1
|
Warden AS, Salem NA, Brenner E, Sutherland GT, Stevens J, Kapoor M, Goate AM, Dayne Mayfield R. Integrative genomics approach identifies glial transcriptomic dysregulation and risk in the cortex of individuals with Alcohol Use Disorder. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.16.607185. [PMID: 39211266 PMCID: PMC11360965 DOI: 10.1101/2024.08.16.607185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Alcohol use disorder (AUD) is a prevalent neuropsychiatric disorder that is a major global health concern, affecting millions of people worldwide. Past molecular studies of AUD used underpowered single cell analysis or bulk homogenates of postmortem brain tissue, which obscures gene expression changes in specific cell types. Here we performed single nuclei RNA-sequencing analysis of 73 post-mortem samples from individuals with AUD (N=36, N nuclei = 248,873) and neurotypical controls (N=37, N nuclei = 210,573) in both sexes across two institutional sites. We identified 32 clusters and found widespread cell type-specific transcriptomic changes across the cortex in AUD, particularly affecting glia. We found the greatest dysregulation in novel microglial and astrocytic subtypes that accounted for the majority of differential gene expression and co-expression modules linked to AUD. Analysis for cell type-specific enrichment of aggregate genetic risk for AUD identified subtypes of microglia and astrocytes as potential key players not only affected by but causally linked to the progression of AUD. These results highlight the importance of cell-type specific molecular changes in AUD and offer opportunities to identify novel targets for treatment.
Collapse
|
2
|
Nakashima M, Suga N, Yoshikawa S, Ikeda Y, Matsuda S. Potential Molecular Mechanisms of Alcohol Use Disorder with Non-Coding RNAs and Gut Microbiota for the Development of Superior Therapeutic Application. Genes (Basel) 2024; 15:431. [PMID: 38674366 PMCID: PMC11049149 DOI: 10.3390/genes15040431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
Many investigations have evaluated the expression of noncoding RNAs (ncRNAs) as well as their related molecular functions and biological machineries in individuals with alcohol dependence. Alcohol dependence may be one of the most prevailing psychological disorders globally, and its pathogenesis is intricate and inadequately comprehended. There is substantial evidence indicating significant links between multiple genetic factors and the development of alcohol dependence. In particular, the critical roles of ncRNAs have been emphasized in the pathology of mental illnesses, probably including alcohol dependence. In the comprehension of the action of ncRNAs and their machineries of modification, furthermore, they have emerged as therapeutic targets for a variety of psychiatric illnesses, including alcohol dependence. It is worth mentioning that the dysregulated expression of ncRNAs has been regularly detected in individuals with alcohol dependence. An in-depth knowledge of the roles of ncRNAs and m6A modification may be valuable for the development of a novel treatment against alcohol dependence. In general, a more profound understanding of the practical roles of ncRNAs might make important contributions to the precise diagnosis and/or actual management of alcohol dependence. Here, in this review, we mostly focused on up-to-date knowledge regarding alterations and/or modifications in the expression of ncRNAs in individuals with alcohol dependence. Then, we present prospects for future research and therapeutic applications with a novel concept of the engram system.
Collapse
Affiliation(s)
| | | | | | | | - Satoru Matsuda
- Department of Food Science and Nutrition, Nara Women’s University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| |
Collapse
|
3
|
Siddiqi MT, Podder D, Pahng AR, Athanason AC, Nadav T, Cates-Gatto C, Kreifeldt M, Contet C, Roberts AJ, Edwards S, Roberto M, Varodayan FP. Prefrontal cortex glutamatergic adaptations in a mouse model of alcohol use disorder. ADDICTION NEUROSCIENCE 2023; 9:100137. [PMID: 38152067 PMCID: PMC10752437 DOI: 10.1016/j.addicn.2023.100137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Alcohol use disorder (AUD) produces cognitive deficits, indicating a shift in prefrontal cortex (PFC) function. PFC glutamate neurotransmission is mostly mediated by α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-type ionotropic receptors (AMPARs); however preclinical studies have mostly focused on other receptor subtypes. Here we examined the impact of early withdrawal from chronic ethanol on AMPAR function in the mouse medial PFC (mPFC). Dependent male C57BL/6J mice were generated using the chronic intermittent ethanol vapor-two bottle choice (CIE-2BC) paradigm. Non-dependent mice had access to water and ethanol bottles but did not receive ethanol vapor. Naïve mice had no ethanol exposure. We used patch-clamp electrophysiology to measure glutamate neurotransmission in layer 2/3 prelimbic mPFC pyramidal neurons. Since AMPAR function can be impacted by subunit composition or plasticity-related proteins, we probed their mPFC expression levels. Dependent mice had higher spontaneous excitatory postsynaptic current (sEPSC) amplitude and kinetics compared to the Naïve/Non-dependent mice. These effects were seen during intoxication and after 3-8 days withdrawal, and were action potential-independent, suggesting direct enhancement of AMPAR function. Surprisingly, 3 days withdrawal decreased expression of genes encoding AMPAR subunits (Gria1/2) and synaptic plasticity proteins (Dlg4 and Grip1) in Dependent mice. Further analysis within the Dependent group revealed a negative correlation between Gria1 mRNA levels and ethanol intake. Collectively, these data establish a role for mPFC AMPAR adaptations in the glutamatergic dysfunction associated with ethanol dependence. Future studies on the underlying AMPAR plasticity mechanisms that promote alcohol reinforcement, seeking, drinking and relapse behavior may help identify new targets for AUD treatment.
Collapse
Affiliation(s)
- Mahum T. Siddiqi
- Developmental Exposure Alcohol Research Center and Behavioral Neuroscience Program, Department of Psychology, Binghamton University-SUNY, 4400 Vestal Parkway East, Binghamton, NY, 13902, USA
| | - Dhruba Podder
- Developmental Exposure Alcohol Research Center and Behavioral Neuroscience Program, Department of Psychology, Binghamton University-SUNY, 4400 Vestal Parkway East, Binghamton, NY, 13902, USA
| | - Amanda R. Pahng
- Department of Physiology, Louisiana State University Health Sciences Center, 533 Bolivar Street, New Orleans, LA, 70112, USA
- Southeast Louisiana Veterans Health Care System, 2400 Canal Street, 11F, New Orleans, LA, 70119, USA
| | - Alexandria C. Athanason
- Developmental Exposure Alcohol Research Center and Behavioral Neuroscience Program, Department of Psychology, Binghamton University-SUNY, 4400 Vestal Parkway East, Binghamton, NY, 13902, USA
| | - Tali Nadav
- Animal Models Core Facility, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Chelsea Cates-Gatto
- Animal Models Core Facility, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Max Kreifeldt
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Candice Contet
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Amanda J. Roberts
- Animal Models Core Facility, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Scott Edwards
- Department of Physiology, Louisiana State University Health Sciences Center, 533 Bolivar Street, New Orleans, LA, 70112, USA
| | - Marisa Roberto
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Florence P. Varodayan
- Developmental Exposure Alcohol Research Center and Behavioral Neuroscience Program, Department of Psychology, Binghamton University-SUNY, 4400 Vestal Parkway East, Binghamton, NY, 13902, USA
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| |
Collapse
|
4
|
Holloway KN, Douglas JC, Rafferty TM, Majewska AK, Kane CJM, Drew PD. Ethanol-induced cerebellar transcriptomic changes in a postnatal model of fetal alcohol spectrum disorders: Focus on disease onset. Front Neurosci 2023; 17:1154637. [PMID: 37008214 PMCID: PMC10062483 DOI: 10.3389/fnins.2023.1154637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 02/27/2023] [Indexed: 03/18/2023] Open
Abstract
Fetal alcohol spectrum disorders (FASD) are a group of neurodevelopmental disorders caused by ethanol exposure in utero, which can result in neurocognitive and behavioral impairments, growth defects, and craniofacial anomalies. FASD affects up to 1-5% of school-aged children in the United States, and there is currently no cure. The underlying mechanisms involved in ethanol teratogenesis remain elusive and need greater understanding to develop and implement effective therapies. Using a third trimester human equivalent postnatal mouse model of FASD, we evaluate the transcriptomic changes induced by ethanol exposure in the cerebellum on P5 and P6, after only 1 or 2 days of ethanol exposure, with the goal of shedding light on the transcriptomic changes induced early during the onset and development of FASD. We have highlighted key pathways and cellular functions altered by ethanol exposure, which include pathways related to immune function and cytokine signaling as well as the cell cycle. Additionally, we found that ethanol exposure resulted in an increase in transcripts associated with a neurodegenerative microglia phenotype, and acute- and pan-injury reactive astrocyte phenotypes. Mixed effects on oligodendrocyte lineage cell associated transcripts and cell cycle associated transcripts were observed. These studies help to elucidate the underlying mechanisms that may be involved with the onset of FASD and provide further insights that may aid in identifying novel targets for interventions and therapeutics.
Collapse
Affiliation(s)
- Kalee N. Holloway
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - James C. Douglas
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Tonya M. Rafferty
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Ania K. Majewska
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, United States
| | - Cynthia J. M. Kane
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Paul D. Drew
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| |
Collapse
|
5
|
Day SM, Gironda SC, Clarke CW, Snipes JA, Nicol NI, Kamran H, Vaughan W, Weiner JL, Macauley SL. Ethanol exposure alters Alzheimer's-related pathology, behavior, and metabolism in APP/PS1 mice. Neurobiol Dis 2023; 177:105967. [PMID: 36535550 PMCID: PMC10010148 DOI: 10.1016/j.nbd.2022.105967] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 12/02/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Epidemiological studies identified alcohol use disorder (AUD) as a risk factor for Alzheimer's disease (AD), yet there is conflicting evidence on how alcohol use promotes AD pathology. In this study, a 10-week moderate two-bottle choice drinking paradigm was used to identify how chronic ethanol exposure alters amyloid-β (Aβ)-related pathology, metabolism, and behavior. Ethanol-exposed APPswe/PSEN1dE9 (APP/PS1) mice showed increased brain atrophy and an increased number of amyloid plaques. Further analysis revealed that ethanol exposure led to a shift in the distribution of plaque size in the cortex and hippocampus. Ethanol-exposed mice developed a greater number of smaller plaques, potentially setting the stage for increased plaque proliferation in later life. Ethanol drinking APP/PS1 mice also exhibited deficits in nest building, a metric of self-care, as well as increased locomotor activity and central zone exploration in an open field test. Ethanol exposure also led to a diurnal shift in feeding behavior which was associated with changes in glucose homeostasis and glucose intolerance. Complementary in vivo microdialysis experiments were used to measure how acute ethanol directly modulates Aβ in the hippocampal interstitial fluid (ISF). Acute ethanol transiently increased hippocampal ISF glucose levels, suggesting that ethanol directly affects cerebral metabolism. Acute ethanol also selectively increased ISF Aβ40, but not ISF Aβ42, levels during withdrawal. Lastly, chronic ethanol drinking increased N-methyl-d-aspartate receptor (NMDAR) and decreased γ-aminobutyric acid type-A receptor (GABAAR) mRNA levels, indicating a potential hyperexcitable shift in the brain's excitatory/inhibitory (E/I) balance. Collectively, these experiments suggest that ethanol may increase Aβ deposition by disrupting metabolism and the brain's E/I balance. Furthermore, this study provides evidence that a moderate drinking paradigm culminates in an interaction between alcohol use and AD-related phenotypes with a potentiation of AD-related pathology, behavioral dysfunction, and metabolic impairment.
