1
|
Lai YC, Chen YH, Liang FW, Wu YC, Wang JJ, Lim SW, Ho CH. Determinants of cancer incidence and mortality among people with vitamin D deficiency: an epidemiology study using a real-world population database. Front Nutr 2023; 10:1294066. [PMID: 38130443 PMCID: PMC10733456 DOI: 10.3389/fnut.2023.1294066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/15/2023] [Indexed: 12/23/2023] Open
Abstract
Introduction This study aimed to investigate the determinants of cancer incidence and mortality in patients with vitamin D deficiency using a real-world population database. Methods We utilized the International Diagnostic Classification Code (ICD9:268 / ICD10: E55) to define patients with vitamin D deficiency. Additionally, the Cox regression model was used to estimate overall mortality and identify potential factors contributing to mortality in cancer patients. Results In 5242 patients with vitamin D deficiency, the development of new-onset cancer was 229 (4.37%) patients. Colon cancer was the most prevalent cancer type. After considering confounding factors, patients aged 50-65 and more than 65 indicated a 3.10-fold (95% C.I.: 2.12-4.51) and 4.55-fold (95% C.I.: 3.03-6.82) cancer incidence, respectively compared with those aged <50. Moreover, patients with comorbidities of diabetes mellitus (DM) (HR: 1.56; 95% C.I.: 1.01-2.41) and liver disease (HR: 1.62; 95% C.I.: 1.03-2.54) presented a higher cancer incidence rate than those without DM/ liver disease. In addition, vitamin D deficiency patients with cancer and dementia histories indicated a significantly higher mortality risk (HR: 4.04; 95% C.I.: 1.05- 15.56) than those without dementia. Conclusion In conclusion, our study revealed that vitamin D deficiency patients with liver disease had an increased incidence of cancer, while those with dementia had an increased mortality rate among cancer patients.
Collapse
Affiliation(s)
- Yi-Chen Lai
- Department of Emergency Medicine, An Nan Hospital, China Medical University, Tainan, Taiwan
| | - Yu-Han Chen
- Department of Family Medicine, An Nan Hospital, China Medical University, Tainan, Taiwan
| | - Fu-Wen Liang
- Department of Public Health, College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Center for Big Data Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yu-Cih Wu
- Department of Medical Research, Chi-Mei Medical Center, Tainan, Taiwan
| | - Jhi-Joung Wang
- Department of Medical Research, Chi-Mei Medical Center, Tainan, Taiwan
- Department of Anesthesiology, Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan
| | - Sher-Wei Lim
- Department of Neurosurgery, Chi Mei Medical Center, Chiali, Tainan, Taiwan
- Department of Nursing, Min-Hwei College of Health Care Management, Tainan, Taiwan
| | - Chung-Han Ho
- Department of Medical Research, Chi-Mei Medical Center, Tainan, Taiwan
- Department of Information Management, Southern Taiwan University of Science and Technology, Tainan, Taiwan
- Cancer Center, Taipei Municipal Wanfang Hospital, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
2
|
Park HG, Choi JH. Genetic variant rs9939609 in FTO is associated with body composition and obesity risk in Korean females. BMJ Open Diabetes Res Care 2023; 11:e003649. [PMID: 37993268 PMCID: PMC10668161 DOI: 10.1136/bmjdrc-2023-003649] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 10/14/2023] [Indexed: 11/24/2023] Open
Abstract
INTRODUCTION The fat mass and obesity-associated (FTO) gene is a significant locus in obesity. However, the association between FTO genetic variants and body composition has not been fully elucidated. RESEARCH DESIGN AND METHODS This observational study examined the associations of FTO rs9939609 T>A with obesity and body composition markers in Koreans. A total of 6474 participants from the Korean Genome and Epidemiology Study were analyzed for their general characteristics, body composition and FTO genotype with a sex-stratified approach. RESULTS Females with the obesity risk A allele showed significantly greater body weight, hip circumference, and body mass index and were at a 1.28-fold higher risk of obesity (95% CI=1.088 to 1.507) than those with the TT genotype. Analyses of body composition also showed that females with the A allele had a greater body fat mass and percentage, abdominal fat percentage, and degree of obesity, and this association and FTO genetic variation and adiposity was observed in females, especially aged under 50 years. However, the effect of the variant allele on non-fat tissue markers was not evident in females and was not associated with any parameters examined in males. CONCLUSIONS The FTO rs9939609 variant is associated with body composition in Koreans, especially body fat markers in females. These results support that the FTO rs9939609 variant is a genetic risk factor in the etiology of obesity.
Collapse
Affiliation(s)
- Hyeon-Gyo Park
- Department of Food Science and Nutrition, Keimyung University, Daegu, Korea (the Republic of)
| | - Jeong-Hwa Choi
- Department of Food Science and Nutrition, Keimyung University, Daegu, Korea (the Republic of)
| |
Collapse
|
3
|
Elbe H. Obesity and the Mother Goddess of Neolithic Çatalhöyük. Hormones (Athens) 2023; 22:349-352. [PMID: 36723613 DOI: 10.1007/s42000-023-00433-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/20/2023] [Indexed: 02/02/2023]
Affiliation(s)
- Hulya Elbe
- Faculty of Medicine, Department of Histology and Embryology, Mugla Sitki Kocman University, 48100, Mugla, Turkey.
| |
Collapse
|
4
|
Komaniecki G, Camarena MDC, Gelsleichter E, Mendoza R, Subler M, Windle JJ, Dozmorov MG, Lai Z, Sarkar D, Lin H. Astrocyte Elevated Gene-1 Cys75 S-Palmitoylation by ZDHHC6 Regulates Its Biological Activity. Biochemistry 2023; 62:543-553. [PMID: 36548985 PMCID: PMC9850907 DOI: 10.1021/acs.biochem.2c00583] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/01/2022] [Indexed: 12/24/2022]
Abstract
Nonalcoholic fatty liver disease is a major risk factor for hepatocellular carcinoma (HCC). Astrocyte elevated gene-1/Metadherin (AEG-1/MTDH) augments lipid accumulation (steatosis), inflammation, and tumorigenesis, thereby promoting the whole spectrum of this disease process. Targeting AEG-1 is a potential interventional strategy for nonalcoholic steatohepatitis (NASH) and HCC. Thus, proper understanding of the regulation of this molecule is essential. We found that AEG-1 is palmitoylated at residue cysteine 75 (Cys75). Mutation of Cys75 to serine (Ser) completely abolished AEG-1 palmitoylation. We identified ZDHHC6 as a palmitoyltransferase catalyzing the process in HEK293T cells. To obtain insight into how palmitoylation regulates AEG-1 function, we generated knock-in mice by CRISPR/Cas9 in which Cys75 of AEG-1 was mutated to Ser (AEG-1-C75S). No developmental or anatomical abnormality was observed between AEG-1-wild type (AEG-1-WT) and AEG-1-C75S littermates. However, global gene expression analysis by RNA-sequencing unraveled that signaling pathways and upstream regulators, which contribute to cell proliferation, motility, inflammation, angiogenesis, and lipid accumulation, were activated in AEG-1-C75S hepatocytes compared to AEG-1-WT. These findings suggest that AEG-1-C75S functions as dominant positive and that palmitoylation restricts oncogenic and NASH-promoting functions of AEG-1. We thus identify a previously unknown regulatory mechanism of AEG-1, which might help design new therapeutic strategies for NASH and HCC.
Collapse
Affiliation(s)
- Garrison Komaniecki
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York 14853, United States
- C.
Kenneth and Dianne Wright Center for Clinical and Translational Research, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Maria Del Carmen Camarena
- C.
Kenneth and Dianne Wright Center for Clinical and Translational Research, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Eric Gelsleichter
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York 14853, United States
| | - Rachel Mendoza
- Department
of Human and Molecular Genetics, Virginia
Commonwealth University, Richmond, Virginia 23298, United States
| | - Mark Subler
- Department
of Human and Molecular Genetics, Virginia
Commonwealth University, Richmond, Virginia 23298, United States
| | - Jolene J. Windle
- Department
of Human and Molecular Genetics, Virginia
Commonwealth University, Richmond, Virginia 23298, United States
- Massey
Cancer Center, Virginia Commonwealth University, Richmond, Virginia 23298, United States
- VCU
Institute of Molecular Medicine (VIMM), Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Mikhail G. Dozmorov
- Department
of Biostatistics, Virginia Commonwealth
University, Richmond, Virginia 23298, United States
- Department
of Pathology, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Zhao Lai
- Greehy
Children’s Cancer Research Institute, University of Texas Health
Science Center San Antonio, San Antonio, Texas 78229, United States
| | - Devanand Sarkar
- Department
of Human and Molecular Genetics, Virginia
Commonwealth University, Richmond, Virginia 23298, United States
- Massey
Cancer Center, Virginia Commonwealth University, Richmond, Virginia 23298, United States
- VCU
Institute of Molecular Medicine (VIMM), Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Hening Lin
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York 14853, United States
- Howard
Hughes Medical Institute, Department of Chemistry and Chemical Biology,
Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
5
|
Effects of the exercise-inducible myokine irisin on proliferation and malignant properties of ovarian cancer cells through the HIF-1 α signaling pathway. Sci Rep 2023; 13:170. [PMID: 36599894 DOI: 10.1038/s41598-022-26700-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 12/19/2022] [Indexed: 01/06/2023] Open
Abstract
Exercise has been shown to be associated with reduced risk and improving outcomes of several types of cancers. Irisin -a novel exercise-related myokine- has been proposed to exert beneficial effects in metabolic disorders including cancer. No previous studies have investigated whether irisin may regulate malignant characteristics of ovarian cancer cell lines. In the present study, we aimed to explore the effect of irisin on viability and proliferation of ovarian cancer cells which was examined by MTT assay. Then, we evaluated the migratory and invasive abilities of the cells via transwell assays. Moreover, the percentage of apoptosis induction was determined by flow cytometry. Furthermore, the mRNA expression level of genes related to the aerobic respiration (HIF-1α, c-Myc, LDHA, PDK1 and VEGF) was detected by real-time PCR. Our data revealed that irisin treatment significantly attenuated the proliferation, migration and invasion of ovarian cancer cells. Additionally, irisin induced apoptosis in ovarian cancer cells. We also observed that irisin regulated the expression of genes involved in aerobic respiration of ovarian cancer cells. Our results indicated that irisin may play a crucial role in inhibition of cell growth and malignant characteristics of ovarian cancer. These findings may open up avenues for future studies to identify the further therapeutic use of irisin in ovarian cancer management.
Collapse
|
6
|
Shao C, Tang H, Wang X, He J, Wang P, Wu N. Oral Contraceptive and Glioma Risk: A Prospective Cohort Study and Meta-Analysis. Front Public Health 2022; 10:878233. [PMID: 35910887 PMCID: PMC9330220 DOI: 10.3389/fpubh.2022.878233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 06/23/2022] [Indexed: 12/04/2022] Open
Abstract
Background Epidemiological evidence that glioma has a slight male predominance implies that factors associated with sex hormones may play a role in the development of glioma. The association between oral contraceptive (OC) use and glioma risk remains controversial. Method In the Prostate, Lung, Colorectal, and Ovarian (PLCO) Cancer Screening Trial of 70,516 women in the USA, Cox proportional hazards regression analyses were adopted to calculate the crude and adjusted hazard ratios (HRs) and 95% confidence intervals (CIs). Additionally, a meta-analysis combining the PLCO findings with those of other prospective cohorts was performed. Results During a mean follow-up of ~11.7 years, 110 of 70,516 women aged 50–78 years at baseline were diagnosed with glioma in PLCO studies. Compared with never users, an inverse association of borderline significance was found for OC users (HR 0.67, 95% CI 0.44–1.04, P = 0.074). Analyses assessing glioma risk according to the duration of OC use yielded no significant association. When PLCO was combined with four other prospective studies, there was an inverse association between OC use and glioma risk (HR 0.85, 95% CI 0.75–0.97, I2 = 0.0%). Further dose-response analysis showed a nonlinear, inverse relationship between OC use and glioma risk (P < 0.001). Conclusions This study provided some evidence of a nonlinear, inverse association between OC use and glioma risk. Future larger studies are warranted to validate this finding.
