1
|
Cai K, Lin S, Gao G, Sagor MLH, Luo Y, Chen Z, Wang J, Yang M, Lian G, Lin Z, Feng S. Transcriptomics changes of calcitonin gene-related peptide in mitigating lipopolysaccharide-induced septic cardiomyopathy. Sci Rep 2024; 14:26385. [PMID: 39487252 PMCID: PMC11530544 DOI: 10.1038/s41598-024-77520-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 10/23/2024] [Indexed: 11/04/2024] Open
Abstract
Septic cardiomyopathy (SCM), a complication initiated by sepsis, presents a significant clinical challenge, leading to increased mortality rates. However, the mechanisms of SCM have not been fully uncovered. Our study involved analyzing RNA sequencing (RNA-seq) data from rat heart tissue, along with utilizing molecular docking and molecular dynamics (MD) simulations, to discover key targets and potential pharmacological actions of the calcitonin gene-related peptide (CGRP) against SCM. A lipopolysaccharide-induced SCM model was established in rats (LPS 10 mg/kg, intraperitoneal (i.p.)). Thereafter, the myocardial tissues from the three groups of rats (Ctrl group, LPS group, and CGRP group) (n = 5) were extracted and underwent RNA-seq, followed by bioinformatics analyses. The qPCR-validated hub targets potentially interacting with CGRP were identified. Following this, homology modeling was utilized to obtain the 3D structure of hub targets, and molecular docking was conducted to evaluate the interaction between CGRP and hub targets. MD simulations (300 ns) were performed to confirm the findings further. Our findings demonstrated that CGRP significantly lowered mortality in SCM rats. 633 DEGs were affected by LPS, contrasted with the Ctrl group. 96 DEGs were affected by CGRP compared to the LPS group. In total, ten fully annotated CGRP-triggered hub genes were obtained. The molecular docking and MD simulations indicate that the relationship between CGRP and eight hub genes is extremely strong. This research offers a thorough examination of the possible objectives and fundamental molecular processes of CGRP in combating SCM, laying the groundwork for investigating the potential protective mechanisms of CGRP against SCM.
Collapse
Affiliation(s)
- Kexin Cai
- Department of Emergency, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, Fujian, China
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, Fujian, China
| | - Siming Lin
- Department of Emergency, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, Fujian, China
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, Fujian, China
| | - Gufeng Gao
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, Fujian, China
- Clinical Research Center for Geriatric Hypertension Disease of Fujian Province, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, Fujian, China
| | - Mohammad Lsmail Hajary Sagor
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, Fujian, China
- Clinical Research Center for Geriatric Hypertension Disease of Fujian Province, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, Fujian, China
| | - Yuqing Luo
- Department of Emergency, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, Fujian, China
| | - Zhihua Chen
- Department of Emergency, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, Fujian, China
| | - Jing Wang
- Department of Emergency, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, Fujian, China
| | - Mengjing Yang
- Department of Emergency, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, Fujian, China
| | - Guili Lian
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, Fujian, China.
- Clinical Research Center for Geriatric Hypertension Disease of Fujian Province, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, Fujian, China.
| | - Zhihong Lin
- Department of Emergency, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, Fujian, China.
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, Fujian, China.
- Department of Emergency, Binhai Campus of the First Affiliated Hospital, National Regional Medical Center, Fujian Medical University, Fuzhou, 350212, Fujian, China.
| | - Shaodan Feng
- Department of Emergency, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, Fujian, China.
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, Fujian, China.
- Department of Emergency, Binhai Campus of the First Affiliated Hospital, National Regional Medical Center, Fujian Medical University, Fuzhou, 350212, Fujian, China.
| |
Collapse
|
2
|
Krzykawski K, Kubina R, Wendlocha D, Sarna R, Mielczarek-Palacz A. Multifaceted Evaluation of Inhibitors of Anti-Apoptotic Proteins in Head and Neck Cancer: Insights from In Vitro, In Vivo, and Clinical Studies (Review). Pharmaceuticals (Basel) 2024; 17:1308. [PMID: 39458950 PMCID: PMC11510346 DOI: 10.3390/ph17101308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/27/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
This paper presents a multifaceted assessment of inhibitors of anti-apoptotic proteins (IAPs) in the context of head and neck squamous cell carcinoma (HNSCC). The article discusses the results of in vitro, in vivo, and clinical studies, highlighting the significance of IAPs in the resistance of cancer cells to apoptosis, which is a key factor hindering effective treatment. The main apoptosis pathways, including the intrinsic and extrinsic pathways, and the role of IAPs in their regulation, are presented. The study's findings suggest that targeting IAPs with novel therapies may offer clinical benefits in the treatment of advanced HNSCC, especially in cases resistant to conventional treatment methods. These conclusions underscore the need for further research to develop more effective and safer therapeutic strategies.
Collapse
Affiliation(s)
- Kamil Krzykawski
- Department of Immunology and Serology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland; (D.W.); (A.M.-P.)
- Silesia LabMed: Centre for Research and Implementation, Medical University of Silesia in Katowice, 41-752 Katowice, Poland; (R.K.); (R.S.)
| | - Robert Kubina
- Silesia LabMed: Centre for Research and Implementation, Medical University of Silesia in Katowice, 41-752 Katowice, Poland; (R.K.); (R.S.)
- Department of Pathology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland
| | - Dominika Wendlocha
- Department of Immunology and Serology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland; (D.W.); (A.M.-P.)
| | - Robert Sarna
- Silesia LabMed: Centre for Research and Implementation, Medical University of Silesia in Katowice, 41-752 Katowice, Poland; (R.K.); (R.S.)
| | - Aleksandra Mielczarek-Palacz
- Department of Immunology and Serology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland; (D.W.); (A.M.-P.)
| |
Collapse
|
3
|
Meng Q, Wei K, Shan Y. E3 ubiquitin ligase gene BIRC3 modulates TNF-induced cell death pathways and promotes aberrant proliferation in rheumatoid arthritis fibroblast-like synoviocytes. Front Immunol 2024; 15:1433898. [PMID: 39301019 PMCID: PMC11410595 DOI: 10.3389/fimmu.2024.1433898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/21/2024] [Indexed: 09/22/2024] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease characterized by synovitis, degradation of articular cartilage, and bone destruction. Fibroblast-like synoviocytes (FLS) play a central role in RA, producing a significant amount of inflammatory mediators such as tumor necrosis factor(TNF)-α and IL-6, which promote inflammatory responses within the joints. Moreover, FLS exhibit tumor-like behavior, including aggressive proliferation and enhanced anti-apoptotic capabilities, which collectively drive chronic inflammation and joint damage in RA. TNF is a major pro-inflammatory cytokine that mediates a series of signaling pathways through its receptor TNFR1, including NF-κB and MAPK pathways, which are crucial for inflammation and cell survival in RA. The abnormal proliferation and anti-apoptotic characteristics of FLS in RA may result from dysregulation in TNF-mediated cell death pathways such as apoptosis and necroptosis. Ubiquitination is a critical post-translational modification regulating these signaling pathways. E3 ubiquitin ligases, such as cIAP1/2, promote the ubiquitination and degradation of target proteins within the TNF receptor complex, modulating the signaling proteins. The high expression of the BIRC3 gene and its encoded protein, cIAP2, in RA regulates various cellular processes, including apoptosis, inflammatory signaling, immune response, MAPK signaling, and cell proliferation, thereby promoting FLS survival and inflammatory responses. Inhibiting BIRC3 expression can reduce the secretion of inflammatory cytokines by RA-FLS under both basal and inflammatory conditions and inhibit their proliferation. Although BIRC3 inhibitors show potential in RA treatment, their possible side effects must be carefully considered. Further research into the specific mechanisms of BIRC3, including its roles in cell signaling, apoptosis regulation, and immune evasion, is crucial for identifying new therapeutic targets and strategies.
Collapse
Affiliation(s)
- Qingliang Meng
- Department of Rheumatism, Henan Province Hospital of Traditional Chinese Medicine (TCM), Zhengzhou, Henan, China
| | - Kai Wei
- Department of Rheumatology and Immunology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu Shan
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
4
|
Chen D, Chen Y, Feng J, Huang W, Han Z, Liu Y, Lin Q, Li L, Lin Y. Guanine nucleotide exchange factor RABGEF1 facilitates TNF-induced necroptosis by targeting cIAP1. Biochem Biophys Res Commun 2024; 703:149669. [PMID: 38377943 DOI: 10.1016/j.bbrc.2024.149669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 02/04/2024] [Accepted: 02/09/2024] [Indexed: 02/22/2024]
Abstract
Necroptosis is a form of regulated cell death that depends on the receptor-interacting serine-threonine kinase 3 (RIPK3) and mixed lineage kinase domain-like (MLKL). The molecular mechanisms underlying distinct instances of necroptosis have only recently begun to emerge. In the present study, we characterized RABGEF1 as a positive regulator of RIPK1/RIPK3 activation in vitro. Based on the overexpression and knockdown experiments, we determined that RABGEF1 accelerated the phosphorylation of RIPK1 and promoted necrosome formation in L929 cells. The pro-necrotic effect of RABGEF1 is associated with its E3 ubiquitin ligase activity and guanine nucleotide exchange factor (GEF) activity. We further confirmed that RABGEF1 interacts with cIAP1 protein by inhibiting its function and plays a regulatory role in necroptosis, which can be abolished by treatment with the antagonist Smac mimetic (SM)-164. In conclusion, our study highlights a potential and novel role of RABGEF1 in promoting TNF-induced cell necrosis.
Collapse
Affiliation(s)
- Danni Chen
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Yushi Chen
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Jianting Feng
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Wenyang Huang
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Zeteng Han
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Yuanyuan Liu
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Qiaofa Lin
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Lisheng Li
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China; Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, 1 Xueyuan Road, Minhou, Fuzhou, China.
| | - Yingying Lin
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
5
|
Park KA, Jung CS, Sohn KC, Ju E, Shin S, Park I, Na M, Hur GM. Eupatolide, isolated from Liriodendron tulipifera, sensitizes TNF-mediated dual modes of apoptosis and necroptosis by disrupting RIPK1 ubiquitination. Heliyon 2024; 10:e28092. [PMID: 38533031 PMCID: PMC10963378 DOI: 10.1016/j.heliyon.2024.e28092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 03/28/2024] Open
Abstract
Ubiquitination of RIPK1 plays an essential role in the recruitment of the IKK complex, an upstream component of pro-survival NF-κB. It also limits TNF-induced programmed cell death by inhibiting the spatial transition from TNFR1-associated complex-I to RIPK1-dependent death-inducing complex-II or necrosome. Thus, the targeted disruption of RIPK1 ubiquitination, which induces RIPK1-dependent cell death, has proven to be a useful strategy for improving the therapeutic efficacy of TNF. In this study, we found that eupatolide, isolated from Liriodendron tulipifera, is a potent activator of the cytotoxic potential of RIPK1 by disrupting the ubiquitination of RIPK1 upon TNFR1 ligation. Analysis of events upstream of NF-κB signaling revealed that eupatolide inhibited IKKβ-mediated NF-κB activation while having no effect on IKKα-mediated non-canonical NF-κB activation. Pretreatment with eupatolide drastically interfered with RIPK1 recruitment to the TNFR1 complex-I by disrupting RIPK1 ubiquitination. Moreover, eupatolide was sufficient to upregulate the activation of RIPK1, facilitating the TNF-mediated dual modes of apoptosis and necroptosis. Thus, we propose a novel mechanism by which eupatolide activates the cytotoxic potential of RIPK1 at the TNFR1 level and provides a promising anti-cancer therapeutic approach to overcome TNF resistance.
Collapse
Affiliation(s)
- Kyeong Ah Park
- Department of Pharmacology and Department of Medical Science, College of Medicine, Chungnam National University, 266 Munhwa-ro, Daejeon, 35015, Republic of Korea
| | - Chan Seok Jung
- Department of Pharmacology and Department of Medical Science, College of Medicine, Chungnam National University, 266 Munhwa-ro, Daejeon, 35015, Republic of Korea
| | - Kyung-Cheol Sohn
- Department of Pharmacology and Department of Medical Science, College of Medicine, Chungnam National University, 266 Munhwa-ro, Daejeon, 35015, Republic of Korea
| | - Eunjin Ju
- Department of Pharmacology and Department of Medical Science, College of Medicine, Chungnam National University, 266 Munhwa-ro, Daejeon, 35015, Republic of Korea
| | - Sanghee Shin
- Department of Pharmacology and Department of Medical Science, College of Medicine, Chungnam National University, 266 Munhwa-ro, Daejeon, 35015, Republic of Korea
| | - InWha Park
- Natural Product Informatics Research Center, KIST Gangneung Institute of Natural Products, Gangneung, 25451, Republic of Korea
| | - MinKyun Na
- College of Pharmacy, Chungnam National University, 99 Daehak-ro, Daejeon, 34134, Republic of Korea
| | - Gang Min Hur
- Department of Pharmacology and Department of Medical Science, College of Medicine, Chungnam National University, 266 Munhwa-ro, Daejeon, 35015, Republic of Korea
| |
Collapse
|
6
|
Hou G, Wang X, Wang A, Yuan L, Zheng Q, Xiao H, Wang H. The role of secreted proteins in efferocytosis. Front Cell Dev Biol 2024; 11:1332482. [PMID: 38259511 PMCID: PMC10800375 DOI: 10.3389/fcell.2023.1332482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
The clearance of apoptotic cells known as efferocytosis is the final stage of apoptosis, and includes the recognition, phagocytosis, and degradation of apoptotic cells. The maintenance of tissue homeostasis requires the daily elimination of billions of apoptotic cells from the human body via the process of efferocytosis. Accordingly, aberrations in efferocytosis underlie a growing list of diseases, including atherosclerosis, cancer, and infections. During the initial phase of apoptosis, "Eat-Me" signals are exposed and recognized by phagocytes either directly through phagocyte receptors or indirectly through secreted proteins that function as bridge molecules that cross-link dying cells to phagocytes. Here, we set out to provide a comprehensive review of the molecular mechanisms and biological significance of secreted proteins in apoptotic cell clearance. Specifically, it focuses on how these secreted proteins act as bridging molecules to facilitate the clearance process.