Collapse
Affiliation(s)
- Stephen M Day
- Department of Physiology & Pharmacology, Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Stephen C Gironda
- Department of Physiology & Pharmacology, Wake Forest School of Medicine, Winston Salem, NC, United States; Department of Neurobiology & Anatomy, Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Caitlin W Clarke
- Department of Physiology & Pharmacology, Wake Forest School of Medicine, Winston Salem, NC, United States
| | - J Andy Snipes
- Department of Physiology & Pharmacology, Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Noelle I Nicol
- Section on Gerontology & Geriatric Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Hana Kamran
- Section on Gerontology & Geriatric Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Warner Vaughan
- Section on Gerontology & Geriatric Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Jeffrey L Weiner
- Department of Physiology & Pharmacology, Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Shannon L Macauley
- Department of Physiology & Pharmacology, Wake Forest School of Medicine, Winston Salem, NC, United States; Section on Gerontology & Geriatric Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston Salem, NC, United States.
| |
Collapse
|
6
|
Domi E, Barchiesi R, Barbier E. Epigenetic Dysregulation in Alcohol-Associated Behaviors: Preclinical and Clinical Evidence. Curr Top Behav Neurosci 2023. [PMID: 36717533 DOI: 10.1007/7854_2022_410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Alcohol use disorder (AUD) is characterized by loss of control over intake and drinking despite harmful consequences. At a molecular level, AUD is associated with long-term neuroadaptations in key brain regions that are involved in reward processing and decision-making. Over the last decades, a great effort has been made to understand the neurobiological basis underlying AUD. Epigenetic mechanisms have emerged as an important mechanism in the regulation of long-term alcohol-induced gene expression changes. Here, we review the literature supporting a role for epigenetic processes in AUD. We particularly focused on the three most studied epigenetic mechanisms: DNA methylation, Histone modification and non-coding RNAs. Clinical studies indicate an association between AUD and DNA methylation both at the gene and global levels. Using behavioral paradigms that mimic some of the characteristics of AUD, preclinical studies demonstrate that changes in epigenetic mechanisms can functionally impact alcohol-associated behaviors. While many studies support a therapeutic potential for targeting epigenetic enzymes, more research is needed to fully understand their role in AUD. Identification of brain circuits underlying alcohol-associated behaviors has made major advances in recent years. However, there are very few studies that investigate how epigenetic mechanisms can affect these circuits or impact the neuronal ensembles that promote alcohol-associated behaviors. Studies that focus on the role of circuit-specific and cell-specific epigenetic changes for clinically relevant alcohol behaviors may provide new insights on the functional role of epigenetic processes in AUD.
Collapse
Affiliation(s)
- Esi Domi
- Department of Biomedical and Clinical Sciences, Center for Social and Affective Neuroscience, Linköping University, Linköping, Sweden
- School of Pharmacy, Pharmacology Unit, Center for Neuroscience, University of Camerino, Camerino, Italy
| | - Riccardo Barchiesi
- Department of Neuroscience, Waggoner Center for Alcohol and Alcohol Addiction Research, University of Texas at Austin, Austin, TX, USA
| | - Estelle Barbier
- Department of Biomedical and Clinical Sciences, Center for Social and Affective Neuroscience, Linköping University, Linköping, Sweden.
| |
Collapse
|
7
|
Wang JQ, Liu YR, Xia QR, Liang J, Wang JL, Li J. Functional roles, regulatory mechanisms and theranostics applications of ncRNAs in alcohol use disorder. Int J Biol Sci 2023; 19:1316-1335. [PMID: 36923934 PMCID: PMC10008696 DOI: 10.7150/ijbs.81518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 02/02/2023] [Indexed: 03/14/2023] Open
Abstract
Alcohol use disorder (AUD) is one of the most prevalent neuropsychological disorders worldwide, and its pathogenesis is convoluted and poorly understood. There is considerable evidence demonstrating significant associations between multiple heritable factors and the onset and progression of AUD. In recent years, a substantial body of research conducted by emerging biotechnologies has increasingly highlighted the crucial roles of noncoding RNAs (ncRNAs) in the pathophysiology of mental diseases. As in-depth understanding of ncRNAs and their mechanisms of action, they have emerged as prospective diagnostic indicators and preclinical therapeutic targets for a variety of psychiatric illness, including AUD. Of note, dysregulated expression of ncRNAs such as circRNAs, lncRNAs and miRNAs was routinely found in AUD individuals, and besides, exogenous regulation of partial ncRNAs has also been shown to be effective in ameliorating alcohol preference and excessive alcohol consumption. However, the exact molecular mechanism still remains elusive. Herein, we systematically summarized current knowledge regarding alterations in the expression of certain ncRNAs as well as their-mediated regulatory mechanisms in individuals with AUD. And finally, we detailedly reviewed the potential theranostics applications of gene therapy agents targeting ncRNAs in AUD mice. Overall, a deeper comprehension of functional roles and biological mechanisms of ncRNAs may make significant contributions to the accurate diagnosis and effective treatment of AUD.
Collapse
Affiliation(s)
- Jie-Quan Wang
- Department of Pharmacy, Affiliated Psychological Hospital of Anhui Medical University, Hefei, 230000, China.,Department of Pharmacy, Hefei Fourth People's Hospital, Hefei, 230000, China.,Psychopharmacology Research Laboratory, Anhui Mental Health Center, Hefei, 230000, China.,Anhui Clinical Research Center for Mental Disorders, Hefei,230000, China
| | - Ya-Ru Liu
- Department of Pharmacy, First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.,The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, 230022, China
| | - Qing-Rong Xia
- Department of Pharmacy, Affiliated Psychological Hospital of Anhui Medical University, Hefei, 230000, China.,Department of Pharmacy, Hefei Fourth People's Hospital, Hefei, 230000, China.,Psychopharmacology Research Laboratory, Anhui Mental Health Center, Hefei, 230000, China.,Anhui Clinical Research Center for Mental Disorders, Hefei,230000, China
| | - Jun Liang
- Department of Pharmacy, Affiliated Psychological Hospital of Anhui Medical University, Hefei, 230000, China.,Department of Pharmacy, Hefei Fourth People's Hospital, Hefei, 230000, China.,Psychopharmacology Research Laboratory, Anhui Mental Health Center, Hefei, 230000, China.,Anhui Clinical Research Center for Mental Disorders, Hefei,230000, China
| | - Jin-Liang Wang
- Department of Pharmacy, Affiliated Psychological Hospital of Anhui Medical University, Hefei, 230000, China.,Department of Pharmacy, Hefei Fourth People's Hospital, Hefei, 230000, China.,Psychopharmacology Research Laboratory, Anhui Mental Health Center, Hefei, 230000, China.,Anhui Clinical Research Center for Mental Disorders, Hefei,230000, China
| | - Jun Li
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| |
Collapse
|
8
|
Seyednejad SA, Sartor GC. Noncoding RNA therapeutics for substance use disorder. ADVANCES IN DRUG AND ALCOHOL RESEARCH 2022; 2:10807. [PMID: 36601439 PMCID: PMC9808746 DOI: 10.3389/adar.2022.10807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Although noncoding RNAs (ncRNAs) have been shown to regulate maladaptive neuroadaptations that drive compulsive drug use, ncRNA-targeting therapeutics for substance use disorder (SUD) have yet to be clinically tested. Recent advances in RNA-based drugs have improved many therapeutic issues related to immune response, specificity, and delivery, leading to multiple successful clinical trials for other diseases. As the need for safe and effective treatments for SUD continues to grow, novel nucleic acid-based therapeutics represent an appealing approach to target ncRNA mechanisms in SUD. Here, we review ncRNA processes implicated in SUD, discuss recent therapeutic approaches for targeting ncRNAs, and highlight potential opportunities and challenges of ncRNA-targeting therapeutics for SUD.
Collapse
Affiliation(s)
- Seyed Afshin Seyednejad
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, United States
- Connecticut Institute for the Brain and Cognitive Sciences (CT IBACS), Storrs, CT, United States
| | - Gregory C. Sartor
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, United States
- Connecticut Institute for the Brain and Cognitive Sciences (CT IBACS), Storrs, CT, United States
| |
Collapse
|
9
|
The interactions of alcohol and cocaine regulate the expression of genes involved in the GABAergic, glutamatergic and endocannabinoid systems of male and female rats. Neuropharmacology 2021; 206:108937. [PMID: 34965406 DOI: 10.1016/j.neuropharm.2021.108937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 12/16/2021] [Accepted: 12/21/2021] [Indexed: 11/23/2022]
Abstract
Although the pharmacological and behavioural interactions between cocaine and alcohol are well established, less is known about how polyconsumption of these drugs affects the neurotransmitter systems involved in their psychoactive effects and in particular, in the process of addiction. Here, rats of both sexes at two stages of development were studied under a chronic regime of intravenous cocaine and/or alcohol administration. Brain samples from the medial prefrontal cortex, nucleus accumbens, hippocampus and amygdala were extracted to analyse the mRNA expression of genes encoding subunits of the GABA, NMDA and AMPA receptors, as well as the expression of the CB1 receptor, and that of enzymes related to the biosynthesis and degradation of endocannabinoids. Moreover, two synaptic scaffold proteins related to GABA and NMDA receptors, gephyrin and PSD-95, were quantified in Western blots. Significant interactions between cocaine and alcohol were common, affecting the GABAergic and endocannabinoid systems in the medial prefrontal cortex and amygdala of young adults, whereas such interactions were evident in the glutamatergic and endocannabinoid systems in adults, as well as a more pronounced sex effect. Significant interactions between these drugs affecting the scaffold proteins were evident in the medial prefrontal cortex and nucleus accumbens of young adults, and in the nucleus accumbens and amygdala of adults, but not in the hippocampus. These results highlight the importance of considering the interactions between cocaine and alcohol on neurotransmitter systems in the context of polyconsumption, specifically when treating problems of abuse of these two substances.
Collapse
|
10
|
Walter N, Cervera-Juanes R, Zheng C, Darakjian P, Lockwood D, Cuzon-Carlson V, Ray K, Fei S, Conrad D, Searles R, Grant K, Hitzemann R. Effect of chronic ethanol consumption in rhesus macaques on the nucleus accumbens core transcriptome. Addict Biol 2021; 26:e13021. [PMID: 33942443 PMCID: PMC8588809 DOI: 10.1111/adb.13021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 01/15/2021] [Accepted: 01/19/2021] [Indexed: 12/13/2022]
Abstract
The nucleus accumbens core (NAcc) has been repeatedly demonstrated to be a key component of the circuitry associated with excessive ethanol consumption. Previous studies have illustrated that in a nonhuman primate (NHP) model of chronic ethanol consumption, there is significant epigenetic remodeling of the NAcc. In the current study, RNA-Seq was used to examine genome-wide gene expression in eight each of control, low/binge (LD*), and high/very high (HD*) rhesus macaque drinkers. Using an FDR < 0.05, zero genes were significantly differentially expressed (DE) between LD* and controls, six genes between HD* and LD*, and 734 genes between HD* and controls. Focusing on HD* versus control DE genes, the upregulated genes (N = 366) were enriched in genes with annotations associated with signal recognition particle (SRP)-dependent co-translational protein targeting to membrane (FDR < 3 × 10-59 ), structural constituent of ribosome (FDR < 3 × 10-47 ), and ribosomal subunit (FDR < 5 × 10-48 ). Downregulated genes (N = 363) were enriched in annotations associated with behavior (FDR < 2 × 10-4 ), membrane organization (FDR < 1 × 10-4 ), inorganic cation transmembrane transporter activity (FDR < 2 × 10-3 ), synapse part (FDR < 4 × 10-10 ), glutamatergic synapse (FDR < 1 × 10-6 ), and GABAergic synapse (FDR < 6 × 10-4 ). Ingenuity Pathway Analysis (IPA) revealed that EIF2 signaling and mTOR pathways were significantly upregulated in HD* animals (FDR < 3 × 10-33 and <2 × 10-16 , respectively). Overall, the data supported our working hypothesis; excessive consumption would be associated with transcriptional differences in GABA/glutamate-related genes.