Collapse
Affiliation(s)
- Chuan Shao
- Department of Neurosurgery, Chongqing General Hospital, Chongqing, China
- Department of Neurosurgery, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong, China
- Graduate Institute, Chongqing Medical University, Chongqing, China
| | - Hui Tang
- Department of Neurosurgery, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong, China
| | - Xiaoya Wang
- Department of Neurosurgery, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong, China
| | - Jiaquan He
- Department of Neurosurgery, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong, China
| | - Pan Wang
- Department of Neurosurgery, Chongqing General Hospital, Chongqing, China
- *Correspondence: Pan Wang
| | - Nan Wu
- Department of Neurosurgery, Chongqing General Hospital, Chongqing, China
- Nan Wu
| |
Collapse
|
7
|
Overview of the Composition of Whole Grains’ Phenolic Acids and Dietary Fibre and Their Effect on Chronic Non-Communicable Diseases. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19053042. [PMID: 35270737 PMCID: PMC8910396 DOI: 10.3390/ijerph19053042] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/22/2022] [Accepted: 02/26/2022] [Indexed: 02/01/2023]
Abstract
Chronic non-communicable diseases are the major cause of death globally. Whole grains are recommended in dietary guidelines worldwide due to increasing evidence that their consumption can improve health beyond just providing energy and nutrients. Epidemiological studies have suggested that the incorporation of whole grains, as part of a healthy diet, plays a key role in reducing one’s risk for cardiovascular diseases (CVDs), obesity, type 2 diabetes (T2D) and cancer. Phenolic acids and dietary fibre are important components found in whole grains that are largely responsible for these health advantages. Both phenolic acids and dietary fibre, which are predominantly present in the bran layer, are abundant in whole-grain cereals and pseudo-cereals. Several studies indicate that whole grain dietary fibre and phenolic acids are linked to health regulation. The main focus of this study is two-fold. First, we provide an overview of phenolic acids and dietary fibres found in whole grains (wheat, barley, oats, rice and buckwheat). Second, we review existing literature on the linkages between the consumption of whole grains and the development of the following chronic non-communicable diseases: CVDs, obesity, T2D and cancer. Altogether, scientific evidence that the intake of whole grains reduces the risk of certain chronic non-communicable disease is encouraging but not convincing. Based on previous studies, the current review encourages further research to cover the gap between the emerging science of whole grains and human health.
Collapse
|
8
|
Zhang Y, Yang Y, Ding L, Wang Z, Xiao Y, Xiao W. Emerging Applications of Metabolomics to Assess the Efficacy of Traditional Chinese Medicines for Treating Type 2 Diabetes Mellitus. Front Pharmacol 2021; 12:735410. [PMID: 34603052 PMCID: PMC8486080 DOI: 10.3389/fphar.2021.735410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/08/2021] [Indexed: 12/14/2022] Open
Abstract
Diabetes is a common and complex disease that can exacerbate the complications related to cardiovascular disease, and this is especially true for type 2 diabetes mellitus (T2DM). In addition to the standard pharmacological therapies, T2DM has also been treated with nonconventional regimens such as traditional Chinese medicine (TCM), e.g., herbal medicines and TCM prescriptions, although the mechanisms underlying the therapeutic benefits remain unclear. In this regard, many studies have used metabolomics technology to elucidate the basis for the efficacy of TCM for T2DM. Metabolomics has recently attracted much attention with regard to drug discovery and pharmacologically relevant natural products. In this review, we summarize the application of metabolomics to the assessment of TCM efficacy for treating T2DM. Increasing evidence suggests that the metabolic profile of an individual patient may reflect a specific type of T2DM syndrome, which may provide a new perspective for disease diagnosis. In addition, TCM has proved effective for countering the metabolic disorders related to T2DM, and this may constitute the basis for TCM efficacy. Therefore, further determining how TCM contributes to the reversal of metabolic disorders, such as using network pharmacology or by assessing the contribution of host–gut microbiota interactions, will also provide researchers with new potential targets for pharmacologic-based therapies.
Collapse
Affiliation(s)
- Yumeng Zhang
- The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yingbo Yang
- The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, China
| | - Lili Ding
- The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhengtao Wang
- The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ying Xiao
- The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wei Xiao
- The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, China
| |
Collapse
|
9
|
Olatunde A, Nigam M, Singh RK, Panwar AS, Lasisi A, Alhumaydhi FA, Jyoti Kumar V, Mishra AP, Sharifi-Rad J. Cancer and diabetes: the interlinking metabolic pathways and repurposing actions of antidiabetic drugs. Cancer Cell Int 2021; 21:499. [PMID: 34535145 PMCID: PMC8447515 DOI: 10.1186/s12935-021-02202-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 09/06/2021] [Indexed: 12/18/2022] Open
Abstract
Cancers are regarded as one of the main causes of death and result in high health burden worldwide. The management of cancer include chemotherapy, surgery and radiotherapy. The chemotherapy, which involves the use of chemical agents with cytotoxic actions is utilised as a single treatment or combined treatment. However, these managements of cancer such as chemotherapy poses some setbacks such as cytotoxicity on normal cells and the problem of anticancer drug resistance. Therefore, the use of other therapeutic agents such as antidiabetic drugs is one of the alternative interventions used in addressing some of the limitations in the use of anticancer agents. Antidiabetic drugs such as sulfonylureas, biguanides and thiazolidinediones showed beneficial and repurposing actions in the management of cancer, thus, the activities of these drugs against cancer is attributed to some of the metabolic links between the two disorders and these includes hyperglycaemia, hyperinsulinemia, inflammation, and oxidative stress as well as obesity. Furthermore, some studies showed that the use of antidiabetic drugs could serve as risk factors for the development of cancerous cells particularly pancreatic cancer. However, the beneficial role of these chemical agents overweighs their detrimental actions in cancer management. Hence, the present review indicates the metabolic links between cancer and diabetes and the mechanistic actions of antidiabetic drugs in the management of cancers.
Collapse
Affiliation(s)
- Ahmed Olatunde
- Department of Biochemistry, Abubakar Tafawa Balewa University, Bauchi, 740272, Nigeria
| | - Manisha Nigam
- Department of Biochemistry, School of Life Sciences, Hemvati Nandan Bahuguna Garhwal University, Srinagar, Garhwal, Uttarakhand, 246174, India.
| | - Rahul Kunwar Singh
- Department of Microbiology, School of Life Sciences, Hemvati Nandan Bahuguna Garhwal University, Srinagar, Garhwal, Uttarakhand, 246174, India
| | - Abhaya Shikhar Panwar
- Department of Biochemistry, School of Life Sciences, Hemvati Nandan Bahuguna Garhwal University, Srinagar, Garhwal, Uttarakhand, 246174, India
| | - Abdulwahab Lasisi
- Maidstone and Tunbridge Wells NHS Trust, Hermitage Lane, Maidstone, Kent, ME169QQ, UK
| | - Fahad A Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Vijay Jyoti Kumar
- Department of Pharmaceutical Sciences, Hemvati Nandan Bahuguna Garhwal University, Garhwal, Srinagar, Uttarakhand, 246174, India
| | - Abhay Prakash Mishra
- Department of Pharmacology, School of Clinical Medicine, Faculty of Health Science, University of Free State, 205, Nelson Mandela Drive, Park West, Bloemfontein, 9300, South Africa
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Durrani IA, Bhatti A, John P. The prognostic outcome of 'type 2 diabetes mellitus and breast cancer' association pivots on hypoxia-hyperglycemia axis. Cancer Cell Int 2021; 21:351. [PMID: 34225729 PMCID: PMC8259382 DOI: 10.1186/s12935-021-02040-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 06/24/2021] [Indexed: 12/24/2022] Open
Abstract
Type 2 diabetes mellitus and breast cancer are complex, chronic, heterogeneous, and multi-factorial diseases; with common risk factors including but not limited to diet, obesity, and age. They also share mutually inclusive phenotypic features such as the metabolic deregulations resulting from hyperglycemia, hypoxic conditions and hormonal imbalances. Although, the association between diabetes and cancer has long been speculated; however, the exact molecular nature of this link remains to be fully elucidated. Both the diseases are leading causes of death worldwide and a causal relationship between the two if not addressed, may translate into a major global health concern. Previous studies have hypothesized hyperglycemia, hyperinsulinemia, hormonal imbalances and chronic inflammation, as some of the possible grounds for explaining how diabetes may lead to cancer initiation, yet further research still needs to be done to validate these proposed mechanisms. At the crux of this dilemma, hyperglycemia and hypoxia are two intimately related states involving an intricate level of crosstalk and hypoxia inducible factor 1, at the center of this, plays a key role in mediating an aggressive disease state, particularly in solid tumors such as breast cancer. Subsequently, elucidating the role of HIF1 in establishing the diabetes-breast cancer link on hypoxia-hyperglycemia axis may not only provide an insight into the molecular mechanisms underlying the association but also, illuminate on the prognostic outcome of the therapeutic targeting of HIF1 signaling in diabetic patients with breast cancer or vice versa. Hence, this review highlights the critical role of HIF1 signaling in patients with both T2DM and breast cancer, potentiates its significance as a prognostic marker in comorbid patients, and further discusses the potential prognostic outcome of targeting HIF1, subsequently establishing the pressing need for HIF1 molecular profiling-based patient selection leading to more effective therapeutic strategies emerging from personalized medicine.
Collapse
Affiliation(s)
- Ilhaam Ayaz Durrani
- Atta-ur-Rehman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, Islamabad, Pakistan
| | - Attya Bhatti
- Atta-ur-Rehman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, Islamabad, Pakistan.
| | - Peter John
- Atta-ur-Rehman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, Islamabad, Pakistan
| |
Collapse
|
11
|
Is Vitamin D Deficiency Related to Increased Cancer Risk in Patients with Type 2 Diabetes Mellitus? Int J Mol Sci 2021; 22:ijms22126444. [PMID: 34208589 PMCID: PMC8233804 DOI: 10.3390/ijms22126444] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/08/2021] [Accepted: 06/12/2021] [Indexed: 12/30/2022] Open
Abstract
There is mounting evidence that type 2 diabetes mellitus (T2DM) is related with increased risk for the development of cancer. Apart from shared common risk factors typical for both diseases, diabetes driven factors including hyperinsulinemia, insulin resistance, hyperglycemia and low grade chronic inflammation are of great importance. Recently, vitamin D deficiency was reported to be associated with the pathogenesis of numerous diseases, including T2DM and cancer. However, little is known whether vitamin D deficiency may be responsible for elevated cancer risk development in T2DM patients. Therefore, the aim of the current review is to identify the molecular mechanisms by which vitamin D deficiency may contribute to cancer development in T2DM patients. Vitamin D via alleviation of insulin resistance, hyperglycemia, oxidative stress and inflammation reduces diabetes driven cancer risk factors. Moreover, vitamin D strengthens the DNA repair process, and regulates apoptosis and autophagy of cancer cells as well as signaling pathways involved in tumorigenesis i.e., tumor growth factor β (TGFβ), insulin-like growth factor (IGF) and Wnt-β-Cathenin. It should also be underlined that many types of cancer cells present alterations in vitamin D metabolism and action as a result of Vitamin D Receptor (VDR) and CYP27B1 expression dysregulation. Although, numerous studies revealed that adequate vitamin D concentration prevents or delays T2DM and cancer development, little is known how the vitamin affects cancer risk among T2DM patients. There is a pressing need for randomized clinical trials to clarify whether vitamin D deficiency may be a factor responsible for increased risk of cancer in T2DM patients, and whether the use of the vitamin by patients with diabetes and cancer may improve cancer prognosis and metabolic control of diabetes.
