1
|
Jones RAC, Congdon BS. Australian Cool-Season Pulse Seed-Borne Virus Research: 1. Alfalfa and Cucumber Mosaic Viruses and Less Important Viruses. Viruses 2024; 16:144. [PMID: 38257844 PMCID: PMC10819373 DOI: 10.3390/v16010144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/12/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
Here, we review the research undertaken since the 1950s in Australia's grain cropping regions on seed-borne virus diseases of cool-season pulses caused by alfalfa mosaic virus (AMV) and cucumber mosaic virus (CMV). We present brief background information about the continent's pulse industry, virus epidemiology, management principles and future threats to virus disease management. We then take a historical approach towards all past investigations with these two seed-borne pulse viruses in the principal cool-season pulse crops grown: chickpea, faba bean, field pea, lentil, narrow-leafed lupin and white lupin. With each pathosystem, the main focus is on its biology, epidemiology and management, placing particular emphasis on describing field and glasshouse experimentation that enabled the development of effective phytosanitary, cultural and host resistance control strategies. Past Australian cool-season pulse investigations with AMV and CMV in the less commonly grown species (vetches, narbon bean, fenugreek, yellow and pearl lupin, grass pea and other Lathyrus species) and those with the five less important seed-borne pulse viruses also present (broad bean stain virus, broad bean true mosaic virus, broad bean wilt virus, cowpea mild mottle virus and peanut mottle virus) are also summarized. The need for future research is emphasized, and recommendations are made regarding what is required.
Collapse
Affiliation(s)
- Roger A. C. Jones
- UWA Institute of Agriculture, University of Western Australia, Crawley, WA 6009, Australia
| | - Benjamin S. Congdon
- Department of Primary Industries and Regional Development, South Perth, WA 6151, Australia;
| |
Collapse
|
2
|
Beck-Okins AL, Del Río Mendoza LE, Burrows M, Simons KJ, Pasche JS. Pea seed-borne mosaic virus (PSbMV) Risk Analysis of Field Pea Based on Susceptibility, Yield Loss, and Seed Transmission. PLANT DISEASE 2022; 106:938-946. [PMID: 34410862 DOI: 10.1094/pdis-06-21-1349-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Pea seed-borne mosaic virus (PSbMV), a nonpersistently aphid-transmitted potyvirus, has been reported in field pea (Pisum sativum L.)-growing regions worldwide. In 2014, PSbMV was first identified in field peas in North Dakota, U.S.A. Susceptibility and yield losses attributed to PSbMV infection are influenced by viral pathotype and host genotype. Isolate ND14-1, recovered from North Dakota infected seed and identified as pathotype 4 (P4), was mechanically inoculated onto 20 field pea cultivars under greenhouse conditions. PSbMV susceptibility, number of seeds and pods per plant, yield, symptom expression, and PSbMV seed transmission rates were assessed by cultivar. A risk assessment was developed based on cultivar susceptibility, yield reduction, and PSbMV seed transmission. Risk factors were weighted based on perceived importance to commercial field pea producers. Three cultivars were classified as low risk, seven cultivars were classified as intermediate risk, and 10 cultivars were classified as high risk. Two of the low-risk cultivars, Aragorn and Cruiser, were confirmed to be resistant to this isolate of PSbMV. Cultivar Arcadia was susceptible to PSbMV infection with mild expression of symptoms, but was classified as low risk based on a low seed transmission rate and diminished yield losses. This risk assessment could prove a useful tool for growers in field pea cultivar selection where PSbMV is prevalent.