Collapse
Affiliation(s)
- Nicole Walter
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Portland, Oregon, USA
| | - Rita Cervera-Juanes
- Division of Genetics, Oregon National Primate Research Center, Oregon Health & Science University, Portland, Oregon, USA
| | - Christina Zheng
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Priscila Darakjian
- Division of Genetics, Oregon National Primate Research Center, Oregon Health & Science University, Portland, Oregon, USA
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon, USA
| | - Denesa Lockwood
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon, USA
| | - Verginia Cuzon-Carlson
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Portland, Oregon, USA
| | - Karina Ray
- Division of Genetics, Oregon National Primate Research Center, Oregon Health & Science University, Portland, Oregon, USA
| | - Suzanne Fei
- Division of Genetics, Oregon National Primate Research Center, Oregon Health & Science University, Portland, Oregon, USA
| | - Don Conrad
- Division of Genetics, Oregon National Primate Research Center, Oregon Health & Science University, Portland, Oregon, USA
| | - Robert Searles
- Integrated Genomics Laboratory, Oregon Health & Science University, Portland, Oregon, USA
| | - Kathleen Grant
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Portland, Oregon, USA
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon, USA
| | - Robert Hitzemann
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
11
|
Arzua T, Jiang C, Yan Y, Bai X. The importance of non-coding RNAs in environmental stress-related developmental brain disorders: A systematic review of evidence associated with exposure to alcohol, anesthetic drugs, nicotine, and viral infections. Neurosci Biobehav Rev 2021; 128:633-647. [PMID: 34186153 PMCID: PMC8357057 DOI: 10.1016/j.neubiorev.2021.06.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 05/23/2021] [Accepted: 06/23/2021] [Indexed: 12/11/2022]
Abstract
Brain development is a dynamic and lengthy process that includes cell proliferation, migration, neurogenesis, gliogenesis, synaptogenesis, and pruning. Disruption of any of these developmental events can result in long-term outcomes ranging from brain structural changes, to cognitive and behavioral abnormality, with the mechanisms largely unknown. Emerging evidence suggests non-coding RNAs (ncRNAs) as pivotal molecules that participate in normal brain development and neurodevelopmental disorders. NcRNAs such as long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) are transcribed from the genome but not translated into proteins. Many ncRNAs have been implicated as tuners of cell fate. In this review, we started with an introduction of the current knowledge of lncRNAs and miRNAs, and their potential roles in brain development in health and disorders. We then reviewed and discussed the evidence of ncRNA involvement in abnormal brain development resulted from alcohol, anesthetic drugs, nicotine, and viral infections. The complex connections among these ncRNAs were also discussed, along with potential overlapping ncRNA mechanisms, possible pharmacological targets for therapeutic/neuroprotective interventions, and potential biomarkers for brain developmental disorders.
Collapse
Affiliation(s)
- Thiago Arzua
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, WI, 53226, USA; Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Congshan Jiang
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Yasheng Yan
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Xiaowen Bai
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, WI, 53226, USA; Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
| |
Collapse
|
12
|
Li BX, Dong GH, Li HL, Zhang JS, Bing YH, Chu CP, Cui SB, Qiu DL. Chronic Ethanol Exposure Enhances Facial Stimulation-Evoked Mossy Fiber-Granule Cell Synaptic Transmission via GluN2A Receptors in the Mouse Cerebellar Cortex. Front Syst Neurosci 2021; 15:657884. [PMID: 34408633 PMCID: PMC8365521 DOI: 10.3389/fnsys.2021.657884] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 07/08/2021] [Indexed: 11/16/2022] Open
Abstract
Sensory information is transferred to the cerebellar cortex via the mossy fiber–granule cell (MF–GC) pathway, which participates in motor coordination and motor learning. We previously reported that chronic ethanol exposure from adolescence facilitated the sensory-evoked molecular layer interneuron–Purkinje cell synaptic transmission in adult mice in vivo. Herein, we investigated the effect of chronic ethanol exposure from adolescence on facial stimulation-evoked MF–GC synaptic transmission in the adult mouse cerebellar cortex using electrophysiological recording techniques and pharmacological methods. Chronic ethanol exposure from adolescence induced an enhancement of facial stimulation-evoked MF–GC synaptic transmission in the cerebellar cortex of adult mice. The application of an N-methyl-D-aspartate receptor (NMDAR) antagonist, D-APV (250 μM), induced stronger depression of facial stimulation-evoked MF–GC synaptic transmission in chronic ethanol-exposed mice compared with that in control mice. Chronic ethanol exposure-induced facilitation of facial stimulation evoked by MF–GC synaptic transmission was abolished by a selective GluN2A antagonist, PEAQX (10 μM), but was unaffected by the application of a selective GluN2B antagonist, TCN-237 (10 μM), or a type 1 metabotropic glutamate receptor blocker, JNJ16259685 (10 μM). These results indicate that chronic ethanol exposure from adolescence enhances facial stimulation-evoked MF–GC synaptic transmission via GluN2A, which suggests that chronic ethanol exposure from adolescence impairs the high-fidelity transmission capability of sensory information in the cerebellar cortex by enhancing the NMDAR-mediated components of MF–GC synaptic transmission in adult mice in vivo.
Collapse
Affiliation(s)
- Bing-Xue Li
- Brain Science Research Center, Yanbian University, Yanji, China.,Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, China
| | - Guang-Hui Dong
- Brain Science Research Center, Yanbian University, Yanji, China.,Department of Neurology, Affiliated Hospital of Yanbian University, Yanji, China
| | - Hao-Long Li
- Brain Science Research Center, Yanbian University, Yanji, China.,Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, China
| | - Jia-Song Zhang
- Brain Science Research Center, Yanbian University, Yanji, China.,Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, China
| | - Yan-Hua Bing
- Brain Science Research Center, Yanbian University, Yanji, China
| | - Chun-Ping Chu
- Brain Science Research Center, Yanbian University, Yanji, China.,Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, China
| | - Song-Biao Cui
- Department of Neurology, Affiliated Hospital of Yanbian University, Yanji, China
| | - De-Lai Qiu
- Brain Science Research Center, Yanbian University, Yanji, China.,Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, China
| |
Collapse
|
13
|
Kapoor M, Chao MJ, Johnson EC, Novikova G, Lai D, Meyers JL, Schulman J, Nurnberger JI, Porjesz B, Liu Y, Foroud T, Edenberg HJ, Marcora E, Agrawal A, Goate A. Multi-omics integration analysis identifies novel genes for alcoholism with potential overlap with neurodegenerative diseases. Nat Commun 2021; 12:5071. [PMID: 34417470 PMCID: PMC8379159 DOI: 10.1038/s41467-021-25392-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 08/03/2021] [Indexed: 11/27/2022] Open
Abstract
Identification of causal variants and genes underlying genome-wide association study (GWAS) loci is essential to understand the biology of alcohol use disorder (AUD) and drinks per week (DPW). Multi-omics integration approaches have shown potential for fine mapping complex loci to obtain biological insights to disease mechanisms. In this study, we use multi-omics approaches, to fine-map AUD and DPW associations at single SNP resolution to demonstrate that rs56030824 on chromosome 11 significantly reduces SPI1 mRNA expression in myeloid cells and lowers risk for AUD and DPW. Our analysis also identifies MAPT as a candidate causal gene specifically associated with DPW. Genes prioritized in this study show overlap with causal genes associated with neurodegenerative disorders. Multi-omics integration analyses highlight, genetic similarities and differences between alcohol intake and disordered drinking, suggesting molecular heterogeneity that might inform future targeted functional and cross-species studies.
Collapse
Affiliation(s)
- Manav Kapoor
- Departments of Genetics and Genomic Sciences and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Michael J Chao
- Departments of Genetics and Genomic Sciences and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Emma C Johnson
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Gloriia Novikova
- Departments of Genetics and Genomic Sciences and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dongbing Lai
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jacquelyn L Meyers
- Department of Psychiatry, State University of New York, Downstate Medical Center, Brooklyn, NY, USA
| | - Jessica Schulman
- Departments of Genetics and Genomic Sciences and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John I Nurnberger
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Bernice Porjesz
- Department of Psychiatry, State University of New York, Downstate Medical Center, Brooklyn, NY, USA
| | - Yunlong Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Tatiana Foroud
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Howard J Edenberg
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Edoardo Marcora
- Departments of Genetics and Genomic Sciences and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Arpana Agrawal
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Alison Goate
- Departments of Genetics and Genomic Sciences and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
14
|
Hade AC, Philips MA, Reimann E, Jagomäe T, Eskla KL, Traks T, Prans E, Kõks S, Vasar E, Väli M. Chronic Alcohol Use Induces Molecular Genetic Changes in the Dorsomedial Thalamus of People with Alcohol-Related Disorders. Brain Sci 2021; 11:435. [PMID: 33805312 PMCID: PMC8066746 DOI: 10.3390/brainsci11040435] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 01/12/2023] Open
Abstract
The Mediodorsal (MD) thalamus that represents a fundamental subcortical relay has been underrepresented in the studies focusing on the molecular changes in the brains of subjects with alcohol use disorder (AUD). In the current study, MD thalamic regions from AUD subjects and controls were analyzed with Affymetrix Clariom S human microarray. Long-term alcohol use induced a significant (FDR ≤ 0.05) upregulation of 2802 transcripts and downregulation of 1893 genes in the MD thalamus of AUD subjects. A significant upregulation of GRIN1 (glutamate receptor NMDA type 1) and FTO (alpha-ketoglutarate dependent dioxygenase) was confirmed in western blot analysis. Immunohistochemical staining revealed similar heterogenous distribution of GRIN1 in the thalamic nuclei of both AUD and control subjects. The most prevalent functional categories of upregulated genes were related to glutamatergic and GABAergic neurotransmission, cellular metabolism, and neurodevelopment. The prevalent gene cluster among down-regulated genes was immune system mediators. Forty-two differentially expressed genes, including FTO, ADH1B, DRD2, CADM2, TCF4, GCKR, DPP6, MAPT and CHRH1, have been shown to have strong associations (FDR p < 10-8) with AUD or/and alcohol use phenotypes in recent GWA studies. Despite a small number of subjects, we were able to detect robust molecular changes in the mediodorsal thalamus caused by alcohol emphasizing the importance of deeper brain structures such as diencephalon, in the development of AUD-related dysregulation of neurocircuitry.
Collapse
Affiliation(s)
- Andreas-Christian Hade
- Department of Pathological Anatomy and Forensic Medicine, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia; (A.-C.H.); (M.V.)
- Forensic Medical Examination Department, Estonian Forensic Science Institute, 30 Tervise Street, 13419 Tallinn, Estonia
| | - Mari-Anne Philips
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 50411 Tartu, Estonia; (T.J.); (K.-L.E.); (E.V.)
- Centre of Excellence in Genomics and Translational Medicine, University of Tartu, 50411 Tartu, Estonia
| | - Ene Reimann
- Estonian Genome Centre, Institute of Genomics, University of Tartu, 51010 Tartu, Estonia;
| | - Toomas Jagomäe
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 50411 Tartu, Estonia; (T.J.); (K.-L.E.); (E.V.)
- Centre of Excellence in Genomics and Translational Medicine, University of Tartu, 50411 Tartu, Estonia
| | - Kattri-Liis Eskla
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 50411 Tartu, Estonia; (T.J.); (K.-L.E.); (E.V.)
- Centre of Excellence in Genomics and Translational Medicine, University of Tartu, 50411 Tartu, Estonia
| | - Tanel Traks
- Department of Dermatology and Venerology, Institute of Clinical Medicine, University of Tartu, 51010 Tartu, Estonia;
| | - Ele Prans
- Department of Anaesthesiology and Intensive Care, Tartu University Hospital, 50406 Tartu, Estonia;
| | - Sulev Kõks
- Perron Institute for Neurological and Translational Science, Perth, WA 6009, Australia;
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA 6150, Australia
| | - Eero Vasar
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 50411 Tartu, Estonia; (T.J.); (K.-L.E.); (E.V.)
- Centre of Excellence in Genomics and Translational Medicine, University of Tartu, 50411 Tartu, Estonia
| | - Marika Väli
- Department of Pathological Anatomy and Forensic Medicine, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia; (A.-C.H.); (M.V.)
- Forensic Medical Examination Department, Estonian Forensic Science Institute, 30 Tervise Street, 13419 Tallinn, Estonia
| |
Collapse
|
15
|
Barbier E, Barchiesi R, Domi A, Chanthongdee K, Domi E, Augier G, Augier E, Xu L, Adermark L, Heilig M. Downregulation of Synaptotagmin 1 in the Prelimbic Cortex Drives Alcohol-Associated Behaviors in Rats. Biol Psychiatry 2021; 89:398-406. [PMID: 33160605 DOI: 10.1016/j.biopsych.2020.08.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/17/2020] [Accepted: 08/25/2020] [Indexed: 01/18/2023]
Abstract
BACKGROUND Alcohol addiction is characterized by persistent neuroadaptations in brain structures involved in motivation, emotion, and decision making, including the medial prefrontal cortex, the nucleus accumbens, and the amygdala. We previously reported that induction of alcohol dependence was associated with long-term changes in the expression of genes involved in neurotransmitter release. Specifically, Syt1, which plays a key role in neurotransmitter release and neuronal functions, was downregulated. Here, we therefore examined the role of Syt1 in alcohol-associated behaviors in rats. METHODS We evaluated the effect of Syt1 downregulation using an adeno-associated virus (AAV) containing a short hairpin RNA against Syt1. Cre-dependent Syt1 was also used in combination with an rAAV2 retro-Cre virus to assess circuit-specific effects of Syt1 knockdown (KD). RESULTS Alcohol-induced downregulation of Syt1 is specific to the prelimbic cortex (PL), and KD of Syt1 in the PL resulted in escalated alcohol consumption, increased motivation to consume alcohol, and increased alcohol drinking despite negative consequences ("compulsivity"). Syt1 KD in the PL altered the excitation/inhibition balance in the basolateral amygdala, while the nucleus accumbens core was unaffected. Accordingly, a projection-specific Syt1 KD in the PL-basolateral amygdala projection was sufficient to increase compulsive alcohol drinking, while a KD of Syt1 restricted to PL-nucleus accumbens core projecting neurons had no effect on tested alcohol-related behaviors. CONCLUSIONS Together, these data suggest that dysregulation of Syt1 is an important mechanism in long-term neuroadaptations observed after a history of alcohol dependence, and that Syt1 regulates alcohol-related behaviors in part by affecting a PL-basolateral amygdala brain circuit.
