production and Validation Center of Advanced Therapies (Creatio), Faculty of Medicine and Health Science, Department of Biomedicine; University of Barcelona; Barcelona Spain
- Neuroscience Institute, University of Barcelona; Barcelona Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS); Barcelona Spain
- Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED); Valencia Spain
| | - Cristina Herranz
- Stem Cells and Regenerative Medicine Laboratory; Production and Validation Center of Advanced Therapies (Creatio), Faculty of Medicine and Health Science, Department of Biomedicine; University of Barcelona; Barcelona Spain
- Neuroscience Institute, University of Barcelona; Barcelona Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS); Barcelona Spain
- Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED); Valencia Spain
| | - Dolors Fondevila
- Veterinary Faculty, Department of Animal Medicine and Surgery; Universitat Autònoma de Barcelona; Bellaterra (Cerdanyola del Vallès) Barcelona Spain
| | - Josep María Canals
- Stem Cells and Regenerative Medicine Laboratory; Production and Validation Center of Advanced Therapies (Creatio), Faculty of Medicine and Health Science, Department of Biomedicine; University of Barcelona; Barcelona Spain
- Neuroscience Institute, University of Barcelona; Barcelona Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS); Barcelona Spain
- Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED); Valencia Spain
| | - Carles Arús
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN); Universitat Autònoma de Barcelona; Bellaterra (Cerdanyola del Vallès) Barcelona Spain
- Departament de Bioquímica i Biologia Molecular; Universitat Autònoma de Barcelona; Bellaterra (Cerdanyola del Vallès) Barcelona Spain
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona; Bellaterra (Cerdanyola del Vallès) Barcelona Spain
| | - Martí Pumarola
- Veterinary Faculty, Department of Animal Medicine and Surgery; Universitat Autònoma de Barcelona; Bellaterra (Cerdanyola del Vallès) Barcelona Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN); Universitat Autònoma de Barcelona; Bellaterra (Cerdanyola del Vallès) Barcelona Spain
| |
Collapse
|
36
|
Dosch J, Hadley E, Wiese C, Soderberg M, Houwman T, Ding K, Kharazova A, Collins JL, van Knippenberg B, Gregory C, Kofman A. Time-lapse microscopic observation of non-dividing cells in cultured human osteosarcoma MG-63 cell line. Cell Cycle 2017; 17:174-181. [PMID: 29169283 DOI: 10.1080/15384101.2017.1395535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Cancer stem cells resemble normal tissue-specific stem cells in many aspects, such as self-renewal and plasticity. Like their non-malignant counterparts, cancer stem cells are suggested to exhibit a relative quiescence. The established cancer cell lines reportedly harbor slow-proliferating cells that are positive for some cancer stem cells markers. However, the fate of these cells and their progeny remains unknown. We used time-lapse microscopy and the contrast-based segmentation algorithm to identify and monitor actively dividing and non-dividing cells in human osteosarcoma MG-63 cell line. Within the monitored field of view the non-dividing cells were represented by three cells that never divided, and one cell that attempted to divide, but failed cytokinesis, and later, after significantly prolonged division, produced the progeny with enlarged segmented nuclei, thus pointing to a possible mitotic catastrophe. Together, these cells initially constituted about 6.2% of the total number of seeded cells, yet only 0.02% of all cells at the end of the observation period when cells became confluent. Non-dividing cells were characterized by rounded shape, dark nuclei, random cytoplasmic streaming and subtle oscillatory movement, however, they did not migrate and rarely formed cell-cell contacts as compared to actively dividing cells. Our data indicate that the observed non-dividing MG-63 cells do not have a growth advantage over other cells and, therefore, they do not contribute to the cancer stem cells pool.