Collapse
Affiliation(s)
| | | | | | | | | | - Hui Xiao
- College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Hui Wang
- College of Life Sciences, Shaanxi Normal University, Xi’an, China
| |
Collapse
|
7
|
Gunkel P, Iino H, Krull S, Cordes VC. An evolutionarily conserved bimodular domain anchors ZC3HC1 and its yeast homologue Pml39p to the nuclear basket. Mol Biol Cell 2023; 34:ar40. [PMID: 36857168 PMCID: PMC10162418 DOI: 10.1091/mbc.e22-09-0402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 02/10/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
The proteins ZC3HC1 and TPR are structural components of the nuclear basket (NB), a fibrillar structure attached to the nucleoplasmic side of the nuclear pore complex (NPC). ZC3HC1 initially binds to the NB in a TPR-dependent manner and can subsequently recruit additional TPR polypeptides to this structure. Here, we examined the molecular properties of ZC3HC1 that enable its initial binding to the NB and TPR. We report the identification and definition of a nuclear basket-interaction domain (NuBaID) of HsZC3HC1 that comprises two similarly built modules, both essential for binding the NB-resident TPR. We show that such a bimodular construction is evolutionarily conserved, which we further investigated in Dictyostelium discoideum and Saccharomyces cerevisiae. Presenting ScPml39p as the ZC3HC1 homologue in budding yeast, we show that the bimodular NuBaID of Pml39p is essential for binding to the yeast NB and its TPR homologues ScMlp1p and ScMlp2p, and we further demonstrate that Pml39p enables linkage between subpopulations of Mlp1p. We eventually delineate the common NuBaID of the human, amoebic, and yeast homologue as the defining structural entity of a unique protein not found in all but likely present in most taxa of the eukaryotic realm.
Collapse
Affiliation(s)
- Philip Gunkel
- Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
| | - Haruki Iino
- Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
| | - Sandra Krull
- Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
| | - Volker C. Cordes
- Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
| |
Collapse
|
8
|
Gil-Kulik P, Leśniewski M, Bieńko K, Wójcik M, Więckowska M, Przywara D, Petniak A, Kondracka A, Świstowska M, Szymanowski R, Wilińska A, Wiliński M, Płachno BJ, Kostuch M, Rahnama-Hezavach M, Szuta M, Kwaśniewska A, Bogucka-Kocka A, Kocki J. Influence of Perinatal Factors on Gene Expression of IAPs Family and Main Factors of Pluripotency: OCT4 and SOX2 in Human Breast Milk Stem Cells-A Preliminary Report. Int J Mol Sci 2023; 24:ijms24032476. [PMID: 36768802 PMCID: PMC9917041 DOI: 10.3390/ijms24032476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/19/2023] [Accepted: 01/24/2023] [Indexed: 02/03/2023] Open
Abstract
Due to their therapeutic potential, mesenchymal stem cells are the subject of intensive research on the use of their potential in the treatment of, among others, neurodegenerative diseases or immunological diseases. They are among the newest in the field of medicine. The presented study aimed to evaluate the expression of eight genes from the IAP family and the gene regulating IAP-XAF1-in stem cells derived from human milk, using the qPCR method. The relationships between the expression of genes under study and clinical data, such as maternal age, maternal BMI, week of pregnancy in which the delivery took place, bodyweight of the newborn, the number of pregnancies and deliveries, and the time elapsed since delivery, were also analyzed. The research was carried out on samples of human milk collected from 42 patients hospitalized in The Clinic of Obstetrics and Perinatology of the Independent Public Clinical Hospital No. 4, in Lublin. The conducted research confirmed the expression of the following genes in the tested material: NAIP, BIRC2, BIRC3, BIRC5, BIRC6, BIRC8, XIAP, XAF1, OCT4 and SOX2. Moreover, several dependencies of the expression of individual genes on the maternal BMI (BIRC5, XAF1 and NAIP), the time since childbirth (BIRC5, BIRC6, XAF1 and NAIP), the number of pregnancies and deliveries (BIRC2, BIRC5, BIRC6 and XAF1), the manner of delivery (XAF1 and OCT4), preterm labor (BIRC6 and NAIP) were demonstrated. Additionally, we found positive relationships between gene expression of BIRC7, BIRC8 and XAF1 and the main factors of pluripotency: SOX2 and OCT4. This work is the first to investigate the expression of genes from the IAPs family in mother's milk stem cells.
Collapse
Affiliation(s)
- Paulina Gil-Kulik
- Department of Clinical Genetics, Medical University of Lublin, 11 Radziwillowska Str., 20-080 Lublin, Poland
| | - Michał Leśniewski
- Student Scientific Society of Clinical Genetics, Medical University of Lublin, 11 Radziwillowska Str., 20-080 Lublin, Poland
| | - Karolina Bieńko
- Student Scientific Society of Clinical Genetics, Medical University of Lublin, 11 Radziwillowska Str., 20-080 Lublin, Poland
| | - Monika Wójcik
- Student Scientific Society of Clinical Genetics, Medical University of Lublin, 11 Radziwillowska Str., 20-080 Lublin, Poland
| | - Marta Więckowska
- Student Scientific Society of Clinical Genetics, Medical University of Lublin, 11 Radziwillowska Str., 20-080 Lublin, Poland
| | - Dominika Przywara
- Department of Clinical Genetics, Medical University of Lublin, 11 Radziwillowska Str., 20-080 Lublin, Poland
| | - Alicja Petniak
- Department of Clinical Genetics, Medical University of Lublin, 11 Radziwillowska Str., 20-080 Lublin, Poland
| | - Adrianna Kondracka
- Department of Obstetrics and Pathology of Pregnancy, Medical University of Lublin, 11 Staszica Str., 20-081 Lublin, Poland
| | - Małgorzata Świstowska
- Department of Clinical Genetics, Medical University of Lublin, 11 Radziwillowska Str., 20-080 Lublin, Poland
| | - Rafał Szymanowski
- Department of Clinical Genetics, Medical University of Lublin, 11 Radziwillowska Str., 20-080 Lublin, Poland
| | - Agnieszka Wilińska
- Department of Clinical Genetics, Medical University of Lublin, 11 Radziwillowska Str., 20-080 Lublin, Poland
| | - Mateusz Wiliński
- Department of Clinical Genetics, Medical University of Lublin, 11 Radziwillowska Str., 20-080 Lublin, Poland
| | - Bartosz J. Płachno
- Department of Plant Cytology and Embryology, Institute of Botany, Faculty of Biology, Jagiellonian University in Kraków, 9 Gronostajowa St., 30-387 Cracow, Poland
| | - Marzena Kostuch
- Department of Neonatology, Independent Public Clinical Hospital No. 4, 8 Jaczewskiego St., 20-954 Lublin, Poland
| | - Mansur Rahnama-Hezavach
- Chair and Department of Dental Surgery, Medical University of Lublin, 6 Chodzki St., 20-093 Lublin, Poland
| | - Mariusz Szuta
- Chair of Oral Surgery, Jagiellonian University Medical College, 4 Montelupich St., 31-155 Kraków, Poland
| | - Anna Kwaśniewska
- Department of Obstetrics and Pathology of Pregnancy, Medical University of Lublin, 11 Staszica Str., 20-081 Lublin, Poland
| | - Anna Bogucka-Kocka
- Chair and Department of Biology and Genetics, Medical University of Lublin, 4a Chodźki St., 20–093 Lublin, Poland
| | - Janusz Kocki
- Department of Clinical Genetics, Medical University of Lublin, 11 Radziwillowska Str., 20-080 Lublin, Poland
- Correspondence:
| |
Collapse
|
9
|
Mitochondria supply sub-lethal signals for cytokine secretion and DNA-damage in H. pylori infection. Cell Death Differ 2022; 29:2218-2232. [PMID: 35505004 PMCID: PMC9613881 DOI: 10.1038/s41418-022-01009-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 04/13/2022] [Accepted: 04/19/2022] [Indexed: 12/11/2022] Open
Abstract
The bacterium Helicobacter pylori induces gastric inflammation and predisposes to cancer. H. pylori-infected epithelial cells secrete cytokines and chemokines and undergo DNA-damage. We show that the host cell's mitochondrial apoptosis system contributes to cytokine secretion and DNA-damage in the absence of cell death. H. pylori induced secretion of cytokines/chemokines from epithelial cells, dependent on the mitochondrial apoptosis machinery. A signalling step was identified in the release of mitochondrial Smac/DIABLO, which was required for alternative NF-κB-activation and contributed to chemokine secretion. The bacterial cag-pathogenicity island and bacterial muropeptide triggered mitochondrial host cell signals through the pattern recognition receptor NOD1. H. pylori-induced DNA-damage depended on mitochondrial apoptosis signals and the caspase-activated DNAse. In biopsies from H. pylori-positive patients, we observed a correlation of Smac-levels and inflammation. Non-apoptotic cells in these samples showed evidence of caspase-3-activation, correlating with phosphorylation of the DNA-damage response kinase ATM. Thus, H. pylori activates the mitochondrial apoptosis pathway to a sub-lethal level. During infection, Smac has a cytosolic, pro-inflammatory role in the absence of apoptosis. Further, DNA-damage through sub-lethal mitochondrial signals is likely to contribute to mutagenesis and cancer development.
Collapse
|
10
|
Engelmann C, Schuhmachers P, Zdimerova H, Virdi S, Hauri-Hohl M, Pachlopnik Schmid J, Grundhoff A, Marsh RA, Wong WWL, Münz C. Epstein Barr virus-mediated transformation of B cells from XIAP-deficient patients leads to increased expression of the tumor suppressor CADM1. Cell Death Dis 2022; 13:892. [PMID: 36270981 PMCID: PMC9587222 DOI: 10.1038/s41419-022-05337-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 10/07/2022] [Accepted: 10/11/2022] [Indexed: 11/05/2022]
Abstract
X-linked lymphoproliferative disease (XLP) is either caused by loss of the SLAM-associated protein (SAP; XLP-1) or the X-linked inhibitor of apoptosis (XIAP; XLP-2). In both instances, infection with the oncogenic human Epstein Barr virus (EBV) leads to pathology, but EBV-associated lymphomas only emerge in XLP-1 patients. Therefore, we investigated the role of XIAP during B cell transformation by EBV. Using humanized mice, IAP inhibition in EBV-infected mice led to a loss of B cells and a tendency to lower viral titers and lymphomagenesis. Loss of memory B cells was also observed in four newly described patients with XIAP deficiency. EBV was able to transform their B cells into lymphoblastoid cell lines (LCLs) with similar growth characteristics to patient mothers' LCLs in vitro and in vivo. Gene expression analysis revealed modest elevated lytic EBV gene transcription as well as the expression of the tumor suppressor cell adhesion molecule 1 (CADM1). CADM1 expression on EBV-infected B cells might therefore inhibit EBV-associated lymphomagenesis in patients and result in the absence of EBV-associated malignancies in XLP-2 patients.
Collapse
Affiliation(s)
- Christine Engelmann
- grid.7400.30000 0004 1937 0650Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Patrick Schuhmachers
- grid.7400.30000 0004 1937 0650Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Hana Zdimerova
- grid.7400.30000 0004 1937 0650Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Sanamjeet Virdi
- grid.418481.00000 0001 0665 103XVirus Genomics, Heinrich Pette Institute, Hamburg, Germany
| | - Mathias Hauri-Hohl
- grid.412341.10000 0001 0726 4330Division of Immunology, University Children’s Hospital Zurich, Zurich, Switzerland
| | - Jana Pachlopnik Schmid
- grid.412341.10000 0001 0726 4330Division of Immunology, University Children’s Hospital Zurich, Zurich, Switzerland
| | - Adam Grundhoff
- grid.418481.00000 0001 0665 103XVirus Genomics, Heinrich Pette Institute, Hamburg, Germany
| | - Rebecca A. Marsh
- grid.24827.3b0000 0001 2179 9593Department of Pediatrics, University of Cincinnati, Cincinnati, OH USA
| | - Wendy Wei-Lynn Wong
- grid.7400.30000 0004 1937 0650Cell Death and Regulation of Inflammation, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Christian Münz
- grid.7400.30000 0004 1937 0650Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| |
Collapse
|
11
|
Zhang X, Yin X, Dai J, Sun G, Zhang H, Liang J, Zhao J, Zhu S, Chen J, Zhu X, Ni Y, Wang Z, Liu Z, Chen N, Shen P, Zeng H. The tumor-repressing effect of CYP27A1 on renal cell carcinoma by 27-HC arising from cholesterol metabolism. FASEB J 2022; 36:e22499. [PMID: 35969149 DOI: 10.1096/fj.202101146rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 07/23/2022] [Accepted: 08/02/2022] [Indexed: 11/11/2022]
Abstract
As a key approach to mediate cholesterol metabolism, the role of the CYP27A1/27-HC axis in renal cell carcinoma (RCC) remains unclear. Analysis of CYP27A1 expression from public databases and metastatic cases in our center suggested that CYP27A1 was obviously downregulated in RCC tissues, and survival analysis further showed its correlation with favorable clinicopathological features and prognosis. In vitro, up and downregulation of CYP27A1 expression in RCC cell lines could definitely illustrate its anticipation involving apoptosis, proliferation, invasion, migration, and clonality. This could be achieved through upregulation of 27-HC concentration, which mediates the activation of signaling pathways of apoptosis and cell cycle arrest. Further, recovery of CYP27A1 expression could definitely inhibit the proliferation of RCC tumors in vivo. This is the first study to explore the role of the CYP27A1/27-HC axis in RCC. Attempts to maintain the normal function of the axis may be a potential strategy in the treatment of RCC, and the predictive value of CYP27A1 detection on the efficacy of targeted therapy in metastatic RCC is also worthy of attention.