Collapse
Affiliation(s)
| | | | - Mary Burrows
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717
| | - Kristin J Simons
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108
| | - Julie S Pasche
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58108
| |
Collapse
|
3
|
Abraham A, Vetten HJ. Chickpea chlorotic stunt virus: a threat to cool-season food legumes. Arch Virol 2021; 167:21-30. [PMID: 34729666 DOI: 10.1007/s00705-021-05288-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/16/2021] [Indexed: 11/26/2022]
Abstract
Chickpea chlorotic stunt virus (CpCSV, genus Polerovirus, family Solemoviridae), first reported in Ethiopia in 2006, causes an economically important yellowing and stunting disease in legume crops such as chickpea, faba bean, field pea, and lentil in most production areas of North Africa and Central and West Asia. Disease epidemics have been reported in Ethiopia, Syria, and Tunisia. The virus is transmitted persistently by aphids of the species Aphis craccivora and Acyrthosiphon pisum and naturally infects several legume and non-legume hosts. CpCSV exists as at least two geographic strain groups that differ in their genome sequence and serological and biological properties. In addition, a genetically divergent isolate proposed to be a member of a distinct polerovirus species has been reported from pea and faba bean in China. The ssRNA genome of the Ethiopian isolate has 5900 nucleotides, is encapsidated in isometric particles of ~ 28 nm diameter, and is suggested to have evolved by recombination of cucurbit aphid-borne yellows virus- and soybean dwarf virus-like parents. Moreover, a number of newly reported poleroviruses are suggested to have evolved by recombination between CpCSV and other parental poleroviruses. Identification of sources of resistance and further knowledge on disease epidemiology, including specific strains, vectors, and alternate hosts in different growing areas, are required for devising effective disease management strategies. Modern biotechnology tools such as next-generation sequencing, molecular markers, and agroinoculation-based resistance screening techniques can expedite future research and management efforts. This review addresses various aspects of CpCSV, including its properties, ecology, the disease it causes, management options, and future research perspectives.
Collapse
Affiliation(s)
- Adane Abraham
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Private Bag 16, Palapye, Botswana
| | | |
Collapse
|
4
|
Jones RAC, Sharman M, Trębicki P, Maina S, Congdon BS. Virus Diseases of Cereal and Oilseed Crops in Australia: Current Position and Future Challenges. Viruses 2021; 13:2051. [PMID: 34696481 PMCID: PMC8539440 DOI: 10.3390/v13102051] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/02/2021] [Accepted: 10/03/2021] [Indexed: 12/22/2022] Open
Abstract
This review summarizes research on virus diseases of cereals and oilseeds in Australia since the 1950s. All viruses known to infect the diverse range of cereal and oilseed crops grown in the continent's temperate, Mediterranean, subtropical and tropical cropping regions are included. Viruses that occur commonly and have potential to cause the greatest seed yield and quality losses are described in detail, focusing on their biology, epidemiology and management. These are: barley yellow dwarf virus, cereal yellow dwarf virus and wheat streak mosaic virus in wheat, barley, oats, triticale and rye; Johnsongrass mosaic virus in sorghum, maize, sweet corn and pearl millet; turnip yellows virus and turnip mosaic virus in canola and Indian mustard; tobacco streak virus in sunflower; and cotton bunchy top virus in cotton. The currently less important viruses covered number nine infecting nine cereal crops and 14 infecting eight oilseed crops (none recorded for rice or linseed). Brief background information on the scope of the Australian cereal and oilseed industries, virus epidemiology and management and yield loss quantification is provided. Major future threats to managing virus diseases effectively include damaging viruses and virus vector species spreading from elsewhere, the increasing spectrum of insecticide resistance in insect and mite vectors, resistance-breaking virus strains, changes in epidemiology, virus and vectors impacts arising from climate instability and extreme weather events, and insufficient industry awareness of virus diseases. The pressing need for more resources to focus on addressing these threats is emphasized and recommendations over future research priorities provided.