Collapse
|
12
|
Han SJ, Lee SH. Nontraditional Risk Factors for Obesity in Modern Society. J Obes Metab Syndr 2021; 30:93-103. [PMID: 34011693 PMCID: PMC8277595 DOI: 10.7570/jomes21004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/10/2021] [Accepted: 02/18/2021] [Indexed: 01/01/2023] Open
Abstract
Overweight and obesity, which have rapidly increased around the world in recent years, are significant health problems. They can lead to various morbidities, including cardiovascular diseases, cerebrovascular diseases, type 2 diabetes, some types of cancer, and even death. Obesity is caused by an energy imbalance due to excessive calorie intake and insufficient energy consumption, and genetic factors and individual behavioral problems are also known to be major contributing factors. However, these are insufficient to explain the surge in obesity that has occurred in recent decades. Recent studies have suggested that environmental factors arising from the process of socioeconomic development and modernization contribute to this phenomenon. These environmental factors include light pollution due to artificial lighting, air pollution, endocrine-disrupting chemicals, and reduced exposure to green spaces due to urbanization of residential areas. In this manuscript, the findings and mechanisms of these novel risk factors causing overweight and obesity are reviewed.
Collapse
Affiliation(s)
- Su-Jin Han
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Seung-Hwan Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Department of Medical Informatics, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
13
|
Abstract
MicroRNAs orchestrate the tight regulation of numerous cellular processes and the deregulation in their activities has been implicated in many diseases, including diabetes and cancer. There is an increasing amount of epidemiological evidence associating diabetes, particularly type 2 diabetes mellitus, to an elevated risk of various cancer types, including breast cancer. However, little is yet known about the underlying molecular mechanisms and even less about the role miRNAs play in driving the tumorigenic potential of the cell signaling underlying diabetes pathogenesis. This article reviews the role of miRNA in bridging the diabetes–breast cancer association by discussing specific miRNAs that are implicated in diabetes and breast cancer and highlighting the overlap between the disease-specific regulatory miRNA networks to identify a 20-miRNA signature that is common to both diseases. Potential therapeutic targeting of these molecular players may help to alleviate the socioeconomic burden on public health that is imposed by the type 2 diabetes mellitus (T2DM)–breast cancer association.
Collapse
|
14
|
Engin AB, Engin A. The effect of environmental Bisphenol A exposure on breast cancer associated with obesity. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 81:103544. [PMID: 33161112 DOI: 10.1016/j.etap.2020.103544] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/30/2020] [Accepted: 11/01/2020] [Indexed: 06/11/2023]
Abstract
Bisphenol A (BPA) is a widely used endocrine disrupter. Its environmental exposure is a causative factor of cell aging via decreasing telomerase activity, thus leading to shortening of telomere length. Epidemiological studies confirm positive associations between BPA exposure and the incidence of obesity and type 2 diabetes (T2DM). Increased urinary BPA levels in obese females are both significantly correlated with shorter relative telomere length and T2DM. BPA is a critically effective endocrine disrupter leading to poor prognosis via the obesity-inflammation-aromatase axis in breast cancer. Environmental BPA exposure contributes to the progression of both estrogen dependent and triple negative breast cancers. BPA is a positive regulator of human telomerase reverse transcriptase (hTERT) and it increases the expression of hTERT mRNA in breast cancer cells. BPA exposure can lead to tamoxifen resistance. Among patients treated with chemotherapy, those with persistent high telomerase activity due to BPA are at higher risk of death.
Collapse
Affiliation(s)
- Ayse Basak Engin
- Gazi University, Faculty of Pharmacy, Department of Toxicology, Ankara, Turkey.
| | - Atilla Engin
- Gazi University, Faculty of Medicine, Department of General Surgery, Ankara, Turkey
| |
Collapse
|
15
|
Hoang T, Song D, Lee J, Lee EK, Hwangbo Y, Kim J. Association among Body Mass Index, Genetic Variants of FTO, and Thyroid Cancer Risk: A Hospital-Based Case-Control Study of the Cancer Screenee Cohort in Korea. Cancer Res Treat 2020; 53:857-873. [PMID: 33285050 PMCID: PMC8291195 DOI: 10.4143/crt.2020.720] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 12/04/2020] [Indexed: 12/24/2022] Open
Abstract
Purpose Obesity has been determined to be associated with fat mass and obesity-associated (FTO) gene and thyroid cancer risk. However, the effect of combined interactions between obesity and the FTO gene on thyroid cancer needs further investigation. This study aimed to examine whether interactions between body mass index (BMI) and the FTO gene are associated with an increased risk of thyroid cancer. Materials and Methods A total of 705 thyroid cancer cases and 705 sex- and age-matched normal controls were selected from the Cancer Screenee Cohort in National Cancer Center, Korea. A conditional logistic regression model was used to calculate the odds ratios (ORs) and 95% confidence intervals (CIs) for the measure of associations and the combined effect of BMI and FTO gene on thyroid cancer. Results BMI was associated with an increased risk of thyroid cancer in subclasses of overweight (23–24.9 kg/m2; adjusted OR, 1.50; 95% CI, 1.12 to 2.00) and obese (≥ 25 kg/m2) (adjusted OR, 1.62; 95% CI, 1.23 to 2.14). There were positive associations between the FTO genetic variants rs8047395 and rs8044769 and an increased risk of thyroid cancer. Additionally, the combination of BMI subclasses and FTO gene variants was significantly associated with thyroid cancer risk in the codominant (rs17817288), dominant (rs9937053, rs12149832, rs1861867, and rs7195539), and recessive (rs17817288 and rs8044769) models. Conclusion Findings from this study identified the effects of BMI on thyroid cancer risk among individuals carrying rs17817288, rs9937053, rs12149832, rs1861867, rs7195539, and rs8044769, whereas the effects of BMI may be modified according to individual characteristics of other FTO variants.
Collapse
Affiliation(s)
- Tung Hoang
- Department of Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, Goyang, Korea
| | - Dayoung Song
- Department of Cancer Control and Population Health, National Cancer Center Graduate School of Cancer Science and Policy, Goyang, Korea
| | - Jeonghee Lee
- Department of Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, Goyang, Korea
| | - Eun Kyung Lee
- Center for Thyroid Cancer, National Cancer Center, Goyang, Korea
| | - Yul Hwangbo
- Center for Thyroid Cancer, National Cancer Center, Goyang, Korea
| | - Jeongseon Kim
- Department of Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, Goyang, Korea
| |
Collapse
|
16
|
Sun Y, Zhai G, Li R, Zhou W, Li Y, Cao Z, Wang N, Li H, Wang Y. RXRα Positively Regulates Expression of the Chicken PLIN1 Gene in a PPARγ-Independent Manner and Promotes Adipogenesis. Front Cell Dev Biol 2020; 8:349. [PMID: 32478078 PMCID: PMC7240111 DOI: 10.3389/fcell.2020.00349] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 04/20/2020] [Indexed: 12/24/2022] Open
Abstract
Perilipin1 (PLIN1), the most abundant lipid droplet (LD)-associated protein, plays a vital role in regulating lipid storage and breakdown in adipocytes. Recently, we found that the overexpression of PLIN1 promotes chicken preadipocyte lipid accumulation. However, the mechanisms by which transcription of the chicken PLIN1 gene is regulated remain unknown. In this study, we investigated the role of retinoid X receptor α (RXRα) in transcription of the chicken PLIN1 gene. Notably, reporter gene and expression assays showed that RXRα activates transcription of the chicken PLIN1 gene in a PPARγ-independent manner. Furthermore, promoter deletion and electrophoretic mobility shift assay (EMSA) analysis revealed that the chicken PLIN1 gene promoter region (-774/-785) contains an RXRα-binding site. Further study demonstrated that RXRα overexpression promotes differentiation of an immortalized chicken preadipocyte cell line (ICP1), causing a concomitant increase in PLIN1 transcripts. Taken together, our results show for the first time that RXRα activates transcription of the chicken PLIN1 gene in a PPARγ-independent manner, which might be at least in part responsible for RXRα-induced adipogenesis.
Collapse
Affiliation(s)
- Yuhang Sun
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, China.,College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Guiying Zhai
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, China.,College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Rui Li
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, China.,College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Weinan Zhou
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, China.,College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Yumao Li
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, China.,College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Zhiping Cao
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, China.,College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Ning Wang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, China.,College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Hui Li
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, China.,College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Yuxiang Wang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, China.,College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| |
Collapse
|
17
|
Zhang H, He M. The role of a new insulin-like peptide in the pearl oyster Pinctada fucata martensii. Sci Rep 2020; 10:433. [PMID: 31949275 PMCID: PMC6965660 DOI: 10.1038/s41598-019-57329-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 12/26/2019] [Indexed: 12/16/2022] Open
Abstract
Pinctada fucata martensii, is an economically important marine bivalve species cultured for seawater pearls. At present, we know little about the molecular mechanisms of the insulin signalling pathway in this oyster. Herein, we cloned and analysed an insulin-like peptide (PfILP) and its signalling pathway-related genes. We detected their expression levels in different tissues and developmental stages. Recombinant PfILP protein was produced and found to significantly increase primary mantle cell activity and induce the expression of the proliferating cell nuclear antigen (PCNA) gene. PfILP could also regulate the 293T cell cycle by stimulating the S phase and inhibiting the G1 and G2 phases. Recombinant PfILP protein induced the expression of its signalling pathway-related genes in mantle cells. In vitro co-immunoprecipitation analysis showed that PfILP interacts with PfIRR. PfILP activated expression of the pfIRR protein, and also activated the mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K) pathways by stimulating phosphorylation of MAPK and AKT. Further analysis showed that PfILP up-regulated glycogen synthesis-related genes glycogen synthase kinase-3 beta (GSK-3β), protein phosphatase 1 (PP1) and glucokinase (GK) at the mRNA level, as well as the expression of the PP1 protein, and phosphorylation of GSK-3β. These results confirmed the presence of a conserved insulin-like signalling pathway in pearl oyster that is involved in cell activity, glycogen metabolism, and other physiological processes.
Collapse
Affiliation(s)
- Hua Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- Guangdong Provincial Key Laboratory of Applied Marine Biology, Guangzhou, 510301, China
| | - Maoxian He
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.