Collapse
Affiliation(s)
- Xingming Zhang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoxue Yin
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Jindong Dai
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Guangxi Sun
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Haoran Zhang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Jiayu Liang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Jinge Zhao
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Sha Zhu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Junru Chen
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Xudong Zhu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Yuchao Ni
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Zhipeng Wang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Zhenhua Liu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Ni Chen
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Pengfei Shen
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Hao Zeng
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
12
|
Zhao Z, Yue D, Ye B, Li P, Li W, Wang L, Zhang B, Fan Q. Functional analyses of inhibitor of apoptosis protein 1 (IAP1) of Antheraea pernyi multinucleocapsid nucleopolyhedrovirus (AnpeNPV) in viral replication and occlusion body production. J Invertebr Pathol 2022; 194:107816. [PMID: 35964678 DOI: 10.1016/j.jip.2022.107816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 07/28/2022] [Accepted: 08/07/2022] [Indexed: 11/24/2022]
Abstract
Inhibitor of apoptosis protein 1 (IAP1) of Antheraea pernyi multinucleocapsid nucleopolyhedrovirus (AnpeNPV) belongs to the baculovirus IAP1 type. The function of AnpeNPV-IAP1 in viral replication and occlusion body (OB) production remains unknown. In this study, we demonstrated that AnpeNPV-iap1 is a late gene. AnpeNPV-IAP1 mainly localizes to the nuclear ring zone and exhibits dynamic distribution in the cytoplasm and the virogenic stroma during AnpeNPV infection. AnpeNPV-IAP1 impacted the expression of a variety of viral genes at the very late phase of infection in Tn-Hi5 cells. The deletion of AnpeNPV-iap1 caused decreased expression levels of polyhedrin, morphological changes to OBs and reduced OB production in A. pernyi pupae, along with a lengthening of the lethal time of A. pernyi larvae. These results suggest that AnpeNPV-iap1 is involved in regulating viral gene expression, OB production and morphogenesis in A. pernyi.
Collapse
Affiliation(s)
- Zhenjun Zhao
- Liaoning Ocean and Fisheries Science Research Institute, Liaoning Academy of Agricultural Sciences, Dalian 116023, China
| | - Dongmei Yue
- Liaoning Ocean and Fisheries Science Research Institute, Liaoning Academy of Agricultural Sciences, Dalian 116023, China
| | - Bo Ye
- Liaoning Ocean and Fisheries Science Research Institute, Liaoning Academy of Agricultural Sciences, Dalian 116023, China
| | - Peipei Li
- Liaoning Ocean and Fisheries Science Research Institute, Liaoning Academy of Agricultural Sciences, Dalian 116023, China
| | - Wenli Li
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin 124211, China
| | - Linmei Wang
- Liaoning Ocean and Fisheries Science Research Institute, Liaoning Academy of Agricultural Sciences, Dalian 116023, China
| | - Bo Zhang
- Liaoning Ocean and Fisheries Science Research Institute, Liaoning Academy of Agricultural Sciences, Dalian 116023, China
| | - Qi Fan
- Liaoning Ocean and Fisheries Science Research Institute, Liaoning Academy of Agricultural Sciences, Dalian 116023, China.
| |
Collapse
|
13
|
Panikker P, Roy S, Ghosh A, Poornachandra B, Ghosh A. Advancing precision medicines for ocular disorders: Diagnostic genomics to tailored therapies. Front Med (Lausanne) 2022; 9:906482. [PMID: 35911417 PMCID: PMC9334564 DOI: 10.3389/fmed.2022.906482] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/29/2022] [Indexed: 11/20/2022] Open
Abstract
Successful sequencing of the human genome and evolving functional knowledge of gene products has taken genomic medicine to the forefront, soon combining broadly with traditional diagnostics, therapeutics, and prognostics in patients. Recent years have witnessed an extraordinary leap in our understanding of ocular diseases and their respective genetic underpinnings. As we are entering the age of genomic medicine, rapid advances in genome sequencing, gene delivery, genome surgery, and computational genomics enable an ever-increasing capacity to provide a precise and robust diagnosis of diseases and the development of targeted treatment strategies. Inherited retinal diseases are a major source of blindness around the world where a large number of causative genes have been identified, paving the way for personalized diagnostics in the clinic. Developments in functional genetics and gene transfer techniques has also led to the first FDA approval of gene therapy for LCA, a childhood blindness. Many such retinal diseases are the focus of various clinical trials, making clinical diagnoses of retinal diseases, their underlying genetics and the studies of natural history important. Here, we review methodologies for identifying new genes and variants associated with various ocular disorders and the complexities associated with them. Thereafter we discuss briefly, various retinal diseases and the application of genomic technologies in their diagnosis. We also discuss the strategies, challenges, and potential of gene therapy for the treatment of inherited and acquired retinal diseases. Additionally, we discuss the translational aspects of gene therapy, the important vector types and considerations for human trials that may help advance personalized therapeutics in ophthalmology. Retinal disease research has led the application of precision diagnostics and precision therapies; therefore, this review provides a general understanding of the current status of precision medicine in ophthalmology.
Collapse
Affiliation(s)
| | - Shomereeta Roy
- Grow Research Laboratory, Narayana Nethralaya Foundation, Bengaluru, India
| | - Anuprita Ghosh
- Grow Research Laboratory, Narayana Nethralaya Foundation, Bengaluru, India
| | | | - Arkasubhra Ghosh
- Grow Research Laboratory, Narayana Nethralaya Foundation, Bengaluru, India
| |
Collapse
|
14
|
Ni Y, Low JT, Silke J, O’Reilly LA. Digesting the Role of JAK-STAT and Cytokine Signaling in Oral and Gastric Cancers. Front Immunol 2022; 13:835997. [PMID: 35844493 PMCID: PMC9277720 DOI: 10.3389/fimmu.2022.835997] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 05/16/2022] [Indexed: 12/12/2022] Open
Abstract
When small proteins such as cytokines bind to their associated receptors on the plasma membrane, they can activate multiple internal signaling cascades allowing information from one cell to affect another. Frequently the signaling cascade leads to a change in gene expression that can affect cell functions such as proliferation, differentiation and homeostasis. The Janus kinase-signal transducer and activator of transcription (JAK-STAT) and the tumor necrosis factor receptor (TNFR) are the pivotal mechanisms employed for such communication. When deregulated, the JAK-STAT and the TNF receptor signaling pathways can induce chronic inflammatory phenotypes by promoting more cytokine production. Furthermore, these signaling pathways can promote replication, survival and metastasis of cancer cells. This review will summarize the essentials of the JAK/STAT and TNF signaling pathways and their regulation and the molecular mechanisms that lead to the dysregulation of the JAK-STAT pathway. The consequences of dysregulation, as ascertained from founding work in haematopoietic malignancies to more recent research in solid oral-gastrointestinal cancers, will also be discussed. Finally, this review will highlight the development and future of therapeutic applications which modulate the JAK-STAT or the TNF signaling pathways in cancers.
Collapse
Affiliation(s)
- Yanhong Ni
- Central Laboratory, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jun T. Low
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - John Silke
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Lorraine A. O’Reilly
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
15
|
Zhang Z, Xiang S, Cui R, Peng H, Mridul R, Xiang M. ILP-2: A New Bane and Therapeutic Target for Human Cancers. Front Oncol 2022; 12:922596. [PMID: 35814477 PMCID: PMC9260022 DOI: 10.3389/fonc.2022.922596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 05/26/2022] [Indexed: 12/24/2022] Open
Abstract
Inhibitor of apoptosis protein-related-like protein-2 (ILP-2), also known as BIRC-8, is a member of the inhibitor of apoptosis protein (IAPs) family, which mainly encodes the negative regulator of apoptosis. It is selectively overexpressed in a variety of human tumors and can help tumor cells evade apoptosis, promote tumor cell growth, increase tumor cell aggressiveness, and appears to be involved in tumor cell resistance to chemotherapeutic drugs. Several studies have shown that downregulation of ILP-2 expression increases apoptosis, inhibits metastasis, reduces cell growth potential, and sensitizes tumor cells to chemotherapeutic drugs. In addition, ILP-2 inhibits apoptosis in a unique manner; it does not directly inhibit the activity of caspases but induces apoptosis by cooperating with other apoptosis-related proteins. Here, we review the current understanding of the various roles of ILP-2 in the apoptotic cascade and explore the use of interfering ILP-2, and the combination of related anti-tumor agents, as a novel strategy for cancer therapy.
Collapse
Affiliation(s)
- Zhiliang Zhang
- Department of Biochemistry and Immunology, Medical Research Center, Institute of Medicine, Jishou University, Jishou, China
- The State Ethnic Committee's Key Laboratory of Clinical Engineering Laboratory of Xiangxi Miao Pediatric Tuina, Jishou University, Jishou, China
| | - Siqi Xiang
- Department of Biochemistry and Immunology, Medical Research Center, Institute of Medicine, Jishou University, Jishou, China
- The State Ethnic Committee's Key Laboratory of Clinical Engineering Laboratory of Xiangxi Miao Pediatric Tuina, Jishou University, Jishou, China
| | - Ruxia Cui
- Department of Biochemistry and Immunology, Medical Research Center, Institute of Medicine, Jishou University, Jishou, China
- The State Ethnic Committee's Key Laboratory of Clinical Engineering Laboratory of Xiangxi Miao Pediatric Tuina, Jishou University, Jishou, China
| | - Hang Peng
- Department of Biochemistry and Immunology, Medical Research Center, Institute of Medicine, Jishou University, Jishou, China
- The State Ethnic Committee's Key Laboratory of Clinical Engineering Laboratory of Xiangxi Miao Pediatric Tuina, Jishou University, Jishou, China
| | - Roy Mridul
- Department of Biochemistry and Immunology, Medical Research Center, Institute of Medicine, Jishou University, Jishou, China
- The State Ethnic Committee's Key Laboratory of Clinical Engineering Laboratory of Xiangxi Miao Pediatric Tuina, Jishou University, Jishou, China
| | - Mingjun Xiang
- Department of Biochemistry and Immunology, Medical Research Center, Institute of Medicine, Jishou University, Jishou, China
- The State Ethnic Committee's Key Laboratory of Clinical Engineering Laboratory of Xiangxi Miao Pediatric Tuina, Jishou University, Jishou, China
| |
Collapse
|
16
|
Daoud M, Broxtermann PN, Schorn F, Werthenbach JP, Seeger JM, Schiffmann LM, Brinkmann K, Vucic D, Tüting T, Mauch C, Kulms D, Zigrino P, Kashkar H. XIAP promotes melanoma growth by inducing tumour neutrophil infiltration. EMBO Rep 2022; 23:e53608. [PMID: 35437868 PMCID: PMC9171690 DOI: 10.15252/embr.202153608] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 03/21/2022] [Accepted: 03/31/2022] [Indexed: 12/22/2022] Open
Abstract
Elevated expression of the X‐linked inhibitor of apoptosis protein (XIAP) has been frequently reported in malignant melanoma suggesting that XIAP renders apoptosis resistance and thereby supports melanoma progression. Independent of its anti‐apoptotic function, XIAP mediates cellular inflammatory signalling and promotes immunity against bacterial infection. The pro‐inflammatory function of XIAP has not yet been considered in cancer. By providing detailed in vitro analyses, utilising two independent mouse melanoma models and including human melanoma samples, we show here that XIAP is an important mediator of melanoma neutrophil infiltration. Neutrophils represent a major driver of melanoma progression and are increasingly considered as a valuable therapeutic target in solid cancer. Our data reveal that XIAP ubiquitylates RIPK2, involve TAB1/RIPK2 complex and induce the transcriptional up‐regulation and secretion of chemokines such as IL8, that are responsible for intra‐tumour neutrophil accumulation. Alteration of the XIAP‐RIPK2‐TAB1 inflammatory axis or the depletion of neutrophils in mice reduced melanoma growth. Our data shed new light on how XIAP contributes to tumour growth and provides important insights for novel XIAP targeting strategies in cancer.
Collapse
Affiliation(s)
- Mila Daoud
- Faculty of Medicine and University Hospital of Cologne, Institute for Molecular Immunology, University of Cologne, Cologne, Germany.,Faculty of Medicine and University Hospital of Cologne, Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Pia Nora Broxtermann
- Faculty of Medicine and University Hospital of Cologne, Institute for Molecular Immunology, University of Cologne, Cologne, Germany.,Faculty of Medicine and University Hospital of Cologne, Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Fabian Schorn
- Faculty of Medicine and University Hospital of Cologne, Institute for Molecular Immunology, University of Cologne, Cologne, Germany.,Faculty of Medicine and University Hospital of Cologne, Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - J Paul Werthenbach
- Faculty of Medicine and University Hospital of Cologne, Institute for Molecular Immunology, University of Cologne, Cologne, Germany.,Faculty of Medicine and University Hospital of Cologne, Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Jens Michael Seeger
- Faculty of Medicine and University Hospital of Cologne, Institute for Molecular Immunology, University of Cologne, Cologne, Germany.,Faculty of Medicine and University Hospital of Cologne, Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Lars M Schiffmann
- Faculty of Medicine and University Hospital of Cologne, Institute for Molecular Immunology, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Faculty of Medicine and University Hospital of Cologne, Department of General, Visceral, Cancer and Transplant Surgery, University of Cologne, Cologne, Germany
| | - Kerstin Brinkmann
- The Walter & Eliza Hall Institute of Medical Research (WEHI) and Department of Medical Biology, University of Melbourne, Melbourne, Vic., Australia
| | - Domagoj Vucic
- Department of Early Discovery Biochemistry, Genentech, South San Francisco, CA, USA
| | - Thomas Tüting
- Laboratory of Experimental Dermatology, Department of Dermatology, University Hospital Magdeburg, Magdeburg, Germany
| | - Cornelia Mauch
- Faculty of Medicine and University Hospital of Cologne, Department of Dermatology and Venereology, University of Cologne, Cologne, Germany
| | - Dagmar Kulms
- Department of Dermatology, Experimental Dermatology, TU-Dresden, Dresden, Germany.,National Center for Tumor Diseases Dresden, TU-Dresden, Dresden, Germany
| | - Paola Zigrino
- Faculty of Medicine and University Hospital of Cologne, Department of Dermatology and Venereology, University of Cologne, Cologne, Germany
| | - Hamid Kashkar
- Faculty of Medicine and University Hospital of Cologne, Institute for Molecular Immunology, University of Cologne, Cologne, Germany.,Faculty of Medicine and University Hospital of Cologne, Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| |
Collapse
|
17
|
6 -O-Galloylpaeoniflorin Exerts Inhibitory Bioactivities in Human Neuroblastoma Cells via Modulating AMPK/miR-489/XIAP Pathway. BIOMED RESEARCH INTERNATIONAL 2022; 2022:1327835. [PMID: 35572727 PMCID: PMC9098314 DOI: 10.1155/2022/1327835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/18/2022] [Accepted: 04/21/2022] [Indexed: 11/25/2022]
Abstract
Although therapies against neuroblastoma (NBM) have advanced, the patients still suffer from poor prognoses due to distal metastasis or the occurrence of multidrug resistance. Accumulating evidence has proved that chemicals derived from natural products possess potent anti-NBM properties or can be used as adjuvants for chemotherapy. In the present study, we demonstrated that 6′-O-galloylpaeoniflorin (GPF), a galloylated derivative of paeoniflorin isolated from the roots of Paeonia lactiflora Pall, exerted significant inhibitory effects on proliferation and invasion of SH-SY5Y cells (an NBM cell line) and enhanced the sensitivity of SH-SY5Y cells to cisplatin in vitro. Further studies showed that GPF treatment upregulated miR-489 in NBM cells via activating AMP-activated protein kinase (AMPK). We also demonstrated that similar to GPF treatment, miR-489 exhibited a significant anti-NBM capacity. Further studies showed that miR-489 directly targeted the X-linked inhibitor of apoptosis protein (XIAP). Overall, our results indicated that GPF possessed an evident anti-NBM capacity dependent on AMPK/miR-489/XIAP pathway, providing an emerging strategy for clinical treatment of NBM.