Collapse
Affiliation(s)
- Roger A. C. Jones
- UWA Institute of Agriculture, University of Western Australia, Crawley, WA 6009, Australia
| | - Murray Sharman
- Queensland Department of Agriculture and Fisheries, Ecosciences Precinct, P.O. Box 267, Brisbane, QLD 4001, Australia;
| | - Piotr Trębicki
- Grains Innovation Park, Agriculture Victoria, Department of Jobs, Precincts and Regions, Horsham, VIC 3400, Australia; (P.T.); (S.M.)
| | - Solomon Maina
- Grains Innovation Park, Agriculture Victoria, Department of Jobs, Precincts and Regions, Horsham, VIC 3400, Australia; (P.T.); (S.M.)
| | - Benjamin S. Congdon
- Department of Primary Industries and Regional Development, South Perth, WA 6151, Australia;
| |
Collapse
|
5
|
Chatzivassiliou EK. An Annotated List of Legume-Infecting Viruses in the Light of Metagenomics. PLANTS 2021; 10:plants10071413. [PMID: 34371616 PMCID: PMC8309371 DOI: 10.3390/plants10071413] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 11/16/2022]
Abstract
Legumes, one of the most important sources of human food and animal feed, are known to be susceptible to a plethora of plant viruses. Many of these viruses cause diseases which severely impact legume production worldwide. The causal agents of some important virus-like diseases remain unknown. In recent years, high-throughput sequencing technologies have enabled us to identify many new viruses in various crops, including legumes. This review aims to present an updated list of legume-infecting viruses. Until 2020, a total of 168 plant viruses belonging to 39 genera and 16 families, officially recognized by the International Committee on Taxonomy of Viruses (ICTV), were reported to naturally infect common bean, cowpea, chickpea, faba-bean, groundnut, lentil, peas, alfalfa, clovers, and/or annual medics. Several novel legume viruses are still pending approval by ICTV. The epidemiology of many of the legume viruses are of specific interest due to their seed-transmission and their dynamic spread by insect-vectors. In this review, major aspects of legume virus epidemiology and integrated control approaches are also summarized.
Collapse
Affiliation(s)
- Elisavet K Chatzivassiliou
- Plant Pathology Laboratory, Department of Crop Science, School of Plant Sciences, Agricultural University of Athens, 11855 Athens, Greece
| |
Collapse
|
6
|
Jones RAC. Global Plant Virus Disease Pandemics and Epidemics. PLANTS (BASEL, SWITZERLAND) 2021; 10:233. [PMID: 33504044 PMCID: PMC7911862 DOI: 10.3390/plants10020233] [Citation(s) in RCA: 109] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 12/18/2022]
Abstract
The world's staple food crops, and other food crops that optimize human nutrition, suffer from global virus disease pandemics and epidemics that greatly diminish their yields and/or produce quality. This situation is becoming increasingly serious because of the human population's growing food requirements and increasing difficulties in managing virus diseases effectively arising from global warming. This review provides historical and recent information about virus disease pandemics and major epidemics that originated within different world regions, spread to other continents, and now have very wide distributions. Because they threaten food security, all are cause for considerable concern for humanity. The pandemic disease examples described are six (maize lethal necrosis, rice tungro, sweet potato virus, banana bunchy top, citrus tristeza, plum pox). The major epidemic disease examples described are seven (wheat yellow dwarf, wheat streak mosaic, potato tuber necrotic ringspot, faba bean necrotic yellows, pepino mosaic, tomato brown rugose fruit, and cucumber green mottle mosaic). Most examples involve long-distance virus dispersal, albeit inadvertent, by international trade in seed or planting material. With every example, the factors responsible for its development, geographical distribution and global importance are explained. Finally, an overall explanation is given of how to manage global virus disease pandemics and epidemics effectively.