Collapse
Affiliation(s)
- John Dosch
- a Department of Biology , Dakota Wesleyan University , 219 Corrigan Science Center, 1200 W. University Ave, Mitchell , SD , U.S.A
| | - Elise Hadley
- a Department of Biology , Dakota Wesleyan University , 219 Corrigan Science Center, 1200 W. University Ave, Mitchell , SD , U.S.A
| | - Cal Wiese
- a Department of Biology , Dakota Wesleyan University , 219 Corrigan Science Center, 1200 W. University Ave, Mitchell , SD , U.S.A
| | - Marissa Soderberg
- a Department of Biology , Dakota Wesleyan University , 219 Corrigan Science Center, 1200 W. University Ave, Mitchell , SD , U.S.A
| | - Tori Houwman
- a Department of Biology , Dakota Wesleyan University , 219 Corrigan Science Center, 1200 W. University Ave, Mitchell , SD , U.S.A
| | - Kai Ding
- b Johns Hopkins School of Medicine , 401 N. Broadway / Suite 1471, Baltimore MD , U.S.A
| | | | - John L Collins
- d Department of Biology , University of Tennessee at Martin , 574 University Street, U.S.A
| | - Bart van Knippenberg
- e CytoSMART Technologies BV , De Lismortel 31 5612AR Eindhoven , The Netherlands
| | - Carl Gregory
- f Institute for Regenerative Medicine , Texas A&M Health Science Center 208B , Reynolds Medical Building, College Station , TX , U.S.A
| | - Alexander Kofman
- a Department of Biology , Dakota Wesleyan University , 219 Corrigan Science Center, 1200 W. University Ave, Mitchell , SD , U.S.A .,g Aging-Cancer Interface Group , LDS Medical Center , St. Petersburg , Russian Federation
| |
Collapse
|
37
|
Giroux V, Lento AA, Islam M, Pitarresi JR, Kharbanda A, Hamilton KE, Whelan KA, Long A, Rhoades B, Tang Q, Nakagawa H, Lengner CJ, Bass AJ, Wileyto EP, Klein-Szanto AJ, Wang TC, Rustgi AK. Long-lived keratin 15+ esophageal progenitor cells contribute to homeostasis and regeneration. J Clin Invest 2017; 127:2378-2391. [PMID: 28481227 DOI: 10.1172/jci88941] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 03/09/2017] [Indexed: 12/30/2022] Open
Abstract
The esophageal lumen is lined by a stratified squamous epithelium comprised of proliferative basal cells that differentiate while migrating toward the luminal surface and eventually desquamate. Rapid epithelial renewal occurs, but the specific cell of origin that supports this high proliferative demand remains unknown. Herein, we have described a long-lived progenitor cell population in the mouse esophageal epithelium that is characterized by expression of keratin 15 (Krt15). Genetic in vivo lineage tracing revealed that the Krt15 promoter marks a long-lived basal cell population able to self-renew, proliferate, and generate differentiated cells, consistent with a progenitor/stem cell population. Transcriptional profiling demonstrated that Krt15+ basal cells are molecularly distinct from Krt15- basal cells. Depletion of Krt15-derived cells resulted in decreased proliferation, thereby leading to atrophy of the esophageal epithelium. Further, Krt15+ cells were radioresistant and contributed to esophageal epithelial regeneration following radiation-induced injury. These results establish the presence of a long-lived and indispensable Krt15+ progenitor cell population that provides additional perspective on esophageal epithelial biology and the widely prevalent diseases that afflict this epithelium.
Collapse
Affiliation(s)
- Véronique Giroux
- Division of Gastroenterology, Department of Medicine, and.,Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ashley A Lento
- Division of Gastroenterology, Department of Medicine, and.,Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mirazul Islam
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Jason R Pitarresi
- Division of Gastroenterology, Department of Medicine, and.,Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Akriti Kharbanda
- Division of Gastroenterology, Department of Medicine, and.,Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kathryn E Hamilton
- Division of Gastroenterology, Department of Medicine, and.,Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kelly A Whelan
- Division of Gastroenterology, Department of Medicine, and.,Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Apple Long
- Division of Gastroenterology, Department of Medicine, and.,Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ben Rhoades
- Division of Gastroenterology, Department of Medicine, and.,Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Qiaosi Tang
- Division of Gastroenterology, Department of Medicine, and.,Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Hiroshi Nakagawa
- Division of Gastroenterology, Department of Medicine, and.,Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Christopher J Lengner
- Department of Biomedical Sciences, School of Veterinary Medicine, and Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Adam J Bass
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - E Paul Wileyto
- Department of Biostatistics and Epidemiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Andres J Klein-Szanto
- Department of Pathology and Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | - Timothy C Wang
- Division of Digestive and Liver Disease, Department of Medicine, Columbia University, New York, New York, USA
| | - Anil K Rustgi
- Division of Gastroenterology, Department of Medicine, and.,Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
38
|
Oulhen N, Swartz SZ, Laird J, Mascaro A, Wessel GM. Transient translational quiescence in primordial germ cells. Development 2017; 144:1201-1210. [PMID: 28235822 PMCID: PMC5399625 DOI: 10.1242/dev.144170] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Accepted: 02/01/2017] [Indexed: 01/07/2023]
Abstract
Stem cells in animals often exhibit a slow cell cycle and/or low transcriptional activity referred to as quiescence. Here, we report that the translational activity in the primordial germ cells (PGCs) of the sea urchin embryo (Strongylocentrotus purpuratus) is quiescent. We measured new protein synthesis with O-propargyl-puromycin and L-homopropargylglycine Click-iT technologies, and determined that these cells synthesize protein at only 6% the level of their adjacent somatic cells. Knockdown of translation of the RNA-binding protein Nanos2 by morpholino antisense oligonucleotides, or knockout of the Nanos2 gene by CRISPR/Cas9 resulted in a significant, but partial, increase (47%) in general translation specifically in the PGCs. We found that the mRNA of the translation factor eEF1A is excluded from the PGCs in a Nanos2-dependent manner, a consequence of a Nanos/Pumilio response element (PRE) in its 3'UTR. In addition to eEF1A, the cytoplasmic pH of the PGCs appears to repress translation and simply increasing the pH also significantly restores translation selectively in the PGCs. We conclude that the PGCs of this sea urchin institute parallel pathways to quiesce translation thoroughly but transiently.