- Guangdong Provincial Key Laboratory of Applied Marine Biology, Guangzhou, 510301, China.
| |
Collapse
|
18
|
Ginsenoside Rb1 as an Anti-Diabetic Agent and Its Underlying Mechanism Analysis. Cells 2019; 8:cells8030204. [PMID: 30823412 PMCID: PMC6468558 DOI: 10.3390/cells8030204] [Citation(s) in RCA: 151] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 02/22/2019] [Accepted: 02/23/2019] [Indexed: 12/19/2022] Open
Abstract
Panax ginseng and Panax notoginseng, two well-known medical plants with economic value, have a long history of use for managing various diseases in Asian countries. Accumulating clinical and experimental evidence suggests that notoginsenosides and ginsenosides, which are the major bioactive components of the plants, have a variety of beneficial effects on several types of disease, including metabolic, vascular, and central nervous system disease. Considerable attention has been focused on ginsenoside Rb1 derived from their common ownership as an anti-diabetic agent that can attenuate insulin resistance and various complications. Particularly, in vitro and in vivo models have suggested that ginsenoside Rb1 exerts various pharmacological effects on metabolic disorders, including attenuation of glycemia, hypertension, and hyperlipidemia, which depend on the modulation of oxidative stress, inflammatory response, autophagy, and anti-apoptosis effects. Regulation of these pathophysiological mechanisms can improve blood glucose and insulin resistance and protect against macrovascular/microvascular related complications. This review summarizes the pharmacological effects and mechanisms of action of ginsenoside Rb1 in the management of diabetes or diabetic complications. Moreover, a multi-target effect and mechanism analysis of its antidiabetic actions were performed to provide a theoretical basis for further pharmacological studies and new drug development for clinical treatment of type 2 diabetes. In conclusion, ginsenoside Rb1 exerts significant anti-obesity, anti-hyperglycemic, and anti-diabetic effects by regulating the effects of glycolipid metabolism and improving insulin and leptin sensitivities. All of these findings suggest ginsenoside Rb1 exerts protective effects on diabetes and diabetic complications by the regulation of mitochondrial energy metabolism, improving insulin resistance and alleviating the occurrence complications, which should be further explored. Hence, ginsenoside Rb1 may be developed as a potential anti-obesity, anti-hyperglycemic, and anti-diabetic agent with multi-target effects.
Collapse
|
19
|
Peres Valgas da Silva C, Hernández-Saavedra D, White JD, Stanford KI. Cold and Exercise: Therapeutic Tools to Activate Brown Adipose Tissue and Combat Obesity. BIOLOGY 2019; 8:biology8010009. [PMID: 30759802 PMCID: PMC6466122 DOI: 10.3390/biology8010009] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 02/01/2019] [Accepted: 02/04/2019] [Indexed: 12/11/2022]
Abstract
The rise in obesity over the last several decades has reached pandemic proportions. Brown adipose tissue (BAT) is a thermogenic organ that is involved in energy expenditure and represents an attractive target to combat both obesity and type 2 diabetes. Cold exposure and exercise training are two stimuli that have been investigated with respect to BAT activation, metabolism, and the contribution of BAT to metabolic health. These two stimuli are of great interest because they have both disparate and converging effects on BAT activation and metabolism. Cold exposure is an effective mechanism to stimulate BAT activity and increase glucose and lipid uptake through mitochondrial uncoupling, resulting in metabolic benefits including elevated energy expenditure and increased insulin sensitivity. Exercise is a therapeutic tool that has marked benefits on systemic metabolism and affects several tissues, including BAT. Compared to cold exposure, studies focused on BAT metabolism and exercise display conflicting results; the majority of studies in rodents and humans demonstrate a reduction in BAT activity and reduced glucose and lipid uptake and storage. In addition to investigations of energy uptake and utilization, recent studies have focused on the effects of cold exposure and exercise on the structural lipids in BAT and secreted factors released from BAT, termed batokines. Cold exposure and exercise induce opposite responses in terms of structural lipids, but an important overlap exists between the effects of cold and exercise on batokines. In this review, we will discuss the similarities and differences of cold exposure and exercise in relation to their effects on BAT activity and metabolism and its relevance for the prevention of obesity and the development of type 2 diabetes.
Collapse
Affiliation(s)
- Carmem Peres Valgas da Silva
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
| | - Diego Hernández-Saavedra
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
| | - Joseph D White
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
| | - Kristin I Stanford
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
| |
Collapse
|
20
|
Pierre C, Guillebaud F, Airault C, Baril N, Barbouche R, Save E, Gaigé S, Bariohay B, Dallaporta M, Troadec JD. Invalidation of Microsomal Prostaglandin E Synthase-1 (mPGES-1) Reduces Diet-Induced Low-Grade Inflammation and Adiposity. Front Physiol 2018; 9:1358. [PMID: 30333759 PMCID: PMC6176076 DOI: 10.3389/fphys.2018.01358] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 09/07/2018] [Indexed: 01/04/2023] Open
Abstract
Chronic low-grade inflammation is known to be linked to obesity, and to occur in the early stages of the disease. This mechanism is complex and involves numerous organs, cells, and cytokines. In this context, inflammation of white adipose tissue seems to play a key role in the development of obesity. Because of its properties, prostaglandin E2 (PGE2), an emblematic inflammatory mediator, has been proposed as an actor linking inflammation and obesity. Indeed, PGE2 is involved in mechanisms that are dysregulated in obesity such as lipolysis and adipogenesis. Microsomal prostaglandin E synthase-1 (mPGES-1) is an enzyme, which specifically catalyzes the final step of PGE2 biosynthesis. Interestingly, mPGES-1 invalidation dramatically alters the production of PGE2 during inflammation. In the present work, we sought to determine whether mPGES-1 could contribute to inflammation associated with obesity. To this end, we analyzed the energy metabolism of mPGES-1 deficient mice (mPGES-1-/-) and littermate controls, fed with a high-fat diet. Our data showed that mPGES-1-/- mice exhibited resistance to diet-induced obesity when compared to wild-type littermates. mPGES-1-/- mice fed with a high-fat diet, showed a lower body weight gain and a reduced adiposity, which were accompanied by a decrease in adipose tissues inflammation. We also observed an increase in energy expenditures in mPGES-1-/- mice fed with a high-fat diet without any changes in activity and browning process. Altogether, these data suggest that mPGES-1 inhibition may prevent diet-induced obesity.
Collapse
Affiliation(s)
- Clément Pierre
- Aix Marseille Université, CNRS, Laboratoire de Neurosciences Cognitives UMR 7291, Marseille, France.,Biomeostasis CRO, La Penne-sur-Huveaune, France
| | - Florent Guillebaud
- Aix Marseille Université, CNRS, Laboratoire de Neurosciences Cognitives UMR 7291, Marseille, France
| | - Coraline Airault
- Aix Marseille Université, CNRS, Laboratoire de Neurosciences Cognitives UMR 7291, Marseille, France
| | - Nathalie Baril
- CNRS, Fédération de Recherche 3C FR 3512, Aix-Marseille Université, Marseille, France
| | - Rym Barbouche
- Aix Marseille Université, CNRS, Laboratoire de Neurosciences Cognitives UMR 7291, Marseille, France
| | - Etienne Save
- Aix Marseille Université, CNRS, Laboratoire de Neurosciences Cognitives UMR 7291, Marseille, France
| | - Stéphanie Gaigé
- Aix Marseille Université, CNRS, Laboratoire de Neurosciences Cognitives UMR 7291, Marseille, France
| | | | - Michel Dallaporta
- Aix Marseille Université, CNRS, Laboratoire de Neurosciences Cognitives UMR 7291, Marseille, France
| | - Jean-Denis Troadec
- Aix Marseille Université, CNRS, Laboratoire de Neurosciences Cognitives UMR 7291, Marseille, France
| |
Collapse
|
21
|
Yunn NO, Kim J, Kim Y, Leibiger I, Berggren PO, Ryu SH. Mechanistic understanding of insulin receptor modulation: Implications for the development of anti-diabetic drugs. Pharmacol Ther 2018; 185:86-98. [DOI: 10.1016/j.pharmthera.2017.12.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
22
|
Laskar J, Bhattacharjee K, Sengupta M, Choudhury Y. Anti-Diabetic Drugs: Cure or Risk Factors for Cancer? Pathol Oncol Res 2018. [DOI: 10.1007/s12253-018-0402-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
23
|
Gong S, Xu C, Wang L, Liu Y, Owusu D, Bailey BA, Li Y, Wang K. Genetic association analysis of polymorphisms in PSD3 gene with obesity, type 2 diabetes, and HDL cholesterol. Diabetes Res Clin Pract 2017; 126:105-114. [PMID: 28237857 DOI: 10.1016/j.diabres.2017.02.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 02/02/2017] [Indexed: 01/29/2023]
Abstract
BACKGROUND The pleckstrin and Sec7 domain-containing 3 (PSD3) gene has been linked to immune diseases. We examined whether the genetic variants within the PSD3 gene are associated with obesity, type 2 diabetes (T2D), and high-density lipoprotein (HDL) cholesterol level. METHODS Multiple logistic regression model and linear regression model were used to examine the associations of 259 single nucleotide polymorphisms (SNPs) within the PSD3 gene with obesity and T2D as binary traits, and HDL level as a continuous trait using the Marshfield data, respectively. A replication study of obesity was conducted using the Health Aging and Body Composition (Health ABC) sample. RESULTS 23SNPs were associated with obesity (p<0.05) in the Marshfield sample and rs4921966 revealed the strongest association (p=3.97×10-6). Of the 23SNPs, 20 were significantly associated with obesity in the meta-analysis of two samples (p<0.05). Furthermore, 6SNPs revealed associations with T2D in the Marshfield data (top SNP rs12156368 with p=3.05×10-3); while two SNPs (rs6983992 and rs7843239) were associated with both obesity and T2D (p=0.0188 and 0.023 for obesity and p=8.47×10-3 and 0.0128 for T2D, respectively). Furthermore, 11SNPs revealed associations with HDL level (top SNP rs13254772 with p=2.79×10-3) in the Marshfield data; meanwhile rs7009615 was associated with both T2D (p=0.038) and HDL level (p=4.44×10-3). In addition, haplotype analyses further supported the results of single SNP analysis. CONCLUSIONS Common variants in PSD3 were associated with obesity, T2D and HDL level. These findings add important new insights into the pathogenesis of obesity, T2D and HDL cholesterol.
Collapse
Affiliation(s)
- Shaoqing Gong
- Department of Biostatistics and Epidemiology, College of Public Health, East Tennessee State University, Johnson City, TN, USA
| | - Chun Xu
- Department of Health and Biomedical Science, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Liang Wang
- Department of Biostatistics and Epidemiology, College of Public Health, East Tennessee State University, Johnson City, TN, USA
| | - Ying Liu
- Department of Biostatistics and Epidemiology, College of Public Health, East Tennessee State University, Johnson City, TN, USA
| | - Daniel Owusu
- Department of Biostatistics and Epidemiology, College of Public Health, East Tennessee State University, Johnson City, TN, USA
| | - Beth A Bailey
- Department of Family Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Yujing Li
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA, USA
| | - Kesheng Wang
- Department of Biostatistics and Epidemiology, College of Public Health, East Tennessee State University, Johnson City, TN, USA.
| |
Collapse
|
24
|
Kadouh HC, Sun S, Zhu W, Zhou K. α-Glucosidase inhibiting activity and bioactive compounds of six red wine grape pomace extracts. J Funct Foods 2016; 26:577-584. [PMID: 30381791 PMCID: PMC6205192 DOI: 10.1016/j.jff.2016.08.022] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Grape pomace contains considerable amounts of polyphenols and it has been reported to exhibit specific inhibitory activity against mammalian intestinal α-glucosidases. This study aims to investigate the anti-diabetes potential of Chambourcin, Merlot, Norton, Petit Verdot, Syrah and Tinta Cão red wine grape pomaces by assessing their rat intestinal α-glucosidase inhibitory activity in relation to their total phenolic content and individual identified phenolic compounds by HPLC. Among the selected pomaces, Tinta Cão, Syrah and Merlot extracts showed higher potency in inhibiting α-glucosidase, and appeared to have higher respective total phenolic contents. Fifteen phenolic compounds were identified in the pomace samples, however, none of them showed significant inhibition of intestinal α-glucosidases. Red grape pomace, namely Tinta Cão, appears to be a promising functional food for the potential future development of a food-derived α-glucosidase inhibitor for preventing and treating diabetes.