Collapse
Affiliation(s)
- Roger A C Jones
- The UWA Institute of Agriculture, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| |
Collapse
|
7
|
Disease Pandemics and Major Epidemics Arising from New Encounters between Indigenous Viruses and Introduced Crops. Viruses 2020; 12:v12121388. [PMID: 33291635 PMCID: PMC7761969 DOI: 10.3390/v12121388] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 01/13/2023] Open
Abstract
Virus disease pandemics and epidemics that occur in the world’s staple food crops pose a major threat to global food security, especially in developing countries with tropical or subtropical climates. Moreover, this threat is escalating rapidly due to increasing difficulties in controlling virus diseases as climate change accelerates and the need to feed the burgeoning global population escalates. One of the main causes of these pandemics and epidemics is the introduction to a new continent of food crops domesticated elsewhere, and their subsequent invasion by damaging virus diseases they never encountered before. This review focusses on providing historical and up-to-date information about pandemics and major epidemics initiated by spillover of indigenous viruses from infected alternative hosts into introduced crops. This spillover requires new encounters at the managed and natural vegetation interface. The principal virus disease pandemic examples described are two (cassava mosaic, cassava brown streak) that threaten food security in sub-Saharan Africa (SSA), and one (tomato yellow leaf curl) doing so globally. A further example describes a virus disease pandemic threatening a major plantation crop producing a vital food export for West Africa (cacao swollen shoot). Also described are two examples of major virus disease epidemics that threaten SSA’s food security (rice yellow mottle, groundnut rosette). In addition, brief accounts are provided of two major maize virus disease epidemics (maize streak in SSA, maize rough dwarf in Mediterranean and Middle Eastern regions), a major rice disease epidemic (rice hoja blanca in the Americas), and damaging tomato tospovirus and begomovirus disease epidemics of tomato that impair food security in different world regions. For each pandemic or major epidemic, the factors involved in driving its initial emergence, and its subsequent increase in importance and geographical distribution, are explained. Finally, clarification is provided over what needs to be done globally to achieve effective management of severe virus disease pandemics and epidemics initiated by spillover events.
Collapse
|
8
|
Ibaba JD, Gubba A. High-Throughput Sequencing Application in the Diagnosis and Discovery of Plant-Infecting Viruses in Africa, A Decade Later. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1376. [PMID: 33081084 PMCID: PMC7602839 DOI: 10.3390/plants9101376] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/25/2020] [Accepted: 09/29/2020] [Indexed: 12/18/2022]
Abstract
High-throughput sequencing (HTS) application in the field of plant virology started in 2009 and has proven very successful for virus discovery and detection of viruses already known. Plant virology is still a developing science in most of Africa; the number of HTS-related studies published in the scientific literature has been increasing over the years as a result of successful collaborations. Studies using HTS to identify plant-infecting viruses have been conducted in 20 African countries, of which Kenya, South Africa and Tanzania share the most published papers. At least 29 host plants, including various agricultural economically important crops, ornamentals and medicinal plants, have been used in viromics analyses and have resulted in the detection of previously known viruses and novel ones from almost any host. Knowing that the effectiveness of any management program requires knowledge on the types, distribution, incidence, and genetic of the virus-causing disease, integrating HTS and efficient bioinformatics tools in plant virology research projects conducted in Africa is a matter of the utmost importance towards achieving and maintaining sustainable food security.
Collapse
Affiliation(s)
- Jacques Davy Ibaba
- Discipline of Plant Pathology, School of Agricultural, Earth and Environmental Sciences, Agriculture Campus, University of KwaZulu-Natal, Scottsville, Pietermaritzburg 3209, South Africa;
| | | |
Collapse
|
9
|
Makkouk KM. Plant Pathogens which Threaten Food Security: Viruses of Chickpea and Other Cool Season Legumes in West Asia and North Africa. Food Secur 2020. [DOI: 10.1007/s12571-020-01017-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Abstract
Viral diseases provide a major challenge to twenty-first century agriculture worldwide. Climate change and human population pressures are driving rapid alterations in agricultural practices and cropping systems that favor destructive viral disease outbreaks. Such outbreaks are strikingly apparent in subsistence agriculture in food-insecure regions. Agricultural globalization and international trade are spreading viruses and their vectors to new geographical regions with unexpected consequences for food production and natural ecosystems. Due to the varying epidemiological characteristics of diverent viral pathosystems, there is no one-size-fits-all approach toward mitigating negative viral disease impacts on diverse agroecological production systems. Advances in scientific understanding of virus pathosystems, rapid technological innovation, innovative communication strategies, and global scientific networks provide opportunities to build epidemiologic intelligence of virus threats to crop production and global food security. A paradigm shift toward deploying integrated, smart, and eco-friendly strategies is required to advance virus disease management in diverse agricultural cropping systems.