Collapse
Affiliation(s)
- Nathalie Oulhen
- Department of Molecular and Cell Biology and Biochemistry, Brown University, 185 Meeting Street, Providence, RI 02912, USA
| | - S Zachary Swartz
- Department of Molecular and Cell Biology and Biochemistry, Brown University, 185 Meeting Street, Providence, RI 02912, USA
- Whitehead Institute for Biomedical Research, MIT, Nine Cambridge Center, Cambridge, MA 02142, USA
| | - Jessica Laird
- Department of Molecular and Cell Biology and Biochemistry, Brown University, 185 Meeting Street, Providence, RI 02912, USA
| | - Alexandra Mascaro
- Department of Molecular and Cell Biology and Biochemistry, Brown University, 185 Meeting Street, Providence, RI 02912, USA
| | - Gary M Wessel
- Department of Molecular and Cell Biology and Biochemistry, Brown University, 185 Meeting Street, Providence, RI 02912, USA
| |
Collapse
|
39
|
Pignatti E, Leng S, Carlone DL, Breault DT. Regulation of zonation and homeostasis in the adrenal cortex. Mol Cell Endocrinol 2017; 441:146-155. [PMID: 27619404 PMCID: PMC5235909 DOI: 10.1016/j.mce.2016.09.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 09/01/2016] [Accepted: 09/06/2016] [Indexed: 12/23/2022]
Abstract
The adult adrenal cortex is organized into concentric zones, each specialized to produce distinct steroid hormones. Cellular composition of the cortex is highly dynamic and subject to diverse signaling controls. Cortical homeostasis and regeneration rely on centripetal migration of steroidogenic cells from the outer to the inner cortex, which is accompanied by direct conversion of zona glomerulosa (zG) into zona fasciculata (zF) cells. Given the important impact of tissue structure and growth on steroidogenic function, it is essential to understand the mechanisms governing adrenal zonation and homeostasis. Towards this end, we review the distinctions between each zone by highlighting their morphological and ultra-structural features, discuss key signaling pathways influencing zonal identity, and evaluate current evidence for long-term self-renewing stem cells in the adult cortex. Finally, we review data supporting zG-to-zF transdifferentiation/direct conversion as a major mechanism of adult cortical renewal.
Collapse
Affiliation(s)
- Emanuele Pignatti
- Division of Endocrinology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Sining Leng
- Division of Endocrinology, Boston Children's Hospital, Boston, MA 02115, USA; Division of Medical Sciences, Harvard Medical School, Boston, MA 02115, USA
| | - Diana L Carlone
- Division of Endocrinology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - David T Breault
- Division of Endocrinology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA.
| |
Collapse
|
40
|
Ravichandran S, Del Sol A. Identifying niche-mediated regulatory factors of stem cell phenotypic state: a systems biology approach. FEBS Lett 2017; 591:560-569. [PMID: 28094442 PMCID: PMC5324585 DOI: 10.1002/1873-3468.12559] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 01/10/2017] [Accepted: 01/11/2017] [Indexed: 12/12/2022]
Abstract
Understanding how the cellular niche controls the stem cell phenotype is often hampered due to the complexity of variegated niche composition, its dynamics, and nonlinear stem cell–niche interactions. Here, we propose a systems biology view that considers stem cell–niche interactions as a many‐body problem amenable to simplification by the concept of mean field approximation. This enables approximation of the niche effect on stem cells as a constant field that induces sustained activation/inhibition of specific stem cell signaling pathways in all stem cells within heterogeneous populations exhibiting the same phenotype (niche determinants). This view offers a new basis for the development of single cell‐based computational approaches for identifying niche determinants, which has potential applications in regenerative medicine and tissue engineering.