Collapse
Affiliation(s)
- Hoda C. Kadouh
- Department of Nutrition and Food Science, Wayne State University, Detroit, MI 48202, USA
| | - Shi Sun
- Department of Nutrition and Food Science, Wayne State University, Detroit, MI 48202, USA
| | - Wenjun Zhu
- Department of Nutrition and Food Science, Wayne State University, Detroit, MI 48202, USA
| | - Kequan Zhou
- Department of Nutrition and Food Science, Wayne State University, Detroit, MI 48202, USA
| |
Collapse
|
25
|
Abstract
BLID (BH3-like motif containing, cell death inducer), also known as breast cancer cell 2 (BRCC2), was first reported in the human breast cancer cell line in 2004. BLID is a BH3-like motif containing apoptotic member of the Bcl-2 family. Recently, the BLID tumor-suppressor roles have been fully established. Several studies have found that BLID is frequently downregulated in many human cancers and the downregulation is often associated with tumor progression. Multivariate analysis indicated that BLID is an independent prognostic factor for overall survival and distant metastasis-free survival. Moreover, BLID can inhibit breast cancer cell growth and metastasis and promote apoptosis. BLID can regulate the expression of various tumor-related genes and proteins, such as AKT and MMP. In this review, we provide an overview of current knowledge concerning the role of BLID in tumor development and progression. To our knowledge, this is the first review about the role of this novel tumor-suppressor gene in tumor development and progression.
Collapse
Affiliation(s)
- Xin Yu
- Department of Dermatology, Peking Union Medical College Hospital, Peking Union Medical College, Beijing, China
| | | |
Collapse
|
26
|
The Role of Docosahexaenoic Acid (DHA) in the Control of Obesity and Metabolic Derangements in Breast Cancer. Int J Mol Sci 2016; 17:505. [PMID: 27058527 PMCID: PMC4848961 DOI: 10.3390/ijms17040505] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 03/24/2016] [Accepted: 03/31/2016] [Indexed: 12/15/2022] Open
Abstract
Obesity represents a major under-recognized preventable risk factor for cancer development and recurrence, including breast cancer (BC). Healthy diet and correct lifestyle play crucial role for the treatment of obesity and for the prevention of BC. Obesity is significantly prevalent in western countries and it contributes to almost 50% of BC in older women. Mechanisms underlying obesity, such as inflammation and insulin resistance, are also involved in BC development. Fatty acids are among the most extensively studied dietary factors, whose changes appear to be closely related with BC risk. Alterations of specific ω-3 polyunsaturated fatty acids (PUFAs), particularly low basal docosahexaenoic acid (DHA) levels, appear to be important in increasing cancer risk and its relapse, influencing its progression and prognosis and affecting the response to treatments. On the other hand, DHA supplementation increases the response to anticancer therapies and reduces the undesired side effects of anticancer therapies. Experimental and clinical evidence shows that higher fish consumption or intake of DHA reduces BC cell growth and its relapse risk. Controversy exists on the potential anticancer effects of marine ω-3 PUFAs and especially DHA, and larger clinical trials appear mandatory to clarify these aspects. The present review article is aimed at exploring the capacity of DHA in controlling obesity-related inflammation and in reducing insulin resistance in BC development, progression, and response to therapies.
Collapse
|
27
|
Defferrari MS, Orchard I, Lange AB. Identification of the first insulin-like peptide in the disease vector Rhodnius prolixus: Involvement in metabolic homeostasis of lipids and carbohydrates. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 70:148-159. [PMID: 26742603 DOI: 10.1016/j.ibmb.2015.12.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 12/17/2015] [Accepted: 12/21/2015] [Indexed: 06/05/2023]
Abstract
Insulin-like peptides (ILPs) are functional analogs of insulin and have been identified in many insect species. The insulin cell signaling pathway is a conserved regulator of metabolism, and in insects, as well as in other animals, can modulate physiological functions associated with the metabolism of lipids and carbohydrates. In the present study, we have identified the first ILP from the Rhodnius prolixus genome (termed Rhopr-ILP) and investigated its involvement in energy metabolism of unfed and recently fed fifth instars. We have cloned the cDNA sequence and analyzed the expression profile of the transcript, which is predominantly present in neurosecretory cells in the brain, similar to other insect ILPs. Using RNAi, we have reduced the expression of this peptide transcript by 90% and subsequently measured the carbohydrate and lipid levels in the hemolymph, fat body and leg muscles. Reduced levels of Rhopr-ILP transcript induced increased carbohydrate and lipid levels in the hemolymph and increased lipid content in the fat body, in unfed insects and recently fed insects. Also their fat bodies displayed enlarged lipid droplets within the cells. On the other hand, the carbohydrate content in the fat body and in the leg muscles of unfed insects were decreased when compared to control insects. Our results indicate that Rhopr-ILP is a modulator of lipid and carbohydrate metabolism, probably through signaling the presence of available energy and nutrients in the hemolymph.
Collapse
Affiliation(s)
- Marina S Defferrari
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada.
| | - Ian Orchard
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Angela B Lange
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
| |
Collapse
|
28
|
Chen Y, Wen YY, Li ZR, Luo DL, Zhang XH. The molecular mechanisms between metabolic syndrome and breast cancer. Biochem Biophys Res Commun 2016; 471:391-5. [PMID: 26891869 DOI: 10.1016/j.bbrc.2016.02.034] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 02/10/2016] [Indexed: 12/17/2022]
Abstract
Metabolic syndrome, which is extremely common in developed and some developing countries, is a clustering of at least three of five of the following medical conditions: abdominal obesity, elevated blood pressure, elevated fasting plasma glucose, high serum triglycerides, and low high-density lipoprotein levels. It has been proved that there is a strong association between metabolic syndrome and breast cancer. Metabolic syndrome could increase the risk of breast cancer and influence the prognosis of the breast cancer patients. Some characteristic of metabolic syndrome such as obesity and lack of physical exercise are all risk factors for developing breast cancer. The metabolic syndrome mainly include obesity, type 2 diabetes, hypercholesterolemia and nonalcoholic fatty liver disease, and each of them impacts the risk of breast cancer and the prognosis of the breast cancer patients in different ways. In this Review, we focus on recently uncovered aspects of the immunological and molecular mechanisms that are responsible for the development of this highly prevalent and serious disease. These studies bring new insight into the complex associations between metabolic syndrome and breast cancer and have led to the development of novel therapeutic strategies that might enable a personalized approach in the management of this disease.
Collapse
Affiliation(s)
- Yi Chen
- Department of General Surgery (Breast, Thyroid and Vascular Suerery), Daping Hospital of the Third Military Medical University, Chongqing, 400042, China
| | - Ya-yuan Wen
- Department of General Surgery (Breast, Thyroid and Vascular Suerery), Daping Hospital of the Third Military Medical University, Chongqing, 400042, China
| | - Zhi-rong Li
- Department of General Surgery (Breast, Thyroid and Vascular Suerery), Daping Hospital of the Third Military Medical University, Chongqing, 400042, China
| | - Dong-lin Luo
- Department of General Surgery (Breast, Thyroid and Vascular Suerery), Daping Hospital of the Third Military Medical University, Chongqing, 400042, China
| | - Xiao-hua Zhang
- Department of General Surgery (Breast, Thyroid and Vascular Suerery), Daping Hospital of the Third Military Medical University, Chongqing, 400042, China.
| |
Collapse
|
29
|
Ben-Shmuel S, Rostoker R, Scheinman EJ, LeRoith D. Metabolic Syndrome, Type 2 Diabetes, and Cancer: Epidemiology and Potential Mechanisms. Handb Exp Pharmacol 2016; 233:355-372. [PMID: 25903410 DOI: 10.1007/164_2015_12] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Obesity is associated with multiple metabolic disorders that drive cardiovascular disease, T2D and cancer. The doubling in the number of obese adults over the past 3 decades led to the recognition of obesity as a "disease". With over 42 million children obese or overweight, this epidemic is rapidly growing worldwide. Obesity and T2D are both associated together and independently with an increased risk for cancer and a worse prognosis. Accumulating evidence from epidemiological studies revealed potential factors that may explain the association between obesity-linked metabolic disorders and cancer risk. Studies based on the insulin resistance MKR mice, highlighted the roe of the insulin receptor and its downstream signaling proteins in mediating hyperinsulinemia's mitogenic effects. Hypercholesterolemia was also shown to promote the formation of larger tumors and enhancement in metastasis. Furthermore, the conversion of cholesterol into 27-Hydroxycholesterol was found to link high fat diet-induced hypercholesterolemia with cancer pathophysiology. Alteration in circulating adipokines and cytokines are commonly found in obesity and T2D. Adipokines are involved in tumor growth through multiple mechanisms including mTOR, VEGF and cyclins. In addition, adipose tissues are known to recruit and alter macrophage phenotype; these macrophages can promote cancer progression by secreting inflammatory cytokines such as TNF-α and IL-6. Better characterization on the above factors and their downstream effects is required in order to translate the current knowledge into the clinic, but more importantly is to understand which are the key factors that drive cancer in each patient. Until we reach this point, policies and activities toward healthy diets and physical activities remain the best medicine.
Collapse
Affiliation(s)
- Sarit Ben-Shmuel
- Clinical Research Institute at Rambam (CRIR), Diabetes and Metabolism Clinical Research Center of Excellence, Rambam Health Care Campus, Haifa, Israel
| | - Ran Rostoker
- Clinical Research Institute at Rambam (CRIR), Diabetes and Metabolism Clinical Research Center of Excellence, Rambam Health Care Campus, Haifa, Israel
| | - Eyal J Scheinman
- Clinical Research Institute at Rambam (CRIR), Diabetes and Metabolism Clinical Research Center of Excellence, Rambam Health Care Campus, Haifa, Israel
| | - Derek LeRoith
- Clinical Research Institute at Rambam (CRIR), Diabetes and Metabolism Clinical Research Center of Excellence, Rambam Health Care Campus, Haifa, Israel.
| |
Collapse
|
30
|
McNamara KM, Sasano H. Beyond the C18 frontier: Androgen and glucocorticoid metabolism in breast cancer tissues: The role of non-typical steroid hormones in breast cancer development and progression. Steroids 2015; 103:115-22. [PMID: 26057662 DOI: 10.1016/j.steroids.2015.05.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 05/22/2015] [Accepted: 05/25/2015] [Indexed: 12/11/2022]
Abstract
Breast cancer's hormonal dependence is well known and has been so for a long time. However in the last two decades great advances have been made in understanding the local metabolism of steroids within tissue. In the form of aromatase inhibition this is already one of the mainstays of breast cancer therapy. This review aims to summarise briefly what is known in terms of the metabolism of C18 steroids but perhaps more importantly to touch on the new developments regarding the importance of the metabolism of androgens and glucocorticoids in breast tissue. It is our hope that this review should provide the reader with a "birds eye view" of the current state of knowledge regarding localised steroid metabolism in the breast.