Collapse
Affiliation(s)
- Roger A C Jones
- Institute of Agriculture, University of Western Australia, Crawley, Western Australia 6009, Australia; .,Department of Primary Industries and Regional Development, South Perth, Western Australia 6151, Australia
| | - Rayapati A Naidu
- Department of Plant Pathology, Irrigated Agriculture Research and Extension Center, Washington State University, Prosser, Washington 99350, USA;
| |
Collapse
|
11
|
Congdon BS, Coutts BA, Renton M, Flematti GR, Jones RAC. Establishing alighting preferences and species transmission differences for Pea seed-borne mosaic virus aphid vectors. Virus Res 2017; 241:145-155. [PMID: 28408208 DOI: 10.1016/j.virusres.2017.04.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 03/28/2017] [Accepted: 04/05/2017] [Indexed: 01/23/2023]
Abstract
Pea seed-borne mosaic virus (PSbMV) infection causes a serious disease of field pea (Pisum sativum) crops worldwide. The PSbMV transmission efficiencies of five aphid species previously found landing in south-west Australian pea crops in which PSbMV was spreading were studied. With plants of susceptible pea cv. Kaspa, the transmission efficiencies of Aphis craccivora, Myzus persicae, Acyrthosiphon kondoi and Rhopalosiphum padi were 27%, 26%, 6% and 3%, respectively. Lipaphis erysimi did not transmit PSbMV in these experiments. The transmission efficiencies found for M. persicae and A. craccivora resembled earlier findings, but PSbMV vector transmission efficiency data were unavailable for A. kondoi, R. padi and L. erysimi. With plants of partially PSbMV resistant pea cv. PBA Twilight, transmission efficiencies of M. persicae, A. craccivora and R. padi were 16%, 12% and 1%, respectively, reflecting putative partial resistance to aphid inoculation. To examine aphid alighting preferences over time, free-choice assays were conducted with two aphid species representing efficient (M. persicae) and inefficient (R. padi) vector species. For this, alatae were set free on multiple occasions (10-15 repetitions each) amongst PSbMV-infected and mock-inoculated pea or faba bean (Vicia faba) plants. Following release, non-viruliferous R. padi alatae exhibited a general preference for PSbMV-infected pea and faba bean plants after 30min-4h, but preferred mock-inoculated plants after 24h. In contrast, non-viruliferous M. persicae alatae alighted on mock-inoculated pea plants preferentially for up to 48h following their release. With faba bean, M. persicae preferred infected plants at the front of assay cages, but mock-inoculated ones their backs, apparently due to increased levels of natural light there. When preliminary analyses were performed to detect PSbMV-induced changes in the volatile organic compound profiles of pea and faba bean plants, higher numbers of volatiles representing a range of compound groups (such as aldehydes, ketones and esters) were found in the headspaces of PSbMV-infected than of mock-inoculated pea or faba bean plants. This indicates PSbMV induces physiological changes in these hosts which manifest as altered volatile emissions. These alterations could be responsible for the differences in alighting preferences. Information from this study enhances understanding of virus-vector relationships in the PSbMV-pea and faba bean pathosystems.