Collapse
Affiliation(s)
- Srikanth Ravichandran
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Luxembourg
| | - Antonio Del Sol
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Luxembourg
| |
Collapse
|
41
|
Pir P, Le Novère N. Mathematical Models of Pluripotent Stem Cells: At the Dawn of Predictive Regenerative Medicine. Methods Mol Biol 2016; 1386:331-50. [PMID: 26677190 DOI: 10.1007/978-1-4939-3283-2_15] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Regenerative medicine, ranging from stem cell therapy to organ regeneration, is promising to revolutionize treatments of diseases and aging. These approaches require a perfect understanding of cell reprogramming and differentiation. Predictive modeling of cellular systems has the potential to provide insights about the dynamics of cellular processes, and guide their control. Moreover in many cases, it provides alternative to experimental tests, difficult to perform for practical or ethical reasons. The variety and accuracy of biological processes represented in mathematical models grew in-line with the discovery of underlying molecular mechanisms. High-throughput data generation led to the development of models based on data analysis, as an alternative to more established modeling based on prior mechanistic knowledge. In this chapter, we give an overview of existing mathematical models of pluripotency and cell fate, to illustrate the variety of methods and questions. We conclude that current approaches are yet to overcome a number of limitations: Most of the computational models have so far focused solely on understanding the regulation of pluripotency, and the differentiation of selected cell lineages. In addition, models generally interrogate only a few biological processes. However, a better understanding of the reprogramming process leading to ESCs and iPSCs is required to improve stem-cell therapies. One also needs to understand the links between signaling, metabolism, regulation of gene expression, and the epigenetics machinery.
Collapse
Affiliation(s)
- Pınar Pir
- Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK.
| | - Nicolas Le Novère
- Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK.
| |
Collapse
|
42
|
Teramoto M, Kudome-Takamatsu T, Nishimura O, An Y, Kashima M, Shibata N, Agata K. Molecular markers for X-ray-insensitive differentiated cells in the Inner and outer regions of the mesenchymal space in planarian Dugesia japonica. Dev Growth Differ 2016; 58:609-19. [PMID: 27530596 DOI: 10.1111/dgd.12309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 05/24/2016] [Accepted: 06/05/2016] [Indexed: 12/01/2022]
Abstract
Planarian's strong regenerative ability is dependent on stem cells (called neoblasts) that are X-ray-sensitive and proliferative stem cells. In addition to neoblasts, another type of X-ray-sensitive cells was newly identified by recent research. Thus, planarian's X-ray-sensitive cells can be divided into at least two populations, Type 1 and Type 2, the latter corresponding to planarian's classically defined "neoblasts". Here, we show that Type 1 cells were distributed in the outer region (OR) immediately underneath the muscle layer at all axial levels from head to tail, while the Type 2 cells were distributed in a more internal region (IR) of the mesenchymal space at the axial levels from neck to tail. To elucidate the biological significance of these two regions, we searched for genes expressed in differentiated cells that were locate close to these X-ray-sensitive cell populations in the mesenchymal space, and identified six genes mainly expressed in the OR or IR, named OR1, OR2, OR3, IR1, IR2 and IR3. The predicted amino acid sequences of these genes suggested that differentiated cells expressing OR1, OR3, IR1, or IR2 provide Type 1 and Type 2 cells with specific extracellular matrix (ECM) environments.
Collapse
Affiliation(s)
- Machiko Teramoto
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | | | - Osamu Nishimura
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan.,Global COE Program: Evolution and Biodiversity, Graduate School of Science, Kyoto University, Kyoto, Japan.,Center for Life Science Technologies, RIKEN, Kobe, Hyogo, Japan
| | - Yang An
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan.,Immolife-biotech Co. Ltd., Nanking, China
| | - Makoto Kashima
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Norito Shibata
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan.,Department of Integrated Science and Technology, National Institute of Technology, Tsuyama College 624-1, Tsuyama-City, Okayama, Japan
| | - Kiyokazu Agata
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan. .,Center for Developmental Biology, RIKEN, Kobe, Hyogo, Japan. .,Global COE Program: Evolution and Biodiversity, Graduate School of Science, Kyoto University, Kyoto, Japan.
| |
Collapse
|
43
|
Kareem A, Radhakrishnan D, Sondhi Y, Aiyaz M, Roy MV, Sugimoto K, Prasad K. De novo assembly of plant body plan: a step ahead of Deadpool. REGENERATION (OXFORD, ENGLAND) 2016; 3:182-197. [PMID: 27800169 PMCID: PMC5084358 DOI: 10.1002/reg2.68] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Revised: 08/12/2016] [Accepted: 08/24/2016] [Indexed: 12/20/2022]
Abstract
While in the movie Deadpool it is possible for a human to recreate an arm from scratch, in reality plants can even surpass that. Not only can they regenerate lost parts, but also the whole plant body can be reborn from a few existing cells. Despite the decades old realization that plant cells possess the ability to regenerate a complete shoot and root system, it is only now that the underlying mechanisms are being unraveled. De novo plant regeneration involves the initiation of regenerative mass, acquisition of the pluripotent state, reconstitution of stem cells and assembly of regulatory interactions. Recent studies have furthered our understanding on the making of a complete plant system in the absence of embryonic positional cues. We review the recent studies probing the molecular mechanisms of de novo plant regeneration in response to external inductive cues and our current knowledge of direct reprogramming of root to shoot and vice versa. We further discuss how de novo regeneration can be exploited to meet the demands of green culture industries and to serve as a general model to address the fundamental questions of regeneration across the plant kingdom.