Collapse
Affiliation(s)
- Estelle Barbier
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden.
| | - Riccardo Barchiesi
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Ana Domi
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Kanat Chanthongdee
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden; Department of Physiology, Faculty of Medicine Siraj Hospital, Mahidol University, Bangkok, Thailand
| | - Esi Domi
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Gaelle Augier
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Eric Augier
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Li Xu
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden; Psychosomatic Medicine Center, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, Chengdu, China
| | - Louise Adermark
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Markus Heilig
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
16
|
Salles J, Lacassagne E, Eddiry S, Franchitto N, Salles JP, Tauber M. What can we learn from PWS and SNORD116 genes about the pathophysiology of addictive disorders? Mol Psychiatry 2021; 26:51-59. [PMID: 33082508 DOI: 10.1038/s41380-020-00917-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/16/2020] [Accepted: 10/05/2020] [Indexed: 02/07/2023]
Abstract
Addictive disorders have been much investigated and many studies have underlined the role of environmental factors such as social interaction in the vulnerability to and maintenance of addictive behaviors. Research on addiction pathophysiology now suggests that certain behavioral disorders are addictive, one example being food addiction. Yet, despite the growing body of knowledge on addiction, it is still unknown why only some of the individuals exposed to a drug become addicted to it. This observation has prompted the consideration of genetic heritage, neurodevelopmental trajectories, and gene-environment interactions in addiction vulnerability. Prader-Willi syndrome (PWS) is a rare neurodevelopmental disorder in which children become addicted to food and show early social impairment. PWS is caused by the deficiency of imprinted genes located on the 15q11-q13 chromosome. Among them, the SNORD116 gene was identified as the minimal gene responsible for the PWS phenotype. Several studies have also indicated the role of the Snord116 gene in animal and cellular models to explain PWS pathophysiology and phenotype (including social impairment and food addiction). We thus present here the evidence suggesting the potential involvement of the SNORD116 gene in addictive disorders.
Collapse
Affiliation(s)
- Juliette Salles
- Université de Toulouse III, F-31000, Toulouse, France.,CHU de Toulouse, Service de psychiatrie et psychologie, psychiatrie Toulouse, F-31000, Toulouse, France.,Inserm Unité 1043, CNRS 5828, Université Paul Sabatier, Toulouse III, F-31000, Toulouse, France.,CHU de Toulouse, Institut des Handicaps Neurologiques, Psychiatriques et Sensoriels, F-31000, Toulouse, France
| | - Emmanuelle Lacassagne
- Inserm Unité 1043, CNRS 5828, Université Paul Sabatier, Toulouse III, F-31000, Toulouse, France
| | - Sanaa Eddiry
- Inserm Unité 1043, CNRS 5828, Université Paul Sabatier, Toulouse III, F-31000, Toulouse, France
| | - Nicolas Franchitto
- Université de Toulouse III, F-31000, Toulouse, France.,CHU de Toulouse, Service d'addictologie clinique, urgences réanimation médecine, F-31000, Toulouse, France
| | - Jean-Pierre Salles
- Inserm Unité 1043, CNRS 5828, Université Paul Sabatier, Toulouse III, F-31000, Toulouse, France
| | - Maithé Tauber
- Université de Toulouse III, F-31000, Toulouse, France. .,Inserm Unité 1043, CNRS 5828, Université Paul Sabatier, Toulouse III, F-31000, Toulouse, France. .,CHU de Toulouse, Institut des Handicaps Neurologiques, Psychiatriques et Sensoriels, F-31000, Toulouse, France. .,CHU de Toulouse, Centre de référence du Syndrome de Prader-Willi et autres syndromes avec troubles du comportement alimentaire, Unité d'endocrinologie, obésités, maladies osseuses, génétique et gynécologie médicale, F-31000, Toulouse, France.
| |
Collapse
|
17
|
Strong CE, Kabbaj M. Neural Mechanisms Underlying the Rewarding and Therapeutic Effects of Ketamine as a Treatment for Alcohol Use Disorder. Front Behav Neurosci 2020; 14:593860. [PMID: 33362485 PMCID: PMC7759199 DOI: 10.3389/fnbeh.2020.593860] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 11/06/2020] [Indexed: 11/13/2022] Open
Abstract
Alcohol use disorder (AUD) is the most prevalent substance use disorder and causes a significant global burden. Relapse rates remain incredibly high after decades of attempting to develop novel treatment options that have failed to produce increased rates of sobriety. Ketamine has emerged as a potential treatment for AUD following its success as a therapeutic agent for depression, demonstrated by several preclinical studies showing that acute administration reduced alcohol intake in rodents. As such, ketamine's therapeutic effects for AUD are now being investigated in clinical trials with the hope of it being efficacious in prolonging sobriety from alcohol in humans (ClinicalTrials.gov, Identifier: NCT01558063). Importantly, ketamine's antidepressant effects only last for about 1-week and because AUD is a lifelong disorder, repeated treatment regimens would be necessary to maintain sobriety. This raises questions regarding its safety for AUD treatment since ketamine itself has the potential for addiction. Therefore, this review aims to summarize the neuroadaptations related to alcohol's addictive properties as well as ketamine's therapeutic and addictive properties. To do this, the focus will be on reward-related brain regions such as the nucleus accumbens (NAc), dorsal striatum, prefrontal cortex (PFC), hippocampus, and ventral tegmental area (VTA) to understand how acute vs. chronic exposure will alter reward signaling over time. Additionally, evidence from these studies will be summarized in both male and female subjects. Accordingly, this review aims to address the safety of repeated ketamine infusions for the treatment of AUD. Although more work about the safety of ketamine to treat AUD is warranted, we hope this review sheds light on some answers about the safety of repeated ketamine infusions.
Collapse
Affiliation(s)
- Caroline E Strong
- Program in Neuroscience, Department of Biomedical Sciences, Florida State University, Tallahassee, FL, United States
| | - Mohamed Kabbaj
- Program in Neuroscience, Department of Biomedical Sciences, Florida State University, Tallahassee, FL, United States
| |
Collapse
|
18
|
Petruccelli E, Brown T, Waterman A, Ledru N, Kaun KR. Alcohol Causes Lasting Differential Transcription in Drosophila Mushroom Body Neurons. Genetics 2020; 215:103-116. [PMID: 32132098 PMCID: PMC7198272 DOI: 10.1534/genetics.120.303101] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 02/26/2020] [Indexed: 12/12/2022] Open
Abstract
Repeated alcohol experiences can produce long-lasting memories for sensory cues associated with intoxication. These memories can problematically trigger relapse in individuals recovering from alcohol use disorder (AUD). The molecular mechanisms by which ethanol changes memories to become long-lasting and inflexible remain unclear. New methods to analyze gene expression within precise neuronal cell types can provide further insight toward AUD prevention and treatment. Here, we used genetic tools in Drosophila melanogaster to investigate the lasting consequences of ethanol on transcription in memory-encoding neurons. Drosophila rely on mushroom body (MB) neurons to make associative memories, including memories of ethanol-associated sensory cues. Differential expression analyses revealed that distinct transcripts, but not genes, in the MB were associated with experiencing ethanol alone compared to forming a memory of an odor cue associated with ethanol. Adult MB-specific knockdown of spliceosome-associated proteins demonstrated the necessity of RNA-processing in ethanol memory formation. These findings highlight the dynamic, context-specific regulation of transcription in cue-encoding neurons, and the lasting effect of ethanol on transcript usage during memory formation.
Collapse
Affiliation(s)
- Emily Petruccelli
- Department of Neuroscience, Brown University, Providence, Rhode Island 02912
- Department of Biological Sciences, Southern Illinois University Edwardsville, Illinois 62026
| | - Tariq Brown
- Department of Neuroscience, Brown University, Providence, Rhode Island 02912
| | - Amanda Waterman
- Department of Neuroscience, Brown University, Providence, Rhode Island 02912
| | - Nicolas Ledru
- Department of Neuroscience, Brown University, Providence, Rhode Island 02912
| | - Karla R Kaun
- Department of Neuroscience, Brown University, Providence, Rhode Island 02912
| |
Collapse
|
19
|
Brivio E, Lopez JP, Chen A. Sex differences: Transcriptional signatures of stress exposure in male and female brains. GENES BRAIN AND BEHAVIOR 2020; 19:e12643. [PMID: 31989757 DOI: 10.1111/gbb.12643] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/13/2020] [Accepted: 01/22/2020] [Indexed: 12/19/2022]
Abstract
More than two-thirds of patients suffering from stress-related disorders are women but over two-thirds of suicide completers are men. These are just some examples of the many sex differences in the prevalence and manifestations of stress-related disorders, such as major depressive disorder, post-traumatic stress disorder, and anxiety disorders, which have been extensively documented in clinical research. Nonetheless, the molecular origins of this sex dimorphism are still quite obscure. In response to this lack of knowledge, the NIH recently advocated implementing sex as biological variable in the design of preclinical studies across disciplines. As a result, a newly emerging field within psychiatry is trying to elucidate the molecular causes underlying the clinically described sex dimorphism. Several studies in rodents and humans have already identified many stress-related genes that are regulated by acute and chronic stress in a sex-specific fashion. Furthermore, current transcriptomic studies have shown that pathways and networks in male and female individuals are not equally affected by stress exposure. In this review, we give an overview of transcriptional studies designed to understand how sex influences stress-specific transcriptomic changes in rodent models, as well as human psychiatric patients, highlighting the use of different methodological techniques. Understanding which mechanisms are more affected in males, and which in females, may lead to the identification of sex-specific mechanisms, their selective contribution to stress susceptibility, and their role in the development of stress-related psychiatric disorders.
Collapse
Affiliation(s)
- Elena Brivio
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany.,International Max Planck Research School for Translational Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Juan Pablo Lopez
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Alon Chen
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany.,Department of Neurobiology, Nella and Leon Benoziyo Center for Neurological Diseases, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
20
|
Walter NAR, Zheng CL, Searles RP, McWeeney SK, Grant KA, Hitzemann R. Chronic Voluntary Ethanol Drinking in Cynomolgus Macaques Elicits Gene Expression Changes in Prefrontal Cortical Area 46. Alcohol Clin Exp Res 2020; 44:470-478. [PMID: 31840818 PMCID: PMC7018568 DOI: 10.1111/acer.14259] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 12/05/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Genome-wide profiling to examine brain transcriptional features associated with excessive ethanol (EtOH) consumption has been applied to a variety of species including rodents, nonhuman primates (NHPs), and humans. However, these data were obtained from cross-sectional samples which are particularly vulnerable to individual variation when obtained from small outbred populations typical of human and NHP studies. In the current study, a novel within-subject design was used to examine the effects of voluntary EtOH consumption on prefrontal cortex (PFC) gene expression in a NHP model. METHODS Two cohorts of cynomolgus macaques (n = 23) underwent a schedule-induced polydipsia procedure to establish EtOH self-administration followed by 6 months of daily open access to EtOH (4% w/v) and water. Individual daily EtOH intakes ranged from an average of 0.7 to 3.7 g/kg/d. Dorsal lateral PFC area 46 (A46) brain biopsies were collected in EtOH-naïve and control monkeys; contralateral A46 biopsies were collected from the same monkeys following the 6 months of fluid consumption. Gene expression changes were assessed using RNA-Seq paired analysis, which allowed for correction of individual baseline differences in gene expression. RESULTS A total of 675 genes were significantly down-regulated following EtOH consumption; these were functionally enriched for immune response, cell adhesion, plasma membrane, and extracellular matrix. A total of 567 genes that were up-regulated following EtOH consumption were enriched in microRNA target sites and included target sites associated with Toll-like receptor pathways. The differentially expressed genes were also significantly enriched in transcription factor binding sites. CONCLUSIONS The data presented here are the first to use a longitudinal biopsy strategy to examine how chronic EtOH consumption affects gene expression in the primate PFC. Prominent effects were seen in both cell adhesion and neuroimmune pathways; the latter contained both pro- and antiinflammatory genes. The data also indicate that changes in miRNAs and transcription factors may be important epigenetic regulators of EtOH consumption.