Collapse
Affiliation(s)
- B S Congdon
- School of Agriculture and Environment, Faculty of Science, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia; Institute of Agriculture, Faculty of Science, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia.
| | - B A Coutts
- Crop Protection Branch, Department of Agriculture and Food Western Australia, Locked Bag No. 4, Bentley Delivery Centre, Perth, WA 6983, Australia.
| | - M Renton
- School of Agriculture and Environment, Faculty of Science, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia; Institute of Agriculture, Faculty of Science, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia.
| | - G R Flematti
- School of Chemistry and Biochemistry, Faculty of Science, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia.
| | - R A C Jones
- Institute of Agriculture, Faculty of Science, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia; Crop Protection Branch, Department of Agriculture and Food Western Australia, Locked Bag No. 4, Bentley Delivery Centre, Perth, WA 6983, Australia.
| |
Collapse
|
12
|
Congdon BS, Coutts BA, Jones RAC, Renton M. Forecasting model for Pea seed-borne mosaic virus epidemics in field pea crops in a Mediterranean-type environment. Virus Res 2017; 241:163-171. [PMID: 28559099 DOI: 10.1016/j.virusres.2017.05.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 05/15/2017] [Accepted: 05/24/2017] [Indexed: 12/14/2022]
Abstract
An empirical model was developed to forecast Pea seed-borne mosaic virus (PSbMV) incidence at a critical phase of the annual growing season to predict yield loss in field pea crops sown under Mediterranean-type conditions. The model uses pre-growing season rainfall to calculate an index of aphid abundance in early-August which, in combination with PSbMV infection level in seed sown, is used to forecast virus crop incidence. Using predicted PSbMV crop incidence in early-August and day of sowing, PSbMV transmission from harvested seed was also predicted, albeit less accurately. The model was developed so it provides forecasts before sowing to allow sufficient time to implement control recommendations, such as having representative seed samples tested for PSbMV transmission rate to seedlings, obtaining seed with minimal PSbMV infection or of a PSbMV-resistant cultivar, and implementation of cultural management strategies. The model provides a disease forecast risk indication, taking into account predicted percentage yield loss to PSbMV infection and economic factors involved in field pea production. This disease risk forecast delivers location-specific recommendations regarding PSbMV management to end-users. These recommendations will be delivered directly to end-users via SMS alerts with links to web support that provide information on PSbMV management options. This modelling and decision support system approach would likely be suitable for use in other world regions where field pea is grown in similar Mediterranean-type environments.
Collapse
Affiliation(s)
- B S Congdon
- School of Agriculture and Environment, Faculty of Science, University of Western Australia,35 Stirling Highway, Crawley, WA 6009, Australia; Institute of Agriculture, Faculty of Science, University of Western Australia,35 Stirling Highway, Crawley, WA 6009, Australia.
| | - B A Coutts
- Crop Protection Branch, Department of Agriculture and Food Western Australia, Locked Bag No. 4, Bentley Delivery Centre, Perth, WA 6983, Australia.
| | - R A C Jones
- Institute of Agriculture, Faculty of Science, University of Western Australia,35 Stirling Highway, Crawley, WA 6009, Australia; Crop Protection Branch, Department of Agriculture and Food Western Australia, Locked Bag No. 4, Bentley Delivery Centre, Perth, WA 6983, Australia.
| | - M Renton
- School of Agriculture and Environment, Faculty of Science, University of Western Australia,35 Stirling Highway, Crawley, WA 6009, Australia; Institute of Agriculture, Faculty of Science, University of Western Australia,35 Stirling Highway, Crawley, WA 6009, Australia; School of Biological Sciences, Faculty of Science, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia.