Collapse
Affiliation(s)
- Abdul Kareem
- School of BiologyIndian Institute of Science Education and ResearchThiruvananthapuramKerala695016India
| | - Dhanya Radhakrishnan
- School of BiologyIndian Institute of Science Education and ResearchThiruvananthapuramKerala695016India
| | - Yash Sondhi
- School of BiologyIndian Institute of Science Education and ResearchThiruvananthapuramKerala695016India
| | - Mohammed Aiyaz
- School of BiologyIndian Institute of Science Education and ResearchThiruvananthapuramKerala695016India
| | - Merin V. Roy
- School of BiologyIndian Institute of Science Education and ResearchThiruvananthapuramKerala695016India
| | - Kaoru Sugimoto
- Department of Applied Biological ScienceFaculty of Science and TechnologyTokyo University of Science2641 YamazakiNodaChiba278‐8510Japan
| | - Kalika Prasad
- School of BiologyIndian Institute of Science Education and ResearchThiruvananthapuramKerala695016India
| |
Collapse
|
44
|
Regenerative decline of stem cells in sarcopenia. Mol Aspects Med 2016; 50:109-17. [DOI: 10.1016/j.mam.2016.02.002] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 01/27/2016] [Accepted: 02/19/2016] [Indexed: 12/19/2022]
|
45
|
Polycomb-Mediated Repression and Sonic Hedgehog Signaling Interact to Regulate Merkel Cell Specification during Skin Development. PLoS Genet 2016; 12:e1006151. [PMID: 27414999 PMCID: PMC4944976 DOI: 10.1371/journal.pgen.1006151] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 06/08/2016] [Indexed: 01/06/2023] Open
Abstract
An increasing amount of evidence indicates that developmental programs are tightly regulated by the complex interplay between signaling pathways, as well as transcriptional and epigenetic processes. Here, we have uncovered coordination between transcriptional and morphogen cues to specify Merkel cells, poorly understood skin cells that mediate light touch sensations. In murine dorsal skin, Merkel cells are part of touch domes, which are skin structures consisting of specialized keratinocytes, Merkel cells, and afferent neurons, and are located exclusively around primary hair follicles. We show that the developing primary hair follicle functions as a niche required for Merkel cell specification. We find that intraepidermal Sonic hedgehog (Shh) signaling, initiated by the production of Shh ligand in the developing hair follicles, is required for Merkel cell specification. The importance of Shh for Merkel cell formation is further reinforced by the fact that Shh overexpression in embryonic epidermal progenitors leads to ectopic Merkel cells. Interestingly, Shh signaling is common to primary, secondary, and tertiary hair follicles, raising the possibility that there are restrictive mechanisms that regulate Merkel cell specification exclusively around primary hair follicles. Indeed, we find that loss of Polycomb repressive complex 2 (PRC2) in the epidermis results in the formation of ectopic Merkel cells that are associated with all hair types. We show that PRC2 loss expands the field of epidermal cells competent to differentiate into Merkel cells through the upregulation of key Merkel-differentiation genes, which are known PRC2 targets. Importantly, PRC2-mediated repression of the Merkel cell differentiation program requires inductive Shh signaling to form mature Merkel cells. Our study exemplifies how the interplay between epigenetic and morphogen cues regulates the complex patterning and formation of the mammalian skin structures. Merkel cells are innervated touch-receptor cells that are responsible for light touch sensations. They originate from embryonic epidermal stem cells and, in hairy regions of skin, are organized in touch domes. Touch domes are highly patterned structures that form exclusively around primary hair follicles. Strikingly, the mechanisms controlling Merkel cell formation are largely unknown. Here, we show that the hair follicle functions as a niche required for Merkel cell formation. We find that intraepidermal Sonic hedgehog (Shh) signaling, initiated by the production of Shh in the developing hair follicles, is required for Merkel cell specification, whereas Shh overexpression in embryonic epidermal progenitors leads to ectopic Merkel cells. Interestingly, Shh signaling is common to all hair types, suggesting that there are restrictive mechanisms that allow Merkel cell specification to occur exclusively around primary hairs. Indeed, we find that loss of Polycomb repressive complex 2 (PRC2) in the epidermis leads to the formation of ectopic Merkel cells around all hair types. We show that PRC2 loss expands the field of epidermal cells competent to differentiate into Merkel cells through derepression of key Merkel-differentiation genes; however, inductive Shh signaling is still required for the formation of mature Merkel cells. Our study illustrates how the interplay between epigenetic and morphogen cues functions to establish the complex patterning and formation of the mammalian skin.