Collapse
|
18
|
Ferrari N, Ward G, Gewinner C, Davis MP, Jueliger S, Saini H, Munck J, Smyth T, Ferraldeschi R, Keer H, Lyons J, Sims MJ. Antagonism of inhibitors of apoptosis proteins reveals a novel, immune response-based therapeutic approach for T-cell lymphoma. Blood Adv 2021; 5:4003-4016. [PMID: 34474469 PMCID: PMC8945623 DOI: 10.1182/bloodadvances.2020003955] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 05/22/2021] [Indexed: 11/30/2022] Open
Abstract
Tolinapant (ASTX660) is a potent, nonpeptidomimetic antagonist of cellular inhibitor of apoptosis proteins 1 and 2 (cIAP1/2) and X-linked IAP, which is currently being evaluated in a phase 2 study in T-cell lymphoma (TCL) patients. Tolinapant has demonstrated evidence of single-agent clinical activity in relapsed/refractory peripheral TCL and cutaneous TCL. To investigate the mechanism of action underlying the single-agent activity observed in the clinic, we have used a comprehensive translational approach integrating in vitro and in vivo models of TCL confirmed by data from human tumor biopsies. Here, we show that tolinapant acts as an efficacious immunomodulatory molecule capable of inducing complete tumor regression in a syngeneic model of TCL exclusively in the presence of an intact immune system. These findings were confirmed in samples from our ongoing clinical study showing that tolinapant treatment can induce changes in gene expression and cytokine profile consistent with immune modulation. Mechanistically, we show that tolinapant can activate both the adaptive and the innate arms of the immune system through the induction of immunogenic forms of cell death. In summary, we describe a novel role for IAP antagonists as immunomodulatory molecules capable of promoting a robust antitumor immune response in TCL.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - John Lyons
- Astex Pharmaceuticals, Cambridge, UK; and
| | | |
Collapse
|
19
|
Liu L, Liu H, Luo S, Patz EF, Glass C, Su L, Lin L, Christiani DC, Wei Q. Genetic Variants of CLEC4E and BIRC3 in Damage-Associated Molecular Patterns-Related Pathway Genes Predict Non-Small Cell Lung Cancer Survival. Front Oncol 2021; 11:717109. [PMID: 34692492 PMCID: PMC8527850 DOI: 10.3389/fonc.2021.717109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 09/13/2021] [Indexed: 11/25/2022] Open
Abstract
Accumulating evidence supports a role of various damage-associated molecular patterns (DAMPs) in progression of lung cancer, but roles of genetic variants of the DAMPs-related pathway genes in lung cancer survival remain unknown. We investigated associations of 18,588 single-nucleotide polymorphisms (SNPs) in 195 DAMPs-related pathway genes with non-small cell lung cancer (NSCLC) survival in a subset of genotyping data for 1,185 patients from the Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer Screening Trial and validated the findings in another independent subset of genotyping data for 984 patients from Harvard Lung Cancer Susceptibility Study. We performed multivariate Cox proportional hazards regression analysis, followed by expression quantitative trait loci (eQTL) analysis, Kaplan-Meier survival analysis and bioinformatics functional prediction. We identified that two SNPs (i.e., CLEC4E rs10841847 G>A and BIRC3 rs11225211 G>A) were independently associated with NSCLC overall survival, with adjusted allelic hazards ratios of 0.89 (95% confidence interval=0.82-0.95 and P=0.001) and 0.82 (0.73-0.91 and P=0.0003), respectively; so were their combined predictive alleles from discovery and replication datasets (Ptrend=0.0002 for overall survival). We also found that the CLEC4E rs10841847 A allele was associated with elevated mRNA expression levels in normal lymphoblastoid cells and whole blood cells, while the BIRC3 rs11225211 A allele was associated with increased mRNA expression levels in normal lung tissues. Collectively, these findings indicated that genetic variants of CLEC4E and BIRC3 in the DAMPs-related pathway genes were associated with NSCLC survival, likely by regulating the mRNA expression of the corresponding genes.
Collapse
Affiliation(s)
- Lihua Liu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Duke Cancer Institute, Duke University Medical Center, Durham, NC, United States.,Department of Population Health Sciences, Duke University School of Medicine, Durham, NC, United States
| | - Hongliang Liu
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, United States.,Department of Population Health Sciences, Duke University School of Medicine, Durham, NC, United States
| | - Sheng Luo
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, United States
| | - Edward F Patz
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, United States.,Department of Radiology, Duke University Medical Center, Durham, NC, United States.,Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, United States
| | - Carolyn Glass
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, United States.,Department of Pathology, Duke University School of Medicine, Durham, NC, United States
| | - Li Su
- Departments of Environmental Health and Department of Epidemiology, Harvard School of Public Health, Boston, MA, United States
| | - Lijuan Lin
- Departments of Environmental Health and Department of Epidemiology, Harvard School of Public Health, Boston, MA, United States
| | - David C Christiani
- Departments of Environmental Health and Department of Epidemiology, Harvard School of Public Health, Boston, MA, United States.,Department of Medicine, Massachusetts General Hospital, Boston, MA, United States
| | - Qingyi Wei
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, United States.,Department of Population Health Sciences, Duke University School of Medicine, Durham, NC, United States.,Department of Medicine, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
20
|
Putowski M, Giannopoulos K. Perspectives on Precision Medicine in Chronic Lymphocytic Leukemia: Targeting Recurrent Mutations-NOTCH1, SF3B1, MYD88, BIRC3. J Clin Med 2021; 10:jcm10163735. [PMID: 34442029 PMCID: PMC8396993 DOI: 10.3390/jcm10163735] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/13/2021] [Accepted: 08/19/2021] [Indexed: 12/15/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) is highly heterogeneous, with extremely variable clinical course. The clinical heterogeneity of CLL reflects differences in the biology of the disease, including chromosomal alterations, specific immunophenotypic patterns and serum markers. The application of next-generation sequencing techniques has demonstrated the high genetic and epigenetic heterogeneity in CLL. The novel mutations could be pharmacologically targeted for individualized approach in some of the CLL patients. Potential neurogenic locus notch homolog protein 1 (NOTCH1) signalling targeting mechanisms in CLL include secretase inhibitors and specific antibodies to block NOTCH ligand/receptor interactions. In vitro studies characterizing the effect of the splicing inhibitors resulted in increased apoptosis of CLL cells regardless of splicing factor 3B subunit 1 (SF3B1) status. Several therapeutic strategies have been also proposed to directly or indirectly inhibit the toll-like receptor/myeloid differentiation primary response gene 88 (TLR/MyD88) pathway. Another potential approach is targeting nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and inhibition of this prosurvival pathway. Newly discovered mutations and their signalling pathways play key roles in the course of the disease. This opens new opportunities in the management and treatment of CLL.
Collapse
Affiliation(s)
- Maciej Putowski
- Department of Experimental Hematooncology, Medical University of Lublin, 20-093 Lublin, Poland;
- Correspondence: ; Tel.: +48-81-448-66-32
| | - Krzysztof Giannopoulos
- Department of Experimental Hematooncology, Medical University of Lublin, 20-093 Lublin, Poland;
- Department of Hematology, St. John’s Cancer Center, 20-090 Lublin, Poland
| |
Collapse
|
21
|
Fang Y, Peng K. Regulation of innate immune responses by cell death-associated caspases during virus infection. FEBS J 2021; 289:4098-4111. [PMID: 34089572 DOI: 10.1111/febs.16051] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/04/2021] [Accepted: 06/03/2021] [Indexed: 01/04/2023]
Abstract
Viruses are obligate intracellular pathogens that rely on cellular machinery for successful replication and dissemination. The host cells encode a number of different strategies to sense and restrict the invading viral pathogens. Caspase-mediated programmed cell death pathways that are triggered by virus infection, such as apoptosis and pyroptosis, provide a means for the infected cells to limit viral proliferation, leading to suicidal cell death (apoptosis) or lytic cell death and alerting uninfected cells to mount anti-viral responses (pyroptosis). However, some viruses can employ activated caspases to dampen the anti-viral responses and facilitate viral replication through cleavage of critical molecules of the innate immune pathways. The regulation of innate immune responses by caspase activation during virus infection has recently become an important topic. In this review, we briefly introduce the characteristics of different classes of caspases and the cell death pathways regulated by these caspases. We then describe how viruses trigger or dampen caspase activation during infection and how these activated caspases regulate three major innate immune response pathways of viral infections: the retinoic acid-inducible gene I-like receptor, toll-like receptor and cyclic GMP-AMP synthase-stimulator of interferon genes pathways.
Collapse
Affiliation(s)
- Yujie Fang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Ke Peng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
22
|
Makuch-Kocka A, Kocki J, Brzozowska A, Bogucki J, Kołodziej P, Płachno BJ, Bogucka-Kocka A. The BIRC Family Genes Expression in Patients with Triple Negative Breast Cancer. Int J Mol Sci 2021; 22:1820. [PMID: 33673050 PMCID: PMC7918547 DOI: 10.3390/ijms22041820] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 01/04/2023] Open
Abstract
The BIRC (baculoviral IAP repeat-containing; BIRC) family genes encode for Inhibitor of Apoptosis (IAP) proteins. The dysregulation of the expression levels of the genes in question in cancer tissue as compared to normal tissue suggests that the apoptosis process in cancer cells was disturbed, which may be associated with the development and chemoresistance of triple negative breast cancer (TNBC). In our study, we determined the expression level of eight genes from the BIRC family using the Real-Time PCR method in patients with TNBC and compared the obtained results with clinical data. Additionally, using bioinformatics tools (Ualcan and The Breast Cancer Gene-Expression Miner v4.5 (bc-GenExMiner v4.5)), we compared our data with the data in the Cancer Genome Atlas (TCGA) database. We observed diverse expression pattern among the studied genes in breast cancer tissue. Comparing the expression level of the studied genes with the clinical data, we found that in patients diagnosed with breast cancer under the age of 50, the expression levels of all studied genes were higher compared to patients diagnosed after the age of 50. We observed that in patients with invasion of neoplastic cells into lymphatic vessels and fat tissue, the expression levels of BIRC family genes were lower compared to patients in whom these features were not noted. Statistically significant differences in gene expression were also noted in patients classified into three groups depending on the basis of the Scarff-Bloom and Richardson (SBR) Grading System.
Collapse
Affiliation(s)
- Anna Makuch-Kocka
- Department of Pharmacology, Medical University of Lublin, 4a Chodźki St., 20-093 Lublin, Poland
| | - Janusz Kocki
- Chair of Medical Genetics, Department of Clinical Genetics, Medical University of Lublin, 11 Radziwiłłowska St., 20-400 Lublin, Poland;
| | - Anna Brzozowska
- Department of Radiotherapy, St. John of Dukla Lublin Region Cancer Center, 20-090 Lublin, Poland;
| | - Jacek Bogucki
- Department of Organic Chemistry, Medical University of Lublin, 4A Chodźki St., 20-093 Lublin, Poland;
| | - Przemysław Kołodziej
- Chair and Department of Biology and Genetics, Medical University of Lublin, 4a Chodźki St., 20-093 Lublin, Poland; (P.K.); (A.B.-K.)
| | - Bartosz J. Płachno
- Department of Plant Cytology and Embryology, Institute of Botany, Faculty of Biology, Jagiellonian University in Kraków, 9 Gronostajowa St., 30-387 Kraków, Poland;
| | - Anna Bogucka-Kocka
- Chair and Department of Biology and Genetics, Medical University of Lublin, 4a Chodźki St., 20-093 Lublin, Poland; (P.K.); (A.B.-K.)
| |
Collapse
|
23
|
Tumor Suppressor Protein p53 and Inhibitor of Apoptosis Proteins in Colorectal Cancer-A Promising Signaling Network for Therapeutic Interventions. Cancers (Basel) 2021; 13:cancers13040624. [PMID: 33557398 PMCID: PMC7916307 DOI: 10.3390/cancers13040624] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 01/30/2021] [Accepted: 02/01/2021] [Indexed: 02/08/2023] Open
Abstract
Simple Summary Tumor suppressor 53 (p53) is a multifunctional protein that regulates cell cycle, DNA repair, apoptosis and metabolic pathways. In colorectal cancer (CRC), mutations of the gene occur in 60% of patients and are associated with a more aggressive tumor phenotype and resistance to anti-cancer therapy. In addition, inhibitor of apoptosis (IAP) proteins are distinguished biomarkers overexpressed in CRC that impact on a diverse set of signaling pathways associated with the regulation of apoptosis/autophagy, cell migration, cell cycle and DNA damage response. As these mechanisms are further firmly controlled by p53, a transcriptional and post-translational regulation of IAPs by p53 is expected to occur in cancer cells. Here, we aim to review the molecular regulatory mechanisms between IAPs and p53 and discuss the therapeutic potential of targeting their interrelationship by multimodal treatment options. Abstract Despite recent advances in the treatment of colorectal cancer (CRC), patient’s individual response and clinical follow-up vary considerably with tumor intrinsic factors to contribute to an enhanced malignancy and therapy resistance. Among these markers, upregulation of members of the inhibitor of apoptosis protein (IAP) family effects on tumorigenesis and radiation- and chemo-resistance by multiple pathways, covering a hampered induction of apoptosis/autophagy, regulation of cell cycle progression and DNA damage response. These mechanisms are tightly controlled by the tumor suppressor p53 and thus transcriptional and post-translational regulation of IAPs by p53 is expected to occur in malignant cells. By this, cellular IAP1/2, X-linked IAP, Survivin, BRUCE and LIVIN expression/activity, as well as their intracellular localization is controlled by p53 in a direct or indirect manner via modulating a multitude of mechanisms. These cover, among others, transcriptional repression and the signal transducer and activator of transcription (STAT)3 pathway. In addition, p53 mutations contribute to deregulated IAP expression and resistance to therapy. This review aims at highlighting the mechanistic and clinical importance of IAP regulation by p53 in CRC and describing potential therapeutic strategies based on this interrelationship.