| |
Collapse
|
13
|
Cerna H, Černý M, Habánová H, Šafářová D, Abushamsiya K, Navrátil M, Brzobohatý B. Proteomics offers insight to the mechanism behind Pisum sativum L. response to pea seed-borne mosaic virus (PSbMV). J Proteomics 2017; 153:78-88. [PMID: 27235724 DOI: 10.1016/j.jprot.2016.05.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 04/22/2016] [Accepted: 05/19/2016] [Indexed: 12/12/2022]
Abstract
Pea seed-borne mosaic virus (PSbMV) significantly reduces yields in a broad spectra of legumes. The eukaryotic translation initiation factor has been shown to confer resistance to this pathogen, thus implying that translation and proteome dynamics play a role in resistance. This study presents the results of a proteome-wide analysis of Pisum sativum L. response to PSbMV infection. LC-MS profiling of two contrasting pea cultivars, resistant (B99) and susceptible (Raman) to PSbMV infection, detected >2300 proteins, 116 of which responded to PSbMV ten and/or twenty days post-inoculation. These differentially abundant proteins are involved in number of processes that have previously been reported in the plant-pathogen response, including protein and amino acid metabolism, stress signaling, redox homeostasis, carbohydrate metabolism, and lipid metabolism. We complemented our proteome-wide analysis work with targeted analyses of free amino acids and selected small molecules, fatty acid profiling, and enzyme activity assays. Data from these additional experiments support our findings and validate the biological relevance of the observed proteome changes. We found surprising similarities in the resistant and susceptible cultivars, which implies that a seemingly unaffected plant, with no detectable levels of PSbMV, actively suppresses viral replication. BIOLOGICAL SIGNIFICANCE Plant resistance to PSbMV is connected to translation initiation factors, yet the processes involved are still poorly understood at the proteome level. To the best of our knowledge, this is the first survey of the global proteomic response to PSbMV in plants. The combination of label-free LC-MS profiling and two contrasting cultivars (resistant and susceptible) provided highly sensitive snapshots of protein abundance in response to PSbMV infection. PSbMV is a member of the largest family of plant viruses and our results are in accordance with previously characterized potyvirus-responsive proteomes. Hence, the results of this study can further extend our knowledge about these pathogens. We also show that even though no viral replication is detected in the PSbMV-resistant cultivar B99, it is still significantly affected by PSbMV inoculation.
Collapse
Affiliation(s)
- Hana Cerna
- Laboratory of Plant Molecular Biology, Institute of Biophysics AS CR, v.v.i. and CEITEC - Central European Institute of Technology, Mendel University in Brno, Zemědělská 1, CZ-613 00 Brno, Czech Republic.
| | - Martin Černý
- Laboratory of Plant Molecular Biology, Institute of Biophysics AS CR, v.v.i. and CEITEC - Central European Institute of Technology, Mendel University in Brno, Zemědělská 1, CZ-613 00 Brno, Czech Republic.
| | - Hana Habánová
- Laboratory of Plant Molecular Biology, Institute of Biophysics AS CR, v.v.i. and CEITEC - Central European Institute of Technology, Mendel University in Brno, Zemědělská 1, CZ-613 00 Brno, Czech Republic.
| | - Dana Šafářová
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University in Olomouc 27, Šlechtitelů 11, CZ-783 71 Olomouc, Czech Republic.
| | - Kifah Abushamsiya
- Laboratory of Plant Molecular Biology, Institute of Biophysics AS CR, v.v.i. and CEITEC - Central European Institute of Technology, Mendel University in Brno, Zemědělská 1, CZ-613 00 Brno, Czech Republic.
| | - Milan Navrátil
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University in Olomouc 27, Šlechtitelů 11, CZ-783 71 Olomouc, Czech Republic.
| | - Břetislav Brzobohatý
- Laboratory of Plant Molecular Biology, Institute of Biophysics AS CR, v.v.i. and CEITEC - Central European Institute of Technology, Mendel University in Brno, Zemědělská 1, CZ-613 00 Brno, Czech Republic.