Collapse
|
46
|
Barragan F, Irwin JC, Balayan S, Erikson DW, Chen JC, Houshdaran S, Piltonen TT, Spitzer TLB, George A, Rabban JT, Nezhat C, Giudice LC. Human Endometrial Fibroblasts Derived from Mesenchymal Progenitors Inherit Progesterone Resistance and Acquire an Inflammatory Phenotype in the Endometrial Niche in Endometriosis. Biol Reprod 2016; 94:118. [PMID: 27075616 PMCID: PMC4939744 DOI: 10.1095/biolreprod.115.136010] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 03/24/2016] [Indexed: 12/18/2022] Open
Abstract
Human endometrium undergoes cyclic regeneration involving stem/progenitor cells, but the role of resident endometrial mesenchymal stem cells (eMSC) as progenitors of endometrial stromal fibroblasts (eSF) has not been definitively demonstrated. In endometriosis, eSF display progesterone (P4) resistance with impaired decidualization in vivo and in vitro. To investigate eMSC as precursors of eSF and whether endometriosis P4 resistance is inherited from eMSC, we analyzed transcriptomes of eutopic endometrium eMSC and eSF isolated by fluorescence-activated cell sorting (FACS) from endometriosis (eMSCendo, eSFendo) and controls (eMSCcontrol, eSFcontrol) and their derived primary cultures. Differentially expressed lineage-associated genes (LG) of FACS-isolated eMSC and eSF were largely conserved in endometriosis. In culture, eSFcontrol maintained in vitro expression of a subset of eSF LG and decidualized in vitro with P4 The eMSCcontrol cultures differentiated in vitro to eSF lineage, down-regulating eMSC LG and up-regulating eSF LG, showing minimal transcriptome differences versus eSFcontrol cultures and decidualizing in vitro. Cultured eSFendo displayed less in vitro LG stability and did not decidualize in vitro. In vitro, eMSCendo differentiated to eSF lineage but showed more differentially expressed genes versus eSFendo cultures, and did not decidualize in vitro, demonstrating P4 resistance inherited from eMSCendo Compared to controls, cultures from tissue-derived eSFendo uniquely had a pro-inflammatory phenotype not present in eMSCendo differentiated to eSF in vitro, suggesting divergent niche effects for in vivo versus in vitro lineage differentiation. These findings substantiate eMSC as progenitors of eSF and reveal eSF in endometriosis as having P4 resistance inherited from eMSC and a pro-inflammatory phenotype acquired within the endometrial niche.
Collapse
Affiliation(s)
- Fatima Barragan
- Department of Obstetrics, Gynecology and Reproductive Sciences and the Center for Reproductive Sciences, University of California, San Francisco, San Francisco, California
| | - Juan C Irwin
- Department of Obstetrics, Gynecology and Reproductive Sciences and the Center for Reproductive Sciences, University of California, San Francisco, San Francisco, California
| | - Shaina Balayan
- Department of Obstetrics, Gynecology and Reproductive Sciences and the Center for Reproductive Sciences, University of California, San Francisco, San Francisco, California
| | - David W Erikson
- Department of Obstetrics, Gynecology and Reproductive Sciences and the Center for Reproductive Sciences, University of California, San Francisco, San Francisco, California Oregon National Primate Research Center/Oregon Health & Science University, Endocrine Technologies Support Core, Beaverton, Oregon
| | - Joseph C Chen
- Department of Obstetrics, Gynecology and Reproductive Sciences and the Center for Reproductive Sciences, University of California, San Francisco, San Francisco, California Siemens Healthcare Diagnostics, Berkeley, California
| | - Sahar Houshdaran
- Department of Obstetrics, Gynecology and Reproductive Sciences and the Center for Reproductive Sciences, University of California, San Francisco, San Francisco, California
| | - Terhi T Piltonen
- Department of Obstetrics, Gynecology and Reproductive Sciences and the Center for Reproductive Sciences, University of California, San Francisco, San Francisco, California Department of Obstetrics and Gynecology and Medical Research Center, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Trimble L B Spitzer
- Department of Obstetrics, Gynecology and Reproductive Sciences and the Center for Reproductive Sciences, University of California, San Francisco, San Francisco, California Reproductive Endocrinology and Infertility Division, Women's Health, Naval Medical Center, Portsmouth, Virginia
| | - Ashley George
- Department of Obstetrics, Gynecology and Reproductive Sciences and the Center for Reproductive Sciences, University of California, San Francisco, San Francisco, California Department of Animal Sciences, Rutgers University, New Brunswick, New Jersey
| | - Joseph T Rabban
- Department of Pathology, University of California, San Francisco, San Francisco, California
| | - Camran Nezhat
- Department of Obstetrics and Gynecology, Stanford University, Stanford, California
| | - Linda C Giudice
- Department of Obstetrics, Gynecology and Reproductive Sciences and the Center for Reproductive Sciences, University of California, San Francisco, San Francisco, California
| |
Collapse
|
47
|
Yoshida S, Kato T, Kato Y. EMT Involved in Migration of Stem/Progenitor Cells for Pituitary Development and Regeneration. J Clin Med 2016; 5:jcm5040043. [PMID: 27058562 PMCID: PMC4850466 DOI: 10.3390/jcm5040043] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 03/24/2016] [Accepted: 03/29/2016] [Indexed: 12/17/2022] Open
Abstract
Epithelial–mesenchymal transition (EMT) and cell migration are important processes in embryonic development of many tissues as well as oncogenesis. The pituitary gland is a master endocrine tissue and recent studies indicate that Sox2-expressing stem/progenitor cells actively migrate and develop this tissue during embryogenesis. Notably, although migration activity of stem/progenitor cells in the postnatal period seems to be reduced compared to that in the embryonic period, it is hypothesized that stem/progenitor cells in the adult pituitary re-migrate from their microenvironment niche to contribute to the regeneration system. Therefore, elucidation of EMT in the pituitary stem/progenitor cells will promote understanding of pituitary development and regeneration, as well as diseases such as pituitary adenoma. In this review, so as to gain more insights into the mechanisms of pituitary development and regeneration, we summarize the EMT in the pituitary by focusing on the migration of pituitary stem/progenitor cells during both embryonic and postnatal organogenesis.