Collapse
|
24
|
Luo W, Sun R, Chen X, Li J, Jiang J, He Y, Shi S, Wen H. ERK Activation-Mediated Autophagy Induction Resists Licochalcone A-Induced Anticancer Activities in Lung Cancer Cells in vitro. Onco Targets Ther 2021; 13:13437-13450. [PMID: 33447049 PMCID: PMC7802906 DOI: 10.2147/ott.s278268] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 12/03/2020] [Indexed: 12/17/2022] Open
Abstract
Introduction The incidence and mortality rates of lung cancer rank top in the different types of cancers in China. Licochalcone A (LA) is a flavonoid extracted from the roots of licorice with antitumor effects in various cancers in vitro and in vivo. However, the role of LA in non-small cell lung cancer (NSCLC) remains largely unclear. Methods The cell viability was measured by MTT assay, Edu staining and colony formation assay. Apoptosis was investigated using Annexin V/PI double-stained assays with flow cytometry. Real-time quantitative RT-PCR was carried out to investigate the expression of mRNA of related proteins. Western blotting was used to investigate the expression of related proteins. Results The results show that LA inhibits the proliferation of NSCLC cells in a dose-dependent manner and induces apoptotic cell death. Moreover, LA significantly suppresses the expression of c-IAP1, c-IAP2, XIAP, Survivin, c-FLIPL and RIP1 without influencing the level of mRNA. Cycloheximide chase assay demonstrates that LA greatly decreases the stability of Survivin, XIAP and RIP1. Mechanistic studies indicate that LA induces cytoprotective autophagy since block of autophagy with CQ greatly enhances LA-induced anticancer activities. Furthermore, LA rapidly induces ERK and p38 activation in a time-dependent manner in both A549 and H460 cells, but suppresses the activities of c-Jun N-terminal kinase (JNK); suppression of ERK not p38 with inhibitor attenuates LA-induced autophagy, while it remarkably enhances LA-induced cytotoxicity in lung cancer cells and further promotes the degradation of apoptosis-related proteins. Discussion The results of this study provide novel insights on the role of apoptosis-related proteins and the MAPKs pathway in the anticancer activities of LA.
Collapse
Affiliation(s)
- Wei Luo
- Department of Respiratory and Critical Care Medicine, The People's Hospital of Leshan, Leshan, Sichuan, People's Republic of China
| | - Ruifen Sun
- Center for Scientific Research, Yunnan University of Chinese Traditional Medicine, Kunming, Yunnan, People's Republic of China
| | - Xin Chen
- College of Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, People's Republic of China
| | - Ju Li
- College of Basic Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, People's Republic of China
| | - Jike Jiang
- College of Basic Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, People's Republic of China
| | - Yuxiao He
- College of Basic Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, People's Republic of China
| | - Shaoqing Shi
- Center for Scientific Research, Yunnan University of Chinese Traditional Medicine, Kunming, Yunnan, People's Republic of China
| | - Heling Wen
- Department of Cardiology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, People's Republic of China
| |
Collapse
|
25
|
Regulation of Anti-Apoptotic SOD2 and BIRC3 in Periodontal Cells and Tissues. Int J Mol Sci 2021; 22:ijms22020591. [PMID: 33435582 PMCID: PMC7827060 DOI: 10.3390/ijms22020591] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 12/20/2022] Open
Abstract
The aim of the study was to clarify whether orthodontic forces and periodontitis interact with respect to the anti-apoptotic molecules superoxide dismutase 2 (SOD2) and baculoviral IAP repeat-containing protein 3 (BIRC3). SOD2, BIRC3, and the apoptotic markers caspases 3 (CASP3) and 9 (CASP9) were analyzed in gingiva from periodontally healthy and periodontitis subjects by real-time PCR and immunohistochemistry. SOD2 and BIRC3 were also studied in gingiva from rats with experimental periodontitis and/or orthodontic tooth movement. Additionally, SOD2 and BIRC3 levels were examined in human periodontal fibroblasts incubated with Fusobacterium nucleatum and/or subjected to mechanical forces. Gingiva from periodontitis patients showed significantly higher SOD2, BIRC3, CASP3, and CASP9 levels than periodontally healthy gingiva. SOD2 and BIRC3 expressions were also significantly increased in the gingiva from rats with experimental periodontitis, but the upregulation of both molecules was significantly diminished in the concomitant presence of orthodontic tooth movement. In vitro, SOD2 and BIRC3 levels were significantly increased by F. nucleatum, but this stimulatory effect was also significantly inhibited by mechanical forces. Our study suggests that SOD2 and BIRC3 are produced in periodontal infection as a protective mechanism against exaggerated apoptosis. In the concomitant presence of orthodontic forces, this protective anti-apoptotic mechanism may get lost.
Collapse
|
26
|
Abstract
RNA-binding proteins are important regulators of RNA metabolism and are of critical importance in all steps of the gene expression cascade. The role of aberrantly expressed RBPs in human disease is an exciting research field and the potential application of RBPs as a therapeutic target or a diagnostic marker represents a fast-growing area of research.Aberrant overexpression of the human RNA-binding protein La has been found in various cancer entities including lung, cervical, head and neck, and chronic myelogenous leukaemia. Cancer-associated La protein supports tumour-promoting processes such as proliferation, mobility, invasiveness and tumour growth. Moreover, the La protein maintains the survival of cancer cells by supporting an anti-apoptotic state that may cause resistance to chemotherapeutic therapy.The human La protein represents a multifunctional post-translationally modified RNA-binding protein with RNA chaperone activity that promotes processing of non-coding precursor RNAs but also stimulates the translation of selective messenger RNAs encoding tumour-promoting and anti-apoptotic factors. In our model, La facilitates the expression of those factors and helps cancer cells to cope with cellular stress. In contrast to oncogenes, able to initiate tumorigenesis, we postulate that the aberrantly elevated expression of the human La protein contributes to the non-oncogenic addiction of cancer cells. In this review, we summarize the current understanding about the implications of the RNA-binding protein La in cancer progression and therapeutic resistance. The concept of exploiting the RBP La as a cancer drug target will be discussed.
Collapse
Affiliation(s)
- Gunhild Sommer
- Department for Pediatric Hematology, Oncology and Stem Cell Transplantation, University Hospital Regensburg, Regensburg, Germany
| | - Tilman Heise
- Department for Pediatric Hematology, Oncology and Stem Cell Transplantation, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
27
|
Wassmer SJ, De Repentigny Y, Sheppard D, Lagali PS, Fang L, Coupland SG, Kothary R, Guy J, Hauswirth WW, Tsilfidis C. XIAP Protects Retinal Ganglion Cells in the Mutant ND4 Mouse Model of Leber Hereditary Optic Neuropathy. Invest Ophthalmol Vis Sci 2020; 61:49. [PMID: 32735323 PMCID: PMC7425697 DOI: 10.1167/iovs.61.8.49] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Purpose Leber hereditary optic neuropathy (LHON) is a genetic form of vision loss that occurs primarily owing to mutations in the nicotinamide adenine dinucleotide dehydrogenase (ND) subunits that make up complex I of the electron transport chain. LHON mutations result in the apoptotic death of retinal ganglion cells. We tested the hypothesis that gene therapy with the X-linked inhibitor of apoptosis (XIAP) would prevent retinal ganglion cell apoptosis and reduce disease progression in a vector-induced mouse model of LHON that carries the ND4 mutation. Methods Adeno-associated virus (AAV) encoding full length hemagglutinin-tagged XIAP (AAV2.HA-XIAP) or green fluorescent protein (AAV2.GFP) was injected into the vitreous of DBA/1J mice. Two weeks later, the LHON phenotype was induced by AAV delivery of mutant ND4 (AAV2.mND4FLAG) to the vitreous. Retinal function was assessed by pattern electroretinography. Optic nerves were harvested at 4 months, and the effects of XIAP therapy on nerve fiber layer and optic nerve integrity were evaluated using immunohistochemistry, transmission electron microscopy and magnetic resonance imaging. Results During LHON disease progression, retinal ganglion cell axons are lost. Apoptotic cell bodies are seen in the nuclei of astrocytes or oligodendrocytes in the optic nerve, and there is thinning of the optic nerve and the nerve fiber layer of the retina. At 4 months after disease onset, XIAP gene therapy protects the nerve fiber layer and optic nerve architecture by preserving axon health. XIAP also decreases nuclear fragmentation in resident astrocytes or oligodendrocytes and decreases glial cell infiltration. Conclusions XIAP therapy improves optic nerve health and delays disease progression in LHON.
Collapse
|
28
|
Webster JD, Vucic D. The Balance of TNF Mediated Pathways Regulates Inflammatory Cell Death Signaling in Healthy and Diseased Tissues. Front Cell Dev Biol 2020; 8:365. [PMID: 32671059 PMCID: PMC7326080 DOI: 10.3389/fcell.2020.00365] [Citation(s) in RCA: 169] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 04/23/2020] [Indexed: 12/17/2022] Open
Abstract
Tumor necrosis factor alpha (TNF; TNFα) is a critical regulator of immune responses in healthy organisms and in disease. TNF is involved in the development and proper functioning of the immune system by mediating cell survival and cell death inducing signaling. TNF stimulated signaling pathways are tightly regulated by a series of phosphorylation and ubiquitination events, which enable timely association of TNF receptors-associated intracellular signaling complexes. Disruption of these signaling events can disturb the balance and the composition of signaling complexes, potentially resulting in severe inflammatory diseases.
Collapse
Affiliation(s)
- Joshua D Webster
- Departments of Pathology and Early Discovery Biochemistry, Genentech, South San Francisco, CA, United States
| | - Domagoj Vucic
- Departments of Pathology and Early Discovery Biochemistry, Genentech, South San Francisco, CA, United States
| |
Collapse
|
29
|
Xue C, Kang B, Su P, Wang D, Zhao F, Zhang J, Wang X, Lang H, Cao Z. MicroRNA-106b-5p participates in lead (Pb 2+)-induced cell viability inhibition by targeting XIAP in HT-22 and PC12 cells. Toxicol In Vitro 2020; 66:104876. [PMID: 32344020 DOI: 10.1016/j.tiv.2020.104876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 04/20/2020] [Accepted: 04/23/2020] [Indexed: 12/25/2022]
Abstract
Previous studies reported perturbed expressing of X-linked inhibitor of apoptosis protein (XIAP) under lead (Pb) exposure. However, researches on XIAP expression mainly focused on its transcriptional and post-translational regulation, rarely involving post-transcriptional mechanism manipulated by certain indispensable microRNAs (miRNAs). Interestingly, we unveiled that miR-106b-5p, a widely expressed miRNA in various tissues, is up-regulated by Pb2+-induced stress. Moreover, we found a binding site for miR-106b-5p in the 3'-UTR of xiap mRNA using bioinformatics analysis, and provided the evidences that miR-106b-5p can interact and function with this regulatory region via luciferase reporter assay. Our results further showed that miR-106b-5p down-regulates XIAP protein level, and suppression of miR-106b-5p reverses the decrease in both XIAP level and cell viability in Pb2+-treated HT-22 and PC12 cells. In brief, we identified a novel function of miR-106b-5p in the post-transcriptional regulation of XIAP expression associated with Pb neurotoxicity.