Collapse
Affiliation(s)
- Keely May McNamara
- Department of Pathology, Tohoku University School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan.
| | - Hironobu Sasano
- Department of Pathology, Tohoku University School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| |
Collapse
|
31
|
Berryhill GE, Trott JF, Hovey RC. Mammary gland development--It's not just about estrogen. J Dairy Sci 2015; 99:875-83. [PMID: 26506542 DOI: 10.3168/jds.2015-10105] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Accepted: 09/02/2015] [Indexed: 12/22/2022]
Abstract
The mammary gland (MG) is one of a few organs that undergoes most of its growth after birth. Much of this development occurs concurrently with specific reproductive states, such that the ultimate goal of milk synthesis and secretion is coordinated with the nutritional requirements of the neonate. Central to the reproductive-MG axis is its endocrine regulation, and pivotal to this regulation is the ovarian secretion of estrogen (E). Indeed, it is widely accepted that estrogens are essential for growth of the MG to occur, both for ductal elongation during puberty and for alveolar development during gestation. As the factors regulating MG development continually come to light from the fields of developmental biology, lactation physiology, and breast cancer research, a growing body of evidence serves as a reminder that the MG are not as exclusively dependent on estrogens as might have been thought. The objective of this review is to summarize the state of information regarding our understanding of how estrogen (E) has been implicated as the key regulator of MG development, and to highlight some of the alternative E-independent mechanisms that have been discovered. In particular, we review our findings that dietary trans-10,cis-12 conjugated linoleic acid promotes ductal elongation and that the combination of progesterone (P) and prolactin (PRL) can stimulate branching morphogenesis in the absence of E. Ultimately, these examples stand as a healthy challenge to the question of just how important estrogens are for MG development. Answers to this question, in turn, increase our understanding of MG development across all mammals and the ways in which it can affect milk production.
Collapse
Affiliation(s)
- Grace E Berryhill
- Department of Animal Science, University of California-Davis, 2145 Meyer Hall, One Shields Avenue, Davis 95618
| | - Josephine F Trott
- Department of Animal Science, University of California-Davis, 2145 Meyer Hall, One Shields Avenue, Davis 95618
| | - Russell C Hovey
- Department of Animal Science, University of California-Davis, 2145 Meyer Hall, One Shields Avenue, Davis 95618.
| |
Collapse
|
32
|
Lipid droplets and associated proteins in the skin: basic research and clinical perspectives. Arch Dermatol Res 2015; 308:1-6. [PMID: 26437897 DOI: 10.1007/s00403-015-1599-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 09/19/2015] [Accepted: 09/21/2015] [Indexed: 10/23/2022]
Abstract
Lipid droplets (LDs), the major organelles handling fat storage, comprise a hydrophobic neutral lipid core surrounded by a phospholipid monolayer embedded with a protein miscellany. Although lipids of the stratum corneum are essential for the skin barrier, and progressive lipid accumulation culminating in cell disruption is the hallmark of sebaceous differentiation, only a few studies touched on skin LD and associated proteins so far. Here, after briefly introducing the basic facts about LD and associated proteins, we discuss how forthcoming studies may unveil novel players in skin lipid metabolism and candidate target proteins for treating skin diseases.
Collapse
|
33
|
Forest A, Amatulli M, Ludwig DL, Damoci CB, Wang Y, Burns CA, Donoho GP, Zanella N, Fiebig HH, Prewett MC, Surguladze D, DeLigio JT, Houghton PJ, Smith MA, Novosiadly R. Intrinsic Resistance to Cixutumumab Is Conferred by Distinct Isoforms of the Insulin Receptor. Mol Cancer Res 2015; 13:1615-26. [PMID: 26263910 DOI: 10.1158/1541-7786.mcr-15-0279] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 08/05/2015] [Indexed: 12/26/2022]
Abstract
UNLABELLED Despite a recent shift away from anti-insulin-like growth factor I receptor (IGF-IR) therapy, this target has been identified as a key player in the resistance mechanisms to various conventional and targeted agents, emphasizing its value as a therapy, provided that it is used in the right patient population. Molecular markers predictive of antitumor activity of IGF-IR inhibitors remain largely unidentified. The aim of this study is to evaluate the impact of insulin receptor (IR) isoforms on the antitumor efficacy of cixutumumab, a humanized mAb against IGF-IR, and to correlate their expression with therapeutic outcome. The data demonstrate that expression of total IR rather than individual IR isoforms inversely correlates with single-agent cixutumumab efficacy in pediatric solid tumor models in vivo. Total IR, IR-A, and IR-B expression adversely affects the outcome of cixutumumab in combination with chemotherapy in patient-derived xenograft models of lung adenocarcinoma. IR-A overexpression in tumor cells confers complete resistance to cixutumumab in vitro and in vivo, whereas IR-B results in a partial resistance. Resistance in IR-B-overexpressing cells is fully reversed by anti-IGF-II antibodies, suggesting that IGF-II is a driver of cixutumumab resistance in this setting. The present study links IR isoforms, IGF-II, and cixutumumab efficacy mechanistically and identifies total IR as a biomarker predictive of intrinsic resistance to anti-IGF-IR antibody. IMPLICATIONS This study identifies total IR as a biomarker predictive of primary resistance to IGF-IR antibodies and provides a rationale for new clinical trials enriched for patients whose tumors display low IR expression.
Collapse
MESH Headings
- Antibodies, Monoclonal/administration & dosage
- Antibodies, Monoclonal, Humanized
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Cell Line, Tumor
- Drug Resistance, Neoplasm
- Humans
- Lung Neoplasms/drug therapy
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- MCF-7 Cells
- Protein Isoforms/genetics
- Protein Isoforms/metabolism
- Receptor, IGF Type 1/antagonists & inhibitors
- Receptor, Insulin/genetics
- Receptor, Insulin/metabolism
- Up-Regulation
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
| | | | | | | | - Ying Wang
- Eli Lilly and Company, New York, New York
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Prevention of diabetes-promoted colorectal cancer by (n-3) polyunsaturated fatty acids and (n-3) PUFA mimetic. Oncotarget 2015; 5:9851-63. [PMID: 25375205 PMCID: PMC4259442 DOI: 10.18632/oncotarget.2453] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 09/07/2014] [Indexed: 12/13/2022] Open
Abstract
The global obesity / diabetes epidemic has resulted in robust increase in the incidence of colorectal cancer (CRC). Epidemiological, animal and human studies have indicated efficacy of (n-3) PUFA in chemoprevention of sporadic and genetic-driven CRC. However, diabetes-promoted CRC presents a treatment challenge that surpasses that of sporadic CRC. This report analyzes the efficacy of (n-3) PUFA generated by the fat-1 transgene that encodes an (n-6) to (n-3) PUFA desaturase, and of synthetic (n-3) PUFA mimetic (MEDICA analog), to suppress CRC development in carcinogen-induced diabetes-promoted animal model. Carcinogen-induced CRC is shown here to be promoted by the diabetes context, in terms of increased aberrant crypt foci (ACF) load, cell proliferation and epithelial dedifferentiation, being accompanied by increase in the expression of HNF4α, β-catenin, and β-catenin-responsive genes. Incorporating the fat-1 transgene in the diabetes context, or oral MEDICA treatment, resulted in ameliorating the diabetic phenotype and in abrogating CRC, with decrease in ACF load, cell proliferation and the expression of HNF-4α, β-catenin, and β-catenin-responsive genes. The specificity of (n-3) PUFA in abrogating CRC development, as contrasted with enhancing CRC by (n-6) PUFA, was similarly verified in CRC cell lines. These findings may indicate prospective therapeutic potential of (n-3) PUFA or MEDICA in the management of CRC, in particular diabetes-promoted CRC.
Collapse
|
35
|
Lucidi P, Porcellati F, Yki-Järvinen H, Riddle MC, Candeloro P, Marinelli Andreoli A, Bolli GB, Fanelli CG. Low Levels of Unmodified Insulin Glargine in Plasma of People With Type 2 Diabetes Requiring High Doses of Basal Insulin. Diabetes Care 2015; 38:e96-7. [PMID: 26106233 DOI: 10.2337/dc14-2662] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Paola Lucidi
- Department of Medicine, Perugia University School of Medicine, Perugia, Italy
| | | | | | - Matthew C Riddle
- Division of Endocrinology, Diabetes and Clinical Nutrition, Oregon Health & Science University, Portland, OR
| | - Paola Candeloro
- Department of Medicine, Perugia University School of Medicine, Perugia, Italy
| | | | - Geremia B Bolli
- Department of Medicine, Perugia University School of Medicine, Perugia, Italy
| | - Carmine G Fanelli
- Department of Medicine, Perugia University School of Medicine, Perugia, Italy
| |
Collapse
|
36
|
Warren KJ, Olson MM, Thompson NJ, Cahill ML, Wyatt TA, Yoon KJ, Loiacono CM, Kohut ML. Exercise Improves Host Response to Influenza Viral Infection in Obese and Non-Obese Mice through Different Mechanisms. PLoS One 2015; 10:e0129713. [PMID: 26110868 PMCID: PMC4482026 DOI: 10.1371/journal.pone.0129713] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 05/12/2015] [Indexed: 02/07/2023] Open
Abstract
Obesity has been associated with greater severity of influenza virus infection and impaired host defense. Exercise may confer health benefits even when weight loss is not achieved, but it has not been determined if regular exercise improves immune defense against influenza A virus (IAV) in the obese condition. In this study, diet-induced obese mice and lean control mice exercised for eight weeks followed by influenza viral infection. Exercise reduced disease severity in both obese and non-obese mice, but the mechanisms differed. Exercise reversed the obesity-associated delay in bronchoalveolar-lavage (BAL) cell infiltration, restored BAL cytokine and chemokine production, and increased ciliary beat frequency and IFNα-related gene expression. In non-obese mice, exercise treatment reduced lung viral load, increased Type-I-IFN-related gene expression early during infection, but reduced BAL inflammatory cytokines and chemokines. In both obese and non-obese mice, exercise increased serum anti-influenza virus specific IgG2c antibody, increased CD8+ T cell percentage in BAL, and reduced TNFα by influenza viral NP-peptide-responding CD8+ T cells. Overall, the results suggest that exercise "restores" the immune response of obese mice to a phenotype similar to non-obese mice by improving the delay in immune activation. In contrast, in non-obese mice exercise treatment results in an early reduction in lung viral load and limited inflammatory response.
Collapse
Affiliation(s)
- Kristi J Warren
- Immunobiology Program, Iowa State University, Ames, IA, United States of America
| | - Molly M Olson
- Department of Kinesiology, College of Human Sciences, Iowa State University, Ames, IA, United States of America
| | - Nicholas J Thompson
- Department of Kinesiology, College of Human Sciences, Iowa State University, Ames, IA, United States of America
| | - Mackenzie L Cahill
- Department of Kinesiology, College of Human Sciences, Iowa State University, Ames, IA, United States of America
| | - Todd A Wyatt
- VA Nebraska-Western Iowa Health Care System Research Service, Department of Veterans Affairs Medical Center, Omaha, NE, United States of America; Pulmonary, Critical Care, Sleep & Allergy Division, University of Nebraska Medical Center, Nebraska Medical Center, Omaha, NE, United States of America
| | - Kyoungjin J Yoon
- Immunobiology Program, Iowa State University, Ames, IA, United States of America; Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, United States of America
| | - Christina M Loiacono
- National Veterinary Services Laboratories, USDA, APHIS, Ames, IA, United States of America
| | - Marian L Kohut
- Immunobiology Program, Iowa State University, Ames, IA, United States of America; Department of Kinesiology, College of Human Sciences, Iowa State University, Ames, IA, United States of America
| |
Collapse
|
37
|
Schmidt S, Monk JM, Robinson LE, Mourtzakis M. The integrative role of leptin, oestrogen and the insulin family in obesity-associated breast cancer: potential effects of exercise. Obes Rev 2015; 16:473-87. [PMID: 25875578 PMCID: PMC4691342 DOI: 10.1111/obr.12281] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 02/06/2015] [Accepted: 02/24/2015] [Indexed: 12/13/2022]
Abstract
Obesity is an established risk factor for postmenopausal breast cancer. The mechanisms through which obesity influences the development and progression of breast cancer are not fully elucidated; however, several factors such as increased oestrogen, concentrations of various members of the insulin family and inflammation that are associated with adiposity are purported to be important factors in this relationship. Emerging research has also begun to focus on the role of adipokines, (i.e. adipocyte secreted factors), in breast cancer. Leptin secretion is directly related to adiposity and is believed to promote breast cancer directly and independently, as well as through involvement with the oestrogen and insulin signalling pathways. As leptin is secreted from white adipose tissue, any intervention that reduces adiposity may be favourable. However, it is also important to consider that energy expenditure through exercise, independent of fat loss, may improve leptin regulation. The purpose of this narrative review was to explore the role of leptin in breast cancer development and progression, identify key interactions with oestrogen and the insulin family, and distinguish the potential effects of exercise on these interactions.