Collapse
Affiliation(s)
- Saishu Yoshida
- Organization for the Strategic Coordination of Research and Intellectual Property, Meiji University, Kanagawa 214-8571, Japan.
| | - Takako Kato
- Organization for the Strategic Coordination of Research and Intellectual Property, Meiji University, Kanagawa 214-8571, Japan.
- Institute of Reproduction and Endocrinology, Meiji University, Kanagawa 214-8571, Japan.
| | - Yukio Kato
- Institute of Reproduction and Endocrinology, Meiji University, Kanagawa 214-8571, Japan.
- Division of Life Science, Graduate School of Agriculture, Meiji University, Kanagawa 214-8571, Japan.
- Department of Life Science, School of Agriculture, Meiji University, Kanagawa 214-8571, Japan.
| |
Collapse
|
48
|
Rezza A, Wang Z, Sennett R, Qiao W, Wang D, Heitman N, Mok KW, Clavel C, Yi R, Zandstra P, Ma'ayan A, Rendl M. Signaling Networks among Stem Cell Precursors, Transit-Amplifying Progenitors, and their Niche in Developing Hair Follicles. Cell Rep 2016; 14:3001-18. [PMID: 27009580 DOI: 10.1016/j.celrep.2016.02.078] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 01/20/2016] [Accepted: 02/20/2016] [Indexed: 12/18/2022] Open
Abstract
The hair follicle (HF) is a complex miniorgan that serves as an ideal model system to study stem cell (SC) interactions with the niche during growth and regeneration. Dermal papilla (DP) cells are required for SC activation during the adult hair cycle, but signal exchange between niche and SC precursors/transit-amplifying cell (TAC) progenitors that regulates HF morphogenetic growth is largely unknown. Here we use six transgenic reporters to isolate 14 major skin and HF cell populations. With next-generation RNA sequencing, we characterize their transcriptomes and define unique molecular signatures. SC precursors, TACs, and the DP niche express a plethora of ligands and receptors. Signaling interaction network analysis reveals a bird's-eye view of pathways implicated in epithelial-mesenchymal interactions. Using a systematic tissue-wide approach, this work provides a comprehensive platform, linked to an interactive online database, to identify and further explore the SC/TAC/niche crosstalk regulating HF growth.