Collapse
Affiliation(s)
- Chong Xue
- Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Military Medical University, Xi'an 710032, China
| | - Beipei Kang
- Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Military Medical University, Xi'an 710032, China; Department of Clinical Laboratory, Xijing Hospital, Air Force Military Medical University, Xi'an 710032, China
| | - Peng Su
- Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Military Medical University, Xi'an 710032, China
| | - Diya Wang
- Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Military Medical University, Xi'an 710032, China
| | - Fang Zhao
- Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Military Medical University, Xi'an 710032, China
| | - Jianbin Zhang
- Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Military Medical University, Xi'an 710032, China
| | - Xiaojing Wang
- Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Military Medical University, Xi'an 710032, China; Department of Neurology and Endocrinology, 989 Hospital of PLA, Pingdingshan 467021, China
| | - Haiyang Lang
- School of Public Health, Air Force Military Medical University, Xi'an 710032, China.
| | - Zipeng Cao
- Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Military Medical University, Xi'an 710032, China.
| |
Collapse
|
30
|
Targeting triple-negative breast cancers with the Smac-mimetic birinapant. Cell Death Differ 2020; 27:2768-2780. [PMID: 32341449 PMCID: PMC7492458 DOI: 10.1038/s41418-020-0541-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 02/22/2020] [Accepted: 04/01/2020] [Indexed: 12/12/2022] Open
Abstract
Smac mimetics target inhibitor of apoptosis (IAP) proteins, thereby suppressing their function to facilitate tumor cell death. Here we have evaluated the efficacy of the preclinical Smac-mimetic compound A and the clinical lead birinapant on breast cancer cells. Both exhibited potent in vitro activity in triple-negative breast cancer (TNBC) cells, including those from patient-derived xenograft (PDX) models. Birinapant was further studied using in vivo PDX models of TNBC and estrogen receptor-positive (ER+) breast cancer. Birinapant exhibited single agent activity in all TNBC PDX models and augmented response to docetaxel, the latter through induction of TNF. Transcriptomic analysis of TCGA datasets revealed that genes encoding mediators of Smac-mimetic-induced cell death were expressed at higher levels in TNBC compared with ER+ breast cancer, resulting in a molecular signature associated with responsiveness to Smac mimetics. In addition, the cell death complex was preferentially formed in TNBCs versus ER+ cells in response to Smac mimetics. Taken together, our findings provide a rationale for prospectively selecting patients whose breast tumors contain a competent death receptor signaling pathway for the further evaluation of birinapant in the clinic.
Collapse
|
31
|
Benhar M. Oxidants, Antioxidants and Thiol Redox Switches in the Control of Regulated Cell Death Pathways. Antioxidants (Basel) 2020; 9:antiox9040309. [PMID: 32290499 PMCID: PMC7222211 DOI: 10.3390/antiox9040309] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/05/2020] [Accepted: 04/08/2020] [Indexed: 12/16/2022] Open
Abstract
It is well appreciated that biological reactive oxygen and nitrogen species such as hydrogen peroxide, superoxide and nitric oxide, as well as endogenous antioxidant systems, are important modulators of cell survival and death in diverse organisms and cell types. In addition, oxidative stress, nitrosative stress and dysregulated cell death are implicated in a wide variety of pathological conditions, including cancer, cardiovascular and neurological diseases. Therefore, much effort is devoted to elucidate the molecular mechanisms linking oxidant/antioxidant systems and cell death pathways. This review is focused on thiol redox modifications as a major mechanism by which oxidants and antioxidants influence specific regulated cell death pathways in mammalian cells. Growing evidence indicates that redox modifications of cysteine residues in proteins are involved in the regulation of multiple cell death modalities, including apoptosis, necroptosis and pyroptosis. In addition, recent research suggests that thiol redox switches play a role in the crosstalk between apoptotic and necrotic forms of regulated cell death. Thus, thiol-based redox circuits provide an additional layer of control that determines when and how cells die.
Collapse
Affiliation(s)
- Moran Benhar
- Department of Biochemistry, Rappaport Institute for Research in the Medical Sciences, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| |
Collapse
|
32
|
Increased Expression of BIRC2, BIRC3, and BIRC5 from the IAP Family in Mesenchymal Stem Cells of the Umbilical Cord Wharton's Jelly (WJSC) in Younger Women Giving Birth Naturally. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:9084730. [PMID: 32322338 PMCID: PMC7168741 DOI: 10.1155/2020/9084730] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/07/2020] [Accepted: 03/17/2020] [Indexed: 12/12/2022]
Abstract
The knowledge of factors affecting the viability as well as proliferation and therapeutic potential of perinatal stem cells is of great importance for the decisions concerning their collection, multiplication, and storing. The aim of this work is to evaluate the expression of the BIRC2, BIRC3, and BIRC5 genes at the level of transcription in mesenchymal stem cells derived from the umbilical cord Wharton's jelly. The study examined the relationship between the expression level of the studied genes and selected biophysical parameters of umbilical blood: pH, pCO2, pO2, and cHCO3. Moreover, the relationship between the pregnant age, the type of delivery (natural delivery or cesarean section), and the level of expression of the BIRC2, BIRC3, and BIRC5 genes was assessed. The research was carried out on mesenchymal stem cells derived from the umbilical cord Wharton's jelly (WJSC) taken from 55 women immediately after delivery. Expression of the examined genes was assessed with the qPCR method using commercially available reagent kits. On the basis of the conducted research, it was demonstrated that WJSCs collected from younger women giving birth naturally, and in the acidic environment of the umbilical cord blood, are characterized by a higher expression of the BIRC2, BIRC3, and BIRC5 genes. It was shown that the expression of the BIRC2 and BIRC3 genes in Wharton's jelly mesenchymal stem cells declines with the mother's age. Our research suggests that stem cells collected from younger women giving birth naturally can be more resistant to apoptosis and show a more stem cell-like character, which can increase their therapeutic potential and clinical utility, but this conclusion needs to be approved in the next studies.
Collapse
|
33
|
Nie J, Yu Z, Yao D, Wang F, Zhu C, Sun K, Aweya JJ, Zhang Y. Litopenaeus vannamei sirtuin 6 homolog (LvSIRT6) is involved in immune response by modulating hemocytes ROS production and apoptosis. FISH & SHELLFISH IMMUNOLOGY 2020; 98:271-284. [PMID: 31968265 DOI: 10.1016/j.fsi.2020.01.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/14/2020] [Accepted: 01/17/2020] [Indexed: 06/10/2023]
Abstract
The histone deacetylase, sirtuin 6 (SIRT6), plays an essential role in the regulation of oxidative stress, mitochondrial function and inflammation in mammals. However, the specific role of SIRT6 in invertebrate immunity has not been reported. Here, we characterized for the first time, a sirtuin 6 homolog in Litopenaeus vannamei (LvSIRT6), with full-length cDNA of 2919 bp and 1536 bp open reading frame (ORF) encoding a putative protein of 511 amino acids, which contains a typical SIR2 domain. Sequence and phylogenetic analysis revealed that LvSIRT6 shares a close evolutionary relationship with SIRT6 from invertebrates. Real-time quantitative PCR analysis of LvSIRT6 transcripts revealed that they were ubiquitously expressed in shrimp and induced in hepatopancreas and hemocytes upon challenge with Vibrio parahaemolyticus, Streptococcus iniae, lipopolysaccharide (LPS), and white spot syndrome virus (WSSV), suggesting the involvement of LvSIRT6 in shrimp immune response. Moreover, knockdown of LvSIRT6 decreased mitochondrial membrane potential and increased total ROS level in hemocytes, especially upon V. parahaemolyticus challenge. Depletion of LvSIRT6 also increased hemocytes apoptosis in terms of decreased expression of pro-survival LvBcl-2, but increased expression of pro-apoptotic LvBax and LvCytochrome C, coupled with high LvCaspase3/7 activity. Shrimp were rendered more susceptible to V. parahaemolyticus infection upon LvSIRT6 knockdown. Taken together, our present data suggest that LvSIRT6 plays an important role in shrimp immune response by modulating hemocytes ROS production and apoptosis during pathogen challenge.
Collapse
Affiliation(s)
- Junjie Nie
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Zhixue Yu
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Defu Yao
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Fan Wang
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Chunhua Zhu
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524025, China
| | - Kaihui Sun
- Guangdong Yuequn Marine Biological Research and Development Co., Ltd., Jieyang, 515200, China
| | - Jude Juventus Aweya
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China.
| | - Yueling Zhang
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China.
| |
Collapse
|
34
|
Bao W, Tang KFJ, Alcivar-Warren A. The Complete Genome of an Endogenous Nimavirus ( Nimav-1_LVa) From the Pacific Whiteleg Shrimp Penaeus ( Litopenaeus) Vannamei. Genes (Basel) 2020; 11:E94. [PMID: 31947590 PMCID: PMC7016691 DOI: 10.3390/genes11010094] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 01/09/2023] Open
Abstract
White spot syndrome virus (WSSV), the lone virus of the genus Whispovirus under the family Nimaviridae, is one of the most devastating viruses affecting the shrimp farming industry. Knowledge about this virus, in particular, its evolution history, has been limited, partly due to its large genome and the lack of other closely related free-living viruses for comparative studies. In this study, we reconstructed a full-length endogenous nimavirus consensus genome, Nimav-1_LVa (279,905 bp), in the genome sequence of Penaeus (Litopenaeus) vannamei breed Kehai No. 1 (ASM378908v1). This endogenous virus seemed to insert exclusively into the telomeric pentanucleotide microsatellite (TAACC/GGTTA)n. It encoded 117 putative genes, with some containing introns, such as g012 (inhibitor of apoptosis, IAP), g046 (crustacean hyperglycemic hormone, CHH), g155 (innexin), g158 (Bax inhibitor 1 like). More than a dozen Nimav-1_LVa genes are involved in the pathogen-host interactions. We hypothesized that g046, g155, g158, and g227 (semaphorin 1A like) were recruited host genes for their roles in immune regulation. Sequence analysis indicated that a total of 43 WSSV genes belonged to the ancestral/core nimavirus gene set, including four genes reported in this study: wsv112 (dUTPase), wsv206, wsv226, and wsv308 (nucleocapsid protein). The availability of the Nimav-1_LVa sequence would help understand the genetic diversity, epidemiology, evolution, and virulence of WSSV.
Collapse
Affiliation(s)
- Weidong Bao
- Genetic Information Research Institute, 20380 Town Center Lane, Suite 240, Cupertino, CA 95014, USA
| | - Kathy F. J. Tang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao 266071, China
| | - Acacia Alcivar-Warren
- Fundación para la Conservation de la Biodiversidad Acuática y Terrestre (FUCOBI), Quito EC1701, Ecuador
- Environmental Genomics Inc., ONE HEALTH Epigenomics Educational Initiative, P.O. Box 196, Southborough, MA 01772, USA
| |
Collapse
|
35
|
The Immuno-Modulatory Effects of Inhibitor of Apoptosis Protein Antagonists in Cancer Immunotherapy. Cells 2020; 9:cells9010207. [PMID: 31947615 PMCID: PMC7017284 DOI: 10.3390/cells9010207] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/06/2020] [Accepted: 01/11/2020] [Indexed: 12/20/2022] Open
Abstract
One of the hallmarks of cancer cells is their ability to evade cell death via apoptosis. The inhibitor of apoptosis proteins (IAPs) are a family of proteins that act to promote cell survival. For this reason, upregulation of IAPs is associated with a number of cancer types as a mechanism of resistance to cell death and chemotherapy. As such, IAPs are considered a promising therapeutic target for cancer treatment, based on the role of IAPs in resistance to apoptosis, tumour progression and poor patient prognosis. The mitochondrial protein smac (second mitochondrial activator of caspases), is an endogenous inhibitor of IAPs, and several small molecule mimetics of smac (smac-mimetics) have been developed in order to antagonise IAPs in cancer cells and restore sensitivity to apoptotic stimuli. However, recent studies have revealed that smac-mimetics have broader effects than was first attributed. It is now understood that they are key regulators of innate immune signalling and have wide reaching immuno-modulatory properties. As such, they are ideal candidates for immunotherapy combinations. Pre-clinically, successful combination therapies incorporating smac-mimetics and oncolytic viruses, as with chimeric antigen receptor (CAR) T cell therapy, have been reported, and clinical trials incorporating smac-mimetics and immune checkpoint blockade are ongoing. Here, the potential of IAP antagonism to enhance immunotherapy strategies for the treatment of cancer will be discussed.
Collapse
|
36
|
Sharma A, Trivedi AK. Regulation of apoptosis by E3 ubiquitin ligases in ubiquitin proteasome system. Cell Biol Int 2019; 44:721-734. [PMID: 31814188 DOI: 10.1002/cbin.11277] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 12/06/2019] [Indexed: 11/10/2022]
Abstract
Apoptosis is an organised ATP-dependent programmed cell death that organisms have evolved to maintain homoeostatic cell numbers and eliminate unnecessary or unhealthy cells from the system. Dysregulation of apoptosis can have serious manifestations culminating into various diseases, especially cancer. Accurate control of apoptosis requires regulation of a wide range of growth enhancing as well as anti-oncogenic factors. Appropriate regulation of magnitude and temporal expression of key proteins is vital to maintain functional apoptotic signalling. Controlled protein turnover is thus critical to the unhindered operation of the apoptotic machinery, disruption of which can have severe consequences, foremost being oncogenic transformation of cells. The ubiquitin proteasome system (UPS) is one such major cellular pathway that maintains homoeostatic protein levels. Recent studies have found interesting links between these two fundamental cellular processes, wherein UPS depending on the cue can either inhibit or promote apoptosis. A diverse range of E3 ligases are involved in regulating the turnover of key proteins of the apoptotic pathway. This review summarises an overview of key E3 ubiquitin ligases involved in the regulation of the fundamental proteins involved in apoptosis, linking UPS to apoptosis and attempts to emphasize the significance of this relationship in context of cancer.
Collapse
Affiliation(s)
- Akshay Sharma
- LSS008, Division of Cancer Biology, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Lucknow, 226031, India
| | - Arun K Trivedi
- LSS008, Division of Cancer Biology, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Lucknow, 226031, India
| |
Collapse
|
37
|
Ge Y, Liu BL, Cui JP, Li SQ. Livin Regulates H2A.X Y142 Phosphorylation and Promotes Autophagy in Colon Cancer Cells via a Novel Kinase Activity. Front Oncol 2019; 9:1233. [PMID: 31799193 PMCID: PMC6868062 DOI: 10.3389/fonc.2019.01233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 10/28/2019] [Indexed: 11/22/2022] Open
Abstract
Objective: To investigate Livin-mediated regulation of H2A.XY142 phosphorylation via a novel kinase activity and its effect on autophagy in colon cancer cells. Methods: The interaction between Livin and H2A.X was tested by immunoprecipitation. H2A.X–/– HCT116 cells were transfected with human influenza hemagglutinin (HA)-tagged WT or Y142F phospho-dead mutantH2A.X plasmids. GST-tagged recombinant Livin protein was used to perform in vitro pull-down experiment and kinase assay. H2A.X–/–Livin+/+ SW480 cells were co-transfected with H2A.XWT/H2A.XY142F plasmid and LC3 EGFP-tagged plasmid to explore whether H2A.XY142F was involved in Livin-mediated autophagy induced by starvation in colon cancer cells. Results: Co-immunoprecipitation studies confirmed that Livin interacted with H2A.X and that it was phosphorylation dependent. In vitro kinase assay confirmed that Livin could phosphorylate H2A.X. Knockdown of Livin (Livin–/–) in SW480 cells or HCT116 cells canceled the starvation-induced autophagy in colon cancer cells; H2A.X–/–Livin+/+ SW480 cells transfected with H2A.XWT activated autophagy induced by starvation while cells transfected with H2A.XY142F had no significant difference; Livin-H2A.XY142F axis activated autophagy in colon cancer cells through transcriptionally regulating ATG5 and ATG7. Conclusion: Livin promotes autophagy in colon cancer cells via regulating the phosphorylation of H2A.XY142.