Collapse
Affiliation(s)
- Nicole A R Walter
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon.,Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon
| | - Christina L Zheng
- Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, Oregon.,Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
| | - Robert P Searles
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon.,Integrated Genomics Laboratory, Oregon Health & Science University, Portland, Oregon
| | - Shannon K McWeeney
- Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, Oregon.,Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
| | - Kathleen A Grant
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon
| | - Robert Hitzemann
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon
| |
Collapse
|
21
|
Donadoni M, Cicalese S, Sarkar DK, Chang SL, Sariyer IK. Alcohol exposure alters pre-mRNA splicing of antiapoptotic Mcl-1L isoform and induces apoptosis in neural progenitors and immature neurons. Cell Death Dis 2019; 10:447. [PMID: 31171771 PMCID: PMC6554352 DOI: 10.1038/s41419-019-1673-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 04/19/2019] [Accepted: 05/16/2019] [Indexed: 12/14/2022]
Abstract
Alternative splicing and expression of splice variants of genes in the brain may lead to the modulation of protein functions, which may ultimately influence behaviors associated with alcohol dependence and neurotoxicity. We recently showed that ethanol exposure can lead to pre-mRNA missplicing of Mcl-1, a pro-survival member of the Bcl-2 family, by downregulating the expression levels of serine/arginine rich splicing factor 1 (SRSF1). Little is known about the physiological expression of these isoforms in neuronal cells and their role in toxicity induced by alcohol exposure during the developmental period. In order to investigate the impact of alcohol exposure on alternative splicing of Mcl-1 pre-mRNA and its role in neurotoxicity, we developed a unique primary human neuronal culture model where neurospheres (hNSPs), neural progenitors (hNPCs), immature neurons, and mature neurons were cultured from the matching donor fetal brain tissues. Our data suggest that neural progenitors and immature neurons are highly sensitive to the toxic effects of ethanol, while mature neuron cultures showed resistance to ethanol exposure. Further analysis of Mcl-1 pre-mRNA alternative splicing by semi-quantitative and quantitative analysis revealed that ethanol exposure causes a significant decrease in Mcl-1L/Mcl-1S ratio in a dose and time dependent manner in neural progenitors. Interestingly, ectopic expression of Mcl-1L isoform in neural progenitors was able to recover the viability loss and apoptosis induced by alcohol exposure. Altogether, these observations suggest that alternative splicing of Mcl-1 may play a crucial role in neurotoxicity associated with alcohol exposure in the developing fetal brain.
Collapse
Affiliation(s)
- Martina Donadoni
- Department of Neuroscience, Center for Neurovirology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Stephanie Cicalese
- Department of Neuroscience, Center for Neurovirology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Dipak K Sarkar
- The Endocrine Program, Department of Animal Sciences, Rutgers, The State University of New Jersey, 67 Poultry Lane, New Brunswick, NJ, 08901, USA
| | - Sulie L Chang
- Institute of NeuroImmune Pharmacology and Department of Biological Sciences, Seton Hall University, South Orange, NJ, USA
| | - Ilker Kudret Sariyer
- Department of Neuroscience, Center for Neurovirology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA.
| |
Collapse
|
22
|
Analysis of whole genome-transcriptomic organization in brain to identify genes associated with alcoholism. Transl Psychiatry 2019; 9:89. [PMID: 30765688 PMCID: PMC6376002 DOI: 10.1038/s41398-019-0384-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 01/02/2019] [Indexed: 02/07/2023] Open
Abstract
Alcohol exposure triggers changes in gene expression and biological pathways in human brain. We explored alterations in gene expression in the Pre-Frontal Cortex (PFC) of 65 alcoholics and 73 controls of European descent, and identified 129 genes that showed altered expression (FDR < 0.05) in subjects with alcohol dependence. Differentially expressed genes were enriched for pathways related to interferon signaling and Growth Arrest and DNA Damage-inducible 45 (GADD45) signaling. A coexpression module (thistle2) identified by weighted gene co-expression network analysis (WGCNA) was significantly correlated with alcohol dependence, alcohol consumption, and AUDIT scores. Genes in the thistle2 module were enriched with genes related to calcium signaling pathways and showed significant downregulation of these pathways, as well as enrichment for biological processes related to nicotine response and opioid signaling. A second module (brown4) showed significant upregulation of pathways related to immune signaling. Expression quantitative trait loci (eQTLs) for genes in the brown4 module were also enriched for genetic associations with alcohol dependence and alcohol consumption in large genome-wide studies included in the Psychiatric Genetic Consortium and the UK Biobank's alcohol consumption dataset. By leveraging multi-omics data, this transcriptome analysis has identified genes and biological pathways that could provide insight for identifying therapeutic targets for alcohol dependence.
Collapse
|
23
|
Bohnsack JP, Teppen T, Kyzar EJ, Dzitoyeva S, Pandey SC. The lncRNA BDNF-AS is an epigenetic regulator in the human amygdala in early onset alcohol use disorders. Transl Psychiatry 2019; 9:34. [PMID: 30728347 PMCID: PMC6365546 DOI: 10.1038/s41398-019-0367-z] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 11/12/2018] [Accepted: 12/09/2018] [Indexed: 12/16/2022] Open
Abstract
Adolescent alcohol drinking is known to contribute to the development and severity of alcohol use disorders (AUDs) later in adulthood. Recent studies have shown that long non-coding RNAs (lncRNAs) are critical for brain development and synaptic plasticity. One such lncRNA is natural occurring brain-derived neurotrophic factor antisense (BDNF-AS) that has been shown to regulate BDNF expression. The role of BDNF-AS lncRNA in the molecular mechanisms of AUD is unknown. Here, we evaluated the expression and functional role of BDNF-AS in postmortem amygdala of either early onset or late onset alcoholics (individuals who began drinking before or after 21 years of age, respectively) and age-matched control subjects. BDNF-AS expression is increased in early onset but not in late onset AUD amygdala and appears to be regulated epitranscriptomically via decreased N6-methyladenosine on BDNF-AS. Upregulation of BDNF-AS is associated with a significant decrease in BDNF expression and increased recruitment of EZH2, which deposits repressive H3K27 trimethylation (H3K27me3) at regulatory regions in the BDNF gene in the early onset AUD group. Drinking during adolescence also contributed to significant decreases in activity-regulated cytoskeleton-associated protein (ARC) expression which also appeared to be mediated by increased EZH2 deposition of repressive H3K27me3 at the ARC synaptic activity response element. These results suggest an important role for BDNF-AS in the regulation of synaptic plasticity via epigenetic reprogramming in the amygdala of AUD subjects who began drinking during adolescence.
Collapse
Affiliation(s)
- John Peyton Bohnsack
- 0000 0001 2175 0319grid.185648.6Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60612 USA
| | - Tara Teppen
- 0000 0001 2175 0319grid.185648.6Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60612 USA ,grid.280892.9Jesse Brown VA Medical Center, Chicago, IL 60612 USA
| | - Evan J. Kyzar
- 0000 0001 2175 0319grid.185648.6Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60612 USA ,grid.280892.9Jesse Brown VA Medical Center, Chicago, IL 60612 USA
| | - Svetlana Dzitoyeva
- 0000 0001 2175 0319grid.185648.6Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60612 USA
| | - Subhash C. Pandey
- 0000 0001 2175 0319grid.185648.6Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60612 USA ,grid.280892.9Jesse Brown VA Medical Center, Chicago, IL 60612 USA ,0000 0001 2175 0319grid.185648.6Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612 USA
| |
Collapse
|
24
|
Petruccelli E, Kaun KR. Insights from intoxicated Drosophila. Alcohol 2019; 74:21-27. [PMID: 29980341 DOI: 10.1016/j.alcohol.2018.03.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 03/14/2018] [Accepted: 03/14/2018] [Indexed: 01/31/2023]
Abstract
Our understanding of alcohol use disorder (AUD), particularly alcohol's effects on the nervous system, has unquestionably benefited from the use of model systems such as Drosophila melanogaster. Here, we briefly introduce the use of flies in alcohol research, and highlight the genetic accessibility and neurobiological contribution that flies have made to our understanding of AUD. Future fly research offers unique opportunities for addressing unresolved questions in the alcohol field, such as the neuromolecular and circuit basis for cravings and alcohol-induced neuroimmune dysfunction. This review strongly advocates for interdisciplinary approaches and translational collaborations with the united goal of confronting the major health problems associated with alcohol abuse and addiction.
Collapse
|
25
|
Petruccelli E, Feyder M, Ledru N, Jaques Y, Anderson E, Kaun KR. Alcohol Activates Scabrous-Notch to Influence Associated Memories. Neuron 2018; 100:1209-1223.e4. [PMID: 30482693 DOI: 10.1016/j.neuron.2018.10.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 08/17/2018] [Accepted: 10/02/2018] [Indexed: 12/17/2022]
Abstract
Drugs of abuse, like alcohol, modulate gene expression in reward circuits and consequently alter behavior. However, the in vivo cellular mechanisms through which alcohol induces lasting transcriptional changes are unclear. We show that Drosophila Notch/Su(H) signaling and the secreted fibrinogen-related protein Scabrous in mushroom body (MB) memory circuitry are important for the enduring preference of cues associated with alcohol's rewarding properties. Alcohol exposure affects Notch responsivity in the adult MB and alters Su(H) targeting at the dopamine-2-like receptor (Dop2R). Alcohol cue training also caused lasting changes to the MB nuclear transcriptome, including changes in the alternative splicing of Dop2R and newly implicated transcripts like Stat92E. Together, our data suggest that alcohol-induced activation of the highly conserved Notch pathway and accompanying transcriptional responses in memory circuitry contribute to addiction. Ultimately, this provides mechanistic insight into the etiology and pathophysiology of alcohol use disorder.
Collapse
Affiliation(s)
- Emily Petruccelli
- Department of Neuroscience, Brown University, Providence, RI 02912, USA
| | - Michael Feyder
- Department of Neuroscience, Brown University, Providence, RI 02912, USA
| | - Nicolas Ledru
- Department of Neuroscience, Brown University, Providence, RI 02912, USA
| | - Yanabah Jaques
- Department of Neuroscience, Brown University, Providence, RI 02912, USA
| | - Edward Anderson
- Department of Neuroscience, Brown University, Providence, RI 02912, USA
| | - Karla R Kaun
- Department of Neuroscience, Brown University, Providence, RI 02912, USA.
| |
Collapse
|
26
|
Strong C, Kabbaj M. On the safety of repeated ketamine infusions for the treatment of depression: Effects of sex and developmental periods. Neurobiol Stress 2018; 9:166-175. [PMID: 30450382 PMCID: PMC6236511 DOI: 10.1016/j.ynstr.2018.09.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 08/23/2018] [Accepted: 09/04/2018] [Indexed: 12/16/2022] Open
Abstract
In this review, we will discuss the safety of repeated treatments with ketamine for patients with treatment-resistant depression (TRD), a condition in which patients with major depression do not show any clinical improvements following treatments with at least two antidepressant drugs. We will discuss the effects of these treatments in both sexes at different developmental periods. Numerous small clinical studies have shown that a single, low-dose ketamine infusion can rapidly alleviate depressive symptoms and thoughts of suicidality in patients with TRD, and these effects can last for about one week. Interestingly, the antidepressant effects of ketamine can be prolonged with intermittent, repeated infusion regimens and produce more robust therapeutic effects when compared to a single infusion. The safety of such repeated treatments with ketamine has not been thoroughly investigated. Although more studies are needed, some clinical and preclinical reports indicated that repeated infusions of low doses of ketamine may have addictive properties, and suggested that adolescent and adult female subjects may be more sensitive to ketamine's addictive effects. Additionally, during ketamine infusions, many TRD patients report hallucinations and feelings of dissociation and depersonalization, and therefore the effects of repeated treatments of ketamine on cognition must be further examined. Some clinical reports indicated that, compared to women, men are more sensitive to the psychomimetic effects of ketamine. Preclinical studies extended these findings to both adolescent and adult male rodents and showed that male rodents at both developmental periods are more sensitive to ketamine's cognitive-altering effects. Accordingly, in this review we shall focus our discussion on the potential addictive and cognitive-impairing effects of repeated ketamine infusions in both sexes at two important developmental periods: adolescence and adulthood. Although more work about the safety of ketamine is warranted, we hope this review will bring some answers about the safety of treating TRD with repeated ketamine infusions.