| |
Collapse
|
14
|
Congdon BS, Coutts BA, Renton M, Banovic M, Jones RAC. Pea seed-borne mosaic virus in Field Pea: Widespread Infection, Genetic Diversity, and Resistance Gene Effectiveness. PLANT DISEASE 2016; 100:2475-2482. [PMID: 30686170 DOI: 10.1094/pdis-05-16-0670-re] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
From 2013 to 2015, incidences of Pea seed-borne mosaic virus (PSbMV) infection were determined in semi-leafless field pea (Pisum sativum) crops and trial plots growing in the Mediterranean-type environment of southwest Australia. PSbMV was found at incidences of 2 to 51% in 9 of 13 crops, 1 to 100% in 20 of 24 cultivar plots, and 1 to 57% in 14 of 21 breeding line plots. Crops and plots of 'PBA Gunyah', 'Kaspa', and 'PBA Twilight' were frequently PSbMV infected but none of PSbMV resistance gene sbm1-carrying 'PBA Wharton' plants were infected. In 2015, 14 new PSbMV isolates obtained from these various sources were sequenced and their partial coat protein (CP) nucleotide sequences analyzed. Sequence identities and phylogenetic comparison with 39 other PSbMV partial CP nucleotide sequences from GenBank demonstrated that at least three PSbMV introductions have occurred to the region, one of which was previously unknown. When plants of 'Greenfeast' and PBA Gunyah pea (which both carry resistance gene sbm2) and PBA Wharton and 'Yarrum' (which carry sbm1) were inoculated with PSbMV pathotype P-2 isolate W1, resistance was overcome in a small proportion of plants of each cultivar, showing that resistance-breaking variants were likely to be present. An improved management effort by pea breeders, advisors, and growers is required to diminish infection of seed stocks, avoid sbm gene resistance being overcome in the field, and mitigate the impact of PSbMV on seed yield and quality. A similar management effort is likely to be needed in field pea production elsewhere in the world.
Collapse
Affiliation(s)
- B S Congdon
- School of Plant Biology and Institute of Agriculture, Faculty of Science, University of Western Australia, Crawley, WA 6009, Australia
| | - B A Coutts
- Crop Protection Branch, Department of Agriculture and Food Western Australia, Perth, WA 6983, Australia
| | - M Renton
- School of Plant Biology and Institute of Agriculture, Faculty of Science, University of Western Australia
| | - M Banovic
- Crop Protection Branch, Department of Agriculture and Food Western Australia
| | - R A C Jones
- Institute of Agriculture, Faculty of Science, University of Western Australia and Crop Protection Branch, Department of Agriculture and Food Western Australia
| |
Collapse
|
15
|
Congdon BS, Coutts BA, Renton M, Jones RAC. Pea seed-borne mosaic virus: Stability and Wind-Mediated Contact Transmission in Field Pea. PLANT DISEASE 2016; 100:953-958. [PMID: 30686142 DOI: 10.1094/pdis-11-15-1249-re] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Pea seed-borne mosaic virus (PSbMV) stability in sap and its contact transmission between field pea plants were investigated in glasshouse experiments. When infective leaf sap was kept at room temperature and inoculated to plants in the absence of abrasive, it was still highly infective after 6 h and low levels of infectivity remained after 30 h. PSbMV was transmitted from infected to healthy plants by direct contact when leaves were rubbed against each other. It was also transmitted when intertwining healthy and PSbMV-infected plants were blown by a fan to simulate wind. When air was blown on plants kept at 14 to 20°C, contact transmission of PSbMV occurred consistently and the extent of transmission was enhanced when plants were dusted with diatomaceous earth prior to blowing. In contrast, when plants were kept at 20 to 30°C, blowing rarely resulted in transmission. No passive contact transmission occurred when healthy and infected plants were allowed to intertwine together. This study demonstrates that PSbMV has the potential to be transmitted by contact when wind-mediated wounding occurs in the field. This may play an important role in the epidemiology of the virus in field pea crops, especially in situations where contact transmission expands initial crop infection foci before aphid arrival.
Collapse
Affiliation(s)
- B S Congdon
- School of Plant Biology and Institute of Agriculture, Faculty of Science, University of Western Australia, Crawley, WA 6009, Australia
| | - B A Coutts
- Crop Protection Branch, Department of Agriculture and Food Western Australia, Perth, WA 6983, Australia
| | - M Renton
- School of Plant Biology and Institute of Agriculture, Faculty of Science, University of Western Australia
| | - R A C Jones
- School of Plant Biology and Institute of Agriculture, Faculty of Science, University of Western Australia, and Crop Protection Branch, Department of Agriculture and Food Western Australia
| |
Collapse
|