Collapse
Affiliation(s)
- S Schmidt
- Department of Kinesiology, University of Waterloo, Waterloo, Canada
| | - J M Monk
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Canada
| | - L E Robinson
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Canada
| | - M Mourtzakis
- Department of Kinesiology, University of Waterloo, Waterloo, Canada
| |
Collapse
|
38
|
Agudelo-Botero M, Dávila-Cervantes CA. [Burden of mortality due to diabetes mellitus in Latin America 2000-2011: the case of Argentina, Chile, Colombia, and Mexico.]. GACETA SANITARIA 2015; 29:S0213-9111(15)00019-9. [PMID: 25746417 DOI: 10.1016/j.gaceta.2015.01.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 01/28/2015] [Accepted: 01/29/2015] [Indexed: 11/16/2022]
Abstract
OBJECTIVE To analyze trends in mortality in Argentina, Chile, Colombia and Mexico, between 2000 and 2011, by sex and 5-year age groups (between 20 and 79 years of age). MATERIAL AND METHODS Mortality vital statistics and census data or projected population estimates were used for each country. Age-specific mortality rates and the years of life lost were calculated. RESULTS Among the countries analyzed, Mexico had the highest mortality rate and lost the most years of life due to diabetes. Between 2000 and 2011, Mexicans lost an average of 1.13 years of life, while Colombia (0.24), Argentina (0.21) and Chile (0.18) lost considerably fewer life years. In general, deaths from diabetes were higher in men than in women except in Colombia. Nearly 80% of years of life lost due to diabetes occurred between 50 and 74 years of age in the four countries. DISCUSSION Diabetes is a huge challenge for Latin America, especially in Mexico where mortality due to diabetes is accelerating. Even though the proportion of deaths due to diabetes in Argentina, Chile and Colombia is smaller, this disease figures among the main causes of death in these countries.
Collapse
|
39
|
Hammerstad SS, Grock SF, Lee HJ, Hasham A, Sundaram N, Tomer Y. Diabetes and Hepatitis C: A Two-Way Association. Front Endocrinol (Lausanne) 2015; 6:134. [PMID: 26441826 PMCID: PMC4568414 DOI: 10.3389/fendo.2015.00134] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 08/17/2015] [Indexed: 12/15/2022] Open
Abstract
Diabetes and hepatitis C infection are both prevalent diseases worldwide, and are associated with increased morbidity and mortality. Most studies, but not all, have shown that patients with chronic hepatitis C are more prone to develop type 2 diabetes (T2D) compared to healthy controls, as well as when compared to patients with other liver diseases, including hepatitis B. Furthermore, epidemiological studies have revealed that patients with T2D may also be at higher risk for worse outcomes of their hepatitis C infection, including reduced rate of sustained virological response, progression to fibrosis and cirrhosis, and higher risk for development of hepatocellular carcinoma. Moreover, hepatitis C infection and mainly its treatment, interferon α, can trigger the development of type 1 diabetes. In this review, we discuss the existing data on this two-way association between diabetes and hepatitis C infection with emphasis on possible mechanisms. It remains to be determined whether the new curative therapies for chronic hepatitis C will improve outcomes in diabetic hepatitis C patients, and conversely whether treatment with Metformin will reduce complications from hepatitis C virus infection. We propose an algorithm for diabetes screening and follow-up in hepatitis C patients.
Collapse
Affiliation(s)
- Sara Salehi Hammerstad
- Department of Medicine, Division of Endocrinology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pediatrics, Oslo University Hospital Ullevål, Oslo, Norway
| | - Shira Frankel Grock
- Department of Medicine, Division of Endocrinology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hanna J. Lee
- Department of Medicine, Division of Endocrinology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alia Hasham
- Department of Medicine, Division of Endocrinology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nina Sundaram
- Department of Medicine, Division of Endocrinology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yaron Tomer
- Department of Medicine, Division of Endocrinology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- James J. Peters VA Medical Center, Bronx, NY, USA
- *Correspondence: Yaron Tomer, Division of Endocrinology, Icahn School of Medicine at Mount Sinai, Box 1055, One Gustave L. Levy Place, New York, NY 10029, USA,
| |
Collapse
|
40
|
Interrelation between population density and cancer incidence in the province of Opole, Poland. Contemp Oncol (Pozn) 2014; 18:367-70. [PMID: 25477762 PMCID: PMC4248055 DOI: 10.5114/wo.2014.44122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 04/29/2014] [Accepted: 06/09/2014] [Indexed: 12/02/2022] Open
Abstract
Aim of the study In this study, we present the results of the interrelation between population density and cancer incidence in the Province of Opole, Poland. Material and methods The material included demographic data from the Statistical Office in Opole and oncology information obtained from the Cancer Registry in Opole – both research series encompass the five-year plan (years 2006–2010). A geostatistic analysis was performed using a spatial model (called the conditional autoregressive model). Based on the spatial regression coefficients, the strength of the relationship was measured in male and female populations, respectively. The statistical computations were performed in the Bayesian Inference Using Gibbs Sampling (BUGS) platform based on the so-called Markov Chain Monte Carlo (MCMC) technique. Results The data presented in the study indicate that relative risk of cancer is higher within urban than in rural areas; an increase in population density of a thousand people per sq. km results in a 13% increase in risk of cancer among men and 16% increase in this risk for women.
Collapse
|
41
|
Chan MT, Lim GE, Skovsø S, Yang YHC, Albrecht T, Alejandro EU, Hoesli CA, Piret JM, Warnock GL, Johnson JD. Effects of insulin on human pancreatic cancer progression modeled in vitro. BMC Cancer 2014; 14:814. [PMID: 25373319 PMCID: PMC4233074 DOI: 10.1186/1471-2407-14-814] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 10/27/2014] [Indexed: 11/22/2022] Open
Abstract
Background Pancreatic adenocarcinoma is one of the most lethal cancers, yet it remains understudied and poorly understood. Hyperinsulinemia has been reported to be a risk factor of pancreatic cancer, and the rapid rise of hyperinsulinemia associated with obesity and type 2 diabetes foreshadows a rise in cancer incidence. However, the actions of insulin at the various stages of pancreatic cancer progression remain poorly defined. Methods Here, we examined the effects of a range of insulin doses on signalling, proliferation and survival in three human cell models meant to represent three stages in pancreatic cancer progression: primary pancreatic duct cells, the HPDE immortalized pancreatic ductal cell line, and the PANC1 metastatic pancreatic cancer cell line. Cells were treated with a range of insulin doses, and their proliferation/viability were tracked via live cell imaging and XTT assays. Signal transduction was assessed through the AKT and ERK signalling pathways via immunoblotting. Inhibitors of AKT and ERK signalling were used to determine the relative contribution of these pathways to the survival of each cell model. Results While all three cell types responded to insulin, as indicated by phosphorylation of AKT and ERK, we found that there were stark differences in insulin-dependent proliferation, cell viability and cell survival among the cell types. High concentrations of insulin increased PANC1 and HPDE cell number, but did not alter primary duct cell proliferation in vitro. Cell survival was enhanced by insulin in both primary duct cells and HPDE cells. Moreover, we found that primary cells were more dependent on AKT signalling, while HPDE cells and PANC1 cells were more dependent on RAF/ERK signalling. Conclusions Our data suggest that excessive insulin signalling may contribute to proliferation and survival in human immortalized pancreatic ductal cells and metastatic pancreatic cancer cells, but not in normal adult human pancreatic ductal cells. These data suggest that signalling pathways involved in cell survival may be rewired during pancreatic cancer progression.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - James D Johnson
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
42
|
n-3 polyunsaturated fatty acids and mechanisms to mitigate inflammatory paracrine signaling in obesity-associated breast cancer. Nutrients 2014; 6:4760-93. [PMID: 25360510 PMCID: PMC4245562 DOI: 10.3390/nu6114760] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 10/08/2014] [Accepted: 10/10/2014] [Indexed: 02/06/2023] Open
Abstract
Globally, the prevalence of obesity is increasing which subsequently increases the risk of the development of obesity-related chronic diseases. Low-grade chronic inflammation and dysregulated adipose tissue inflammatory mediator/adipokine secretion are well-established in obesity, and these factors increase the risk of developing inflammation-associated cancer. Breast cancer is of particular interest given that increased inflammation within the subcutaneous mammary adipose tissue depot can alter the local tissue inflammatory microenvironment such that it resembles that of obese visceral adipose tissue. Therefore, in obese women with breast cancer, increased inflammatory mediators both locally and systemically can perpetuate inflammation-associated pro-carcinogenic signaling pathways, thereby increasing disease severity. Herein, we discuss some of these inflammation-associated pro-carcinogenic mechanisms of the combined obese breast cancer phenotype and offer evidence that dietary long chain n-3 polyunsaturated fatty acids (PUFA) may have utility in mitigating the severity of obesity-associated inflammation and breast cancer.
Collapse
|
43
|
Assessment of follicular fluid leptin levels and insulin resistance as outcome predictors in women undergoing in vitro fertilization-intracytoplasmic sperm injection. Fertil Steril 2014; 102:1619-25. [PMID: 25439803 DOI: 10.1016/j.fertnstert.2014.09.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 08/16/2014] [Accepted: 09/09/2014] [Indexed: 01/08/2023]
Abstract
OBJECTIVE To analyze follicular fluid leptin (FFL) levels, abdominal obesity, and insulin resistance as predictors of in vitro fertilization (IVF)-intracytoplasmic sperm injection (ICSI) outcome. DESIGN Observational study. SETTING Academic medical center. PATIENT(S) A sample of 130 infertile women aged 26-40 years without polycystic ovary syndrome. INTERVENTION(S) Measurement of FFL levels in controlled ovarian hyperstimulation cycles with an antagonist and agonist protocol for IVF-ICSI. MAIN OUTCOME MEASURE(S) Live birth rate. RESULT(S) Mean FFL values were significantly higher in pregnancies not ending in a live birth, even after adjustment for waist circumference and insulin resistance. A multivariable model obtained with the use of logistic binary regression analysis showed that waist circumference and insulin resistance had no influence over IVF-ICSI outcomes, but a higher number of follicles, lower serum progesterone levels on the day before α-hCG administration, and lower FFL concentrations were significantly associated with a higher probability of having a live birth. The multivariate model reached a sensitivity of 87% and a specificity of 71% for predicting the possibility of pregnancy ending in a live birth. CONCLUSION(S) High FFL levels were associated with abdominal obesity, insulin resistance, and a lower live birth rate after IVF-ICSI. Further investigations are warranted to define the precise roles of leptin, obesity, and insulin resistance on IVF-ICSI outcomes.