Collapse
Affiliation(s)
| | - Mohamed Kabbaj
- Corresponding author. Florida State University, 3300-H, 1115 W. Call St, Tallahassee, FL, 32306, USA.
| |
Collapse
|
27
|
Iancu OD, Colville AM, Wilmot B, Searles R, Darakjian P, Zheng C, McWeeney S, Kawane S, Crabbe JC, Metten P, Oberbeck D, Hitzemann R. Gender-Specific Effects of Selection for Drinking in the Dark on the Network Roles of Coding and Noncoding RNAs. Alcohol Clin Exp Res 2018; 42:1454-1465. [PMID: 29786871 DOI: 10.1111/acer.13777] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 05/10/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Transcriptional differences between heterogeneous stock mice and high drinking-in-the-dark selected mouse lines have previously been described based on microarray technology coupled with network-based analysis. The network changes were reproducible in 2 independent selections and largely confined to 2 distinct network modules; in contrast, differential expression appeared more specific to each selected line. This study extends these results by utilizing RNA-Seq technology, allowing evaluation of the relationship between genetic risk and transcription of noncoding RNA (ncRNA); we additionally evaluate sex-specific transcriptional effects of selection. METHODS Naïve mice (N = 24/group and sex) were utilized for gene expression analysis in the ventral striatum; the transcriptome was sequenced with the Illumina HiSeq platform. Differential gene expression and the weighted gene co-expression network analysis were implemented largely as described elsewhere, resulting in the identification of genes that change expression level or (co)variance structure. RESULTS Across both sexes, we detect selection effects on the extracellular matrix and synaptic signaling, although the identity of individual genes varies. A majority of nc RNAs cluster in a single module of relatively low density in both the male and female network. The most strongly differentially expressed transcript in both sexes was Gm22513, a small nuclear RNA with unknown function. Associated with selection, we also found a number of network hubs that change edge strength and connectivity. At the individual gene level, there are many sex-specific effects; however, at the annotation level, results are more concordant. CONCLUSIONS In addition to demonstrating sex-specific effects of selection on the transcriptome, the data point to the involvement of extracellular matrix genes as being associated with the binge drinking phenotype.
Collapse
Affiliation(s)
- Ovidiu Dan Iancu
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon
| | - Alex M Colville
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon
| | - Beth Wilmot
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon
| | - Robert Searles
- Integrated Genomics Laboratory, Oregon Health & Science University, Portland, Oregon
| | - Priscila Darakjian
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon
| | - Christina Zheng
- Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, Oregon.,Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
| | - Shannon McWeeney
- Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, Oregon
| | - Sunita Kawane
- Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, Oregon
| | - John C Crabbe
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon.,VA Portland Health Care System , Portland, Oregon
| | - Pamela Metten
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon.,VA Portland Health Care System , Portland, Oregon
| | - Denesa Oberbeck
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon
| | - Robert Hitzemann
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon
| |
Collapse
|
28
|
Koulentaki M, Kouroumalis E. GABA A receptor polymorphisms in alcohol use disorder in the GWAS era. Psychopharmacology (Berl) 2018; 235:1845-1865. [PMID: 29721579 DOI: 10.1007/s00213-018-4918-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 04/18/2018] [Indexed: 12/11/2022]
Abstract
Alcohol use disorder (AUD) is a chronic, relapsing, neuro-psychiatric illness of high prevalence and with a serious public health impact worldwide. It is complex and polygenic, with a heritability of about 50%, and influenced by environmental causal heterogeneity. Risk factors associated with its etiology have a genetic component. GABA (γ-aminobutyric acid) is a major inhibitory neurotransmitter in mammalian brain. GABAA receptors are believed to mediate some of the physiological and behavioral actions of alcohol. In this critical review, relevant genetic terms and type and methodology of the genetic studies are briefly explained. Postulated candidate genes that encode subunits of GABAA receptors, with all the reported SNPs, are presented. Genetic studies and meta-analyses examining polymorphisms of the GABAA receptor and their association with AUD predisposition are presented. The data are critically examined with reference to recent GWAS studies that failed to show relations between GABAA receptors and AUD. Restrictions and perspectives of the different findings are discussed.
Collapse
Affiliation(s)
- Mairi Koulentaki
- Alcohology Research Laboratory, Medical School, University of Crete, 71500, Heraklion, Crete, Greece.,Department of Gastroenterology, University Hospital Heraklion, 71500, Heraklion, Crete, Greece
| | - Elias Kouroumalis
- Department of Gastroenterology, University Hospital Heraklion, 71500, Heraklion, Crete, Greece.
| |
Collapse
|
29
|
Nonprotein-coding RNAs in Fetal Alcohol Spectrum Disorders. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 157:299-342. [PMID: 29933954 DOI: 10.1016/bs.pmbts.2017.11.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Early developmental exposure to ethanol, a known teratogen, can result in a range of neurodevelopmental disorders, collectively referred to as Fetal Alcohol Spectrum Disorders (FASDs). Changes in the environment, including exposure to teratogens, can result in long term alterations to the epigenetic landscape of a cell, thereby altering gene expression. Noncoding RNAs (ncRNAs) can affect transcription and translation of networks of genes. ncRNAs are dynamically expressed during development and have been identified as a target of alcohol. ncRNAs therefore make for attractive targets for novel therapeutics to address the developmental deficits associated with FASDs.
Collapse
|
30
|
Iancu OD, Colville A, Walter NA, Darakjian P, Oberbeck DL, Daunais JB, Zheng CL, Searles RP, McWeeney SK, Grant KA, Hitzemann R. On the relationships in rhesus macaques between chronic ethanol consumption and the brain transcriptome. Addict Biol 2018; 23:196-205. [PMID: 28247455 DOI: 10.1111/adb.12501] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 02/01/2017] [Accepted: 02/03/2017] [Indexed: 12/19/2022]
Abstract
This is the first description of the relationship between chronic ethanol self-administration and the brain transcriptome in a non-human primate (rhesus macaque). Thirty-one male animals self-administered ethanol on a daily basis for over 12 months. Gene transcription was quantified with RNA-Seq in the central nucleus of the amygdala (CeA) and cortical Area 32. We constructed coexpression and cosplicing networks, and we identified areas of preservation and areas of differentiation between regions and network types. Correlations between intake and transcription included largely distinct gene sets and annotation categories across brain regions and between expression and splicing; positive and negative correlations were also associated with distinct annotation groups. Membrane, synaptic and splicing annotation categories were over-represented in the modules (gene clusters) enriched in positive correlations (CeA); our cosplicing analysis further identified the genes affected only at the exon inclusion level. In the CeA coexpression network, we identified Rab6b, Cdk18 and Igsf21 among the intake-correlated hubs, while in the Area 32, we identified a distinct hub set that included Ppp3r1 and Myeov2. Overall, the data illustrate that excessive ethanol self-administration is associated with broad expression and splicing mechanisms that involve membrane and synapse genes.
Collapse
|
31
|
Sariyer R, De-Simone FI, Donadoni M, Hoek JB, Chang SL, Sariyer IK. Alcohol-Mediated Missplicing of Mcl-1 Pre-mRNA is Involved in Neurotoxicity. Alcohol Clin Exp Res 2017; 41:1715-1724. [PMID: 28800142 DOI: 10.1111/acer.13474] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 08/06/2017] [Indexed: 01/14/2023]
Abstract
BACKGROUND Heavy and chronic ethanol (EtOH) exposure can cause significant structural and functional damage to the adult brain. The most devastating consequence of EtOH exposure is the neurotoxicity associated with the depletion of neurons. Regulation of splice variants in the brain can modulate protein functions, which may ultimately affect behaviors associated with alcohol dependence and EtOH-mediated neurotoxicity. As alcohol consumption is associated with neurotoxicity, it is possible that altered splicing of survival and pro-survival factors during the development of alcoholism may contribute to the neurotoxicity. METHODS Primary human neurons and a neuroblastoma cell line were exposed to different concentrations of EtOH for various time periods. Cell viability and neuronal marker expression were analyzed by MTT assay and immunoblotting, respectively. Effect of EtOH exposure on splicing regulatory protein expression and alternative splicing of candidate genes was analyzed by a biochemical approach. Transcriptional activity of serine/arginine-rich splicing factor 1 (SRSF1) gene was determined by reporter gene analysis. RESULTS Our results suggest that EtOH exposure to neuronal cells at 25 mM and higher concentrations are detrimental. In addition, EtOH exposure caused a dramatic reduction in SRSF1 expression levels. Furthermore, EtOH exposure led to pre-mRNA missplicing of Mcl-1, a pro-survival member of the Bcl-2 family, by down-regulating the expression levels of SRSF1. Moreover, ectopic expression of both SRSF1 and Mcl-1L isoform was able to recover EtOH-mediated neurotoxicity. CONCLUSIONS Our results suggest that EtOH exposure can lead to pre-mRNA missplicing of Mcl-1 in neuronal cells. Our results indicate that EtOH exposure of neurons leads to a decrease in the ratio of Mcl-1L/Mcl-1S by favoring pro-apoptotic Mcl-1S splicing over anti-apoptotic Mcl-1L isoform suggesting that Mcl-1S may play a crucial role in neurotoxicity associated with alcohol consumption.
Collapse
Affiliation(s)
- Rahsan Sariyer
- Department of Neuroscience, Center for Neurovirology, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Francesca I De-Simone
- Department of Neuroscience, Center for Neurovirology, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Martina Donadoni
- Department of Neuroscience, Center for Neurovirology, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Jan B Hoek
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Sulie L Chang
- Institute of NeuroImmune Pharmacology and Department of Biological Sciences, Seton Hall University, South Orange, New Jersey
| | - Ilker Kudret Sariyer
- Department of Neuroscience, Center for Neurovirology, Temple University School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
32
|
Possible involvement of ACSS2 gene in alcoholism. J Neural Transm (Vienna) 2017; 124:1151-1158. [PMID: 28550509 DOI: 10.1007/s00702-017-1737-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 05/20/2017] [Indexed: 02/01/2023]
Abstract
Alcoholism is a psychiatric disorder that composes one of the principal causes of health disabilities in the world population. Furthermore, the available pharmacotherapy is limited. Therefore, this research was carried out to better understand the basis of the underlying neurobiological processes of this disorder and to discover potential therapeutic targets. Real-time PCR analysis was performed in the amygdala nuclei region of the brain of mice exposed to a chronic three-bottle free-choice model (water, 5 and 10% v/v ethanol). Based on individual ethanol intake, the mice were classified into three groups: "compulsive-like" (i.e., ethanol intake not affected by quinine adulteration), "ethanol-preferring" and "ethanol non-preferring". A fourth group had access only to tap water (control group). The candidate gene ACSS2 was genotyped in human alcoholics by real-time polymerase chain reaction using the markers rs6088638 and rs7266550. Seven genes were picked out (Acss2, Acss3, Acat1, Acsl1, Acaa2, Hadh, and Hadhb) and the mRNA level of the Acss2 gene was increased only in the "compulsive-like" group (p = 0.004). The allele frequency of rs6088638 for the gene ACSS2 was higher in the Alcoholic human group (p = 0.03), although sample size was very small. The gene ACSS2 is associated with alcoholism, suggesting that biochemical pathways where it participates may have a role in the biological mechanisms susceptible to the ethanol effects.
Collapse
|
33
|
Emerging roles for ncRNAs in alcohol use disorders. Alcohol 2017; 60:31-39. [PMID: 28438526 DOI: 10.1016/j.alcohol.2017.01.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 01/04/2017] [Accepted: 01/04/2017] [Indexed: 12/21/2022]
Abstract
Chronic alcohol exposure produces widespread neuroadaptations and alterations in gene expression in human alcoholics and animal models. Technological advances in the past decade have increasingly highlighted the role of non-protein-coding RNAs (ncRNAs) in the regulation of gene expression and function. These recently characterized molecules were discovered to mediate diverse processes in the central nervous system, from normal development and physiology to regulation of disease, including alcoholism and other psychiatric disorders. This review will investigate the recent studies in human alcoholics and rodent models that have profiled different classes of ncRNAs and their dynamic alcohol-dependent regulation in brain.