Collapse
Affiliation(s)
- Yang Ge
- The Six Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Bao-Lin Liu
- The Six Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jun-Peng Cui
- The Six Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shu-Qiang Li
- The Six Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
38
|
Heim VJ, Stafford CA, Nachbur U. NOD Signaling and Cell Death. Front Cell Dev Biol 2019; 7:208. [PMID: 31632962 PMCID: PMC6783575 DOI: 10.3389/fcell.2019.00208] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 09/11/2019] [Indexed: 01/18/2023] Open
Abstract
Innate immune signaling and programmed cell death are intimately linked, and many signaling pathways can regulate and induce both, transcription of inflammatory mediators or autonomous cell death. The best-characterized examples for these dual outcomes are members of the TNF superfamily, the inflammasome receptors, and the toll-like receptors. Signaling via the intracellular peptidoglycan receptors NOD1 and NOD2, however, does not appear to follow this trend, despite involving signaling proteins, or proteins with domains that are linked to programmed cell death, such as RIP kinases, inhibitors of apoptosis (IAP) proteins or the CARD domains on NOD1/2. To better understand the connections between NOD signaling and cell death induction, we here review the latest findings on the molecular regulation of signaling downstream of the NOD receptors and explore the links between this immune signaling pathway and the regulation of cell death.
Collapse
Affiliation(s)
- Valentin J Heim
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Che A Stafford
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Ueli Nachbur
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
39
|
de Giffoni de Carvalho JT, da Silva Baldivia D, Leite DF, de Araújo LCA, de Toledo Espindola PP, Antunes KA, Rocha PS, de Picoli Souza K, dos Santos EL. Medicinal Plants from Brazilian Cerrado: Antioxidant and Anticancer Potential and Protection against Chemotherapy Toxicity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:3685264. [PMID: 31534620 PMCID: PMC6732650 DOI: 10.1155/2019/3685264] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 06/16/2019] [Accepted: 07/15/2019] [Indexed: 12/24/2022]
Abstract
The use of natural antioxidants in cancer therapy has increased: first, due to the potential of natural antioxidants to kill tumour cells and second, because of their capacity to protect healthy cells from the damage caused by chemotherapy. This review article discusses the antioxidant properties of extracts obtained from medicinal plants from the Brazilian Cerrado and the cell death profile induced by each of these extracts in malignant cells. Next, we describe the capacity of other medicinal plants from the Cerrado to protect against chemotherapy-induced cell toxicity. Finally, we focus on recent insights into the cell death profile induced by extracts from Cerrado plants and perspectives for future therapeutic approaches.
Collapse
Affiliation(s)
| | - Débora da Silva Baldivia
- Research Group on Biotechnology and Bioprospecting Applied to Metabolism, Federal University of Grande Dourados, Dourados, Brazil
| | - Daniel Ferreira Leite
- Research Group on Biotechnology and Bioprospecting Applied to Metabolism, Federal University of Grande Dourados, Dourados, Brazil
| | - Laura Costa Alves de Araújo
- Research Group on Biotechnology and Bioprospecting Applied to Metabolism, Federal University of Grande Dourados, Dourados, Brazil
| | | | - Katia Avila Antunes
- Research Group on Biotechnology and Bioprospecting Applied to Metabolism, Federal University of Grande Dourados, Dourados, Brazil
| | - Paola Santos Rocha
- Research Group on Biotechnology and Bioprospecting Applied to Metabolism, Federal University of Grande Dourados, Dourados, Brazil
| | - Kely de Picoli Souza
- Research Group on Biotechnology and Bioprospecting Applied to Metabolism, Federal University of Grande Dourados, Dourados, Brazil
| | - Edson Lucas dos Santos
- Research Group on Biotechnology and Bioprospecting Applied to Metabolism, Federal University of Grande Dourados, Dourados, Brazil
| |
Collapse
|
40
|
PEG-derivatized birinapant as a nanomicellar carrier of paclitaxel delivery for cancer therapy. Colloids Surf B Biointerfaces 2019; 182:110356. [PMID: 31319226 DOI: 10.1016/j.colsurfb.2019.110356] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 07/05/2019] [Accepted: 07/08/2019] [Indexed: 02/05/2023]
Abstract
A novel triblock amphiphilic copolymer (PAL-PEG-Birinapant) was designed and synthesized as a dual-functional micellar carrier utilizing birinapant (an inhibitor of inhibitor-of-apoptosis proteins) as a pH-sensitive segment and inhibitor-of-apoptosis proteins-targeting ligand. The mixed micelles comprised of PAL-PEG-Birinapant (PPB) and mPEG2k-PDLLA2k (MPP), named as PPB/MPP (2/1,w/w) micelles were developed for enhanced solubility and antitumor potency of hydrophobic drugs as paclitaxel (PTX). In vitro cell viability and cytotoxicity studies revealed that the PTX-loaded PPB/MPP micelles were more potent than the commercial PTX formulation (Taxol®), as well as the in vitro cell apoptosis study. Clear differences in the intracellular uptake of free coumarin-6 (C6) solution and C6-loaded PPB/MPP micelles were observed and indicated that the PPB/MPP micelles could efficiently deliver chemical compound into tumor cells. PPB copolymer and PTX-loaded PPB/MPP micelles demonstrated an excellent safety profile with a maximum tolerated dose (MTD) of above 1.2 g copolymer/kg and above 100 mg PTX/kg in mice respectively in contrast to 20˜24 mg/kg of Taxol®. The near infrared (NIR) fluorescence imaging showed that PPB/MPP micelles persisted for a relatively long time in the circulation and accumulated preferentially in tumor tissue. Moreover, PTX loaded PPB/MPP micelles significantly inhibited the tumor growth both in MDA-MB-231 and Ramos cancer xenograft mice models without obvious toxicity. Collectively, our study presents a new dual-functional micelles that improve the therapeutic efficacy of PTX in vitro and in vivo.
Collapse
|
41
|
Luo Z, Chen W, Wu W, Luo W, Zhu T, Guo G, Zhang L, Wang C, Li M, Shi S. Metformin promotes survivin degradation through AMPK/PKA/GSK-3β-axis in non-small cell lung cancer. J Cell Biochem 2019; 120:11890-11899. [PMID: 30793366 DOI: 10.1002/jcb.28470] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 12/28/2018] [Accepted: 01/09/2019] [Indexed: 01/24/2023]
Abstract
Metformin, a first-line antidiabetic drug, has been reported with anticancer activities in many types of cancer. However, its molecular mechanisms remain largely unknown. As a member of inhibitor of apoptosis proteins, survivin plays an important role in the regulation of cell death. In the present study, we investigated the role of survivin in metformin-induced anticancer activity in non-small cell lung cancer in vitro. Metformin mainly induced apoptotic cell death in A549 and H460 cell lines. It remarkably suppressed the expression of survivin, decreased the stability of this protein, then promoted its proteasomal degradation. Moreover, metformin greatly suppressed protein kinase A (PKA) activity and induced its downstream glycogen synthase kinase 3β (GSK-3β) activation. PKA activators, both 8-Br-cAMP and forskolin, significantly increased the expression of survivin. Consistently both GSK-3β inhibitor LiCl and siRNA restored the expression of survivin in lung cancer cells. Furthermore, metformin induced adenosine 5'-monophosphate-activated protein kinase (AMPK) activation. Suppression of the activity of AMPK with Compound C reversed the degradation of survivin induced by metformin, and meanwhile, restored the activity of PKA and GSK-3β. These results suggest that metformin kills lung cancer cells through AMPK/PKA/GSK-3β-axis-mediated survivin degradation, providing novel insights into the anticancer effects of metformin.
Collapse
Affiliation(s)
- Zhuang Luo
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, P.R. China
| | - Wei Chen
- Department of Pathophysiology in School of Basic Medical Science, North Sichuan Medical College, Nanchong, P.R. China
| | - Wenjuan Wu
- Department of Dermatology, The First Affiliated Hospital of Kunming Medical University, Kunming, P.R. China
| | - Wei Luo
- Department of Pulmonary and Critical Care Medicine, The People's Hospital of Leshan, Leshan, P.R. China
| | - Tingting Zhu
- Department of Dermatology, The First Affiliated Hospital of Soochow University, Suzhou, P.R. China
| | - Gang Guo
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P.R. China
| | - Liyan Zhang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, P.R. China
| | - Chu Wang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, P.R. China
| | - Min Li
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, P.R. China
| | - Shaoqing Shi
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, P.R. China
| |
Collapse
|
42
|
Peilin W, Songsong T, Chengyu Z, Zhi C, Chunhui M, Yinxian Y, Lei Z, Min M, Zongyi W, Mengkai Y, Jing X, Tao Z, Zhuoying W, Fei Y, Chengqing Y. Directed elimination of senescent cells attenuates development of osteoarthritis by inhibition of c-IAP and XIAP. Biochim Biophys Acta Mol Basis Dis 2019; 1865:2618-2632. [PMID: 31251987 DOI: 10.1016/j.bbadis.2019.05.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 04/28/2019] [Accepted: 05/27/2019] [Indexed: 01/02/2023]
Abstract
Aging drives the accumulation of senescent cells (SnCs) by secreting factors that cause the senescence-associated secretory phenotype (SASP), including stem cells in the bone marrow, which contribute to aging-related bone degradation. Osteoarthritis (OA) is a serious chronic injury disease, and increasing age is a major risk factor. The accumulation of SnCs may accelerate the development of OA, and the accumulation of SnCs may benefit from its resistance to apoptotic stimuli. Therefore, local elimination of SnCs could be a promising treatment for OA. Apoptosis inhibitor protein (IAP) is an important antiapoptotic protein in vivo. AT-406 is a small molecule inhibitor of the IAP genes and also regulates the transcription of several genes. Here, we show that SnCs upregulate the antiapoptotic proteins c-IAP1, c-IAP2 and XIAP.The combined inhibition of c-IAP1, c-IAP2 and XIAP using siRNA or AT-406 specifically induce the apoptosis of SnCs.In addition, XIAP and STX17 bind to each other to regulate the fusion of autophagosomes and lysosomes in SnCs, which in turn, affects the fate of SnCs. It is worth noting that the clearance of SnCs attenuated the secretion of SASP and created a proregenerative environment. Most importantly, local clearance of SnCs significantly attenuated the progression of osteoarthritis in rats without significant toxic effects. Thus, local elimination of SnCs may be a potential treatment for OA. This is the first report of inhibition of IAPs for clearing SnCs and suggests that eradication of SnCs may be a new strategy for the treatment of age-related diseases.
Collapse
Affiliation(s)
- Wang Peilin
- Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Bone Tumor Institute, Shanghai, China
| | - Teng Songsong
- Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhuang Chengyu
- Department of Orthopaedics, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cui Zhi
- Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Bone Tumor Institute, Shanghai, China
| | - Ma Chunhui
- Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Yinxian
- Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhou Lei
- Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Bone Tumor Institute, Shanghai, China
| | - Mao Min
- Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Bone Tumor Institute, Shanghai, China
| | - Wang Zongyi
- Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Bone Tumor Institute, Shanghai, China.
| | - Yang Mengkai
- Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Bone Tumor Institute, Shanghai, China
| | - Xu Jing
- Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Bone Tumor Institute, Shanghai, China
| | - Zhang Tao
- Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Bone Tumor Institute, Shanghai, China.
| | - Wang Zhuoying
- Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Bone Tumor Institute, Shanghai, China
| | - Yin Fei
- Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Bone Tumor Institute, Shanghai, China
| | - Yi Chengqing
- Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
43
|
Kyuno D, Zhao K, Schnölzer M, Provaznik J, Hackert T, Zöller M. Claudin7-dependent exosome-promoted reprogramming of nonmetastasizing tumor cells. Int J Cancer 2019; 145:2182-2200. [PMID: 30945750 DOI: 10.1002/ijc.32312] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 03/10/2019] [Accepted: 03/27/2019] [Indexed: 12/17/2022]
Abstract
Claudin7 (cld7) is a cancer-initiating cell (CIC) marker in gastrointestinal tumors, a cld7-knockdown (kd) being accompanied by loss of tumor progression. Tumor exosomes (TEX) restoring CIC activities, we explored the contribution of cld7. This became particularly interesting, as tight junction (TJ)- and glycolipid-enriched membrane domain (GEM)-derived cld7 is recruited into distinct TEX. TEXs were derived from CIC or cld7kd cells of a rat pancreatic and a human colon cancer line. TEX derived from pancreatic cancer cld7kd cells rescued with palmitoylation site-deficient cld7 (cld7mP) allowed selectively evaluating the contribution of GEM-derived TEX, only palmitoylated cld7 being integrated into GEM. Cld7 CIC-TEX promoted tumor cell dissemination and metastatic growth without a major impact on proliferation, apoptosis resistance and epithelial-mesenchymal transition. Instead, migration, invasion and (lymph)angiogenesis were strongly supported, only migration being selectively fostered by GEM-derived cld7 TEX. CIC-TEX coculture of cld7kd cells uncovered significant changes in the cld7kd cell protein and miRNA profiles. However, changes did not correspond to the CIC-TEX profile, CIC-TEX rather initiating integrin, protease and RTK, particularly lymphangiogenic receptor activation. CIC-TEX preferentially rescuing cld7kd-associated defects in signal transduction was backed up by an RTK inhibitor neutralizing the impact of CIC-TEX on tumor progression. In conclusion, cld7 contributes to selective steps of the metastatic cascade. Defects of cld7kd and cld7mP cells in migration, invasion and (lymph)angiogenesis are effaced by CIC-TEX that act by signaling cascade activation. Accordingly, RTK inhibitors are an efficient therapeutic defeating CIC-TEX.