Collapse
Affiliation(s)
- Amélie Rezza
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Zichen Wang
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Pharmacology and Systems Therapeutics, BD2K-LINCS Data Coordination and Integration Center, Knowledge Management Center for Illuminating the Druggable Genome (KMC-IDG), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Rachel Sennett
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Wenlian Qiao
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | - Dongmei Wang
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | - Nicholas Heitman
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ka Wai Mok
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Carlos Clavel
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Rui Yi
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | - Peter Zandstra
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | - Avi Ma'ayan
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Pharmacology and Systems Therapeutics, BD2K-LINCS Data Coordination and Integration Center, Knowledge Management Center for Illuminating the Druggable Genome (KMC-IDG), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Michael Rendl
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
49
|
Segalés J, Islam ABMMK, Kumar R, Liu QC, Sousa-Victor P, Dilworth FJ, Ballestar E, Perdiguero E, Muñoz-Cánoves P. Chromatin-wide and transcriptome profiling integration uncovers p38α MAPK as a global regulator of skeletal muscle differentiation. Skelet Muscle 2016; 6:9. [PMID: 26981231 PMCID: PMC4791895 DOI: 10.1186/s13395-016-0074-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 01/05/2016] [Indexed: 11/23/2022] Open
Abstract
Background Extracellular stimuli induce gene expression responses through intracellular signaling mediators. The p38 signaling pathway is a paradigm of the mitogen-activated protein kinase (MAPK) family that, although originally identified as stress-response mediator, contributes to establishing stem cell differentiation fates. p38α is central for induction of the differentiation fate of the skeletal muscle stem cells (satellite cells) through not fully characterized mechanisms. Methods To investigate the global gene transcription program regulated by p38α during satellite cell differentiation (myogenesis), and to specifically address whether this regulation occurs through direct action of p38α on gene promoters, we performed a combination of microarray gene expression and genome-wide binding analyses. For experimental robustness, two myogenic cellular systems with genetic and chemical loss of p38α function were used: (1) satellite cells derived from mice with muscle-specific deletion of p38α, and (2) the C2C12 murine myoblast cell line cultured in the absence or presence of the p38α/β inhibitor SB203580. Analyses were performed at cell proliferation and early differentiation stages. Results We show that p38α binds to a large set of active promoters during the transition of myoblasts from proliferation to differentiation stages. p38α-bound promoters are enriched with binding motifs for several transcription factors, with Sp1, Tcf3/E47, Lef1, FoxO4, MyoD, and NFATc standing out in all experimental conditions. p38α association with chromatin correlates very well with high levels of transcription, in agreement with its classical function as an activator of myogenic differentiation. Interestingly, p38α also associates with genes repressed at the onset of differentiation, thus highlighting the relevance of p38-dependent chromatin regulation for transcriptional activation and repression during myogenesis. Conclusions These results uncover p38α association and function on chromatin at novel classes of target genes during skeletal muscle cell differentiation. This is consistent with this MAPK isoform being a transcriptional regulator. Electronic supplementary material The online version of this article (doi:10.1186/s13395-016-0074-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jessica Segalés
- Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative diseases (CIBERNED), Barcelona, Spain
| | - Abul B M M K Islam
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka, 1000 Bangladesh
| | - Roshan Kumar
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115 USA
| | - Qi-Cai Liu
- Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6 Canada
| | - Pedro Sousa-Victor
- Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative diseases (CIBERNED), Barcelona, Spain ; Present address: Buck Institute for Research on Aging, Novato, CA USA
| | - F Jeffrey Dilworth
- Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6 Canada
| | - Esteban Ballestar
- Chromatin and Disease Group, Cancer Epigenetics and Biology Programme (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Eusebio Perdiguero
- Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative diseases (CIBERNED), Barcelona, Spain
| | - Pura Muñoz-Cánoves
- Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative diseases (CIBERNED), Barcelona, Spain ; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
50
|
Yoshizaki G, Takashiba K, Shimamori S, Fujinuma K, Shikina S, Okutsu T, Kume S, Hayashi M. Production of germ cell-deficient salmonids by dead end gene knockdown, and their use as recipients for germ cell transplantation. Mol Reprod Dev 2016; 83:298-311. [PMID: 26860442 DOI: 10.1002/mrd.22625] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 01/24/2016] [Indexed: 12/15/2022]
Abstract
We previously established a spermatogonial transplantation model in fish using triploid recipients. Although triploid salmonids are sterile, they carry a limited number of immature triploid germ cells that potentially compete with the donor-derived germ cells for their niche. We therefore assessed the biological characteristics of germ cell-deficient gonads in rainbow trout for their suitability as recipients for germ cell transplantation in this study. Antisense morpholino oligonucleotides against the dead end gene were microinjected into the fertilized eggs of rainbow trout to eliminate endogenous germ cells, leaving only their supporting cells. Unlike similar approaches performed in zebrafish and medaka, these germ cell-deficient rainbow trout did not show a male-biased sex ratio. Approximately 30,000 spermatogonia were then transplanted into the body cavities of both germ cell-deficient and control recipients. The donor-derived germ cells showed significantly higher proliferation in the gonads of germ cell-deficient recipients than those in the gonads of the control recipients. Finally, the applicability of the germ cell-deficient recipients for xenogeneic transplantation was evaluated by transplanting rainbow trout spermatogonia into germ cell-deficient masu salmon recipients. The resulting recipient salmon matured normally and produced trout gametes, and early survival of the resulting trout offspring was as high as that of the control offspring. Thus, dead end-knockdown salmonids appear to be ideal recipients for the intraperitoneal transplantation of spermatogonia.
Collapse
Affiliation(s)
- Goro Yoshizaki
- Tokyo University of Marine Science and Technology, Tokyo, Japan
| | | | | | - Kiyoko Fujinuma
- Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Shinya Shikina
- Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Tomoyuki Okutsu
- Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Sachi Kume
- Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Makoto Hayashi
- Tokyo University of Marine Science and Technology, Tokyo, Japan.,Life Science Center of Tsukuba Advanced Research Alliance, University of Tsukuba, Ibaraki, Japan
| |
Collapse
|