Collapse
|
34
|
Warden AS, Mayfield RD. Gene expression profiling in the human alcoholic brain. Neuropharmacology 2017; 122:161-174. [PMID: 28254370 DOI: 10.1016/j.neuropharm.2017.02.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 02/13/2017] [Accepted: 02/17/2017] [Indexed: 01/12/2023]
Abstract
Long-term alcohol use causes widespread changes in gene expression in the human brain. Aberrant gene expression changes likely contribute to the progression from occasional alcohol use to alcohol use disorder (including alcohol dependence). Transcriptome studies have identified individual gene candidates that are linked to alcohol-dependence phenotypes. The use of bioinformatics techniques to examine expression datasets has provided novel systems-level approaches to transcriptome profiling in human postmortem brain. These analytical advances, along with recent developments in next-generation sequencing technology, have been instrumental in detecting both known and novel coding and non-coding RNAs, alternative splicing events, and cell-type specific changes that may contribute to alcohol-related pathologies. This review offers an integrated perspective on alcohol-responsive transcriptional changes in the human brain underlying the regulatory gene networks that contribute to alcohol dependence. This article is part of the Special Issue entitled "Alcoholism".
Collapse
Affiliation(s)
- Anna S Warden
- Institute for Neuroscience, The University of Texas at Austin, 1 University Station, C7000, Austin, TX 78712, USA; Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, 2500 Speedway, A4800, Austin, TX 78712, USA
| | - R Dayne Mayfield
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, 2500 Speedway, A4800, Austin, TX 78712, USA.
| |
Collapse
|
35
|
Colville AM, Iancu OD, Oberbeck DL, Darakjian P, Zheng CL, Walter NAR, Harrington CA, Searles RP, McWeeney S, Hitzemann RJ. Effects of selection for ethanol preference on gene expression in the nucleus accumbens of HS-CC mice. GENES BRAIN AND BEHAVIOR 2017; 16:462-471. [PMID: 28058793 DOI: 10.1111/gbb.12367] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 12/16/2016] [Accepted: 01/03/2017] [Indexed: 12/15/2022]
Abstract
Previous studies on changes in murine brain gene expression associated with the selection for ethanol preference have used F2 intercross or heterogeneous stock (HS) founders, derived from standard laboratory strains. However, these populations represent only a small proportion of the genetic variance available in Mus musculus. To investigate a wider range of genetic diversity, we selected mice for ethanol preference using an HS derived from the eight strains of the collaborative cross. These HS mice were selectively bred (four generations) for high and low ethanol preference. The nucleus accumbens shell of naive S4 mice was interrogated using RNA sequencing (RNA-Seq). Gene networks were constructed using the weighted gene coexpression network analysis assessing both coexpression and cosplicing. Selection targeted one of the network coexpression modules (greenyellow) that was significantly enriched in genes associated with receptor signaling activity including Chrna7, Grin2a, Htr2a and Oprd1. Connectivity in the module as measured by changes in the hub nodes was significantly reduced in the low preference line. Of particular interest was the observation that selection had marked effects on a large number of cell adhesion molecules, including cadherins and protocadherins. In addition, the coexpression data showed that selection had marked effects on long non-coding RNA hub nodes. Analysis of the cosplicing network data showed a significant effect of selection on a large cluster of Ras GTPase-binding genes including Cdkl5, Cyfip1, Ndrg1, Sod1 and Stxbp5. These data in part support the earlier observation that preference is linked to Ras/Mapk pathways.
Collapse
Affiliation(s)
- A M Colville
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - O D Iancu
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - D L Oberbeck
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - P Darakjian
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - C L Zheng
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - N A R Walter
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - C A Harrington
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - R P Searles
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - S McWeeney
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - R J Hitzemann
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA.,Research Service, Portland Veterans Affairs Medical Center, Portland, OR, USA
| |
Collapse
|
36
|
Mulligan MK, Mozhui K, Pandey AK, Smith ML, Gong S, Ingels J, Miles MF, Lopez MF, Lu L, Williams RW. Genetic divergence in the transcriptional engram of chronic alcohol abuse: A laser-capture RNA-seq study of the mouse mesocorticolimbic system. Alcohol 2017; 58:61-72. [PMID: 27894806 DOI: 10.1016/j.alcohol.2016.09.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 09/12/2016] [Accepted: 09/16/2016] [Indexed: 12/14/2022]
Abstract
Genetic factors that influence the transition from initial drinking to dependence remain enigmatic. Recent studies have leveraged chronic intermittent ethanol (CIE) paradigms to measure changes in brain gene expression in a single strain at 0, 8, 72 h, and even 7 days following CIE. We extend these findings using LCM RNA-seq to profile expression in 11 brain regions in two inbred strains - C57BL/6J (B6) and DBA/2J (D2) - 72 h following multiple cycles of ethanol self-administration and CIE. Linear models identified differential expression based on treatment, region, strain, or interactions with treatment. Nearly 40% of genes showed a robust effect (FDR < 0.01) of region, and hippocampus CA1, cortex, bed nucleus stria terminalis, and nucleus accumbens core had the highest number of differentially expressed genes after treatment. Another 8% of differentially expressed genes demonstrated a robust effect of strain. As expected, based on similar studies in B6, treatment had a much smaller impact on expression; only 72 genes (p < 0.01) are modulated by treatment (independent of region or strain). Strikingly, many more genes (415) show a strain-specific and largely opposite response to treatment and are enriched in processes related to RNA metabolism, transcription factor activity, and mitochondrial function. Over 3 times as many changes in gene expression were detected in D2 compared to B6, and weighted gene co-expression network analysis (WGCNA) module comparison identified more modules enriched for treatment effects in D2. Substantial strain differences exist in the temporal pattern of transcriptional neuroadaptation to CIE, and these may drive individual differences in risk of addiction following excessive alcohol consumption.
Collapse
Affiliation(s)
- Megan K Mulligan
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, United States.
| | - Khyobeni Mozhui
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, United States
| | - Ashutosh K Pandey
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, United States
| | - Maren L Smith
- Department of Molecular Biology and Genetics, Virginia Commonwealth University, United States
| | - Suzhen Gong
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, United States
| | - Jesse Ingels
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, United States
| | - Michael F Miles
- Department of Molecular Biology and Genetics, Virginia Commonwealth University, United States
| | - Marcelo F Lopez
- Charleston Alcohol Research Center, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, United States
| | - Lu Lu
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, United States
| | - Robert W Williams
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, United States
| |
Collapse
|
37
|
Roberto M, Varodayan FP. Synaptic targets: Chronic alcohol actions. Neuropharmacology 2017; 122:85-99. [PMID: 28108359 DOI: 10.1016/j.neuropharm.2017.01.013] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 12/23/2016] [Accepted: 01/14/2017] [Indexed: 01/02/2023]
Abstract
Alcohol acts on numerous cellular and molecular targets to regulate neuronal communication within the brain. Chronic alcohol exposure and acute withdrawal generate prominent neuroadaptations at synapses, including compensatory effects on the expression, localization and function of synaptic proteins, channels and receptors. The present article reviews the literature describing the synaptic effects of chronic alcohol exposure and their relevance for synaptic transmission in the central nervous system. This review is not meant to be comprehensive, but rather to highlight the effects that have been observed most consistently and that are thought to contribute to the development of alcohol dependence and the negative aspects of withdrawal. Specifically, we will focus on the major excitatory and inhibitory neurotransmitters in the brain, glutamate and GABA, respectively, and how their neuroadaptations after chronic alcohol exposure contributes to alcohol reinforcement, dependence and withdrawal. This article is part of the Special Issue entitled "Alcoholism".
Collapse
|
38
|
Bell RL, Hauser S, Rodd ZA, Liang T, Sari Y, McClintick J, Rahman S, Engleman EA. A Genetic Animal Model of Alcoholism for Screening Medications to Treat Addiction. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2016; 126:179-261. [PMID: 27055615 PMCID: PMC4851471 DOI: 10.1016/bs.irn.2016.02.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The purpose of this review is to present up-to-date pharmacological, genetic, and behavioral findings from the alcohol-preferring P rat and summarize similar past work. Behaviorally, the focus will be on how the P rat meets criteria put forth for a valid animal model of alcoholism with a highlight on its use as an animal model of polysubstance abuse, including alcohol, nicotine, and psychostimulants. Pharmacologically and genetically, the focus will be on the neurotransmitter and neuropeptide systems that have received the most attention: cholinergic, dopaminergic, GABAergic, glutamatergic, serotonergic, noradrenergic, corticotrophin releasing hormone, opioid, and neuropeptide Y. Herein, we sought to place the P rat's behavioral and neurochemical phenotypes, and to some extent its genotype, in the context of the clinical literature. After reviewing the findings thus far, this chapter discusses future directions for expanding the use of this genetic animal model of alcoholism to identify molecular targets for treating drug addiction in general.
Collapse
Affiliation(s)
- R L Bell
- Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, United States.
| | - S Hauser
- Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Z A Rodd
- Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| | - T Liang
- Indiana University School of Medicine, Indianapolis, IN, United States
| | - Y Sari
- University of Toledo, Toledo, OH, United States
| | - J McClintick
- Center for Medical Genomics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - S Rahman
- Department of Pharmaceutical Sciences, South Dakota State University, Brookings, SD, United States
| | - E A Engleman
- Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
39
|
Urquhart KR, Zhao Y, Baker JA, Lu Y, Yan L, Cook MN, Jones BC, Hamre KM, Lu L. A novel heat shock protein alpha 8 (Hspa8) molecular network mediating responses to stress- and ethanol-related behaviors. Neurogenetics 2016; 17:91-105. [PMID: 26780340 DOI: 10.1007/s10048-015-0470-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 12/10/2015] [Indexed: 12/15/2022]
Abstract
Genetic differences mediate individual differences in susceptibility and responses to stress and ethanol, although, the specific molecular pathways that control these responses are not fully understood. Heat shock protein alpha 8 (Hspa8) is a molecular chaperone and member of the heat shock protein family that plays an integral role in the stress response and that has been implicated as an ethanol-responsive gene. Therefore, we assessed its role in mediating responses to stress and ethanol across varying genetic backgrounds. The hippocampus is an important mediator of these responses, and thus, was examined in the BXD family of mice in this study. We conducted bioinformatic analyses to dissect genetic factors modulating Hspa8 expression, identify downstream targets of Hspa8, and examined its role. Hspa8 is trans-regulated by a gene or genes on chromosome 14 and is part of a molecular network that regulates stress- and ethanol-related behaviors. To determine additional components of this network, we identified direct or indirect targets of Hspa8 and show that these genes, as predicted, participate in processes such as protein folding and organic substance metabolic processes. Two phenotypes that map to the Hspa8 locus are anxiety-related and numerous other anxiety- and/or ethanol-related behaviors significantly correlate with Hspa8 expression. To more directly assay this relationship, we examined differences in gene expression following exposure to stress or alcohol and showed treatment-related differential expression of Hspa8 and a subset of the members of its network. Our findings suggest that Hspa8 plays a vital role in genetic differences in responses to stress and ethanol and their interactions.
Collapse
Affiliation(s)
- Kyle R Urquhart
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Yinghong Zhao
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Jessica A Baker
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Ye Lu
- The International Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Lei Yan
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Melloni N Cook
- Department of Psychology, University of Memphis, Memphis, TN, 38152, USA
| | - Byron C Jones
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Kristin M Hamre
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
| | - Lu Lu
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA. .,Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, 38163, USA. .,Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College of Nantong University, Nantong, China.
| |
Collapse
|
40
|
Farris SP, Pietrzykowski AZ, Miles MF, O'Brien MA, Sanna PP, Zakhari S, Mayfield RD, Harris RA. Applying the new genomics to alcohol dependence. Alcohol 2015; 49:825-36. [PMID: 25896098 PMCID: PMC4586299 DOI: 10.1016/j.alcohol.2015.03.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 03/05/2015] [Accepted: 03/07/2015] [Indexed: 12/15/2022]
Abstract
This review summarizes the proceedings of a symposium presented at the "Alcoholism and Stress: A Framework for Future Treatment Strategies" conference held in Volterra, Italy on May 6-9, 2014. The overall goal of the symposium titled "Applying the New Genomics to Alcohol Dependence", chaired by Dr. Adron Harris, was to highlight recent genomic discoveries and applications for profiling alcohol use disorder (AUD). Dr. Sean Farris discussed the gene expression networks related to lifetime consumption of alcohol within human prefrontal cortex. Dr. Andrzej Pietrzykowski presented the effects of alcohol on microRNAs in humans and animal models. Alcohol-induced alterations in the synaptic transcriptome were discussed by Dr. Michael Miles. Dr. Pietro Sanna examined methods to probe the gene regulatory networks that drive excessive alcohol drinking, and Dr. Samir Zakhari served as a panel discussant and summarized the proceedings. Collectively, the presentations emphasized the power of integrating multiple levels of genetics and transcriptomics with convergent biological processes and phenotypic behaviors to determine causal factors of AUD. The combined use of diverse data types demonstrates how unique approaches and applications can help categorize genetic complexities into relevant biological networks using a systems-level model of disease.