Collapse
|
44
|
Gluschnaider U, Hertz R, Ohayon S, Smeir E, Smets M, Pikarsky E, Bar-Tana J. Long-Chain Fatty Acid Analogues Suppress Breast Tumorigenesis and Progression. Cancer Res 2014; 74:6991-7002. [DOI: 10.1158/0008-5472.can-14-0385] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
45
|
Fei Q, Gao Y, Zhang X, Sun Y, Hu B, Zhou L, Jabbar S, Zeng X. Effects of Oolong tea polyphenols, EGCG, and EGCG3″Me on pancreatic α-amylase activity in vitro. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:9507-9514. [PMID: 25222598 DOI: 10.1021/jf5032907] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
In order to investigate the inhibitory effects and possible mechanisms of Oolong tea polyphenols, (-)-epigallocatechin gallate (EGCG) and (-)-epigallocatechin 3-O-(3-O-methyl) gallate (EGCG3″Me) on pancreatic α-amylase, the inhibition, enzyme kinetics, ultraviolet (UV) absorption spectrum and fluorescence spectrum of α-amylase were investigated. The results showed that Oolong tea polyphenols, EGCG, and EGCG3″Me all exhibited inhibitory effects against α-amylase, and their half inhibitory concentration (IC50) values were 0.375, 0.350, and 0.572 mg/mL, respectively. The results of Lineweaver-Burk double reciprocal plot indicated that the inhibitory types of Oolong tea polyphenols and EGCG were competitive, whereas EGCG3″Me was in a noncompetitive pattern. Oolong tea polyphenols, EGCG, and EGCG3″Me all induced red-shift of UV absorbance and quenching of fluorescence of α-amylase, suggesting possible changes in the conformation of α-amylase. The differences of inhibitory effects and inhibition types for EGCG and EGCG3″Me might be due to their structural difference (the hydroxyl group at C-3 in D ring of EGCG substituted by methoxy group, forming EGCG3″Me).
Collapse
Affiliation(s)
- Qunqin Fei
- College of Food Science and Technology, Nanjing Agricultural University , Nanjing 210095, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Bouguerra H, Guissouma H, Labidi S, Stambouli N, Marrakchi R, Chouaib S, Elgaaied ABA, Boussen H, Gati A. Breast Cancer in Tunisia: Association of Body Mass Index with Histopathological Aspects of Tumors. Asian Pac J Cancer Prev 2014; 15:6805-10. [DOI: 10.7314/apjcp.2014.15.16.6805] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
47
|
Park J, Morley TS, Kim M, Clegg DJ, Scherer PE. Obesity and cancer--mechanisms underlying tumour progression and recurrence. Nat Rev Endocrinol 2014; 10:455-465. [PMID: 24935119 PMCID: PMC4374431 DOI: 10.1038/nrendo.2014.94] [Citation(s) in RCA: 527] [Impact Index Per Article: 52.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Over the past several years, the field of cancer research has directed increased interest towards subsets of obesity-associated tumours, which include mammary, renal, oesophageal, gastrointestinal and reproductive cancers in both men and women. The increased risk of breast cancer that is associated with obesity has been widely reported; this has drawn much attention and as such, warrants investigation of the key mechanisms that link the obese state with cancer aetiology. For instance, the obese setting provides a unique adipose tissue microenvironment with concomitant systemic endocrine alterations that favour both tumour initiation and progression. Major metabolic differences exist within tumours that distinguish them from non-transformed healthy tissues. Importantly, considerable metabolic differences are induced by tumour cells in the stromal vascular fraction that surrounds them. The precise mechanisms that underlie the association of obesity with cancer and the accompanying metabolic changes that occur in the surrounding microenvironment remain elusive. Nonetheless, specific therapeutic agents designed for patients with obesity who develop tumours are clearly needed. This Review discusses recent advances in understanding the contributions of obesity to cancer and their implications for tumour treatment.
Collapse
Affiliation(s)
- Jiyoung Park
- Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, 50 UNIST Street, Ulsan 689-798, South Korea (J.P.). Touchstone Diabetes Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA (T.S.M., M.K., D.J.C., P.E.S.)
| | - Thomas S Morley
- Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, 50 UNIST Street, Ulsan 689-798, South Korea (J.P.). Touchstone Diabetes Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA (T.S.M., M.K., D.J.C., P.E.S.)
| | - Min Kim
- Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, 50 UNIST Street, Ulsan 689-798, South Korea (J.P.). Touchstone Diabetes Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA (T.S.M., M.K., D.J.C., P.E.S.)
| | - Deborah J Clegg
- Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, 50 UNIST Street, Ulsan 689-798, South Korea (J.P.). Touchstone Diabetes Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA (T.S.M., M.K., D.J.C., P.E.S.)
| | - Philipp E Scherer
- Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, 50 UNIST Street, Ulsan 689-798, South Korea (J.P.). Touchstone Diabetes Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA (T.S.M., M.K., D.J.C., P.E.S.)
| |
Collapse
|
48
|
A role for cAMP-driven transactivation of EGFR in cancer aggressiveness - therapeutic implications. Med Hypotheses 2014; 83:142-7. [PMID: 24932579 DOI: 10.1016/j.mehy.2014.05.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 04/18/2014] [Accepted: 05/01/2014] [Indexed: 12/29/2022]
Abstract
In many common cancers, production of cAMP boosts cancer proliferation, survival, and aggressiveness, reflecting the fact that, through mechanisms that require further clarification, cAMP can promote tyrosine phosphorylation, notably transactivation of the epidermal growth factor receptor (EGFR). Hormones which activate adenylate cyclase in many cancers include PGE2 - often produced by cox-2 activity within tumors - and adrenergic hormones, acting on beta2 receptors. NSAID cyclooxygenase inhibitors, including low-dose aspirin, clearly reduce risk for many adenocarcinomas, but the impact of cox-2 inhibitors in clinical cancer therapy remains somewhat equivocal. There is increasing evidence that increased sympathetic drive, often reflecting psychic stress or tobacco usage, increases risk for, and promotes the aggressiveness of, many cancers. The non-specific beta antagonist propranolol shows cancer-retardant activity in pre-clinical rodent studies, especially in stressed animals, and a limited amount of epidemiology concludes that concurrent propranolol usage is associated with superior prognosis in breast cancer, ovarian cancer, and melanoma. Epidemiology correlating increased resting heart rate with increased total cancer mortality can be interpreted as compelling evidence that increased sympathetic drive encourages the onset and progression of common cancers. Conversely, hormones which inhibit adenylate cyclase activity in cancers may have potential for cancer control; GABA, which can be administered as a well-tolerated nutraceutical, has potential in this regard. Combination regimens intended to down-regulate cancer cAMP levels, perhaps used in conjunction with EGFR inhibitors, may have considerable potential for suppressing the contribution of cAMP/EGFR to cancer aggressiveness. This model also predicts that certain other hormones which activate adenylate cylase in various tissue may play a yet-unsuspected role in cancer induction and spread.
Collapse
|
49
|
Montales MTE, Melnyk SB, Simmen FA, Simmen RCM. Maternal metabolic perturbations elicited by high-fat diet promote Wnt-1-induced mammary tumor risk in adult female offspring via long-term effects on mammary and systemic phenotypes. Carcinogenesis 2014; 35:2102-12. [PMID: 24832086 DOI: 10.1093/carcin/bgu106] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Many adult chronic diseases are thought to be influenced during early life by maternal nutrition; however, the underlying mechanisms remain largely unknown. Obesity-related diseases may be due partly to high fat consumption. Herein, we evaluated mammary tumor risk in female mouse mammary tumor virus-Wnt-1 transgenic (Tg) offspring exposed to high-fat diet (HFD) or control diet (CD) (45% and 17% kcal from fat, respectively) during gestation and lactation, with CD provided to progeny at weaning. In Tg offspring, maternal HFD exposure increased mammary tumor incidence and decreased tumor latency without affecting tumor volume. Tumor risk was associated with higher tumor necrosis factor-α and insulin and altered oxidative stress biomarkers in sera and with early changes in mammary expression of genes linked to tumor promotion [interleukin 6 (Il6)] or inhibition [phosphatase and tensin homolog deleted on chromosome 10 (Pten), B-cell lymphoma 2 (Bcl2)]. Corresponding wild-type progeny exposed to maternal HFD displayed accelerated mammary development, higher mammary adiposity, increased insulin resistance and early changes in Pten, Bcl2 and Il6, than CD-exposed offspring. Dams-fed HFD showed higher serum glucose and oxidative stress biomarkers but comparable adiposity compared with CD-fed counterparts. In human breast cancer MCF-7 cells, sera from maternal HFD-exposed Tg offspring elicited changes in PTEN, BCL2 and IL6 gene expression, mimicking in vivo exposure; increased cell viability and mammosphere formation and induced measures [insulin receptor substrate-1 (IRS-1), IRS-2] of insulin sensitivity. Serum effects on IRS-1 were recapitulated by exogenous insulin and the PTEN-specific inhibitor SF1670. Hyperinsulinemia and PTEN loss-of-function may thus, couple maternal HFD exposure to enhanced insulin sensitivity via increased mammary IRS-1 expression in progeny, to promote breast cancer risk.
Collapse
Affiliation(s)
- Maria Theresa E Montales
- Department of Physiology & Biophysics, Department of Pediatrics and Arkansas Children's Hospital Research Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Stepan B Melnyk
- Department of Pediatrics and Arkansas Children's Hospital Research Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Frank A Simmen
- Department of Physiology & Biophysics, Department of Pediatrics and Arkansas Children's Hospital Research Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Rosalia C M Simmen
- Department of Physiology & Biophysics, Department of Pediatrics and Arkansas Children's Hospital Research Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
50
|
Onitilo AA, Stankowski RV, Berg RL, Engel JM, Williams GM, Doi SA. A novel method for studying the temporal relationship between type 2 diabetes mellitus and cancer using the electronic medical record. BMC Med Inform Decis Mak 2014; 14:38. [PMID: 24886371 PMCID: PMC4022430 DOI: 10.1186/1472-6947-14-38] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 04/29/2014] [Indexed: 11/15/2022] Open
Abstract
Background We developed an algorithm for the identification of patients with type 2 diabetes and ascertainment of the date of diabetes onset for examination of the temporal relationship between diabetes and cancer using data in the electronic medical record (EMR). Methods The Marshfield Clinic EMR was searched for patients who developed type 2 diabetes between January 1, 1995 and December 31, 2009 using a combination of diagnostic codes and laboratory data. Subjects without diabetes were also identified and matched to subjects with diabetes by age, gender, smoking history, residence, and date of diabetes onset/reference date. Results The final cohort consisted of 11,236 subjects with and 54,365 subjects without diabetes. Stringent requirements for laboratory values resulted in a decrease in the number of potential subjects by nearly 70%. Mean observation time in the EMR was similar for both groups with 13—14 years before and 5–7 years after the reference date. The two cohorts were largely similar except that BMI and frequency of healthcare encounters were greater in subjects with diabetes. Conclusion The cohort described here will be useful for the examination of the temporal relationship between diabetes and cancer and is unique in that it allows for determination of the date of diabetes onset with reasonable accuracy.
Collapse
Affiliation(s)
- Adedayo A Onitilo
- Department of Hematology/Oncology, Marshfield Clinic Weston Center, 3501 Cranberry Boulevard, Weston, WI 54476, USA.
| | | | | | | | | | | |
Collapse
|