Collapse
Affiliation(s)
- Daisuke Kyuno
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany.,Department of Surgery, Surgical Oncology and Science, Sapporo Medical University, Sapporo, Japan
| | - Kun Zhao
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Martina Schnölzer
- Functional Proteome Analysis, German Cancer Research Center, Heidelberg, Germany
| | | | - Thilo Hackert
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Margot Zöller
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
44
|
Liu J, Giri BR, Chen Y, Cheng G. 14-3-3 protein and ubiquitin C acting as SjIAP interaction partners facilitate tegumental integrity in Schistosoma japonicum. Int J Parasitol 2019; 49:355-364. [PMID: 30797771 DOI: 10.1016/j.ijpara.2018.11.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 11/16/2018] [Accepted: 11/20/2018] [Indexed: 12/26/2022]
Abstract
Schistosomiasis, caused by trematodes of the genus Schistosoma, remains an important public health issue. Adult schistosomes can survive in the definitive host for several decades, although they are subject to the host immune response. Consequently, understanding the mechanism underlying worm survival in the definitive hosts could aid in developing novel strategies against schistosomiasis. We previously found that an inhibitor of apoptosis in Schistosoma japonicum (SjIAP) could negatively regulate apoptosis by inhibiting caspase activity, which plays a critical role in maintaining tegument integrity. The current study aimed to further analyze the mechanism related to SjIAP governing worm tegument integrity; therefore, we used a yeast two-hybrid screen and identified a series of putative interacting partners of SjIAP, including 14-3-3 (Sj14-3-3) and ubiquitin C (SjUBC). Quantitative real time PCR (qRT-PCR) analysis indicated that transcript profiles of Sj14-3-3 and SjUBC increased together with worm development in definitive hosts, which corresponds to those of SjIAP in S. japonicum. Immunohistochemical analysis showed Sj14-3-3 and SjUBC were located in the tegument of adult parasites while they were also ubiquitously distributed in the bodies of worms. Silencing of Sj14-3-3/SjUBC expression led to increased caspase activity and induced worm death. Inhibition of Sj14-3-3 or SjUBC resulted in significant morphological alterations in the schistosome tegument. Overall, our findings indicated that Sj14-3-3 and SjUBC interacting with SjIAP may belong to another strategy of S. japonicum to maintain the tegument integrity.
Collapse
Affiliation(s)
- Juntao Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, 200241, China
| | - Bikash Ranjan Giri
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, 200241, China
| | - Yongjun Chen
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, 200241, China
| | - Guofeng Cheng
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, 200241, China.
| |
Collapse
|
45
|
Guo Q, Jing FJ, Qu HJ, Xu W, Han B, Xing XM, Ji HY, Jing FB. Ubenimex Reverses MDR in Gastric Cancer Cells by Activating Caspase-3-Mediated Apoptosis and Suppressing the Expression of Membrane Transport Proteins. BIOMED RESEARCH INTERNATIONAL 2019; 2019:4390839. [PMID: 30915355 PMCID: PMC6402206 DOI: 10.1155/2019/4390839] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 12/09/2018] [Accepted: 12/27/2018] [Indexed: 02/06/2023]
Abstract
Gastric cancer (GC) is one of the most malignant tumors, accounting for 10% of deaths caused by all cancers. Chemotherapy is often necessary for treatment of GC; the FOLFOX regimen is extensively applied. However, multidrug resistance (MDR) of GC cells prevents wider application of this treatment. Ubenimex, an inhibitor of CD13, is used as an immune adjuvant to treat hematological malignancies. Here, we demonstrate that CD13 expression positively correlates with MDR development in GC cells. Moreover, Ubenimex reverses the MDR of SGC7901/X and MKN45/X cells and enhances their sensitivity to FOLFOX, in part by decreasing CD13 expression, which is accompanied by downregulation of Bcl-xl, Bcl-2, and survivin expression; increased expression of Bax; and activation of the caspase-3-mediated apoptotic cascade. In addition, Ubenimex downregulates expression of membrane transport proteins, such as P-gp and MRP1, by inhibiting phosphorylation in the PI3K/AKT/mTOR pathway to increase intracellular accumulations of 5-fluorouracil and oxaliplatin, a process for which downregulation of CD13 expression is essential. Therefore, the present results reveal a previously uncharacterized function of CD13 in promoting MDR development in GC cells and suggest that Ubenimex is a candidate for reversing the MDR of GC cells.
Collapse
Affiliation(s)
- Qie Guo
- Department of Clinical Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266003, China
| | - Fan-jing Jing
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266003, China
| | - Hai-jun Qu
- Department of Clinical Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266003, China
| | - Wen Xu
- Department of Clinical Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266003, China
| | - Bing Han
- Department of Clinical Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266003, China
| | - Xiao-min Xing
- Department of Clinical Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266003, China
| | - Hong-yan Ji
- Department of Clinical Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266003, China
| | - Fan-Bo Jing
- Department of Clinical Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266003, China
| |
Collapse
|
46
|
Ayachi O, Barlin M, Broxtermann PN, Kashkar H, Mauch C, Zigrino P. The X-linked inhibitor of apoptosis protein (XIAP) is involved in melanoma invasion by regulating cell migration and survival. Cell Oncol (Dordr) 2019; 42:319-329. [PMID: 30778852 DOI: 10.1007/s13402-019-00427-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The X-linked inhibitor of apoptosis (XIAP) is a potent cellular inhibitor of apoptosis, based on its unique capability to bind and to inhibit caspases. However, XIAP is also involved in a number of additional cellular activities independent of its caspase inhibitory function. The aim of this study was to investigate whether modulation of XIAP expression affects apoptosis-independent functions of XIAP in melanoma cells, restores their sensitivity to apoptosis and/or affects their invasive and metastatic capacities. METHODS XIAP protein levels were analyzed by immunohistochemical staining of human tissues and by Western blotting of melanoma cell lysates. The effects of pharmacological inhibition or of XIAP down-regulation were investigated using ex-vivo and transwell invasion assays. The biological effects of XIAP down-regulation on melanoma cells were analyzed in vitro using BrdU/PI, nucleosome quantification, adhesion and migration assays. In addition, new XIAP binding partners were identified by co-immunoprecipitation followed by mass spectrometry. RESULTS Here we found that the expression of XIAP is increased in metastatic melanomas and in invasive melanoma-derived cell lines. We also found that the bivalent IAP antagonist birinapant significantly reduced the invasive capability of melanoma cells. This reduction could be reproduced by downregulating XIAP in melanoma cells. Furthermore, we found that the migration of melanoma cells and the formation of focal adhesions at cellular borders on fibronectin-coated surfaces were significantly reduced upon XIAP knockdown. This reduction may depend on an altered vimentin-XIAP association, since we identified vimentin as a new binding partner of XIAP. As a corollary of these molecular alterations, we found that XIAP down-regulation in melanoma cells led to a significant decrease in invasion of dermal skin equivalents. CONCLUSION From our data we conclude that XIAP acts as a multifunctional pro-metastatic protein in skin melanomas and, as a consequence, that XIAP may serve as a therapeutic target for these melanomas.
Collapse
Affiliation(s)
- Ouissam Ayachi
- Department of Dermatology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Meltem Barlin
- Department of Dermatology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Pia Nora Broxtermann
- Institute for Medical Microbiology, Immunology and Hygiene (IMMIH), Center for Molecular Medicine Cologne (CMMC), CECAD, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Hamid Kashkar
- Institute for Medical Microbiology, Immunology and Hygiene (IMMIH), Center for Molecular Medicine Cologne (CMMC), CECAD, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Cornelia Mauch
- Department of Dermatology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Paola Zigrino
- Department of Dermatology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.
- Department of Dermatology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Kerpener Strasse 62, 50937, Cologne, Germany.
| |
Collapse
|
47
|
Potential Involvement of BIRC5 in Maintaining Pluripotency and Cell Differentiation of Human Stem Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8727925. [PMID: 30774747 PMCID: PMC6350561 DOI: 10.1155/2019/8727925] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 11/14/2018] [Accepted: 11/26/2018] [Indexed: 12/11/2022]
Abstract
The BIRC5 gene encodes a survivin protein belonging to class III of inhibitors of apoptosis, IAP. This protein serves a dual role. First, it regulates cell death, and second, it is an important regulator of mitosis progression, although its physiological regulatory function has not been fully understood. Many studies have shown and confirmed that survivin is practically absent in mature tissues in nature, while its overexpression has been reported in many cancerous tissues. There is little information about the significance of BIRC5 expression in normal adult human stem cells. This paper presents the study and analysis of survivin expression at the transcription level using qPCR method, in hematopoietic stem cells from peripheral blood mobilized with a granulocyte growth factor, adherent cells derived from the umbilical cord, and normal bone marrow stem cells. The expression of this gene was also examined in the blood of normal healthy individuals. The results of the analysis have shown that the more mature the cells are, the lower the expression of the BIRC5 gene is. The lowest expression has been found in peripheral blood cells, while the highest in normal bone marrow cells. The more the CD34+ and CD105 cells in the tested material are, the higher the BIRC5 expression is. Stem cells from cell culture show higher BIRC5 expression. The study confirms the involvement of BIRC5 from the IAP family in many physiological processes apart from apoptosis inhibition. The possible effect of BIRC5 on cell proliferation; involvement in cell cycle, cell differentiation, survival, and maintenance of stem cells; and the possible effect of IAP on the antineoplastic properties of mesenchymal stem cells have been demonstrated. Our research suggests that BIRC5 may be responsible for the condition of stem cell pluripotency and its high expression may also be responsible for the dedifferentiation of tumor cells.
Collapse
|
48
|
Apoptotic and Early Innate Immune Responses to PB1-F2 Protein of Influenza A Viruses Belonging to Different Subtypes in Human Lung Epithelial A549 Cells. Adv Virol 2018; 2018:5057184. [PMID: 30687405 PMCID: PMC6330835 DOI: 10.1155/2018/5057184] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 10/24/2018] [Indexed: 11/18/2022] Open
Abstract
PB1-F2 is a multifunctional protein and contributes to the pathogenicity of influenza A viruses. PB1-F2 is known to have strain and cell specific functions. In this study we have investigated the apoptotic and inflammatory responses of PB1-F2 protein from influenza viruses of diverse pathogenicities in A549 lung epithelial cells. Overexpression of PB1-F2 resulted in apoptosis and heightened inflammatory response in A549 cells. Comparison revealed that the response varied with each subtype. PB1-F2 protein from highly pathogenic H5N1 virus induced least apoptosis but maximum inflammatory response. Results indicated that apoptosis was mediated through death receptor ligands TNFα and TRAIL via Caspase 8 activation. Significant induction of cytokines/chemokines CXCL10, CCL5, CCL2, IFNα, and IL-6 was noted in A549 cells transfected with PB1-F2 gene construct of 2008 West Bengal H5N1 virus (H5N1-WB). On the contrary, PB1-F2 construct from 2007 highly pathogenic H5N1 isolate (H5N1-M) with truncated N-terminal region did not evoke as exuberant inflammatory response as the other H5N1-WB with full length PB1-F2, signifying the importance of N-terminal region of PB1-F2. Sequence analysis revealed that PB1-F2 proteins derived from different influenza viruses varied at multiple amino acid positions. The secondary structure prediction showed each of the PB1-F2 proteins had distinct helix-loop-helix structure. Thus, our data substantiate the notion that the contribution of PB1-F2 to influenza pathogenicity is greatly strain specific and involves multiple host factors. This data demonstrates that PB1-F2 protein of influenza A virus, when expressed independently is minimally apoptotic and strongly influences the early host response in A549 cells.
Collapse
|
49
|
How Glucocorticoids Affect the Neutrophil Life. Int J Mol Sci 2018; 19:ijms19124090. [PMID: 30563002 PMCID: PMC6321245 DOI: 10.3390/ijms19124090] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 12/13/2018] [Accepted: 12/15/2018] [Indexed: 02/07/2023] Open
Abstract
Glucocorticoids are hormones that regulate several functions in living organisms and synthetic glucocorticoids are the most powerful anti-inflammatory pharmacological tool that is currently available. Although glucocorticoids have an immunosuppressive effect on immune cells, they exert multiple and sometimes contradictory effects on neutrophils. From being extremely sensitive to the anti-inflammatory effects of glucocorticoids to resisting glucocorticoid-induced apoptosis, neutrophils are proving to be more complex than they were earlier thought to be. The aim of this review is to explain these complex pathways by which neutrophils respond to endogenous or to exogenous glucocorticoids, both under physiological and pathological conditions.
Collapse
|
50
|
Abstract
The inhibitor of apoptosis proteins (IAPs) are a family of proteins that were chiefly known for their ability to inhibit apoptosis by blocking caspase activation or activity. Recent research has shown that cellular IAP1 (cIAP1), cIAP2, and X-linked IAP (XIAP) also regulate signaling by receptors of the innate immune system by ubiquitylating their substrates. These IAPs thereby act at the intersection of pathways leading to cell death and inflammation. Mutation of IAP genes can impair tissue homeostasis and is linked to several human diseases. Small-molecule IAP antagonists have been developed to treat certain malignant, infectious, and inflammatory diseases. Here, we will discuss recent advances in our understanding of the functions of cIAP1, cIAP2, and XIAP; the consequences of their mutation or dysregulation; and the therapeutic potential of IAP antagonist drugs.
Collapse
Affiliation(s)
- Najoua Lalaoui
- Cell Signalling and Cell Death, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, 3052, Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, 3050, Australia
| | - David Lawrence Vaux
- Cell Signalling and Cell Death, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, 3052, Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, 3050, Australia
| |
Collapse
|