Collapse
Affiliation(s)
- Sean P Farris
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, 2500 Speedway, Austin, TX 78712, USA
| | - Andrzej Z Pietrzykowski
- Department of Animal Sciences, Rutgers University, New Brunswick, NJ, USA; Department of Genetics, Rutgers University, New Brunswick, NJ, USA
| | - Michael F Miles
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Megan A O'Brien
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Pietro P Sanna
- Molecular and Cellular Neuroscience Department, The Scripps Research Institute, La Jolla, CA, USA
| | - Samir Zakhari
- Office of Science, Distilled Spirits Council of the United States, Washington, DC, USA
| | - R Dayne Mayfield
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, 2500 Speedway, Austin, TX 78712, USA
| | - R Adron Harris
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, 2500 Speedway, Austin, TX 78712, USA.
| |
Collapse
|
41
|
Webb A, Papp AC, Curtis A, Newman LC, Pietrzak M, Seweryn M, Handelman SK, Rempala GA, Wang D, Graziosa E, Tyndale RF, Lerman C, Kelsoe JR, Mash DC, Sadee W. RNA sequencing of transcriptomes in human brain regions: protein-coding and non-coding RNAs, isoforms and alleles. BMC Genomics 2015; 16:990. [PMID: 26597164 PMCID: PMC4657279 DOI: 10.1186/s12864-015-2207-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 11/12/2015] [Indexed: 01/03/2023] Open
Abstract
Background We used RNA sequencing to analyze transcript profiles of ten autopsy brain regions from ten subjects. RNA sequencing techniques were designed to detect both coding and non-coding RNA, splice isoform composition, and allelic expression. Brain regions were selected from five subjects with a documented history of smoking and five non-smokers. Paired-end RNA sequencing was performed on SOLiD instruments to a depth of >40 million reads, using linearly amplified, ribosomally depleted RNA. Sequencing libraries were prepared with both poly-dT and random hexamer primers to detect all RNA classes, including long non-coding (lncRNA), intronic and intergenic transcripts, and transcripts lacking poly-A tails, providing additional data not previously available. The study was designed to generate a database of the complete transcriptomes in brain region for gene network analyses and discovery of regulatory variants. Results Of 20,318 protein coding and 18,080 lncRNA genes annotated from GENCODE and lncipedia, 12 thousand protein coding and 2 thousand lncRNA transcripts were detectable at a conservative threshold. Of the aligned reads, 52 % were exonic, 34 % intronic and 14 % intergenic. A majority of protein coding genes (65 %) was expressed in all regions, whereas ncRNAs displayed a more restricted distribution. Profiles of RNA isoforms varied across brain regions and subjects at multiple gene loci, with neurexin 3 (NRXN3) a prominent example. Allelic RNA ratios deviating from unity were identified in > 400 genes, detectable in both protein-coding and non-coding genes, indicating the presence of cis-acting regulatory variants. Mathematical modeling was used to identify RNAs stably expressed in all brain regions (serving as potential markers for normalizing expression levels), linked to basic cellular functions. An initial analysis of differential expression analysis between smokers and nonsmokers implicated a number of genes, several previously associated with nicotine exposure. Conclusions RNA sequencing identifies distinct and consistent differences in gene expression between brain regions, with non-coding RNA displaying greater diversity between brain regions than mRNAs. Numerous RNAs exhibit robust allele selective expression, proving a means for discovery of cis-acting regulatory factors with potential clinical relevance. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2207-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Amy Webb
- Center for Pharmacogenomics, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA. .,Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA.
| | - Audrey C Papp
- Center for Pharmacogenomics, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA.
| | - Amanda Curtis
- Center for Pharmacogenomics, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA.
| | - Leslie C Newman
- Center for Pharmacogenomics, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA.
| | - Maciej Pietrzak
- Center for Pharmacogenomics, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA. .,Division of Biostatistics, College of Public Health, and Mathematical Biosciences Institute, The Ohio State University, Columbus, OH, USA.
| | - Michal Seweryn
- Division of Biostatistics, College of Public Health, and Mathematical Biosciences Institute, The Ohio State University, Columbus, OH, USA.
| | - Samuel K Handelman
- Center for Pharmacogenomics, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA.
| | - Grzegorz A Rempala
- Division of Biostatistics, College of Public Health, and Mathematical Biosciences Institute, The Ohio State University, Columbus, OH, USA.
| | - Daqing Wang
- Thermo Fisher Scientific, South San Francisco, CA, 94080, USA.
| | - Erica Graziosa
- Thermo Fisher Scientific, South San Francisco, CA, 94080, USA.
| | - Rachel F Tyndale
- Center for Addiction and Mental Health and Departments of Psychiatry and Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada.
| | - Caryn Lerman
- Department of Psychiatry, Annenberg School for Communication, and Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA.
| | - John R Kelsoe
- Department of Psychiatry, Laboratory of Psychiatric Genomics, University of California, San Diego, USA. .,VA San Diego Healthcare System, La Jolla, San Diego, CA, USA.
| | - Deborah C Mash
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA.
| | - Wolfgang Sadee
- Center for Pharmacogenomics, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA. .,Departments of Pharmacology, College of Medicine; Colleges of Pharmacy and Environmental Health Sciences, The Ohio State University, Columbus, OH, USA. .,Departments of Psychiatry, College of Medicine; Colleges of Pharmacy and Environmental Health Sciences, The Ohio State University, Columbus, OH, USA. .,Departments of Human Genetics/Internal Medicine, College of Medicine; Colleges of Pharmacy and Environmental Health Sciences, The Ohio State University, 5078 Graves Hall, 333 W. 10th Avenue, Columbus, OH, 43210, USA.
| |
Collapse
|
42
|
Natarajan SK, Pachunka JM, Mott JL. Role of microRNAs in Alcohol-Induced Multi-Organ Injury. Biomolecules 2015; 5:3309-38. [PMID: 26610589 PMCID: PMC4693280 DOI: 10.3390/biom5043309] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Accepted: 11/16/2015] [Indexed: 12/12/2022] Open
Abstract
Alcohol consumption and its abuse is a major health problem resulting in significant healthcare cost in the United States. Chronic alcoholism results in damage to most of the vital organs in the human body. Among the alcohol-induced injuries, alcoholic liver disease is one of the most prevalent in the United States. Remarkably, ethanol alters expression of a wide variety of microRNAs that can regulate alcohol-induced complications or dysfunctions. In this review, we will discuss the role of microRNAs in alcoholic pancreatitis, alcohol-induced liver damage, intestinal epithelial barrier dysfunction, and brain damage including altered hippocampus structure and function, and neuronal loss, alcoholic cardiomyopathy, and muscle damage. Further, we have reviewed the role of altered microRNAs in the circulation, teratogenic effects of alcohol, and during maternal or paternal alcohol consumption.
Collapse
Affiliation(s)
- Sathish Kumar Natarajan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, 985870 Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Joseph M Pachunka
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, 985870 Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Justin L Mott
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, 985870 Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
43
|
Farris SP, Harris RA, Ponomarev I. Epigenetic modulation of brain gene networks for cocaine and alcohol abuse. Front Neurosci 2015; 9:176. [PMID: 26041984 PMCID: PMC4438259 DOI: 10.3389/fnins.2015.00176] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 04/30/2015] [Indexed: 12/19/2022] Open
Abstract
Cocaine and alcohol are two substances of abuse that prominently affect the central nervous system (CNS). Repeated exposure to cocaine and alcohol leads to longstanding changes in gene expression, and subsequent functional CNS plasticity, throughout multiple brain regions. Epigenetic modifications of histones are one proposed mechanism guiding these enduring changes to the transcriptome. Characterizing the large number of available biological relationships as network models can reveal unexpected biochemical relationships. Clustering analysis of variation from whole-genome sequencing of gene expression (RNA-Seq) and histone H3 lysine 4 trimethylation (H3K4me3) events (ChIP-Seq) revealed the underlying structure of the transcriptional and epigenomic landscape within hippocampal postmortem brain tissue of drug abusers and control cases. Distinct sets of interrelated networks for cocaine and alcohol abuse were determined for each abusive substance. The network approach identified subsets of functionally related genes that are regulated in agreement with H3K4me3 changes, suggesting cause and effect relationships between this epigenetic mark and gene expression. Gene expression networks consisted of recognized substrates for addiction, such as the dopamine- and cAMP-regulated neuronal phosphoprotein PPP1R1B/DARPP-32 and the vesicular glutamate transporter SLC17A7/VGLUT1 as well as potentially novel molecular targets for substance abuse. Through a systems biology based approach our results illustrate the utility of integrating epigenetic and transcript expression to establish relevant biological networks in the human brain for addiction. Future work with laboratory models may clarify the functional relevance of these gene networks for cocaine and alcohol, and provide a framework for the development of medications for the treatment of addiction.
Collapse
Affiliation(s)
- Sean P Farris
- Waggoner Center for Alcohol & Addiction Research and The College of Pharmacy, University of Texas at Austin Austin, TX, USA
| | - Robert A Harris
- Waggoner Center for Alcohol & Addiction Research and The College of Pharmacy, University of Texas at Austin Austin, TX, USA
| | - Igor Ponomarev
- Waggoner Center for Alcohol & Addiction Research and The College of Pharmacy, University of Texas at Austin Austin, TX, USA
| |
Collapse
|
44
|
Osterndorff-Kahanek EA, Becker HC, Lopez MF, Farris SP, Tiwari GR, Nunez YO, Harris RA, Mayfield RD. Chronic ethanol exposure produces time- and brain region-dependent changes in gene coexpression networks. PLoS One 2015; 10:e0121522. [PMID: 25803291 PMCID: PMC4372440 DOI: 10.1371/journal.pone.0121522] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 02/02/2015] [Indexed: 01/19/2023] Open
Abstract
Repeated ethanol exposure and withdrawal in mice increases voluntary drinking and represents an animal model of physical dependence. We examined time- and brain region-dependent changes in gene coexpression networks in amygdala (AMY), nucleus accumbens (NAC), prefrontal cortex (PFC), and liver after four weekly cycles of chronic intermittent ethanol (CIE) vapor exposure in C57BL/6J mice. Microarrays were used to compare gene expression profiles at 0-, 8-, and 120-hours following the last ethanol exposure. Each brain region exhibited a large number of differentially expressed genes (2,000-3,000) at the 0- and 8-hour time points, but fewer changes were detected at the 120-hour time point (400-600). Within each region, there was little gene overlap across time (~20%). All brain regions were significantly enriched with differentially expressed immune-related genes at the 8-hour time point. Weighted gene correlation network analysis identified modules that were highly enriched with differentially expressed genes at the 0- and 8-hour time points with virtually no enrichment at 120 hours. Modules enriched for both ethanol-responsive and cell-specific genes were identified in each brain region. These results indicate that chronic alcohol exposure causes global 'rewiring' of coexpression systems involving glial and immune signaling as well as neuronal genes.
Collapse
Affiliation(s)
| | - Howard C. Becker
- Charleston Alcohol Research Center, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Marcelo F. Lopez
- Charleston Alcohol Research Center, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Sean P. Farris
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, Texas, United States of America
| | - Gayatri R. Tiwari
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, Texas, United States of America
| | - Yury O. Nunez
- Pharmacotherapy Education and Research Center, College of Pharmacy, The University of Texas at Austin, Austin, Texas, United States of America
| | - R. Adron Harris
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, Texas, United States of America
| | - R. Dayne Mayfield
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, Texas, United States of America
- * E-mail:
| |
Collapse
|